Extra Lecture: Estimating the effective reproductive number at time {t}: R_t

Ira Longini University of Florida

WHO R&D Blueprint to combat global pandemics

	Health Topics ~	Countries ~	Newsroom ~	Emergencies ~	Data 🗸	About WHO ~
R&D B	lueprint				The R&D Blueprint is a g rapid activation of resear is to fast-track the availa be used to save lives and broad global coalition of medical, scientific and re the development of the B About us >	lobal strategy and preparedness plan that allows the rch and development activities during epidemics. Its aim bility of effective tests, vaccines and medicines that can d avert large scale crises. With WHO as convener, the experts who have contributed to the Blueprint come from gulatory backgrounds. WHO Member States welcomed Blueprint at the World Health Assembly in May 2016.

Key actions by disease

R&D Blueprint and COVID-19 R&D Blueprint and the Pandemic Response

R&D Blueprint and Ebola/Marburg	>
R&D Blueprint and Lassa Fever	>
R&D Blueprint and MERS-CoV	>
R&D Blueprint and Nipah Virus	>
R&D Blueprint and Zika	>

Centers for Disease Control and Prevention CDC 24/7: Saving Lives, Protecting People™

EMERGING INFECTIOUS DISEASES[®]

EID Journal > Volume 29 > Number 7—July 2023 > Main Article > Figure 2

Volume 29, Number 7—July 2023

Dispatch

Estimates of Serial Interval and Reproduction Number of Sudan Virus, Uganda, August–November 2022

Valentina Marziano, Giorgio Guzzetta, Ira Longini, and Stefano Merler

Author affiliations: Bruno Kessler Foundation, Center for Health Emergencies, Trento, Italy (V. Marziano, G. Guzzetta, S. Merler); University of Florida, Colleges of Public Health and Health Professions and Medicine, Gainesville, Florida, USA (I. Longini)

Q

Search

ISSN: 1080-6059

Mathematical modeling of transmission to aid in vaccine trials assessment

Estimation of reproductive numbers:

- $Pois(\lambda)$ is a Poisson sample with rate λ ;
- C(t) is the projected daily number of new cases having symptom onset on t;
- c(t) is the observed number of new cases having symptom onset on t;
- $\varphi(s)$ is the distribution of the generation time discretized by day, approximated with the estimated distribution of the serial interval;
- R(t) is the assumed reproduction number over time.

Master renewal equation

$$C(t) = \operatorname{Pois}(R(t)\sum_{s=1}^{t}\varphi(s)c(t-s)),$$

 $E\{C(t) | R(t), \phi(s), c(t-1)\} = R(t) \sum_{s=1}^{t} \phi(s)c(t-s)$

Literature on estimating R_t

A Cori, NM Ferguson, C Fraser, S Cauchemez. A new framework and software to estimate time-varying reproduction numbers during epidemics. *Am J Epidemiol*, **178**(9):1505-1512, 2013

Wallinga J, Teunis P. Different Epidemic Curves for Severe Acute Respiratory Syndrome Reveal Simi- lar Impacts of Control Measures. Am J Epidemiol. 2004; 160(6):509–16. https://doi.org/10.1093/aje/ kwh255 PMID: 15353409

Parag KV. Improved estimation of time-varying reproduction numbers at low case incidence and between epidemic waves. PLoS Comput Biol. 2021 Sep 7;17(9):e1009347. Doi: 10.1371/journal.pcbi.1009347. PMID: 34492011; PMCID: PMC8448340.

Chowell G, Hengartner NW, Castillo-Chavez C, Fenimore PW, Hyman JM. The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda. J Theor Biol. 2004 Jul 7;229(1):119-26. doi: 10.1016/j.jtbi.2004.03.006. PMID: 15178190.

Wallinga J, Lipsitch M. How generation intervals shape the relationship between growth rates and reproductive numbers. Proc Biol Sci. 2007 Feb 22;274(1609):599-604. doi: 10.1098/rspb.2006.3754. PMID: 17476782; PMCID: PMC1766383.

Chowell G, Viboud C, Simonsen L, Moghadas SM. Characterizing the reproduction number of epidemics with early subexponential growth dynamics. J R Soc Interface. 2016 Oct;13(123):20160659. doi: 10.1098/rsif.2016.0659. PMID: 27707909; PMCID: PMC5095223.

Viboud C, Simonsen L, Chowell G. A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks. Epidemics. 2016 Jun;15:27-37. doi: 10.1016/j.epidem.2016.01.002. Epub 2016 Feb 1. PMID: 27266847; PMCID: PMC4903879.

https://www.afro.who.int/sites/default/files/20231/Ug_EVD_SitRep%2393.pdf

Centers for Disease Control and Prevention CDC 24/7: Saving Lives, Protecting People™

EMERGING INFECTIOUS DISEASES[®]

EID Journal > Volume 29 > Number 7—July 2023 > Main Article > Figure 2

Volume 29, Number 7—July 2023

Dispatch

Estimates of Serial Interval and Reproduction Number of Sudan Virus, Uganda, August–November 2022

Valentina Marziano, Giorgio Guzzetta, Ira Longini, and Stefano Merler

Author affiliations: Bruno Kessler Foundation, Center for Health Emergencies, Trento, Italy (V. Marziano, G. Guzzetta, S. Merler); University of Florida, Colleges of Public Health and Health Professions and Medicine, Gainesville, Florida, USA (I. Longini)

Search

Q

ISSN: 1080-6059

Preliminary estimates of Sudan virus transmissibility and projections of cases in Uganda, October 2022

October 17, 2022 - Valentina Marziano¹, Giorgio Guzzetta¹, Ira Longini²,

Stefano Merler¹ ¹Bruno Kessler Foundation, Trento, Italy; ²University of

Florida, Gainesville, US <u>Summary</u>

- We estimated the serial interval and reproduction numbers for the outbreak of Sudan virus currently spreading in Uganda.
 - The serial interval of the Sudan virus, estimated from data on the 2000-2001 outbreak in Uganda, is estimated to be Weibull distributed with mean 12 days (95% percentiles of the distribution: 4-24 days).
 - The basic reproduction number of the 2022 outbreak is estimated to be 3.7 on average, with broad confidence intervals (95% CI: 2.7-4.8).
 - After a peak reached around September 20, the net reproduction number R_t has declined below the epidemic threshold since the early days of October. This might depend on incompleteness of data, population awareness, interventions, or a combination of these factors.

Example

Estimation of serial

Transmission trees (as of 1 November 2022)

6

Estimation of serial interval

Table S2. Parameters of the Weibull distribution of the serial interval as estimated from the different datasets.

Dataset	2000-2001 SUDV	2022 SUDV
	outbreak [1] (n=24)	outbreak [2] (n=12)
Offset (days)	3	1
Shape (mean)	1.76 (1.35-2.60)	1.63 (1.15-3.04)
Scale (95%CI)	10.14 (7.77-12.58)	11.97 (7.9-16.56)
Mean (95%CI) (days)	12 (10-14.2)	11.7 (8.2-15.8)
95%CI of the mean distribution (days)	4-24	2-28

Estimates of R_t

Real time projections

Figure 4. Projections of Sudan virus cases in Uganda by date of symptom onset under different scenarios for the mean reproduction number, assumed constant between October 5 and November 15.

Thank You!

