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Glossary

Bayesian inference Statistical inference approach

based on the combination of prior information

and evidence (i.e., observations) for estimation or

hypothesis testing. In Bayesian analysis the prior

information is updated with the experimental data

to generate the posterior distribution of unknowns,

such as model parameters. The name “Bayesian”

comes from the use of the Bayes’ theorem in the

updating process.

Breeding value A measure of the genetic merit of an

individual for breeding purposes.

Genetic correlation The correlation between traits

that is caused by genetic as opposed to environ-

mental factors. Genetic correlations can be caused

by pleiotropy (genes that affect multiple traits

simultaneously) or by linkage disequilibrium

between genes affecting the different traits.

Genomic selection Genomic selection is a form of

marker-assisted selection in which genetic markers

covering the whole genome are used such that all

quantitative trait loci (QTL) are in linkage disequi-

librium with at least one marker.

Heritability (narrow sense) The fraction of the phe-

notypic variance that is due to additive genetic effects.

Infinitesimal genetic model A genetic model that

assumes that a trait is influenced by a very large
(effectively infinite) number of loci, each with

infinitesimal effect.

Linkage disequilibrium Nonrandom association of

alleles at two or more loci, leading to combinations

of alleles (haplotypes) that are more or less frequent

in a population than would be expected from

a random formation of haplotypes from alleles

based on their frequencies.

Mixed models A mixed-effects model (or simply

mixed model) is a statistical model containing

both fixed and random effects. Such models are

useful in awide variety of disciplines in the physical,

biological, and social sciences, especially for the

analysis of data with repeated measurements on

each statistical unit or with measurements taken

on clusters of related statistical units.

Population genetics The study of allele frequency dis-

tribution and change under the influence of the

four main evolutionary processes: selection, genetic

drift, mutation, and migration.

Quantitative genetics The study of complex traits

(e.g., production and reproductive traits, disease

resistance) and their underlying genetic mecha-

nisms. It is effectively an extension of simple Men-

delian inheritance in that the combined effect of

the many underlying genes results in a continuous

distribution of phenotypic values or of some under-

lying scale or liability thereof.

Definition of the Subject

The term Animal Breeding refers to the human-guided

genetic improvement of phenotypic traits in domestic

animals such as livestock and companion species [1].

Animal breeding is based on principles of Quantitative

Genetics [2–4] and aims to increase the frequency of

favorable alleles and allelic combinations in the popu-

lation, which is achieved through selection of superior

individuals and specific mating systems strategies.

Selection methods and mating strategies are developed

by combining principles of quantitative and popula-

tion genetics with sophisticated statistical methods and

computational algorithms for integrating phenotypic,

pedigree, and genomic information, along with the

utilization of reproductive technologies that allow for

larger progeny cohorts from superior animals as well as

shorter generation intervals.
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Through selection and mating of superior animals

the frequency of favorable alleles is increased, so the

overall additive genetic merit of a population is

increased through successive generations [5]. Selection

can be regarded as the most important tool for the

improvement of lines or breeds within a specific species

in terms of additive genetic effects. Such lines or breeds

can be then intermated such that nonadditive genetic

effects such as dominance and epistasis can be

exploited through specific inter- and intralocus allelic

combinations [1–4].

The theoretical foundations of population and

quantitative genetics can be traced back to the work

of R. A. Fisher, J. B. S. Haldane, and S. Wright. The

rational animal breeding has its origins in the work of

J. L. Lush, who made substantial contributions to ani-

mal genetics and biometrics research and is generally

referred to as the father of modern scientific animal

breeding [1].

More recent theoretical developments in popula-

tion and quantitative genetics have been fostered by

researchers such as C. C. Cockerham, C.W. Cotterman,

J. F. Crow, W. J. Ewens, W. G. Hill, M. Kimura,

G. Malécot, T. Nagylaki, and B. S. Weir, among others.

A landmark in the area of animal breeding and genetics

is the development of mixed model methodology, first

proposed by C. R. Henderson, which has been used

extensively in many applications in the field, ranging

from breeding value prediction under the infinitesimal

assumption to gene mapping and segregation analysis.

Most recently, Bayesian methods, Monte Carlo, and

resampling techniques have been employed to fit and

evaluate complex models in different contexts, includ-

ing nonlinear systems, generalized models, survival

analysis, and situations in which the number of

parameters or covariates surpasses the number of

observations, such as in association analysis and

whole-genome marker-assisted selection using high

density panels of single nucleotide polymorphism

(SNP) markers.
Animal Breeding, Foundations of. Figure 1

Average growth curves of commercial broilers. Blue and red

lines represent birds with “2001” and “1957” genetics,

respectively. Solid and dashed lines represent birds fed

diets typical of 2001 or 1957, respectively (Adapted

from [6])
Introduction

Since domestication, artificial selection has greatly

changed the shape, size, and production and reproduc-

tion performance of livestock and companion animal

species. For example, there is an incredible diversity of
canine breeds – and between dogs and their wolf ances-

tors – from differences in overall appearance to behav-

ior and their ability to perform specific tasks. Although

to a lesser degree, the same can be observed in many

other companion animal species, such as cats and

horses. With livestock species, tremendous genetic

changes have been accomplished as well, markedly in

the last 50 years or so. For example, Fig. 1 depicts the

average growth curves of broilers from selected and

control populations. These results refer to a population

of birds selected for over 40 years for increased growth

rate and another population kept without artificial

selection, with both groups derived from the same

base population, starting in 1957 [6]. In the experiment

presented in Fig. 1, the two groups of birds were fed

diets typical of 1957 and 2001, such that the interaction

between genetics and feed, as well as the genetic con-

tribution to the phenotypic differences observed, could

be assessed. It is seen that the 2001 genetics group

presented an average body weight of about 4 kg at

56 days of age, while its 1957 counterpart weighed

only 800 g or so. Moreover, it is shown that 85–90%

of this fivefold improvement is accounted for by genet-

ics with the remaining 10–15% to nutrition.

Similar levels of genetic improvement can also be

observed in many other species, such as swine, beef and
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dairy cattle, and some species of fish. For example, as

illustrated in Fig. 2, the average breeding value for milk

yield in the US Holstein, and Red and White

populations has increased over 3,500 kg in the last

50 years.

Such genetic improvements have been accom-

plished mostly through the selection and breeding of

superior animals, which can be chosen using specific

statistical methods such as those discussed on the fol-

lowing sections. In this chapter, the discussion will

focus on methods developed for normally distributed

(Gaussian) traits, under the infinitesimal assumption,

i.e., that traits are affected by a large (virtually infinite)

number of genes of small effects [2–4], although this

assumption is somewhat alleviated in marker- assisted

selection, which is discussed later.
Principles of Selection

Basic Genetic Model for Quantitative Traits

The basic genetic model can be expressed as [2, 3, 7]:

yi ¼ mþ gi þ ei ð1Þ
where yi is the phenotypic value of animal i (i.e., the

animal’s performance for a specific trait); m is the
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Animal Breeding, Foundations of. Figure 2

Genetic trend for milk yield in the US Holstein and Red and

White populations. Males and females average breeding

values are in blue and red, respectively; genetic base refers

to cows born in year 2005 (Source: AIPL – USDA; http://

www.aipl.arsusda.gov/)
population mean (average performance of the ani-

mals); gi is the genotypic value of the animal, expressed

as a deviation from the mean; and ei is a term

representing environmental factors affecting the ani-

mal’s performance, also expressed as a deviation from

the mean. Hence, it is assumed that E½gi	 ¼ 0 and

E½ei	 ¼ 0, such that E½yi	 ¼ m, where E½:	 represents
the expectation function. Moreover, the variance of yi
is given by Var½ yi	 ¼ s2y ¼ s2g þ s2e, where s

2
g ¼ Var½gi	

and s2e ¼ Var½ei	 are the genetic and environmental

variances, respectively. Normally distributed traits,

i.e., phenotypic traits with a bell-shaped distribution,

are generally represented as yi � N m;s2y
� �

. Such dis-

tribution has a probability density function that can be

described as [2, 4]:

f ðyiÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2ps2y

q exp � 1

2s2y
yi � mð Þ2

( )
;

for �1 < yi < 1, �1 < m < 1, and s2y > 0,

which can be represented as in Fig. 3. To simplify the

notation used throughout the text, it is noted that

either random variables or their realizations will be

represented with lower case letters. However, the con-

text should make it clear to the reader when a letter

represents one or the other.
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Animal Breeding, Foundations of. Figure 3

Probability density function of a normally distributed

trait with mean m ¼ E½yi	 and variance s2y ¼ Var½yi	, i.e.,
yi � Nðm; s2yÞ

http://www.aipl.arsusda.gov/
http://www.aipl.arsusda.gov/


418 A Animal Breeding, Foundations of
The genetic component gi of Model (1) can be

partitioned into additive ðaiÞ and nonadditive ðciÞ
genetic effects, i.e., gi ¼ ai þ ci , where ai is also called

“breeding value,” and ci refers to the “gene combina-

tion value,” which encompasses interaction effects

between alleles within each locus (i.e., dominance

effects) or between alleles in different loci (i.e., epistatic

effects).

Hence, Model (1) can be expressed as:

yi ¼ mþ ai þ ci þ ei ð2Þ
where ai � Nð0; s2aÞ, ci � Nð0; s2c Þ, and ei � Nð0; s2e Þ,
with all these terms assumed independent from each

other. The phenotypic variance can be then expressed

as Var½yi	 ¼ s2y ¼ s2a þ s2c þ s2e , from which two

important definitions are derived. The first one is called

broad sense heritability, given by H2 ¼ s2g=s
2
y, where

s2g ¼ s2a þ s2c , which gives the proportion of the phe-

notypic variance that is due to genetic effects. The

second, called narrow sense heritability, refers to

the specific contribution of additive genetic effects

to the phenotypic variance, i.e., h2 ¼ s2a=s
2
y . These

two quantities, particularly narrow sense heritability,

will be further discussed and used in the next sections.

The breeding value of an individual ðaiÞ is equal to
the sum of additive effects of individual alleles within

and across loci, and it is sometimes called “additive

genetic deviation” or “additive genetic effect.” Because

individual alleles, and therefore independent allele

effects, are passed from parent to offspring, the breed-

ing value of an individual is important for predicting

its progeny’s performance and so it is central to selec-

tion of superior animals [1, 3]. The gene combination

value ðciÞ is the difference between the genetic merit

ðgiÞ of an animal and its breeding value, i.e.,

ci ¼ gi � ai , so it is often called “nonadditive genetic

deviation.” Because the component ci involves interac-

tions between alleles (both within and between loci),

and only a single allele (as opposed to a pair of alleles)

in each locus is transmitted from parents to offspring,

nonadditive effects are not transmitted in a predictable

manner. Hence, while average breeding value in a pop-

ulation can be changed through selection of superior

animals, the gene combination value should be

explored through specific mating systems. Here, the

discussion will focus on selection approaches and the

genetic improvement of a population in terms of
additive genetic effects only. For a discussion onmating

systems, such as inbreeding and outbreeding strategies,

see for example, [1, 7, 8]. Additional discussion on

inbreeding depression and heterosis (or hybrid vigor)

can be found in [3, 4].

As discussed previously, the breeding value of an

individual is equal to the sum of its independent allele

effects. Because a parent passes a random sample of half

of its alleles to its progeny, an animal’s breeding value is

twice what is often called “transmitting ability” or

“expected progeny difference” [1, 5]. The expected

breeding value of an offspring ðaoÞ is then equal to

the average of its parents’ breeding values (the same

as the sum of its parents’ transmitting abilities), i.e.,

E½aojas; ad 	 ¼ asþad
2

, where as and ad represent the

(realized) breeding values of the offspring’s sire and

dam, respectively. However, there will be variability in

terms of breeding values within a full-sib family

because of the random sampling of parents’ alleles

that each offspring receives, the so-called Mendelian

sampling [4].

The breeding value of an individual can be

expressed as a function of its parents’ breeding values

as ao ¼ 0:5as þ 0:5ad þ d, where d refers to the Men-

delian sampling component. It is interesting to notice

that the variance of breeding values in a specific gener-

ation is equal to Var½ao	 ¼ 0:25Var½as	 þ 0:25Var½ad 	
þVar½d	. Assuming the same additive genetic vari-

ance across generations and for both sexes (i.e.,

Var½ao	 ¼ Var½as	 ¼ Var½ad 	 ¼ s2a), it is shown that

the Mendelian sampling variance is equal to half the

additive genetic variance, i.e., Var½d	 ¼ s2a=2.
Phenotypic Selection

The most traditional approach of genetic improvement

of livestock (and more generally any domestic animal

or plant species) is based on selection of animals with

the best performance, or “phenotypic selection” [1–4].

Accordingly, given a group of animals supposedly

reared in similar environmental conditions, only

those with the highest performance are allowed to

breed to produce the next generation. As discussed

previously (Model 2), the performance of each animal

is a combination of its breeding value and all other

nonadditive genetic effects and environmental factors,

such that a superior performance does not always
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represent superior breeding value. Nonetheless, when-

ever s2a > 0, there will be a positive correlation between

performance and breeding value, and the effectiveness

of phenotypic selection (i.e., selection response) will

increase with such correlation.

To illustrate this concept consider Fig. 4, in which

a scatter plot of breeding values and phenotypes (cen-

tered on zero, i.e., yi � m) for a few fictitious animals is

presented. As indicated before, in this chapter the dis-

cussion will be focused on selection approaches and the

genetic improvement of a population in terms of addi-

tive genetic effects only, such that Model (2) can be

conveniently reexpressed as:

yi ¼ mþ ai þ ei ð3Þ

where ei ¼ ci þ ei represents all nonadditive genetic

and environmental effects affecting the phenotypic

value yi , assumed ei � Nð0;s2e Þ.
Assuming that each effect in Model (3) is indepen-

dent from each other, the covariance between pheno-

type and breeding value is given by:

Cov½yi; ai	 ¼ Cov½mþ ai þ ei; ai	 ¼ Var½ai	 ¼ s2a;
B
re

ed
in

g 
va

lu
e 

(a
)

Phenotypic

R

Animal Breeding, Foundations of. Figure 4

Scatter plot of breeding values versus phenotypic values. Eac

are selected animals with performance (i.e., phenotypic value

average phenotypic and breeding values of the selected (top)
such that the correlation between phenotype and

breeding value is:

ryi ;ai ¼
Cov½yi; ai	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½yi	Var½ai	

p ¼ s2a
sysa

¼ sa
sy

¼
ffiffiffiffiffi
h2

p
;

i.e., the square root of the (narrow sense) heritability.

As the breeding values of animals are unknown in

practice, what phenotypic selection does is to predict

(or estimate) the animals’ breeding values based on

their own performance. The prediction is based on

the regression of breeding values on phenotypes, and

the regression coefficient (slope) is given by:

bai�yi ¼
Cov½yi; ai	
Var½yi	 ¼ s2a

s2y
¼ h2:

This means that an animal’s estimated breeding

value (EBV) based solely on its performance (and

with a single measurement only) can be expressed as:

âi ¼ h2ðyi � mÞ:
The correlation between such EBV (which is

a linear transformation of yi ) and the true breeding
 value (y)

t

S

h dot represents a specific animal and those colored in red

) above a specified threshold (t). S and R represent the

animals, respectively
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Probability density of the distribution of phenotypic values

in the candidates-for-selection (red) and the progeny (blue)

populations. The candidates-for-selection group

represents the parental population (or generation 0), from

which the top performing animals (above the threshold t)

are selected and mated to produce the next generation, or

progeny (generation 1). The difference between the

phenotypic average of the selected animals and that of the

generation 0 is called selection differential (represented

by S), and the difference between the phenotypic mean of

the progeny and that of the generation 0 is called genetic

progress, or genetic response (represented by R)

420 A Animal Breeding, Foundations of
value ðaiÞ is râi ;ai ¼ Cov½âi ;ai 	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½âi 	Var½ai 	

p ¼ h2s2affiffiffiffiffiffiffiffiffiffi
h4s2ys2a

p ¼ h, which

is generally referred to as “prediction accuracy” in

the animal breeding literature [5]. The square of the

accuracy in this case is equal to the heritability of

the trait and is often called “prediction reliability.”

The prediction accuracy (and consequently the reliabil-

ity) can be increased by using additional sources of

information on an animal (such as repeated mea-

surements of the trait or performance of progeny and

other relatives) when estimating its breeding value.

An example is with selection indexes and mixed

model methodology, which will be discussed later in

this chapter.

As indicated in Fig. 4, the selected animals (i.e.,

the best performing animals) will have an average

phenotypic value equal to S and an average breeding

value equal to R. The expected average breeding value

(and also the expected phenotypic performance)

of the progeny of the selected animals is also R, as

illustrated in Fig. 5, and the ratio R/S is equal to

the heritability ðh2Þ of the trait under selection. The

genetic progress after one generation of selection is

then given by:

R ¼ h2S;

where R ¼ mP � m and S ¼ mS � m, with mP , mS , and m
representing the average phenotypic performance of

the progeny (generation 1), of the selected animals,

and of the selection candidate (generation 0)

populations, respectively.

The selection differential (S) can also be expressed

as S ¼ isy , where i ¼ mS�m
sy

is called “selection inten-

sity,” and represents the selection differential in terms

of phenotypic standard deviations. In addition, as R

represents the genetic progress expected in a single

generation of selection, the genetic improvement per

unit of time is then given by R
 ¼ R=L, where L is the

generation interval. Hence, the expected genetic pro-

gress when phenotypic selection on a single trait is

employed is [1, 3]:

R
 ¼ h2isy
L

;

which, given that sy ¼ sa=h, can be expressed also as:

R
 ¼ hisa
L

:

This equation is a special form of the so-called

“breeder’s equation” (or “key equation”), for the case

of phenotypic selection. In its general form, the

breeder’s equation is expressed as [5]:

R
 ¼ Accuracy � Intensity � Variation

Generation interval
;

meaning that the genetic progress per unit of time is

proportional to the accuracy of breeding values predic-

tion, to the selection intensity, and to the genetic var-

iation, and inversely proportional to the generation

interval.

Hence, to increase the genetic progress in a popu-

lation (e.g., breed or line) through selection, animal

breeders (and similarly plant breeders) work to

improve the four components of the equation above.

As the genetic variability is a natural characteristic of

a population and cannot be easily changed, genetic
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progress is generally incremented by improving predic-

tion accuracy (e.g., by using specific statistical tech-

niques to combine different sources of information

regarding the animals’ genetic merit), by increasing

the selection intensity, and by shortening the genera-

tion interval, which can be accomplished using molecu-

lar genetics techniques (e.g., the use of marker-assisted

selection) and biotechnology approaches (e.g., artificial

insemination).

It is important to mention that the breeder’s equa-

tion discussed here can be extended for more complex

scenarios, such as when males and females contribute

differently for some components of the equation [5].

For example, prediction accuracies and selection

intensity are generally higher for males if artificial

insemination is used. Another important issue to

mention here is that selection not only shifts the

mean of the breeding values in a population but

also changes the genetic variance (and heritability).

A primary cause of the change in genetic variance is

due to the fact that selected parents represent one tail

of the phenotypic distribution, therefore their pheno-

typic variance is smaller than that of the whole

candidates-for-selection population. This leads to

a reduction in both the phenotypic and additive

genetic variances in the progeny population, which is

known as the “Bulmer effect” [2]. In addition, as

selectionmodifies allele frequencies toward the fixation

of favorable alleles, selection in one direction over

many generations is also expected to reduce the genetic

variation. Additional discussion on effects of selec-

tion on variance and other short-term and long-term

consequences of artificial selection can be found, for

example, in [2, 3].

In the remainder of this chapter specific statistical

techniques (such as the selection index, BLUP, and

genomic selection) for the improvement of accuracy,

intensity, and generation interval, and consequently

the increase of genetic progress from artificial selection,

will be discussed.
Correlated Response and Indirect Selection

If two traits x and y are genetically correlated, direct

selection on one of the traits (say y) will also cause

a genetic change in the other trait (trait x), which is

called “correlated response” [3]. Correlated response to
selection ðRx�yÞ, that is, genetic change in trait x as

a consequence of direct selection on trait y, can be

predicted by:

Rx�y ¼ bx�yRy ;

where Ry is the genetic progress of trait y through direct

selection on itself, and bx�y is the genetic regression

coefficient, given by:

bx�y ¼ Covðax ; ayÞ
s2ay

;

where Covðax ; ayÞ is the genetic covariance between

traits x and y.

The genetic correlation between two traits x and y is

given by:

rax ;ay ¼
Covðax ; ayÞ

saxsay
;

such that Covðax ; ayÞ ¼ rax ;aysaxsay and the genetic

regression can be expressed as:

bx�y ¼
rax ;aysaxsay

s2ay
¼ rax ;ay

sax
say

:

Using this term, and recalling the selection response

formula discussed before, given by Ry ¼ hyiysay , the
correlated response can then be expressed as:

Rx�y ¼ rax ;ay
sax
say

hy iysay ¼ rax ;aysax hy iy ;

or, given that sax ¼ hxsyx , it can be finally written as:

Rx�y ¼ rax ;ay hxhyiysyx :

Such an equation can be used either to monitor

potential genetic changes in correlated traits when

performing direct selection on a specific trait of

economic importance or, alternatively, to explore

indirect selection strategies using indicator traits [5].

The latter use may be of interest when a trait of

economic importance (e.g., trait x) is difficult or

expensive to measure, or it is expressed later in an

animal’s life, so it may be advantageous to select on

a correlated trait (e.g., trait y), which would be the

indicator trait. To assess the effectiveness of indirect

selection relative to direct selection, one may look at



422 A Animal Breeding, Foundations of
the ratio of expected genetic progress per unit of time

in each scenario, i.e.,

Rx�y
Rx

¼ rax ;aysax hy iy=Ly
hxixsax=Lx

¼ rax ;ay hy iyLx
hxixLy

¼ rax ;ay
hy

hx

iy

ix

Lx

Ly
:

So, it can be seen that this ratio can be higher

than 1 (meaning that the indirect selection is more

effective than the direct selection) depending on

the genetic correlation between the economic and the

indicator traits, the ratios of their heritabilities, and

their potential selection intensities and generation

intervals.

Selection Index

In section “Phenotypic Selection,” selection based on

a single measurement on each animal was discussed.

However, it is not always possible to observe the phe-

notype for all animals, such as traits that are expressed

in only one sex or that require the sacrifice of animals to

be measured, etc. In addition, even when it is possible

to measure the phenotypic trait in each animal, infor-

mation from relatives can be used to obtain earlier or

more reliable predictions of breeding values. In this

section, the prediction of breeding values using differ-

ent sources of information (e.g., multiple measure-

ments of the trait in each animal and progeny

performance) will be discussed and a methodology

(the selection index) that combines multiple sources

of information into a single prediction for each animal

will be presented.

When multiple measurements of the same trait are

recorded (e.g., milk yield in multiple lactations), breed-

ing values can be predicted using the average of obser-

vations ð�yiÞ from each animal as âi ¼ bai��yið�yi � mÞ.
However, to derive the genetic regression of breeding

value on average phenotypic value, Model (3) must be

expanded to include an additional term, which is

discussed next.

It can be shown empirically that the covariance (or

resemblance) between repeated measurements on the

same animal is larger than s2a, which is what would be

expected under the assumptions of Model (3). This

additional source of covariance between records for

the same animal refers to environmental factors that
affect all records similarly, the so-called “permanent

environmental effects” [1, 4]. Under these circum-

stances, the Model (3) can be extended to:

yij ¼ mþ ai þ pi þ eij ð4Þ
where yij represents the observation j ðj ¼ 1; . . . ; niÞ on
animal i, with ni being the total number of records on

animal i; m and ai � Nð0; s2aÞ are as defined previously;
pi refers to the permanent environmental effects affect-

ing records on animal i, assumed pi � Nð0; s2pÞ; and
eij � Nð0; s2e Þ represent residual effects (nonadditive

genetic and temporary environmental effects) associ-

ated with observation yij . In addition, it is assumed

that all random terms in Model (4) are independent

from each other, i.e., Covðai;piÞ ¼ Covðai; eijÞ ¼
Covðpi; eijÞ ¼ Covðeij ; eij0 Þ ¼ 0 for any i, j, and j0 ðj 6¼ j0Þ.

Under these settings, the average phenotypic value

of an animal is given by �yij ¼ mþ ai þ pi þ �eij, where

�ei ¼ 1
ni

Pni
j¼1

eij , such that its variance is given by

Var½�yi	 ¼ s2a þ s2p þ s2e=ni , and the covariance between

ai and �yi is Covðai; �yiÞ ¼ s2a. In this case, the regression

of breeding values on phenotypic means is given by:

bai��yi ¼
Cov½ai; �yi	
Var½�yi	

¼ s2a
s2a þ s2p þ s2e=ni

:

An important definition related to repeated mea-

surements refers to repeatability ðrÞ, which is given by

the intraclass correlation, i.e., the ratio of the within-

individual (or between repeated measurements) to the

phenotypic variances [1, 4]:

r ¼ s2a þ s2p
s2y

¼ s2a þ s2p
s2a þ s2p þ s2e

;

and measures the correlation between records on the

same animal.

Noting that r ¼ 1� s2e
s2aþs2pþs2e

, the variance of the

average phenotypic value of an animal can be expressed

as a function of the repeatability as Var½�yi	 ¼
½r þ ð1� rÞ=ni	s2y , such that the genetic regression

becomes:

bai��yi ¼
s2a

½r þ ð1� rÞ=ni	s2y
¼ nih

2

1þ ðni � 1Þ=r :

The prediction accuracy in this case, i.e., the corre-

lation between an animal’s estimated breeding value
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using repeated records and its true breeding value is

given by:

râi ;ai ¼ r�yi ;ai ¼
Covð�yi; aiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varð�yiÞVarðaiÞ

p
¼ s2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r þ ð1� rÞ=ni
p

sysa

¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ni

1þ ðni � 1Þr
r

¼
ffiffiffiffiffiffiffiffiffiffi
bai��yi

q
:

Hence, it can be seen that compared with single

record phenotypic selection, there is a gain in accuracy

when predictions are based on repeated records and

that the gain will depend on the values of r and ni ;

higher gain in accuracy is obtained when r is low and

when ni is high.

Another alternative to predict breeding values is to

use progeny performance, which is often employed

for predicting breeding values of males for traits

where records can be obtained only on females, such

as milk yield. For example, let �yi be the average of single

records on ni progeny of sire i, and assume that the

sire was mated to a random sample of females not

related to him. In this case, each progeny record can

be expressed as:

yij ¼ mþ 1

2
ai þ 1

2
dij þ dij þ eij ;

where ai is the breeding value of a specific sire i; dij is

the breeding value of dam j ðj ¼ 1; . . . ; niÞ mated with

sire i; and dij and eij refer to the Mendelian sampling

and residual (environmental) components associated

with the observation yij . Using this notation, the fol-

lowing model can be used to describe the progeny

average of sire i:

�yi ¼ mþ 1

2
ai þ 1

2
�di þ �di þ �ei ð5Þ

where �yi ¼ 1
ni

Pni
i¼1

yij , �di ¼ 1
ni

Pni
i¼1

dij , �di ¼ 1
ni

Pni
i¼1

dij , and

�ei ¼ 1
ni

Pni
i¼1

eij . Given that E½�di	 ¼ 0 and E½�di	 ¼ 0, the

breeding value of sire i can be then predicted by

âi ¼ bai��yið�yi � mÞ, where bai��yi ¼ Cov½ai; �yi	=Var½�yi	.
It is shown that:

Covðai; �yiÞ ¼ Covðai; ai=2Þ ¼ s2a=2
and

Var½�yi	 ¼ Var
1

2
ai þ 1

2
�di þ �di þ �ei

� �

¼ 1

4
s2a þ

1

4

s2a
ni

þ s2a
2ni

þ s2e
ni

¼ ðni þ 3Þs2a þ 4s2e
4ni

¼ ðni þ 3Þh2 þ 4ð1� h2Þ
4ni

s2y

¼ k þ 1� k

ni

� �
s2y ;

where k ¼ h2=4 is the intraclass correlation between

half-sibs, such that the genetic regression coefficient is

given by:

bai��yi ¼
s2a=2

½k þ ð1� kÞ=ni	s2y

¼ h2s2y=2

½h2=4þ ð1� h2=4Þ=ni	s2y
¼ 2nih

2

4þ ðni � 1Þh2 ;

and the prediction accuracy by:

rai ;�yi ¼
Cov½ai;�yi	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½ai	Var½�yi	

p ¼ h2s2y=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2s2y ½kþð1� kÞ=ni	s2y

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nih2=4

1þðni�1Þk

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nih2

4þðni�1Þh2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bai��yi=2

q
;

which approaches unity (one) as the number of prog-

eny records increases.

Up to this point, it has been discussed how breeding

values can be predicted using different sources of infor-

mation, such as an animal’s own performance (either

a single record or multiple measurements) or progeny

performance. Other sources of information that could

also be used are the performance of parents, sibling, or

other kinds of relatives. However, what generally hap-

pens is that multiple sources of information are avail-

able simultaneously, so the question becomes how to

best combine all the information in order to improve

prediction accuracy. Here, a classical approach will be

discussed, the “selection index,” and later on in this
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chapter a more general and modern alternative, based

on mixed model methodology, will be presented.

Consider, for example, that there are three sources of

information available on animal i (represented here as

yi1, yi2, and yi3, and expressed as deviations from their

means), so the goal is to predict the animal’s breeding

value with a linear combination of such information, i.e.,

âi ¼ bi1yi1 þ bi2yi2 þ bi3yi3;

such that the prediction accuracy (i.e., correlation

between predicted and true breeding value) is

maximized.

Maximization of râi ;ai is equivalent to the maximi-

zation of logðrâi ;ai Þ, which is generally easier to accom-

plish. The log correlation can be expressed as (here, to

simplify the notation, the index i indicating the animal

is dropped):

logðrâ;aÞ ¼ log
sâ;affiffiffiffiffiffiffiffiffiffi
s2âs

2
a

p
" #

¼ logðsâ;aÞ � 1

2
s2â �

1

2
s2a;

where the covariance between â and a, and the variance

of â are given respectively by:

sâ;a ¼ b1sy1;a þ b2sy2;a þ b3sy3;a

and

s2â ¼b21s
2
y1
þ 2b1b2sy1;y2 þ 2b1b3sy1;y3

þ b22s
2
y2
þ 2b2b3sy2;y3 þ b23s

2
y3
:

Substituting these expressions into logðrâ;aÞ, taking the
partial derivatives of logðrâ;aÞ with respect to each of

the regression coefficients bj ðj ¼ 1; 2; 3Þ, and setting

them to zero, gives the following set of equations:

@ logðrâ;aÞ
@b1

¼ sy1;a
sâ;a

� b1s2y1 þ b2sy1;y2 þ b3sy1;y3
s2â

@ logðrâ;aÞ
@b2

¼ sy2;a
sâ;a

� b1sy1;y2 þ b2s2y2 þ b3sy2;y3
s2â

@ logðrâ;aÞ
@b3

¼ sy3;a
sâ;a

� b1sy1;y3 þ b2sy2;y3 þ b3s2y3
s2â

8>>>>>>><
>>>>>>>:

which can be rearranged as:

b1s2y1 þ b2sy1;y2 þ b3sy1;y3 ¼ ksy1;a
b1sy1;y2 þ b2s2y2 þ b3sy2;y3 ¼ ksy2;a
b1sy1;y3 þ b2sy2;y3 þ b3s2y3 ¼ ksy3;a

8><
>:

where k ¼ s2â=sâ;a.
Extending the system for any number m of compo-

nents (i.e., sources of information), these equations can

be expressed in matrix notation as:

Pb ¼ kc;

where P ¼

s2y1 sy1;y2 � � � sy1;ym
sy1;y2 s2y2 � � � sy2;ym
..
. ..

. . .
. ..

.

sy1;ym sy2;ym � � � s2ym

2
66664

3
77775 is the covari-

ance matrix of the vector y ¼ ½y1; y2; . . . ; ym	0,
b ¼ ½b1; b2; . . . ; bm	0 is the vector of regression coeffi-

cients (weights) of each source of information, and

c ¼ ½sy1;a; sy2;a; . . . ; sym;a	0 is the vector of covariances
between each piece of information and the breeding

value of the animal, such that the weights b of the index

â ¼ b0y are given by b ¼ kP�1c.

It should be noted that the constant k does not

change the relative size of the regression coefficients b

or the value of râ;a, so it can be set to 1. In fact, if instead

of maximizing râ;a , the average square prediction error

E½â � a	2 is minimized, then s2â ¼ sâ;a and the system

(usually called selection index equations) becomes:

b ¼ P�1c:

The correlation between the index and the true

breeding value is given by râ;a ¼ sâ;a=
ffiffiffiffiffiffiffiffiffiffi
s2âs

2
a

p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sâ;a=s2a

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
s2a

Pm
j¼1

bjsyj ;a

s
:

Multiple-Trait Selection

Usually more than one trait is considered in a selection

program, as multiple traits may be economically impor-

tant in a production system (e.g., [9]). There are many

strategies for multi-trait selection, including the tan-

dem approach (which selects rotationally one trait at

a time) and the independent culling levels strategy

(which sets minimum performance levels for each of

the traits of interest), but they are generally suboptimal.

Here, the selection of a combination of multiple

traits evaluated in economic terms will be discussed.

Such a combination of traits is generally called “aggre-

gate breeding value” or “breeding objective,” and can

be expressed as [3]:

T ¼ w0a ¼ w1a1 þ w2a2 þ . . .þ wkak;
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where w ¼ ðw1;w2; . . . ;wkÞ0 is the vector of economic

weights (expressed as net economic value per unit of

trait) for k traits of linear economic value, and

a ¼ ða1; a2; . . . ; akÞ0 is a vector of breeding values rela-
tive to the k traits defining T. Here again, to simplify

the notation, a subscript indexing the animal is

suppressed.

Suppose records are available for m traits, which

may or may not be included in the k traits describing

the breeding objective. The goal then is to predict T

based on the m traits observed, using the so-called

economic selection index. The theory of selection

index was introduced in the previous subsection as

a means of combining multiple sources of information

to predict breeding values for a specific trait. Here,

similar methodology will be considered, but will be

used to combine information from multiple traits to

predict an overall economic merit for each animal, i.e.,

T̂ ¼ I ¼ v0y ¼ v1y1 þ v2y2 þ . . .þ vmym;

where T̂ is the predicted overall economic merit of an

animal, v ¼ ðv1; v2; . . . ; vmÞ0 is the vector of weighting
factors, and y ¼ ðy1; y2; . . . ; ymÞ0 is the vector of phe-

notypic measurements.

An alternative for determining the weights

v ¼ ðv1; v2; . . . ; vmÞ0 is to first predict separately

the breeding values aj , j ¼ 1; 2; . . . ; k, for each

trait involved in the breeding objective, using

information from all the traits with measurements,

y ¼ ðy1; y2; . . . ; ymÞ0. Afterward, such predictions are

substituted for the true breeding values in the breeding

objective equation, and then coefficients are grouped

accordingly.

The breeding values aj for each trait can be

predicted by âj ¼ bj1y1 þ bj2y2 þ . . .þ bjmym, in

which the weights are obtained as usual, to maximize

râj ;aj or minimize E½âj � aj 	2. The equations which

define the weights for the prediction of aj are then

given by:

bj1s2y1 þ bj2sy1;y2 þ . . .þ bjmsy1;ym ¼ sy1;aj
bj1sy1;y2 þ bj2s2y2 þ . . .þ bjmsy2;ym ¼ sy2;aj
..
. ..

. ..
. ..

.

bj1sy1;ym þ bj2sy2;ym þ . . .þ bjms2ym ¼ sym;aj

8>>>><
>>>>:
This procedure is repeated for all k traits in

the breeding objective, and the predictions
â ¼ ðâ1; â2; . . . ; âkÞ0 are then substituted for the true

values a ¼ ða1; a2; . . . ; akÞ0 in the aggregate breeding

value, i.e.,

T̂ ¼ w1â1 þ w2â2 þ . . .þ wkâk:

This overall index estimating T can be rewritten as

I ¼ v1y1 þ v2y2 þ . . .þ vmym, by using appropriate

multiplications and grouping of coefficients. It is

shown that each coefficient vi is given by

vi ¼ w1b1i þ w2b2i þ . . .þ wkbki , with i ¼ 1; 2; . . . ;m.

Another way of deriving the weights

v ¼ ðv1; v2; . . . ; vmÞ0 defining the economic selection

index I ¼ v0y is to maximize the correlation rT ;I ,

which will generate the following equations:

v1s2y1 þ v2sy1;y2 þ . . .þ vmsy1;ym ¼ sy1;T
v1sy1;y2 þ v2s2y2 þ . . .þ vmsy2;ym ¼ sy2;T

..

. ..
. ..

. ..
.

v1sy1;ym þ v2sy2;ym þ . . .þ vms2ym ¼ sym;T

8>>>><
>>>>:

where syi ;T is the covariance between each measured

trait i ði ¼ 1; 2; . . . ;mÞ and the linear function

T ¼ w0a, i.e., the aggregate breeding value. It can be

shown that both approaches for determining the

weights v ¼ ðv1; v2; . . . ; vmÞ0 are equivalent.

Mixed Model Methodology

Introduction

Many statistical methods for analysis of genetic data are

specific (or more appropriate) for phenotypic mea-

surements obtained from planned experimental

designs with balanced data sets. While such situations

may be possible within laboratory or greenhouse exper-

imental settings, data from natural populations and

agricultural species are generally highly unbalanced

and fragmented by numerous kinds of relationships.

Culling of data to accommodate conventional statisti-

cal techniques (such as those discussed to this point)

may introduce bias and/or lead to a substantial loss of

information. The mixed model methodology, on the

other hand, allows efficient estimation of genetic

parameters (such as variance components and herita-

bility) and breeding values while accommodating

extended pedigrees, unequal family sizes, overlapping

generations, sex-limited traits, assortative mating, and

natural or artificial selection.
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The single trait prediction methods discussed in the

previous section use only a single source of information

or, when multiple sources of information are available,

they require them to be split into independent sub-

groups, i.e., specific groups of relatives such as half-

sibs, full-sibs, progeny, etc. However, in practice the

data may be extremely complex due to the intricate

pedigree structure commonly found in livestock spe-

cies, e.g., beef and dairy cattle populations. Other draw-

backs of the selection index include an inability to

account for genetic trend over time and that the pheno-

types must be pre-adjusted for environmental effects,

which can be done, for example, using the average of

contemporary groups of animals. However, contempo-

rary group effects can be inferred only under the unre-

alistic assumption that they are genetically equal. Hence,

a selection index can be reliably applied only to individ-

ual animals within same herd and born in same year.

In view of such limitations, linear mixed models

(models including both fixed and random effects) and

best linear unbiased predictions (BLUP) of breeding

values were developed [10–12]. The BLUP methodol-

ogy uses performance information from all known

relatives to estimate breeding values, can be applied

to whole herds or large populations using data from

many years, and can also accommodate genetic differ-

ences between contemporary groups. Presently, mixed

models are widely used in many fields of science as

a flexible tool for the analysis of data where responses

are clustered around some random effects, such that

there is a natural dependence between observations in

the same cluster. Examples of applications of mixed

models in genetics and genomics include genemapping

and association analysis (e.g., [13, 14]), and gene

expression assays using microarrays [15, 16] or

RT-PCR [17], to name a few.

In some applications of mixed models the central

objective is the estimation and hypothesis testing

regarding fixed effects (e.g., treatment effects in an

experimental study), in which case the random effects

(e.g., block effects) are nuisance effects. In animal

breeding, however, the main goal is the prediction of

realized values of random effects (breeding values of

animals), and the fixed effects are generally environ-

mental factors that should be taken into account to

adjust the observed phenotypic values. A third appli-

cation or goal of mixed models is the estimation of
variance components, such as genetic and environmen-

tal variances, or functions of them, such as heritability

and repeatability.

In this section some basics regarding mixed models

are briefly reviewed, with some emphasis toward the

prediction of random effects, and subsequently some

specific applications of the mixed model methodology

in animal breeding and genetics are presented.

A linear mixed-effects model is defined as:

y ¼ Xbþ Zuþ « ð6Þ
where y is the vector of responses (observations), b is

a vector of fixed effects, u is a vector of random effects,

X and Z are known incidence matrices relate y to the

vectors b and u, respectively, and e is a vector of

residual terms. Generally, it is assumed that u and e
are independent from each other and normally distrib-

uted with zero-mean vectors and variance–covariance

matrices G and S, respectively.

As mentioned before, in animal breeding a central

goal refers to the prediction of random effects (breed-

ing values). In linear (Gaussian) models as in (6) such

predictions are given by the conditional expectation

of u given the data, i.e., E½ujy	. Given the model spec-

ifications above, the joint distribution of y and u is:

y

u

� �
� MVN

Xb
0

� �
;

V ZG

GZ0 G

� �� �
;

where V ¼ ZGZ0 þ S.

From the properties of multivariate normal distri-

butions, E½ujy	 is given by:

E½ujy	 ¼ E½u	 þ Cov½u; y0	Var�1½y	ðy � E½y	Þ;
such that in this case:

E½ujy	 ¼ GZ0V�1ðy � XbÞ
¼ GZ0ðZGZ0 þ SÞ�1ðy � XbÞ:

This expression, however, depends on the fixed effects

values b, which also need to be inferred from the data.

The fixed effects are then typically replaced by their

estimates, such that predictions are made based on the

following expression:

û ¼ GZ0V�1ðy � Xb̂Þ:
To estimate the fixed effects b, all random effects in

Model (6) can be combined into a single vector,
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j ¼ Zuþ «, such that the following fixed effects model is

obtained: y ¼ Xbþ j. It is shown that the expectation

of the x term is E½j	 ¼ E½Zuþ «	 ¼ ZE½u	 þE½«	 ¼ 0,

and that its variance is Var½j	 ¼ Var½Zuþ «	 ¼
ZVar½u	Z0 þ Var½«	 ¼ ZGZ

0 þ S ¼ V. Under these

settings, the distribution of y is multivariate normal

with mean vector Xb and covariance matrix V, i.e.,

y � MVNðXb;VÞ, and the maximum likelihood esti-

mator of b can be shown to be:

b̂ ¼ ðX0
V�1XÞ�1

X
0
V�1y;

which is distributed as b̂ � MVNðb; ðX0
V�1XÞ�1Þ.

If the design matrix X is not full column rank,

a generalized inverse of X
0
V�1Xmust be used to obtain

a solutionb0 ¼ ðX0
V�1XÞ�X0

V�1y of the system, from

which estimable functions u ¼ Lb are estimated as

û ¼ Lb0 .

The solutions b̂ and û discussed before requireV�1.

As V can be of huge dimensions, especially in animal

breeding applications, its inverse is generally computa-

tionally demanding if not unfeasible. However, Hen-

derson [18] presented the mixed model equations

(MME) to estimate b and u simultaneously, without

the need for computing V�1. The MME were derived

by maximizing (for b and u) the joint density of y and

u, expressed as:

pðy; uÞ / jSj�1=2jGj�1=2
exp � 1

2
ðy � Xb� ZuÞ0

	

S�1ðy � Xb� ZuÞ � 1

2
u0G�1u



:

The logarithm of this function is:

‘¼ log½pðy;uÞ	/ jSjþ jGjþ ðy�Xb�ZuÞ0S�1

ðy�Xb�ZuÞþu0G�1u

¼ jSjþ jGjþy0S�1
y�2y0S�1

Xb�2y0S�1
Zu

þb0X0S�1
Xbþ2b0X0S�1

Zu

þu0Z0S�1
Zuþu0G�1u:

The derivatives regarding b and u are:

@‘

@b
@‘

@u

2
64

3
75¼

X0S�1
y�X0S�1

X b̂�X0S�1
Z û

Z0S�1
y�Z0S�1

X b̂�Z0S�1
Zû�G�1û

2
4

3
5:
Equating them to zero gives the following system:

X
0
S�1

X b̂þX
0
S�1

Z û

Z
0
S�1

X b̂þZ
0
S�1

Z ûþG�1û

� �
¼ X

0
S�1

y

Z
0
S�1

y

� �
;

which can be expressed as:

X 0S�1
X X 0S�1

Z

Z0S�1
X Z0S�1

ZþG�1

� �
b̂
û

� �
¼ X 0S�1

y

Z0S�1
y

� �
;

known as the mixed model equations (MME).

Using the second part of the MME,

Z0S�1
X b̂þ ðZ0S�1

Zþ G�1Þû ¼ Z0S�1
y;

such that

û ¼ ðZ0S�1
Zþ G�1Þ�1

Z0S�1ðy � X b̂Þ:
It can be shown that this expression is equivalent to

û ¼ GZ0ðZGZ0 þ SÞ�1ðy � X b̂Þ and, more impor-

tantly, that û is the best linear unbiased predictor

(BLUP) of u. Using this result into the first part of the

MME,

X0S�1
X b̂þ X0S�1

Z û ¼ X0S�1
y

X0S�1
X b̂ þ X0S�1

ZðZ0S�1
Zþ G�1Þ�1

Z0S�1ðy � X b̂Þ ¼ X0S�1
y

b̂ ¼fX0½S�1 � S�1
ZðZ0S�1

Zþ G�1Þ�1
Z0S�1	Xg�1

X0½S�1 � S�1
ZðZ0S�1

Zþ G�1Þ�1
Z0S�1	y

:

Similarly, it is shown that this expression is equiv-

alent to b̂ ¼ ðX0V�1XÞ�1
X0V�1y, which is the best

linear unbiased estimator (BLUE) of b.

It is important to note that b̂ and û require knowl-

edge of G and S, or at least some function of them.

As these matrices are rarely known, the practical

approach is to replace G and S by some sort of point

estimates Ĝ and Ŝ into the MME.

Many methods have been proposed to estimate

variance components in mixed-effects models. The

simplest is the analysis of variance (ANOVA) method,

which works well for simple models (such as a one-way

structure) or balanced data (such as data from designed

experiments with no missing data), but they are not

indicated for more complex models and data structures

such as those generally found in the animal breeding

context.

Alternative methods proposed for estimating vari-

ance components in more complex scenarios include
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the expected mean squares approach of Henderson

[19] and the minimum norm quadratic unbiased esti-

mation [20]. However, maximum likelihood-based

methods are currently the most popular (see, for exam-

ple, [21]), especially the restricted (or residual) maxi-

mum likelihood (REML) approach [22], which

attempts to correct for the well-known bias in the

classical maximum likelihood (ML) estimation of var-

iance components. Additional literature on variance

component estimation and mixed model methodology

can be found, for example, in [23–27].
The Animal Model

The advent of mixed-effects models has undoubtedly

revolutionized the animal breeding field, and today

they are widely used in the genetic improvement of

many livestock and companion animal species. In this

subsection some of the applications of mixed models

for the genetic evaluation of populations using pheno-

typic and pedigree informationwill be presented. In the

following section applications incorporating molecular

marker information will be discussed as well.

As a first application of mixed models in animal

breeding, the so-called “animal model” is considered

here for the specific situation of a single trait and a single

phenotypic observation (including missing values) per

animal. The animal model can be described as:

y ¼ Xbþ Zaþ «;

where y is an ðn� 1Þ vector of observations (pheno-
typic scores), b is a ðp � 1Þ vector of fixed effects (e.g.,

herd-year-season effects in cattle evaluations), and «

represents residual effects, assumed « � Nð0;SÞ as

before. In most applications of animal models, how-

ever, residuals are assumed independent across ani-

mals, such that the residual covariance structure can

be expressed as R ¼ Is2«, where I is an identity matrix

of appropriate order, and s2« is the residual variance. In
the case of animal models, the random effects u repre-

sent the breeding values, i.e., u ¼ a, assumed to be

a � Nð0;GÞ. The vector a, of dimension ðq � 1Þ, may

include breeding values of all animals with record or in

the pedigree file, such that q is generally bigger than n.

The matrix G, which in this case describes the

covariances among the breeding values, follows from

standard results for the covariances between relatives.
It is seen that the additive genetic covariance between

two relatives i and i0 is given by 2yii0s2a, where yii0 is the
coefficient of coancestry between individuals i and i0,
and s2a is the additive genetic variance in the base

population [28]. Hence, under the animal model,

G ¼ As2a, where A is the “additive genetic (or numer-

ator) relationship matrix,” having elements given by

aii0 ¼ 2yii0 .
As mentioned earlier, in animal breeding the usual

main interest is prediction of breeding values – for

selection of superior individuals – and on estimation

of variance components. The fixed effects are, in some

sense, nuisance factors with no central interest in terms

of inferences, but which need to be taken into account

(i.e., they need to be corrected for when inferring

breeding values).

Because under the animal model G�1 ¼ A�1s�2
a

and R�1 ¼ Is�2
« , the mixed model equations reduce to:

X0X X0Z
Z0X Z0Zþ lA�1

� �
b̂
â

� �
¼ X0y

Z0y

� �
;

where l ¼ s2«
s2a

¼ 1� h2

h2
, such that:

b̂
â

� �
¼ X0X X0Z

Z0X Z0Zþ lA�1

� ��1
X0y
Z0y

� �
:

It is worth mentioning that A�1 can be obtained

directly from the pedigree, without setting up A

[29, 30], which is computationally very convenient.

Conditional on the variance components ratio l,
the BLUP of the breeding values are given then by

â ¼ ðZ0Zþ lA�1Þ�1
Z0ðy � X b̂Þ, which are the esti-

mated breeding values (EBV). Alternatively, some

breeders’ associations express their results as predicted

transmitting abilities (PTA) or expected progeny dif-

ferences (EPD), which are equal to half the EBV,

representing the portion of an animal’s breeding values

that is passed to its offspring.

The amount of information contained in an ani-

mal’s genetic evaluation depends on the availability of

its own record, and of phenotypic information from its

relatives (including how many and how closely related

to it). As a measure of amount of information in

livestock genetic evaluations, EBV are typically

reported with their associated accuracies, i.e. the cor-

relation between true and estimated breeding values,

ri ¼ râi ;ai . Instead of accuracy, some livestock species
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genetic evaluations use reliability, which is the accuracy

squared (r2i ).

The calculation of ri requires the diagonal elements

of the inverse of the MME coefficient matrix,

represented as:

C ¼ X0X X0Z
Z0X Z0Zþ lA�1

� ��1

¼ Cbb Cba

Cab Caa

� �
:

It is shown that the prediction error variance (PEV)

of EBV âi is given by:

PEV ¼ Varðâi � aiÞ ¼ caai s2e ;

where caai is the ith diagonal element of Caa, relative to

animal i. The PEV can be interpreted as the fraction of

additive genetic variance not accounted for by the

prediction. Therefore, PEV can also be expressed as:

PEV ¼ ð1� r2i Þs2a;

such that caai s2e ¼ ð1� r2i Þs2a, fromwhich the reliability

is obtained as r2i ¼ 1� caai s2e=s
2
a ¼ 1� lcaai :

Extensions and Variations of the Animal Model

The animal model discussed above can be extended

also to multiple (correlated) traits [31, 32]. For

instance, consider as an example the analysis of k traits,

in which the model for each trait is expressed as:

yj ¼ Xjbj þ Zjaj þ «j;

where yj , Xj , bj , Zj , aj , and «j are defined as before, but

here have an additional index to indicate the trait

ðj ¼ 1; 2; . . . ; kÞ.
For a joint analysis of the k traits, the single trait

models can be combined as:

y ¼ Xbþ Zaþ «;

where y¼ ½y10 y2
0 . . . yk

0 	0, b¼ ½b1
0 b2

0 . . . bk
0 	0,

a¼ ½a10 a2
0 . . . ak

0 	0, and «¼ ½«10 «2
0 . . . «k

0 	0, and
the design matrices in this case are:

X ¼
X1 0 � � � 0

0 X2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � Xk

2
6664

3
7775 and Z ¼

Z1 0 � � � 0

0 Z2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � Zk

2
6664

3
7775:

It is assumed that Var
a

«

� �
¼ G� A 0

0 S� I

� �
,

where G ¼

s2a1 sa1a2 � � � sa1ak
sa1a2 s2a2 � � � sa2a2
..
. ..

. . .
. ..

.

sa1ak sa2ak � � � s2ak

6664
7775 and

S ¼

s2«1 s«1«2 � � � s«1«k
s«1«2 s2«2 � � � s«2«2
..
. ..

. . .
. ..

.

s«1«k s«2«2 � � � s2«k

2
6664

3
7775are the genetic and

residual variance–covariance matrices, respectively, A

and I are the numerator relationship matrix and an

identity matrix, and � represents the direct

(Kronecker) product.

The MME for multi-trait analyses are of the same

form as before, i.e.,

X0ðS�1� IÞX X0ðS�1� IÞZ
Z0ðS�1� IÞX Z0ðS�1� IÞZþG�1�A�1

" #
b̂

â

" #

¼ X0ðS�1� IÞy
Z0ðS�1� IÞy

" #
;

from which the BLUEs and BLUPs of b and a can be

obtained, respectively.

The dimensionality of such multi-trait MME, how-

ever, can become a hurdle for solving it when more

than two or three traits are considered. An alternative

for the analysis of multiple traits is to use a canonical

transformation of the traits [33–35], which consists of

transforming the vectors of correlated traits into a new

vector of uncorrelated variables. In such case, each

transformed variable can be analyzed independently

using standard single trait models, and subsequently

the estimated breeding values are transformed back to

the original scale of measurement.

Some other interesting applications of mixed

models in animal breeding involve multiple random

effects, as in the cases of repeated measurements of the

same trait or traits with maternal effects. For the anal-

ysis of repeated measurements, as discussed in section

“Selection Index” (Model 4), environmental effects can

be partitioned into permanent and temporary effects.

In this case, the mixed model, usually called “repeat-

ability model,” can be written as:

y ¼ Xbþ ZaþWpþ «;

where all terms are as previously defined for a single

trait animal model, and p is the vector of permanent
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environmental effects, with each level pertaining to

a common effect to all observations of each animal,

and W is a known incidence matrix relating y to the

vector p.

It is often assumed that a � Nð0;As2aÞ,
p � Nð0; Is2pÞ, and « � Nð0; Is2«Þ are independent

from each other. Under these assumptions, the MME

becomes:

X0X X0Z X0W
Z0X Z0ZþlaA�1 Z0W
W0X W0Z W0WþlpI

2
4

3
5 b̂

â

p̂

2
4
3
5¼ X0y

Z0y
W0y

2
4

3
5;

where la ¼s2«=s
2
a and lp¼s2«=s

2
p.

There are some traits of interest in livestock, such as

weaning weight in beef cattle, in which progeny perfor-

mance is affected by the dam’s ability to affect the calf ’s

environment, such as in the form of nourishment

through her milk production, the quantity and quality

of which is in part genetically determined. In some

cases, there can also be a paternally provided environ-

mental component. In such cases, parents contribute to

the performance of their progeny not only through the

genes passed to the progeny (the “direct genetic

effects”) but also through their ability to provide

a suitable environment (the “indirect genetic effects”).

Here maternally influenced traits are considered,

for which the mixed model can be written as [36]:

y ¼ Xbþ Zaþ KmþWpþ «;

where all terms are as before, except that themodel now

includes a vectorm of randommaternal genetic effects,

and a vector p of random permanent environmental

effects, with K and W as their respective incidence

matrices. It is assumed that a � Nð0;As2aÞ,
m � Nð0;As2

mÞ, p � Nð0; Is2pÞ, and « � Nð0; Is2e Þ,
and quite often a covariance structure between direct

and maternal additive genetic effects is considered,

assumed equal to Asa;m.
Some other variations of the animal model, which

are computationally convenient, include the “sire

model” and the “reduced animal model” [37]. In the

sire models, only sires are evaluated, using progeny

records under the assumption of randomly selected

mates. In the reduced animal model, instead of having

equations set up for every animal (i.e., parents and

progeny), it allows equations to be set up only for

parents in the MME, making the dimensions of
the system greatly reduced. The breeding values of the

parents are estimated directly from the MME, and

the progeny breeding values are then inferred by back

solving from the predicted parental breeding values.

As a final note regarding the use of mixed models in

animal breeding, it is important to mention that solv-

ing the MME does not necessary require the inversion

of the coefficient matrix C. More computationally con-

venient alternatives for solving high dimensional sys-

tems of linear equations include methods based on

iteration on the MME, such as the Jacobi or Gauss–

Seidel iteration [38], and the “iteration on the data”

strategy [39], which is a commonly used methodology

in national genetic evaluations involving millions of

records.

Marker-Assisted Selection

Introduction

The advent of molecular markers has created opportu-

nities for a better understanding of genetic inheritance

and for developing novel strategies for genetic improve-

ment in agriculture. Molecular markers are used, for

example, to study quantitative trait loci (QTL), which

are defined as chromosomic regions contributing to

variation in phenotypic traits. The location and effects

of QTL can be inferred by combining information from

marker genotypes and phenotypic scores of individuals

and by exploring genetic linkage [40–43] and linkage

disequilibrium [44, 45] information between marker

loci and QTL, such as in experimental or mapping

populations (e.g., backcross or F2, or granddaughter

designs) or in complex pedigrees in outbred

populations. Information on markers associated with

QTL can be used to enhance prediction of genetic merit

of animals [46]. This is especially useful for low

heritability traits, traits that are expensive or difficult

to measure, or traits expressed in only one sex [47].

Classical Approaches with Few Markers

The application of molecular information for genetic

improvement of animals and plants, or marker-assisted

selection (MAS), requires that candidate-for-selection

individuals are genotyped for specific markers. For

MAS purposes, there are three types of genetic markers,

and for each type there are specific statistical
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approaches for incorporating their information into

selection programs [47]. A first type of marker refers

to situations in which the functional polymorphism

itself can be genotyped. These markers are called

“direct markers,” as they indicate exactly the genotype

an animal has at specific causative loci.

A second type of marker refers to those that are in

population-wide linkage disequilibrium (LD) with the

causative or functional mutations. In such cases,

although the marker genotype of an animal does not

unambiguously indicate the genotype at a specific

functional locus, it still provide information regarding

how likely an animal carries a specific allele or genotype

at such a locus. Finally, a third kind of molecular

marker refers to those loci that are in population link-

age equilibrium with the functional mutations, which

are often called “indirect markers.” In such cases,

although the marker information on a single animal

in a population does not provide any information

regarding the genetic merit of that animal, it still can

be useful in exploring family (pedigree) structure when

genotyped animals are related to each other.

While direct markers are the simplest and most

efficient in MAS programs, their identification is much

more difficult and generally involves a prescreening step

using QTL mapping methods to identify promising

chromosomic regions, followed by fine mapping (often

using functional and positional candidate gene strate-

gies), followed by validation (using some strategy such as

a knock-out approach). On the other extreme, indirect

markers are extensively available for most livestock spe-

cies, but their use in MAS is more complex and the

results are generally modest.

Statistical models to incorporate direct and/or LD

markers in the genetic evaluations of animals are rela-

tively straightforward. For example, a marker can be

included into an animal model context with the fol-

lowing specification:

y ¼ Xbþ Za
 þMg þ «;

where all terms are as defined before, except that

a
 � Nð0;As2a
 Þ represents now the random additive

(nonmarked) polygenic effects, and g and M are the

(fixed) QTL effects and an incidence matrix, respec-

tively. In the case of direct markers, the matrix M

represents the marker genotypes and is obtained

directly from the genotyping of animals. In the case of
LD markers, the incidence matrix M will represent

genotype probabilities at each QTL locus, which can

be derived using segregation analysis. The overall

genetic merits of the animals are then given by the

sum of their a
 and g components. Other strategies

for combining the infinitesimal and the QTL compo-

nents to increase long-term genetic gain have also been

proposed (e.g., [48–50]); a review of MAS strategies

can be found, for example, in [47].

In the case of indirect markers, however, the within-

family LD between QTL and linked markers must be

explored. One approach is to determine the marker

effects or the marker-QTL linkage phases separately

for each family. Alternatively, more general MAS

models have been proposed to incorporate marker

data in genetic evaluations for complex pedigrees [13,

51], which can be represented as:

y ¼ Xbþ Za
 þMqþ «;

where the terms are as before, but here the QTL effects

q are assumed random and normally distributed,

such that:

a


q

� �
� N 0;

As2a
 0

0 Gls2q

� �� �
;

where Gl is the gametic relationship matrix for the

QTL, and s2q is the additive variance of the QTL allelic

effects. The gametic relationship matrix gives the prob-

abilities of identity between each of the two alleles in

each individual, and it can be derived based on the QTL

position l and the marker information.

Genomic Selection

As most quantitative traits are influenced by many

genes, tracking a small number of them using molecu-

lar markers (as in the MAS approaches discussed

above) will explain only a small fraction of the total

genetic variance. Moreover, individual genes are likely

to have small effects and so a large amount of data is

needed to accurately estimate their effects [52].

Genome-wide Marker-Assisted Selection (GWMAS),

or simply Genomic Selection (GS), on the other

hand, makes use of a very dense set of markers covering

the entire genome, which potentially explain all genetic

variance. In addition, given the LD between the dense

markers and the QTL, estimated marker effects pertain

across the population [53].
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of April 2010 genomic and traditional evaluations for bulls

with an AI status of active or foreign

Average reliability (%)

Trait Genomic Traditional Difference

Net merit 87 81 +6

Milk yield 93 91 +2

Fat yield 93 91 +2

Protein yield 93 91 +2

Productive life 81 71 +9

Somatic cell score 88 83 +5

Daughter
pregnancy rate

79 69 +10

Final score 89 85 +4

Sire calving ease 90 84 +6

Daughter calving
ease

80 67 +13

Source: AIPL – USDA; http://www.aipl.arsusda.gov/
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Meuwissen et al. [54] were the first to propose GS

and suggested a model that can be described as:

y ¼ 1mþ
Xp
j¼1

Mjqj þ «;

where m is the overall mean, qj represents the genetic

effects of marked genes (j=1, 2, . . ., p), and Mj repre-

sents the design matrices (genotypes) relative to a large

number (p) of biallelic markers (e.g., SNP loci), which

present different levels of LD with QTL affecting the

phenotypic trait of interest ðyÞ. Here it is assumed that

the QTL affecting the trait act additively, and that qj
refers to per-allele effects; nonadditive effects as well as

effects relative to nonmarked QTL are lumped together

into the residual term of the model.

Fitting such GS model using standard regression

approaches is not trivial, as the number p of markers

(and so the number of genetic effects to be estimated)

may easily exceed the number n of individuals avail-

able. The “large p small n paradigm” is central in many

applications of genomic technologies, including

expression profiling and association analysis, and var-

ious statistical strategies have been proposed in the

literature to overcome this problem, such as dimen-

sion-reduction techniques, stepwise fitting procedures,

ridge regression [55], and least absolute selection and

shrinkage operator – LASSO [56].

Specifically in GS, hierarchical modeling has

become the methodology of choice, due to its flexibility

and good statistical properties. Within this approach,

the genetic effects qj are assumed random effects and

distributed according to some prespecified distribution

[54]. For example, qj may be assumed normally dis-

tributed with mean 0 and variance s2j , and the hierar-

chy can be extended by assuming a prior distribution

for the variances s2j [54, 57–59]. Alternative distribu-
tions can be adopted for the qj , such as double expo-

nential or mixture distributions including a mass point

at zero. It is interesting to note the connection between

the ridge regression approach and a Bayesianmodel with

normal priors with common variances s2j ¼ s20, as well
as the LASSO methodology and a Bayesian model with

double exponential priors for the genetic effects [60].

The potential of GS to accelerate genetic progress

has been demonstrated throughmany simulation stud-

ies (e.g., [54, 61, 62]), and confirmed by some real data
applications. The first use of GS using thousands of

markers in livestock has been in dairy cattle [63, 64],

followed by some breeds of beef cattle and more

recently in poultry. Table 1 shows some encouraging

results on dairy cattle obtained by the USDA.

Future Directions

As shown here, the mixed model methodology is

extremely flexible and can be used in a wide variety of

applications. Other extensions of the methods

discussed here include models with nonadditive

genetic effects (e.g., [65, 66]), mixed models for the

analysis of non-Gaussian traits such as binary and

categorical (e.g., [67, 68]) or counting data (e.g.,

[69]), robust models [70, 71], survival traits [72],

nonlinear models to study, for example, growth curves

(e.g., [73, 74]), among others. However, such models

can get extremely complex and asymptotic statistical

methods are generally required. Alternatively, Bayesian

analysis employing Markov Chain Monte Carlo

(MCMC) methods can be used, given their exceptional

flexibility and the possibility of incorporating prior

information regarding the model parameters [75].

http://www.aipl.arsusda.gov/
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Bayesian analysis has been increasingly used in many

applications of genetics and animal breeding, and for

a review the reader can refer, for example, to [76–78].

A comprehensive treatment of Bayesian MCMC

approaches in animal breeding is presented in [23].

Bayesian hierarchical modeling has also been exten-

sively used in genomic selection [54, 79–81]. In addi-

tion, nonparametric and semiparametric methods, and

machine learning techniques based on artificial intelli-

gence have been proposed and used for the analysis of

high density marker panels in the context of animal

breeding, such as in [82–86]. Moreover, some other

recent methods aim to combine all available pheno-

typic, pedigree, and genomic information for predic-

tion of genetic merit of animals [87].

As indicated in the beginning of this chapter, the

genetic improvement observed in many livestock and

companion animal species is truly remarkable. Most of

this genetic progress has been accomplished through

selection, using the methods discussed here. Two tech-

nological and methodological developments however

must be mentioned as turning points in the genetic

trends observed in some species; these are the advent of

artificial insemination and the mixed models. Seem-

ingly, the development of high density SNP panels and,

more recently, next generation sequencing technologies

and their application in genomic selection strategies

promise to be the next turning point. This new era

for animal breeding and genetics will require

a different profile of animal breeders, requiring not

only knowledge of population and quantitative genet-

ics, classical statistical and computational methods, but

also some more modern statistical and computational

methods based on hierarchical modeling [23, 88], non-

and semiparametric methods, and machine learning

techniques [60, 89]. It is indeed a very exciting time

to work in animal breeding!
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