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Disclaimer

The opinions in this presentation are of the author (Michael
Rosenblum) and do not necessarily represent Johns Hopkins
University, the FDA/HHS, or anyone else.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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How Can I Help Fight the Climate Crisis?

Do you live in one of these states:
Illinois, Massachusetts, Maryland, Maine, Minnesota, New Jersey,
New York, Oregon, Rhode Island.
Then you are likely eligible for Community Solar!

Community Solar: You get environmental benefits of solar
without installing solar panels at home.

Subscribe to “share” of Community Solar project (solar array
built on unused land) and get monthly credit on electric bill.

More information: https://www.solarunitedneighbors.org/

Email me if you’d like more information.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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Overview

Covariate adjustment in randomized trials for estimating
marginal (average) treatment effects:

Preplanned adjustment for baseline variables when estimating
average treatment effect in primary efficacy analysis.

Target of inference (estimand) is same as when using
unadjusted estimator.

Can improve precision and reduce required sample size to
achieve desired power.

Goal: avoid making any model assumptions beyond what’s
assumed for unadjusted estimator (robustness to model
misspecification).

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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Use of Covariate Adjustment in Randomized Trials: Two
Surveys

Pocock et al. (2002) surveyed 50 randomized clinical trial reports.
Findings: “The statistical emphasis on covariate adjustment is
quite complex and often poorly understood, and there remains
confusion as to what is an appropriate statistical strategy.”

Austin et al. (2010) surveyed 114 randomized trial articles.
Findings: only 39 presented an adjusted analysis.
Paper title: “A substantial and confusing variation exists in
handling of baseline covariates in randomized controlled trials: a
review of trials published in leading medical journals.”

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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FDA Guidance Documents on Covariate Adjustment

1 ICH E9 Statistical Principles for Clinical Trials (1998):
“Pretrial deliberations should identify those covariates and
factors expected to have an important influence on the
primary variable(s), and should consider how to account for
these in the analysis to improve precision...”

2 FDA (2020) “To improve the precision of treatment effect
estimation and inference, sponsors should consider adjusting
for prespecified prognostic baseline covariates (e.g., age,
baseline severity, comorbidities) in the primary efficacy analysis
and should propose methods of covariate adjustment.” (FDA
Guidance on COVID-19 treatment and prevention trials)

3 FDA draft guidance (2021): Adjusting for Covariates in
Randomized Clinical Trials for Drugs and Biological Products
“after suitably addressing the treatment effect definition,
covariate adjustment using linear or nonlinear models can be
used to increase precision.”

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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Goal of Covariate Adjustment for Marginal Treatment
Effects

Target of Inference (Estimand) is Population Average
Treatment Effect, i.e., a contrast between (marginal) outcome
distributions if all were assigned to treatment versus all
assigned to control. (Intention To Treat)

Goal: Estimation of Average Treatment Effect in a
Randomized Trial.

If baseline variables prognostic for outcome, Covariate
adjustment has potential to substantially improve
precision (shorter CI’s), reduce sample size, and reduce
trial duration compared to unadjusted estimator.

Require consistent, interpretable, model-robust estimators.

Intuition: Gain precision by adjusting for chance imbalances in
prognostic baseline variables between study arms.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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Some related work on covariate adjustment

Yang and Tsiatis, 2001, Zhang et al. 2008; Tsiatis et al. 2008,
Rubin and van der Laan, 2008, Moore and van der Laan, 2009,
Zhang and Gilbert 2010, Moore et al. 2011, Tian et al. 2012,
Zheng et al. 2015, Vermuelen et al. 2015, Wager et al. 2016, Wu
and Gagnon-Bartsch 2018, Zhang and Ma, 2019, Jiang et al.
2019, Wang et al. 2019, Benkeser et al. 2020.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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Estimands (Targets of Inference)

Estimands (contrasts between marginal distributions under
treatment and control):

For continous outcomes: difference in means.
For binary outcomes: risk difference, relative risk, odds ratio.
For ordinal outcomes: difference in means, the Mann-Whitney
estimand=P(random individual assigned to treatment has
better outcome than random individual assigned to control),
average of cumulative log odds ratios over outcome levels.
For time-to-event outcomes: difference in survival
probabilities, ratio of survival probabilities, difference in
restricted mean survival times.

Estimators:

For each estimand, these exist corresponding covariate
adjusted estimators that leverage information in baseline
variables to improve precision and reduce required sample size
to achieve desired power.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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Continuous Outcomes: Example of Planning Alzheimer’s
Disease Trial

Context: Vitamin E and Donepezil for the Treatment of Mild
Cognitive Impairment (MCI) phase 3 randomized trial (Petersen et
al. 2005)

Primary Outcome Y : Change in Clinical Dementia Rating
Sum of Boxes (CDR-SB) at 1.5 years vs. baseline.

Study arms A: new drug vs. placebo.

Baseline variables B: age, gender, Alzheimer’s Disease
Assessment Scale (ADAS)-cognitive score, Mini-Mental State
Examination (MMSE) score, Activities of Daily Living total
score, Global Deterioration scale, and CDR-SB. .

Goal: Estimate Avg. Treatment Effect (Estimand)
E (Y |A = 1)− E (Y |A = 0).

23% sample size reduction comparing covariate-adjusted
estimator to unadjusted.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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Goals of Covariate Adjustment for Marginal Treatment
Effect

Goal: Estimation of Average Treatment Effect in a
Randomized Trial. Require consistent, interpretable,
model-robust estimators.

Not Goal: Estimation of Conditional (within stratum of
baseline variables B) Treatment Effects, e.g.,
E (Y |A = 1,B)− E (Y |A = 0,B).
Conditional Treatment Effects would be useful to know, but
typically require model assumptions (such as logistic regression
model) and uninterpretable under model misspecification.

Not Goal: Finding subpopulations who benefit or
patient-specific optimal treatment policy. (Also useful goal in
its own right.)

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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Assumptions

We assume:

Treatment Randomized (A independent of B) by design.

Participant data vectors (Bi ,Ai ,Yi ), for i = 1 to n,
independent, identically distributed draws from unknown
distribution P.

These assumptions (or similar) are needed for standard, unadjusted
estimator to be consistent (converge to average treatment effect).

No assumptions on the relationship among B,A,Y except
randomization (A,B independent).

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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We Do Not Make Any Parametric Model Assumptions

Population distribution of Y given A,B may differ arbitrarily
from, e.g., linear regression model
E (Y |A,B) = β0 + β1A + β2B.
True relationships among B,A,Y may be much more complex
than this.
We require consistent estimators under arbitrary model
misspecification.

Hypothetical Example of Misspecification:

Control Arm

 Cond. Mean
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|A
=

0
,B
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Treatment Arm
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Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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Example: ANCOVA estimator for Mean Difference

For continuous Y , to estimate µ1 − µ0 where µa = E (Y |A = a):

Fit linear regression model E (Y = 1|A,B) = β0 + β1A + β2B.

Compute standardized estimators for µ0, µ1:

µ̂0 = 1
n

∑n
i=1 β̂0 + β̂2Bi (i.e., set A = 0 in model fit)

µ̂1 = 1
n

∑n
i=1 β̂0 + β̂1 + β̂2Bi (i.e., set A = 1 in model fit)

ANCOVA estimator of µ1 − µ0 is mean difference µ̂1 − µ̂0.

Some remarkable properties of ANCOVA estimator (Yang and
Tsiatis, 2001):

Consistent (converges to average treatment effect) under
arbitrary model misspecification.

Equal or better precision (asymptotically) than unadjusted
estimator (difference between sample means).

Note: ANCOVA estimator simplifies to β̂1, but above construction
applies more generally (as shown below).

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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ANCOVA vs. Unadjusted Estimator Example

TADS Clinical Trial

Treatment for Adolescents with Depression Study.

Primary outcome Y : change of Childrens Depression Rating
Scale-Revised (CDRS-R) score over 12 weeks.

Treatment assigment A: Fluoxetine (107) and placebo (112).

Baseline variables B: baseline CDRS-R score and 8 others on
next slide.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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ANCOVA Estimator: Impact of each Baseline Variable in
TADS trial

Regress outcome (Y=change score) on arm A, baseline vars B:
E (Y |A,B) = β0 + βAA + β1B1 + · · ·+ β9B9.
All baseline variables B1, . . . ,B9 standardized (centered and
divided by standard error).

Estimated Coefficients from Regression Model:

ARM age sex CDRS-R CGI CGAS RADS
Suicide
ideation

Depr.
episode

Comor.

β̂A β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9

-4.4 1.5 -0.1 -8.0 -0.6 0.1 -1.0 -1.6 0.8 -0.4

Estimator of average treatment effect is β̂A = −4.4.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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Clinical Trial Applications

Trial
Name

Unadjusted
Estimator (95% CI)

ANCOVA
Estimator (95% CI)

Impact of
Adjustment

Variance

Reduction (R̂2)

TADS -1.4 (-6.0, 3.1) -4.4 (-8.1, -0.7) -2.9 32%

Table: Summary of clinical trial data analyses. Negative estimates are in
direction of treatment benefit. Variance reduction refers to reduction due
to adjusting for baseline variables by ANCOVA.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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ANCOVA Estimator: Impact of each Baseline Variable in
TADS trial

Regress outcome (Y=change score) on arm A, baseline vars B:
E (Y |A,B) = β0 + βAA + β1B1 + · · ·+ β9B9.
All baseline variables B1, . . . ,B9 standardized (centered and
divided by standard error).

Estimated Coefficients from Regression Model:

ARM age sex CDRS-R CGI CGAS RADS
Suicide
ideation

Depr.
episode

Comor.

β̂A β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9

-4.4 1.5 -0.1 -8.0 -0.6 0.1 -1.0 -1.6 0.8 -0.4

Imbal.Ij 0.1 0.0 -0.2 -0.3 -0.1 -0.3 -0.2 0.0 -0.2
Correction

i.e., β̂j Ij
0.1 0 1.9 0.2 0 0.3 0.4 0 0.1

Estimator of average treatment effect is β̂A = −4.4.
Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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Binary Outcomes: Example of Planning MISTIE Phase III
Stroke Trial

Problem: Confirmatory trial of new surgical treatment for
intracerebral hemorrhage (PI: Daniel Hanley).

Primary Outcome Y : modified Rankin Scale ≤ 3 at 180 days
from enrollment.
Study arms A: surgery vs. standard of care.
Baseline variables B: NIH Stroke Scale, clot volume, and
location.

Goal: Estimate Avg. Treatment Effect
P(Y = 1|A = 1)− P(Y = 1|A = 0).
Simulated trials based on resampling participants from MISTIE
Phase II data.

38% precision gain from adjusted estimator compared to
unadjusted.
Equivalent to 28% (1− 1

1.38) reduction in required sample size.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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Binary Outcomes: Estimands

Notation: outcome Y ; study arm A = 0 (control) and A = 1
(treatment).
µ1 = P(Y = 1|A = 1) and µ0 = P(Y = 1|A = 0).
Estimand (target of inference) is contrast between µ1, µ0:

Estimand 1: Risk Difference. Difference between probability
of good outcome comparing treatment to control arms, that
is, P(Y = 1 |A = 1)− P(Y = 1 |A = 0) = µ1 − µ0.

Estimand 2: Relative Risk. Ratio of probability of good
outcome comparing treatment to control arms, that is,
P(Y = 1 |A = 1)/P(Y = 1 |A = 0) = µ1/µ0.

Estimand 3: Odds Ratio. Ratio of odds of good outcome,
comparing treatment to control arms, that is,
{µ1/(1− µ1)} / {µ0/(1− µ0)}.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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Binary Outcomes: Covariate Adjusted Estimators

For dichotomous Y :

Fit logistic regression model for
P(Y = 1|A,B) = logit−1(β0 + β1A + β2B).

Compute standardized estimators for treatment specific means
µ0, µ1:

µ̂0 = 1
n

∑n
i=1 logit−1(β̂0 + β̂2Bi )

µ̂1 = 1
n

∑n
i=1 logit−1(β̂0 + β̂1 + β̂2Bi )

Estimator is constrast of interest between µ1, µ0, e.g., risk
difference µ̂1 − µ̂0.

Estimator µ̂1 − µ̂0 consistent under arbitrary model
misspecification (Scharfstein, Rotnitzky, Robins, 1999; Moore and
van der Laan, 2009, Ge et al. 2011).
Same holds for other (unconditional) estimands, e.g., relative risk

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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Ordinal Outcome: Estimands

Outcome Y ; study arm A = 0 (control) and A = 1 (treatment).

Estimand 1: Difference in means (DIM). For u(·) a
pre-specified, real-valued transformation of an outcome, the
estimand is defined as:

DIM: E{u(Y ) |A = 1} − E{u(Y ) |A = 0}.

Estimand 2: Mann-Whitney (MW) estimand.

MW: P
(
Ỹ > Y

∣∣∣Ã = 1,A = 0
)

+
1

2
P
(
Ỹ = Y

∣∣∣Ã = 1,A = 0
)
,

for (A,Y ) and (Ã, Ỹ ) independent treatment-outcome pairs.

Estimand 3: Log-odds ratio (LOR).

LOR:
1

K − 1

K−1∑
j=1

log

{
odds(Y ≤ j |A = 1)

odds(Y ≤ j |A = 0)

}
.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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Ordinal Outcome: Covariate Adjusted Estimator

Notation: baseline variables B; study arm A; outcome Y .

First estimate CDF of Y given study arm A = a for each
a ∈ {0, 1}, and then substitute into desired estimand.

To estimate CDF for study arm a, using only data with
A = a, we fit proportional odds working model

logit {P(Y ≤ j |A = a,B)} = αj + β>B,

for each j = 1, . . . ,K − 1 with parameters α1, . . . , αK−1,β.

Then estimator of CDF is 1
n

∑n
i=1 P̂(Y ≤ j |A = a,Bi ) where

sum is over baseline variables Bi for all participants
i = 1, ..., n pooled across study arms.

Estimator consistent and asymptotically normal under
arbitrary model misspecification. Also can be generalized to
handle outcomes missing at random, and then double robust.
We use superpopulation inference framework assuming
(Bi ,Ai ,Yi ), i = 1, ..., n i.i.d. draws from unknown distribution.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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Time-to-Event Outcome: Estimands

Notation: study arm A = 0 (control) and A = 1 (treatment); T is
event time.

Estimand 1: Difference in restricted mean survival times
(RMSTs). The RMST is the expected value of a survival
time that is truncated at a specified time τ , that is,

RMST: E (min{T , τ} |A = 1)− E (min{T , τ} |A = 0).

Estimand 2: Survival probability difference (also called
risk difference, RD). Difference between arm-specific
probabilities of survival to a specified time t∗, that is,

RD: P (T ≤ t∗ |A = 1)− P (T ≤ t∗ |A = 0) .

Estimand 3: Relative risk (RR). Ratio of the arm-specific
probabilities of survival to a specified time t∗, that is,

RR:
P (T ≤ t∗ |A = 1)

P (T ≤ t∗ |A = 0)
.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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Time-to-Event Outcome: Covariate Adjusted Estimators

Adjusted Kaplan-Meier estimator for survival curves: Moore
and van der Laan 2009, Zhang 2014

Restricted Mean Survival Time: Moore and van der Laan
2009, Diaz et al. 2019

If assume proportional hazards model (marginally): Lu and
Tsiatis et al. 2011.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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Time-to-Event Example: Population, Baseline Variables,
and Outcomes in COVID-19 context

Population: hospitalized, COVID-19 positive patients

Outcomes: intensive care unit (ICU) admission, intubation
with ventilation, and death.

Baseline variables: age, sex, required supplemental oxygen at
ED presentation, dyspnea, hypertension, bilateral infiltrates on
the chest x-ray

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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Data Generating Distributions for Simulations (Survival
Outcomes)

Patient data re-sampled with replacement from 500 patients
hospitalized at Weill Cornell Medicine New York Presbyterian
Hospital prior to March 28, 2020.

Simulated sample sizes n = 100, 200, 500, and 1000.

Hypothetical treatment variable drawn independent of all
other data

To simulate positive treatment effect: add independent draw
from a χ2 with 4 d.f. to each treatment arm participant’s
outcome

Censoring: 5% censored completely at random; censoring time
from uniform distribution on {1, . . . , 14}.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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Results: difference in restricted mean survival times
(RMST) 14 days after hospitalization

Table: Results when treatment effect is 1 day. n=sample size;
RE=relative efficiency (ratio of adjusted vs. unadj. MSE).

n Estimator Power n×MSE RE

100 Unadjusted 0.09 53.7 1.00
100 Adjusted 0.15 51.0 0.95

200 Unadjusted 0.33 62.7 1.00
200 Adjusted 0.40 56.4 0.90

500 Unadjusted 0.74 72.9 1.00
500 Adjusted 0.82 62.2 0.85

1000 Unadjusted 0.96 76.5 1.00
1000 Adjusted 0.98 63.5 0.83

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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Data Generating Distributions for Simulations (Ordinal
Outcomes)

Patient data distribution mimicks distribution from
hospitalized, COVID-19 positive patients in (CDC COVID-19
Response Team, 2020)

Ordinal outcome: 1=death; 2=survival with ICU admission;
3=survival without ICU admission.

Baseline variable: Age category.

Simulated sample sizes n = 100, 200, 500, and 1000.

Hypothetical treatment variable drawn independent of all
other data.

To simulate positive treatment effect:
increased P(No ICU admission and survived | age);
reduced P(ICU admission and survived | age);
no change to P(death).

No censoring

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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R Packages

Ordinal Outcomes: R package, drord,
https://github.com/benkeser/drord.

Time-to-Event Outcomes: R package survtmlerct

https://github.com/idiazst/survtmlerct

Continuous, Binary, Time-to-Event: R package speff2trial

https://cran.r-
project.org/web/packages/speff2trial/speff2trial.pdf

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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Stratified Randomization and Covariate Adjustment

Wang, B., Susukida, R., Mojtabai, R., Masoumeh, A.-E.; and
Rosenblum, M. (2019) Model-Robust Inference for Clinical Trials
that Improve Precision by Stratified Randomization and
Adjustment for Additional Baseline Variables.
https://arxiv.org/abs/1910.13954

Two commonly used methods for improving precision:
stratified randomization and covariate adjustment.
Many trials do not fully capitalize on the combined precision
gains from these two methods.
70% of confirmatory trials use stratified randomization (Lin et
al. 2015).
Gives general formula for variance of estimator (unadjusted
and adjusted) under stratified randomization.
Handles many estimators used to analyze randomized trials:
ANCOVA, standardized logistic regression, MMRM,
Kaplan-Meier estimator.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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Recommendations for Primary Efficacy Analysis

1 Estimand when the outcome is ordinal. Recommend:
difference between means or the Mann-Whitney estimand.
Don’t recommend log odds ratios.

2 Covariate adjustment. Adjust for prognostic baseline
variables to improve precision and power.

1 Baseline variables should be specified before the trial is started
(or selected using prespecified algorithm, e.g., with
cross-validation).

3 Confidence intervals (CI) and hypothesis testing.
Nonparametric bootstrap (BCa), 10000 replicates for CI.

1 Entire estimation procedure repeated in each replicate data set.
2 Hypothesis tests: invert confidence interval or use permutation

methods (latter especially for smaller sample sizes)

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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Recommendations for Primary Efficacy Analysis (con’t)

1 Use Information Monitoring
1 Final analysis time based on the information accrued

(1/estimator variance).
2 Precision gains from covariate adjustment translate into faster

information accrual and shorter trial duration.

2 Plotting the CDF and the probability mass function
(PMF) when the outcome is ordinal.

1 Covariate adjusted estimate of the PMF and/or CDF of
primary outcome plotted for each study arm.

2 Pointwise and simultaneous confidence intervals displayed

3 Missing covariates. Impute based only on data from those
covariates that were observed.

4 Missing outcomes. Use doubly robust methods and
sensitivity analyses of robustness to assumptions.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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Bottom Line: Pros/Cons in Using Covariate Adjustment

Pro: Covariate adjustment as described above gives
consistent estimator of average treatment effect (same
quantity estimated by unadjusted estimator); does not require
parametric model assumptions.

Pro: If baseline variable(s) strongly prognostic for outcome,
covariate adjustment can substantially improve precision +
power (or reduce sample size) vs. unadjusted estimator.

Pro: Covariate adjustment useful even in large trials; that’s
where biggest equivalent sample size reduction

Con: Can lose efficiency (at small sample size) if all baseline
variables pure noise, but losses small.
In simulations, 2% loss at sample size 100; < 1% loss at
sample size 1000 (Colantuoni and Rosenblum 2015).

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT
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Some resources for optimizing trial design and analysis

Available at http://rosenblum.jhu.edu:

Papers and Open-Source Software for Covariate-Adjustment

Adaptive Enrichment Design Trial Planning/Optimization
Software

FDA short-course video-recording

Plain Language Document Outlining Advantages and
Limitations of Adaptive Enrichment Designs

Papers with Statistical Methods and Case Studies

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT



35

References

Austin, P. C., A. Manca, M. Zwarenstein, D. N. Juurlink, and
M. B. Stanbrook (2010). A substantial and confusing variation
exists in handling of baseline covariates in randomized controlled
trials: a review of trials published in leading medical journals.
Journal of Clinical Epidemiology 63(2), 142–153.

Benkeser, D., M. Carone, and P. B. Gilbert (2018). Improved
estimation of the cumulative incidence of rare outcomes.
Statistics in Medicine 37(2), 280–293.

Benkeser, D., I. Diaz, A. Luedtke, J. Segal, D. Scharfstein, and
M. Rosenblum (2020). Improving Precision and Power in
Randomized Trials for COVID-19 Treatments Using Covariate
Adjustment, for Ordinal or Time to Event Outcomes Biometrics.
https://doi.org/10.1111/biom.13377 .

Benkeser, D., P. B. Gilbert, and M. Carone (2019). Estimating and
testing vaccine sieve effects using machine learning. Journal of
the American Statistical Association 114(527), 1038–1049.

Brooks, J. C., M. J. van der Laan, D. E. Singer, and A. S. Go
(2013). Targeted minimum loss-based estimation of causal

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT



35

References

effects in right-censored survival data with time-dependent
covariates: Warfarin, stroke, and death in atrial fibrillation.
Journal of Causal Inference 1(2), 235–254.

CDC COVID-19 Response Team (2020). Severe Outcomes Among
Patients with Coronavirus Disease 2019 (COVID-19) United
States, February 12March 16, 2020.
https://www.cdc.gov/mmwr/volumes/69/wr/mm6912e2.htm .
MMWR Morb Mortal Wkly Rep 69(12), 343–346.

Chaisinanunkul, N., O. Adeoye, R. J. Lewis, J. C. Grotta,
J. Broderick, T. G. Jovin, R. G. Nogueira, J. J. Elm, T. Graves,
S. Berry, K. R. Lees, A. D. Barreto, J. L. Saver, null null,
A. Furlan, B. Baxter, H. L. Lutsep, M. Ribo, O. Jansen,
R. Gupta, and V. M. Pereira (2015). Adopting a
patient-centered approach to primary outcome analysis of acute
stroke trials using a utility-weighted modified rankin scale.
Stroke 46(8), 2238–2243.

Chen, P.-Y. and A. A. Tsiatis (2001). Causal inference on the
Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT



35

References

difference of the restricted mean lifetime between two groups.
Biometrics 57(4), 1030–1038.

D́ıaz, I., E. Colantuoni, D. F. Hanley, and M. Rosenblum (2019).
Improved precision in the analysis of randomized trials with
survival outcomes, without assuming proportional hazards.
Lifetime Data Analysis 25(3), 439–468.

D́ıaz, I., E. Colantuoni, and M. Rosenblum (2016). Enhanced
precision in the analysis of randomized trials with ordinal
outcomes. Biometrics 72(2), 422–431.

Efron, B. and R. J. Tibshirani (1994). An introduction to the
bootstrap. CRC press.

EMA (2015). Guideline on adjustment for baseline covariates in
clinical trials. Reference number EMA/CHMP/295050/2013.
Committee for Medicinal Products for Human Use (CHMP).

FDA (2019). Adjusting for Covariates in Randomized Clinical
Trials for Drugs and Biologics with Continuous Outcomes. Draft
Guidance for Industry.
https://www.fda.gov/media/123801/download.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT



35

References

FDA (2020, May). COVID-19: Developing Drugs and Biological
Products for Treatment or Prevention. Guidance for Industry.
https://www.fda.gov/media/137926/download.

FDA and EMA (1998). E9 statistical principles for clinical trials.
U.S. Food and Drug Administration: CDER/CBER. European
Medicines Agency: CPMP/ICH/363/96 .

Ge, M., L. K. Durham, R. D. Meyer, W. Xie, and N. Thomas
(2011). Covariate-adjusted difference in proportions from clinical
trials using logistic regression and weighted risk differences.
Drug Information Journal 45(4), 481–493.

Jiang, F., L. Tian, H. Fu, T. Hasegawa, and L. J. Wei (2019).
Robust alternatives to ancova for estimating the treatment
effect via a randomized comparative study. Journal of the
American Statistical Association 114(528), 1854–1864.

Kaplan, E. L. and P. Meier (1958). Nonparametric estimation from
incomplete observations. Journal of the American Statistical
Association 53(282), 457–481.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT



35

References

Lu, X. and A. A. Tsiatis (2011). Semiparametric estimation of
treatment effect with time-lagged response in the presence of
informative censoring. Lifetime Data Analysis 17(4), 566–593.

McCullagh, P. (1980). Regression models for ordinal data. Journal
of the Royal Statistical Society: Series B
(Methodological) 42(2), 109–127.

Moore, K. L., R. Neugebauer, T. Valappil, and M. J. van der Laan
(2011). Robust extraction of covariate information to improve
estimation efficiency in randomized trials. Statistics in
Medicine 30(19), 2389–2408.

Moore, K. L. and M. J. van der Laan (2009). Covariate adjustment
in randomized trials with binary outcomes: Targeted maximum
likelihood estimation. Statistics in Medicine 28(1), 39.

Moore, K. L. and M. J. van der Laan (2009). Increasing power in
randomized trials with right censored outcomes through
covariate adjustment. Journal of Biopharmaceutical
Statistics 19(6), 1099–1131. PMID: 20183467.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT



35

References

Nogueira, R. G., A. P. Jadhav, D. C. Haussen, A. Bonafe, R. F.
Budzik, P. Bhuva, D. R. Yavagal, M. Ribo, C. Cognard, R. A.
Hanel, C. A. Sila, A. E. Hassan, M. Millan, E. I. Levy,
P. Mitchell, M. Chen, J. D. English, Q. A. Shah, F. L. Silver,
V. M. Pereira, B. P. Mehta, B. W. Baxter, M. G. Abraham,
P. Cardona, E. Veznedaroglu, F. R. Hellinger, L. Feng, J. F.
Kirmani, D. K. Lopes, B. T. Jankowitz, M. R. Frankel,
V. Costalat, N. A. Vora, A. J. Yoo, A. M. Malik, A. J. Furlan,
M. Rubiera, A. Aghaebrahim, J.-M. Olivot, W. G. Tekle,
R. Shields, T. Graves, R. J. Lewis, W. S. Smith, D. S.
Liebeskind, J. L. Saver, and T. G. Jovin (2018). Thrombectomy
6 to 24 hours after stroke with a mismatch between deficit and
infarct. New England Journal of Medicine 378(1), 11–21.
PMID: 29129157.

Parast, L., L. Tian, and T. Cai (2014). Landmark estimation of
survival and treatment effect in a randomized clinical trial.
Journal of the American Statistical Association 109(505),
384–394.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT



35

References

Royston, P. and M. K. Parmar (2011). The use of restricted mean
survival time to estimate the treatment effect in randomized
clinical trials when the proportional hazards assumption is in
doubt. Statistics in Medicine 30(19), 2409–2421.

Scharfstein, D. O., A. Rotnitzky, and J. M. Robins (1999).
Adjusting for nonignorable drop-out using semiparametric
nonresponse models. Journal of the American Statistical
Association 94(448), 1096–1120.

Stitelman, O. M., V. De Gruttola, and M. J. van der Laan (2011).
A general implementation of tmle for longitudinal data applied
to causal inference in survival analysis. The International Journal
of Biostatistics 8(1).

Tsiatis, A. A., M. Davidian, M. Zhang, and X. Lu (2008).
Covariate adjustment for two-sample treatment comparisons in
randomized clinical trials: A principled yet flexible approach.
Statistics in Medicine 27(23), 4658–4677.

van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge:
Cambridge University Press.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT



36

References

Vermeulen, K., O. Thas, and S. Vansteelandt (2015). Increasing
the power of the mann-whitney test in randomized experiments
through flexible covariate adjustment. Statistics in
Medicine 34(6), 1012–1030.

Yang, L. and A. A. Tsiatis (2001). Efficiency study of estimators
for a treatment effect in a pretest–posttest trial. The American
Statistician 55(4), 314–321.

Zhang, M. (2014). Robust methods to improve efficiency and
reduce bias in estimating survival curves in randomized clinical
trials. Lifetime Data Analysis 21(1), 119–137.

Zhang, M. and P. B. Gilbert (2010). Increasing the efficiency of
prevention trials by incorporating baseline covariates. Statistical
Communications in Infectious Diseases 2(1).

Zhang, M., A. A. Tsiatis, and M. Davidian (2008). Improving
efficiency of inferences in randomized clinical trials using
auxiliary covariates. Biometrics 64(3), 707–715.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT



36

References

Austin, Peter C., et al. A substantial and confusing variation
exists in handling of baseline covariates in randomized
controlled trials: a review of trials published in leading medical
journals. J. Clin Epi 63.2 (2010): 142-153.

Colantuoni, E. and Rosenblum, M. (2015) Leveraging
Prognostic Baseline Variables to Gain Precision in
Randomized Trials. Statistics in Medicine. 34(18), 2602-2617.
http://goo.gl/evGHF6

Diaz, I., Colantuoni, E., Rosenblum, M. Enhanced Precision in
the Analysis of Randomized Trials with Ordinal Outcomes.
Biometrics. (2016)

Jarskog, L. F., Hamer, R. M., Catellier, D. J., Stewart, D. D.,
LaVange, L., Ray,N., Golden, L. H., Lieberman, J. A. and
Stroup, T. S.(2013). Metformin for weightloss and metabolic
control in overweight outpatients with schizophrenia and
schizoaffectivedisorder.American Journal of Psychiatry170(9),
1032–1040.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT



37

References

Jiang, F., L. Tian, H. Fu, T. Hasegawa, M. A. Pfeffer, and L.
J. Wei (2016). Robust alternatives to ANCOVA for estimating
the treatment effect via a randomized comparative study,
Harvard University Biostatistics Working Paper. Series
Working paper 209.
Moore K, van der Laan MJ. Covariate adjustment in
randomized trials with binary outcomes: targeted maximum
likelihood estimation. Statistics in Medicine 2009;
28(1):39-64.
Moore, K. L., R. Neugebauer, T. Valappil, and M. J. van der
Laan (2011). Robust extraction of covariate information to
improve estimation efficiency in randomized trials. Statistics
in Medicine 30 (19), 2389-2408.
Petersen, R. C., Thomas, R. G., Grundman, M., Bennett, D.,
Doody, R., Ferris, S.,Galasko, D., Jin, S., Kaye, J., Levey, A.,
Pfeiffer, E., Sano, M., van Dyck, C. H.and others. (2005).
Vitamin E and Donepezil for the Treatment of Mild Cognitive
Impairment.New England Journal of Medicine 352(23),
2379–2388. PMID: 15829527.Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT



38

References

Pocock, S. J., Assmann, S. E., Enos, L. E., and Kasten, L. E.
(2002). Subgroup analysis, covariate adjustment and baseline
comparisons in clinical trial reporting: current practice and
problems. Statistics in medicine, 21(19), 2917-2930.

Robins JM, Sued M, Lei-Gomez Q, Rotnitzky A.
Double-robustness with improved efficiency in missing and
causal inference models. Technical Report, Harvard School of
Public Health, 2007

Rotnitzky A, Lei Q, Sued M, Robins JM. Improved
double-robust estimation in missing data and causal inference
models. Biometrika 2012; 99(2):439-456.

Rubin D, van der Laan MJ. Empirical efficiency maximization:
improved locally efficient covariate adjustment in randomized
experiments and survival analysis. International Journal of
Biostatistics 2008; 4(1):Article 5.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT



39

References

Scharfstein, D.O., Rotnitzky, A., and Robins, J.M. Adjusting
for nonignorable drop-out using semiparametric nonresponse
models. Journal of the American Statistical Association 94,
1096–1120 (with Rejoinder, 1135 1146), 1999.

Steingrimsson, Jon Arni; Hanley, Daniel F.; and Rosenblum,
Michael. Improving precision by adjusting for prognostic
baseline variables in randomized trials with binary outcomes,
without regression modelassumptions, Contemporary Clinical
Trials, 2017, http://doi.org/10.1016/j.cct.2016.12.026

Treatment for Adolescents With Depression Study (TADS)
Team. (2004). Fluoxe-tine, cognitive-behavioral therapy, and
their combination for adolescents with depression: Treat-ment
for adolescents with depression study (TADS) randomized
controlled trial.JAMA292(7),807–820.

Tan Z. Bounded, efficient and doubly robust estimating
equations for marginal and nested structural models.
Biometrika 2010; 97:661-682.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT



40

References

Lu Tian, Tianxi Cai, Lihui Zhao, Lee-Jen Wei, On the
covariate-adjusted estimation for an overall treatment
difference with data from a randomized comparative clinical
trial, Biostatistics, Volume 13, Issue 2, April 2012, Pages
256–273, https://doi.org/10.1093/biostatistics/kxr050
Stefan Wager, Wenfei Du, Jonathan Taylor, Robert J.
Tibshirani. High-dimensional randomized experiments.
Proceedings of the National Academy of Sciences Nov 2016,
113 (45) 12673-12678; DOI: 10.1073/pnas.1614732113
Wu, E. and J. A. Gagnon-Bartsch (2018). The LOOP
Estimator: Adjusting for Covariates in Randomized
Experiments. Evaluation Review 42(4), 458–488.
https://doi.org/10.1177/0193841X18808003.
ZHANG, M., TSIATIS, A. AND DAVIDIAN, M. (2008).
Improving efficiency of inferences in randomized clinical trials
using auxiliary covariates. Biometrics 64, 707?715.
Zhang, Z, Ma, S. Machine learning methods for leveraging
baseline covariate information to improve the efficiency of
clinical trials. Statistics in Medicine. 2019; 38: 1703–1714.
https://doi.org/10.1002/sim.8054
Zheng, Wenjing; Chambaz, Antoine; and van der Laan, Mark
J., ”Drawing Valid Targeted Inference When
Covariate-adjusted Response-adaptive RCT Meets
Data-adaptive Loss-based Estimation, With An Application To
The LASSO” (July 2015). U.C. Berkeley Division of
Biostatistics Working Paper Series. Working Paper 339.
https://biostats.bepress.com/ucbbiostat/paper339
Hanley, D.F., Lane, K., McBee, N., Ziai, W, Tuhrim, S., Lees,
K.R., Dawson, J., Gandhi, D., Ullman, N., Mould, W.A.,
Mayo, S.W., Mendelow, A.D., Gregson, B., Butcher, K.,
Vespa, P., Wright, D.W., Kase, C.S., Carhuapoma, J.R., Keyl,
P.M., Diener-West, M., Betz, J.F., Thompson, C., Sugar,
E.A., Yenokyan, G., Janis, S., John, S., Harnof, S., Lopez, G.,
Aldrich, E.F., Harrigan, M.R., Ansari, S., Jallo, J., Caron,
J-L., LeDoux, D., Adeoye, O., Zuccarello, M., Adams, H.P.,
Rosenblum, M., Thompson, R.E., Awad, I.A., for the CLEAR
III Investigators. (2017) Thrombolytic removal of
intraventricular haemorrhage in treatment of severe stroke:
results of the randomised, multicentre, multiregion,
placebo-controlled CLEAR III trial. The Lancet. 389(10069),
603–611. http://dx.doi.org/10.1016/S0140-6736(16)32410-2

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT



41

References

Wang, B., Susukida, R., Mojtabai, R., Masoumeh, A.-E.; and
Rosenblum, M. (2019) Model-Robust Inference for Clinical
Trials that Improve Precision by Stratified Randomization and
Adjustment for Additional Baseline Variables.
https://arxiv.org/abs/1910.13954

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT



42

References

Acknowledgments

MR was supported by the Johns Hopkins Center of Excellence in
Regulatory Science and Innovation, which is funded by the Food
and Drug Administration (FDA) of the U.S. Department of Health
and Human Services (HHS) as part of a financial assistance award
(U01FD005942). The contents are those of the author(s) and do
not necessarily represent the official views of, nor an endorsement,
by any of the aforementioned organizations, the FDA/HHS, nor
the U.S. Government.

Michael Rosenblum, Johns Hopkins University Covariate Adjustment for RCT


