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Abstract
Adaptive sequential sampling plans are often used in the monitoring of 
clinical trials in order to address the ethical and efficiency issues inherent in 
human testing of a new treatment or preventive agent for disease. Group 
sequential stopping rules are perhaps the most commonly used 
approaches, but in recent years, a number of authors have proposed more 
flexible adaptive methods such as unblinded sample size re-estimation, 
adaptive enrichment, and response adaptive randomization. This module 
describes some of the special issues that can arise from a statistical and/or 
regulatory standpoint in any sequential RCT. Particular emphasis is placed 
on issues that can arise with time to event endpoints. Topics include the 
• analysis of RCT data in the presence of adaptive enrichment, response 

adaptive randomization or adaptive selection of doses, 
• the use of sequential designs when treatment effects might be time-

varying (e.g. non proportional hazards), and
• the avoidance of operational bias with unblinded adaptation
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Where Am I Going?

Overview and Organization of the Course

4

Science and Statistics

• Statistics is about science
– (Science in the broadest sense of the word)

• Science is about proving things to people
– (The validity of any proof rests solely on the willingness of the 

audience to believe it)

• In RCT, we are trying to prove the effect of some treatment
– What do we need to consider as we strive to meet the burden of 

proof with adaptive modification of a RCT design?

• Does delayed measured of outcome data affect those issues?
– Short answer: No, UNLESS subject to censoring
– So, true answer: Yes.
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Overview: Time-to-Event
• Many confirmatory phase 3 RCTs compare the distribution of time 

to some event (e.g., time to death or progression free survival). 

• Common statistical analyses: Logrank test and/or PH regression 

• Just as commonly: True distributions do not satisfy PH

• Providing users are aware of the nuances of those methods, such 
departures need not preclude the use of those methods

• Note: Longitudinal data analyses based on (average) disease 
status at (over) some time period have many of these same 
issues)
– I will refer to these similarities at times
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Overview: Sequential, Adaptive RCT
• Increasing interest in the use of sequential, adaptive RCT designs

• FDA Draft guidance on adaptive designs

– “Well understood” methods
• Fixed sample
• Group sequential 
• Blinded adaptation

– “Less well understood” methods
• Adaptive sample size re-estimation
• Adaptive enrichment
• Response-adaptive randomization
• Adaptive selection of doses and/or treatments
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Overview: Premise

• Much of the concern with “less well understood” methods has to 

do with “less well understood” aspects of survival analysis in RCT

• Proportional hazards holds under strong null

– But weak null can be important (e.g., noninferiority)

• Log linear hazard may be close to linear in log time over support 

of censoring distribution è approximately Weibull

– A special case of PH only when shape parameter is constant

• Hazard ratio estimate can be thought of a weighted time-average 

of ratio of hazard functions

– But in Cox regression, weights depend on censoring distribution

– And in sequential RCT, censoring distribution keeps changing

8

Course Organization

• Overview: 
– RCT setting
– What do we know about survival analysis?

• Group sequential methods with time-to-event endpoints
– Evaluation of RCT designs
– Monitoring: implementation of stopping rules

• Adaptive methods for sample size re-estimation with PH
– Tradeoffs between number accrued and length of follow-up
– Case study: Low event rates, extreme effects

• Time to event analyses in presence of time-varying effects

• Special issues with adaptive RCT in time-to-event analyses
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Course Organization

• Overview: 
– RCT setting
– What do we know about survival analysis?

• Group sequential methods with time-to-event endpoints
– Evaluation of RCT designs
– Monitoring: implementation of stopping rules

• Adaptive methods for sample size re-estimation with PH
– Case study: Low event rates, extreme effects

• Time to event analyses in presence of time-varying effects

• Special issues with adaptive RCT in time-to-event analyses
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Overview

RCT setting

Where am I going?
It is important to keep in mind the overall goal of RCTs

I briefly describe some issues that impact our decisions in the 
design, monitoring, and analysis of RCTs
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Overall Goal: “Drug Discovery”

• More generally 

– a therapy / preventive strategy or diagnostic / prognostic 

procedure

– for some disease

– in some population of patients

• A sequential, adaptive series of experiments to establish

– Safety of investigations / dose                (phase 1)

– Safety of therapy                                     (phase 2)

– Measures of efficacy                               (phase 2)

• Treatment, population, and outcomes

– Confirmation of efficacy                          (phase 3)

– Confirmation of effectiveness                 (phase 3, post-marketing)

12

Science: Treatment “Indication”

• Disease
– Therapy: Putative cause vs signs / symptoms

• May involve method of diagnosis, response to therapies
– Prevention / Diagnosis: Risk classification

• Population
– Therapy: Restrict by risk of AEs or actual prior experience
– Prevention / Diagnosis: Restrict by contraindications

• Treatment or treatment strategy
– Formulation, administration, dose, frequency, duration, ancillary 

therapies
• Outcome

– Clinical vs surrogate; timeframe; method of measurement
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Evidence Based Medicine
• Decisions about treatments should consider PICO

– Patient (population)
– Intervention
– Comparators
– Outcome

• There is a need for estimates of safety, effect

14

Clinical Trials
• Experimentation in human volunteers

• Investigates a new treatment/preventive agent
– Safety: 

• Are there adverse effects that clearly outweigh any potential 
benefit?

– Efficacy: 
• Can the treatment alter the disease process in a beneficial way?

– Effectiveness: 
• Would adoption of the treatment as a standard affect morbidity / 

mortality in the population?
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Carrying Coals to Newcastle
• Wiley Act (1906)

– Labeling
• Food, Drug, and Cosmetics Act of 1938

– Safety
• Kefauver – Harris Amendment (1962)

– Efficacy / effectiveness
• " [If] there is a lack of substantial evidence that the drug will have the effect ... 

shall issue an order refusing to approve the application. “
• “...The term 'substantial evidence' means evidence consisting of adequate and 

well-controlled investigations, including clinical investigations, by experts 
qualified by scientific training”

• FDA Amendments Act (2007)
– Registration of RCTs, Pediatrics, Risk Evaluation and Mitigation 

Strategies (REMS)
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Medical Devices

• Medical Devices Regulation Act of 1976
– Class I: General controls for lowest risk
– Class II: Special controls for medium risk - 510(k)
– Class III: Pre marketing approval (PMA) for highest risk

• “…valid scientific evidence for the purpose of determining the safety or 
effectiveness of a particular device … adequate to support a determination that 
there is reasonable assurance that the device is safe and effective for its 
conditions of use…”

• “Valid scientific evidence is evidence from well-controlled investigations, partially 
controlled studies, studies and objective trials without matched controls, well-
documented case histories conducted by qualified experts, and reports of 
significant human experience with a marketed device, from which it can fairly 
and responsibly be concluded by qualified experts that there is reasonable 
assurance of the safety and effectiveness…”

• Safe Medical Devices Act of 1990
– Tightened requirements for Class 3 devices
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Clinical Trial Design
• Finding an approach that best addresses the often competing 

goals: Science, Ethics, Efficiency
– Basic scientists: focus on mechanisms
– Clinical scientists: focus on overall patient health
– Ethical: focus on patients on trial, future patients
– Economic: focus on profits and/or costs
– Governmental: focus on safety of public: treatment safety, 

efficacy, marketing claims
– Statistical: focus on questions answered precisely 
– Operational: focus on feasibility of mounting trial

18

Sequential RCT
• Ethical and efficiency concerns can be addressed through 

sequential sampling

• During the conduct of the study, data are analyzed at periodic 
intervals and reviewed by the DMC

• Using interim estimates of treatment effect decide whether to 
continue the trial

• If continuing, decide on any modifications to 
– scientific / statistical hypotheses and/or
– sampling scheme
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Design: Distinctions without Differences

• There is no such thing as a “Bayesian design”

• Every RCT design has a Bayesian interpretation

– (And each person may have a different such interpretation)

• Every RCT design has a frequentist interpretation

– (In poorly designed trials, this may not be known exactly)

• I focus on the use of both interpretations

– Phase 2: Bayesian probability space

– Phase 3: Frequentist probability space

– Entire process: Both Bayesian and frequentist optimality criteria

20

Application to Drug Discovery

• We consider a population of candidate drugs

• We use RCT to “diagnose” truly beneficial drugs

• Use both frequentist and Bayesian optimality criteria
– Sponsor: 

• High probability of adopting a beneficial drug  (frequentist power)

– Regulatory:
• Low probability of adopting ineffective drug       (freq type 1 error)
• High probability that adopted drugs work     (posterior probability)

– Public Health                   (frequentist sample space, Bayes criteria)
• Maximize the number of good drugs adopted
• Minimize the number of ineffective drugs adopted
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Frequentist vs Bayesian: Bayes Factor
• Frequentist and Bayesian inference truly complementary

– Frequentist: Design so the same data not likely from null / alt
– Bayesian: Explore updated beliefs based on a range of priors

• Bayes rule tells us that we can parameterize the positive 
predictive value by the type I error and prevalence
– Maximize new information by maximizing Bayes factor
– With simple hypotheses:
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Adaptive Sampling: General Case
• At each interim analysis, possibly modify statistical or scientific 

aspects of the RCT

• Primarily statistical characteristics 
– Maximal statistical information  (UNLESS: impact on MCID)
– Schedule of analyses               (UNLESS: time-varying effects)
– Conditions for stopping            (UNLESS: time-varying effects)
– Randomization ratios                (UNLESS: introduce confounding)
– Statistical criteria for credible evidence

• Primarily scientific characteristics
– Target patient population (inclusion, exclusion criteria)
– Treatment (dose, administration, frequency, duration)
– Clinical outcome and/or statistical summary measure
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FDA Guidance on Adaptive RCT Designs
• Distinctions by role of trial

– “Adequate and well-controlled” (Kefauver-Harris wording)
– “Exploratory”

• Distinctions by adaptive methodology
– “Well understood”

• Fixed sample design
• Blinded adaptation
• Group sequential with pre-specified stopping rule

– “Less well understood”
• “Adaptive” designs with a prospectively defined opportunity to 

modify specific aspects of study designs based on review of 
unblinded interim data

– “Not within scope of guidance”
• Modifications to trial conduct based on unblinded interim data 

that are not prospectively defined

24

FDA Concerns

• Statistical errors: Type 1 error; power

• Bias of estimates of treatment effect
– Definition of treatment effect
– Bias from multiplicity

• Information available for subgroups, dose response, secondary 
endpoints

• Operational bias from release of interim results
– Effect on treatment of ongoing patients
– Effect on accrual to the study
– Effect on ascertainment of outcomes
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Group Sequential Designs

• Perform analyses when sample sizes N1. . . NJ

– Can be randomly determined

• At each analysis choose stopping boundaries
– aj < bj < cj < dj

• Compute test statistic Tj=T(X1. . . XNj)
– Stop if      Tj < aj (extremely low)
– Stop if   bj < Tj < cj (approximate equivalence)
– Stop if      Tj > dj (extremely high)
– Otherwise continue 

• Boundaries chosen to protect 2 of 3 operating characteristics
– Type 1 error, power
– Type 1 error, power, maximal sample size

26

Typical Adaptive Design
• Perform analyses when sample sizes N1. . . NJ

– Can be randomly determined

• At each analysis choose stopping boundaries
– aj < bj < cj < dj

• Compute test statistic Tj=T(X1. . . XNj)
– Stop if      Tj < aj (extremely low)
– Stop if   bj < Tj < cj (approximate equivalence)
– Stop if      Tj > dj (extremely high)
– Otherwise continue 

• At penultimate analysis (J-1), use unblinded interim test statistic 
to choose final sample size NJ
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Adaptive Control of Type 1 Errors

• Proschan and Hunsberger (1995)
– Adaptive modification of RCT design at a single interim analysis 

can more than double type 1 error unless carefully controlled

• Those authors describe adaptations to maintain experimentwise 
type I error and increase conditional power
– Must prespecify a conditional error function

– Often choose function from some specified test

– Find critical value to maintain type I error

28

Alternative Approaches

• Combining P values (Bauer & Kohne, 1994)

– Based on R.A. Fisher’s method

– Extended to weighted combinations

• Cui, Hung, and Wang (1999)

– Maintain conditional error from pre-specified design

• Self-designing Trial (Fisher, 1998)

– Combine arbitrary test statistics from sequential groups using 

weighting of groups pespecified “just in time”
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Overview

What do we know about time-to-event analyses?

Where am I going?
I present some examples where the behavior of standard 
analysis methods for time-to-event data are not well understood

30

Time to Event

• In time to event data, a common treatment effect across stages is 
reasonable under some assumptions
– Strong null hypothesis (exact equality of distributions)
– Strong parametric or semi-parametric assumptions

• The most common methods of analyzing time to event data will 
often lead to varying treatment effect parameters across stages
– Proportional hazards regression with non proportional hazards 

data
– Weak null hypotheses of equality of summary measures (e.g., 

medians, average hazard ratio)
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Hypothetical Example: Setting
• Consider survival with a particular treatment used in renal dialysis 

patients

• Extract data from registry of dialysis patients

• To ensure quality, only use data after 1995
– Incident cases in 1995: Follow-up 1995 – 2002 (8 years)
– Prevalent cases in 1995: Data from 1995 - 2002

• Incident in 1994: Information about 2nd – 9th year
• Incident in 1993: Information about 3rd – 10th year
• …
• Incident in 1988: Information about 8th – 15th year

32

Hypothetical Example: KM Curves
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Who Wants To Be A Millionaire?

• Proportional hazards analysis estimates a Treatment : Control
hazard ratio of

A:      2.07   (logrank P = .0018)
B:      1.13   (logrank P = .0018)
C:      0.87   (logrank P = .0018)
D:      0.48   (logrank P = .0018)

– Lifelines: 
• 50-50? Ask the audience? Call a friend?

34

Who Wants To Be A Millionaire?

• Proportional hazards analysis estimates a Treatment : Control
hazard ratio of

B:      1.13   (logrank P = .0018)

C:      0.87   (logrank P = .0018)

– Lifelines: 

• 50-50? Ask the audience? Call a friend?
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Hypothetical Example: KM Curves
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Who Wants To Be A Millionaire?

Proportional hazards analysis estimates a Treatment : Control
hazard ratio of

B:      1.13   (logrank P = .0018)

The weighting using the risk sets made no scientific sense

– Statistical precision to estimate a meaningless quantity is 

meaningless
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Partial Likelihood Based Score
• Logrank statistic

( ) ( )
{ }

{ }

( )

[ ]å

å

å å

å

-
+

=

ú
ú
û

ù

ê
ê
ë

é
+

+
-=

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

-=
¶
¶

=
=

³

³

t
tt

tt

tt

t
tt

tt

t
t

n

i
TTj

j

TTj
jj

ii

e
nn
nn

dd
enn

end

X

XX

XDLU

ij

ij

01
10

10

10
10

1
1

1
:

:

ˆˆ

exp

exp

log

ll

b

b

b
b

b

b

b

b

38

Weighted Logrank Statistics
• Choose additional weights to detect anticipated effects
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A Further Example

40

Logan, et al.: Motivation
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Logan, et al.: Comparisons
• Logrank starting from time 0
• Weighted logrank test (rho=0, gamma=1) from time 0
• Survival at a single time point after time t0
• Logrank starting from time t0
• Weighted area between survival curves (restricted mean)

– Most weight after time t0
• Pseudovalues after time t0
• Combination tests (linear and quadratic)

– Compare survival at time t0
– Compare hazard ratio after time t0

42

Logan, et al.: Simulations
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Logan, et al.: Results

44

Logan, et al.: Critique

• In considering the combination tests, crossing survival curves 
might have
– No difference at time t0 (perhaps we are looking for equivalence)
– Higher hazard after time  t0

• Presumably, the authors are interested in the curve that is higher 
at longer times post treatment
– The authors did not describe how to use their test in a one-sided 

setting

• PROBLEM: The authors do not seem to be considering the 
difference between crossing survival curves and crossing hazard 
functions
– Higher hazard over some period of time does not imply lower 

survival curves
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Logan, et al.: Critique
• Additional scenarios that are of interest

46

Logan, et al.: Critique

• How might a naïve investigator use this test?

– If the observed survival curves cross and the hazard is 
significantly higher after that point, the presumption might be that 

we have significant evidence that the group with higher hazard at 
later times has worse survival at those times

• “But it would be wrong” (Richard Nixon, March 21, 1973)

• We can create a scenario in which

– Survival curves are truly stochastically ordered SA(t) > SB(t)"t>0
– The probability of observing estimated curves that cross at t0 is 

arbitrarily close to 50%

– The probability of obtaining statistically significant higher hazards 
for group A after t0 is arbitrarily close to 100% 

– Thus, the one-sided type 1 error is arbitrarily close to 50%
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Relevance to Today
• Even experts in survival analysis sometimes lose track of the way 

that time to event analyses behave, relative to our true goals

48

Final Comments
• There is still much for us to understand about the implementation 

of adaptive designs

• Most often the “less well understood” part is how they interact 
with particular data analysis methods
– In particular, the analysis of censored time to event data has 

many scientific and statistical issues

• How much detail about accrual patterns, etc. do we want to have 
to examine for each RCT?

• How much do we truly gain from the adaptive designs?
– (Wouldn’t it be nice if statistical researchers started evaluating 

their new methods in a manner similar to evaluation of new 
drugs?)



Summer Institute in Statistics for Clinical Research July 25, 2019

Module 12: Advanced Adaptive  RCT 
Scott S Emerson MD PhD 25

49

Bottom Line

• There is no substitute for planning a study in advance
– At Phase 2, adaptive designs may be useful to better control 

parameters leading to Phase 3
• Most importantly, learn to take “NO” for an answer

– At Phase 3, there seems little to be gained from adaptive trials
• We need to be able to do inference, and poorly designed 

adaptive trials can lead to some very perplexing estimation 
methods

• “Opportunity is missed by most people because it is dressed 
in overalls and looks like work.” -- Thomas Edison

• In clinical science, it is the steady, incremental steps that are 
likely to have the greatest impact. 

50

Really Bottom Line

“You better think (think) 
about what you’re 

trying to do…”

-Aretha Franklin, “Think”
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Overview

What do we know about time-to-event analyses?

Where am I going?
I present some examples where the behavior of standard 
analysis methods for time-to-event data are not well understood

52

Time to Event

• In time to event data, a common treatment effect across stages is 
reasonable under some assumptions
– Strong null hypothesis (exact equality of distributions)
– Strong parametric or semi-parametric assumptions

• The most common methods of analyzing time to event data will 
often lead to varying treatment effect parameters across stages
– Proportional hazards regression with non proportional hazards 

data
– Weak null hypotheses of equality of summary measures (e.g., 

medians, average hazard ratio)
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Right Censored Data
• Incompete data: Some events have not occurred at time of data 

analysis
• Notation:
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Hypothetical Example: Analysis
• Choice of summary measure

– Survival at fixed point in time
– Median, other quantiles
– Mean (or restricted mean)
– Hazard ratio (or weighted average of hazard ratio over time)

• Choice of methods
– Parametric, semiparametric, nonparametric
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Hypothetical Example: Setting
• Consider survival with a particular treatment used in renal dialysis 

patients

• Extract data from registry of dialysis patients

• To ensure quality, only use data after 1995
– Incident cases in 1995: Follow-up 1995 – 2002 (8 years)
– Prevalent cases in 1995: Data from 1995 - 2002

• Incident in 1994: Information about 2nd – 9th year
• Incident in 1993: Information about 3rd – 10th year
• …
• Incident in 1988: Information about 8th – 15th year

56

Hypothetical Example: KM Curves

Time (years)

Su
rv

iv
al

 P
ro

ba
bi

lit
y

0 2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Control

Treatment

Kaplan-Meier Curves for Simulated Data (n=5623)



Summer Institute in Statistics for Clinical Research July 25, 2019

Module 12: Advanced Adaptive  RCT 
Scott S Emerson MD PhD 29

57

Who Wants To Be A Millionaire?

• Proportional hazards analysis estimates a Treatment : Control
hazard ratio of

A:      2.07   (logrank P = .0018)
B:      1.13   (logrank P = .0018)
C:      0.87   (logrank P = .0018)
D:      0.48   (logrank P = .0018)

– Lifelines: 
• 50-50? Ask the audience? Call a friend?
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Who Wants To Be A Millionaire?

• Proportional hazards analysis estimates a Treatment : Control
hazard ratio of

B:      1.13   (logrank P = .0018)

C:      0.87   (logrank P = .0018)

– Lifelines: 

• 50-50? Ask the audience? Call a friend?
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Hypothetical Example: KM Curves
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Who Wants To Be A Millionaire?

Proportional hazards analysis estimates a Treatment : Control
hazard ratio of

B:      1.13   (logrank P = .0018)

The weighting using the risk sets made no scientific sense

– Statistical precision to estimate a meaningless quantity is 

meaningless
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Partial Likelihood Based Score
• Logrank statistic
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Overview

RCT setting

Where am I going?
It is important to keep in mind the overall goal of RCTs

I briefly describe some issues that impact our decisions in the 
design, monitoring, and analysis of RCTs
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Overall Goal: “Drug Discovery”
• More generally 

– a therapy / preventive strategy or diagnostic / prognostic 
procedure

– for some disease
– in some population of patients

• A sequential, adaptive series of experiments to establish
– Safety of investigations / dose                (phase 1)
– Safety of therapy                                     (phase 2)
– Measures of efficacy                               (phase 2)

• Treatment, population, and outcomes
– Confirmation of efficacy                          (phase 3)
– Confirmation of effectiveness                 (phase 3, post-marketing)

64

Science: Treatment “Indication”

• Disease
– Therapy: Putative cause vs signs / symptoms

• May involve method of diagnosis, response to therapies
– Prevention / Diagnosis: Risk classification

• Population
– Therapy: Restrict by risk of AEs or actual prior experience
– Prevention / Diagnosis: Restrict by contraindications

• Treatment or treatment strategy
– Formulation, administration, dose, frequency, duration, ancillary 

therapies

• Outcome
– Clinical vs surrogate; timeframe; method of measurement
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Evidence Based Medicine
• Decisions about treatments should consider PICO

– Patient (population)
– Intervention
– Comparators
– Outcome

• There is a need for estimates of safety, effect

66

Clinical Trials
• Experimentation in human volunteers

• Investigates a new treatment/preventive agent
– Safety: 

• Are there adverse effects that clearly outweigh any potential 
benefit?

– Efficacy: 
• Can the treatment alter the disease process in a beneficial way?

– Effectiveness: 
• Would adoption of the treatment as a standard affect morbidity / 

mortality in the population?
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Carrying Coals to Newcastle
• Wiley Act (1906)

– Labeling
• Food, Drug, and Cosmetics Act of 1938

– Safety
• Kefauver – Harris Amendment (1962)

– Efficacy / effectiveness
• " [If] there is a lack of substantial evidence that the drug will have the effect ... 

shall issue an order refusing to approve the application. “
• “...The term 'substantial evidence' means evidence consisting of adequate and 

well-controlled investigations, including clinical investigations, by experts 
qualified by scientific training”

• FDA Amendments Act (2007)
– Registration of RCTs, Pediatrics, Risk Evaluation and Mitigation 

Strategies (REMS)

68

Medical Devices
• Medical Devices Regulation Act of 1976

– Class I: General controls for lowest risk
– Class II: Special controls for medium risk - 510(k)
– Class III: Pre marketing approval (PMA) for highest risk

• “…valid scientific evidence for the purpose of determining the safety or 
effectiveness of a particular device … adequate to support a determination that 
there is reasonable assurance that the device is safe and effective for its 
conditions of use…”

• “Valid scientific evidence is evidence from well-controlled investigations, partially 
controlled studies, studies and objective trials without matched controls, well-
documented case histories conducted by qualified experts, and reports of 
significant human experience with a marketed device, from which it can fairly 
and responsibly be concluded by qualified experts that there is reasonable 
assurance of the safety and effectiveness…”

• Safe Medical Devices Act of 1990
– Tightened requirements for Class 3 devices
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Clinical Trial Design
• Finding an approach that best addresses the often competing 

goals: Science, Ethics, Efficiency
– Basic scientists: focus on mechanisms
– Clinical scientists: focus on overall patient health
– Ethical: focus on patients on trial, future patients
– Economic: focus on profits and/or costs
– Governmental: focus on safety of public: treatment safety, 

efficacy, marketing claims
– Statistical: focus on questions answered precisely 
– Operational: focus on feasibility of mounting trial

70

Sequential RCT
• Ethical and efficiency concerns can be addressed through 

sequential sampling

• During the conduct of the study, data are analyzed at periodic 
intervals and reviewed by the DMC

• Using interim estimates of treatment effect decide whether to 
continue the trial

• If continuing, decide on any modifications to 
– scientific / statistical hypotheses and/or
– sampling scheme
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Design: Distinctions without Differences

• There is no such thing as a “Bayesian design”

• Every RCT design has a Bayesian interpretation

– (And each person may have a different such interpretation)

• Every RCT design has a frequentist interpretation

– (In poorly designed trials, this may not be known exactly)

• I focus on the use of both interpretations

– Phase 2: Bayesian probability space

– Phase 3: Frequentist probability space

– Entire process: Both Bayesian and frequentist optimality criteria

72

Application to Drug Discovery

• We consider a population of candidate drugs

• We use RCT to “diagnose” truly beneficial drugs

• Use both frequentist and Bayesian optimality criteria
– Sponsor: 

• High probability of adopting a beneficial drug  (frequentist power)

– Regulatory:
• Low probability of adopting ineffective drug       (freq type 1 error)
• High probability that adopted drugs work     (posterior probability)

– Public Health                   (frequentist sample space, Bayes criteria)
• Maximize the number of good drugs adopted
• Minimize the number of ineffective drugs adopted
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Frequentist vs Bayesian: Bayes Factor
• Frequentist and Bayesian inference truly complementary

– Frequentist: Design so the same data not likely from null / alt
– Bayesian: Explore updated beliefs based on a range of priors

• Bayes rule tells us that we can parameterize the positive 
predictive value by the type I error and prevalence
– Maximize new information by maximizing Bayes factor
– With simple hypotheses:
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Adaptive Sampling: General Case
• At each interim analysis, possibly modify statistical or scientific 

aspects of the RCT

• Primarily statistical characteristics 
– Maximal statistical information  (UNLESS: impact on MCID)
– Schedule of analyses               (UNLESS: time-varying effects)
– Conditions for stopping            (UNLESS: time-varying effects)
– Randomization ratios                (UNLESS: introduce confounding)
– Statistical criteria for credible evidence

• Primarily scientific characteristics
– Target patient population (inclusion, exclusion criteria)
– Treatment (dose, administration, frequency, duration)
– Clinical outcome and/or statistical summary measure
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FDA Guidance on Adaptive RCT Designs
• Distinctions by role of trial

– “Adequate and well-controlled” (Kefauver-Harris wording)
– “Exploratory”

• Distinctions by adaptive methodology
– “Well understood”

• Fixed sample design
• Blinded adaptation
• Group sequential with pre-specified stopping rule

– “Less well understood”
• “Adaptive” designs with a prospectively defined opportunity to 

modify specific aspects of study designs based on review of 
unblinded interim data

– “Not within scope of guidance”
• Modifications to trial conduct based on unblinded interim data 

that are not prospectively defined

76

FDA Concerns

• Statistical errors: Type 1 error; power

• Bias of estimates of treatment effect
– Definition of treatment effect
– Bias from multiplicity

• Information available for subgroups, dose response, secondary 
endpoints

• Operational bias from release of interim results
– Effect on treatment of ongoing patients
– Effect on accrual to the study
– Effect on ascertainment of outcomes
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Group Sequential Designs

• Perform analyses when sample sizes N1. . . NJ

– Can be randomly determined

• At each analysis choose stopping boundaries
– aj < bj < cj < dj

• Compute test statistic Tj=T(X1. . . XNj)
– Stop if      Tj < aj (extremely low)

– Stop if   bj < Tj < cj (approximate equivalence)
– Stop if      Tj > dj (extremely high)

– Otherwise continue 

• Boundaries chosen to protect 2 of 3 operating characteristics

– Type 1 error, power

– Type 1 error, power, maximal sample size

78

Spectrum of Boundary Shapes
• All of the rules depicted have the same type I error and power to 

detect the design alternative
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RCT Design to Address Variability
• At the end of the study we perform frequentist and/or Bayesian 

data analysis to assess the credibility of clinical trial results

– Estimate of the treatment effect
• Single best estimate
• Precision of estimates

– Decision for or against hypotheses
• Binary decision
• Quantification of strength of evidence

80

Measures of Precision
• Estimators are less variable across studies

– Standard errors are smaller

• Estimators typical of fewer hypotheses
– Confidence intervals are narrower

• Able to statistically reject false hypotheses
– Z statistic is higher under alternatives
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Notation
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Std Errors: Key to Precision
• Greater precision is achieved with smaller standard errors
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Ex: Difference of Indep Means
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Ex: Hazard Ratios

• With noninformative censoring, proportional hazards
– Statistical information involves probability of censoring
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Time to Event Analyses
• Sample size computation usually presumes PH

– Perhaps attenuation of effect due to cross-over
– Perhaps precision gained by deattenuating HR with adjustment 

for prognostic baseline variables

• Formula leads to number of events

• Accrual size based on
– Control event rate
– Hypothesized treatment effect (null vs alternative)
– Accrual time
– Follow-up after accrual ends
– (Censoring due to loss to follow-up?)

86

Sample Size Determination
• Based on sampling plan, statistical analysis plan, and estimates 

of variability, compute

– Sample size that discriminates hypotheses with desired power, 

OR

– Hypothesis that is discriminated from null with desired power 
when sample size is as specified, or

OR

– Power to detect the specific alternative when sample size is as 
specified
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Sample Size Computation
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When Sample Size Constrained
• Often (usually?) logistical constraints impose a maximal sample 

size
– Compute power to detect specified alternative

– Compute alternative detected with high power
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Ex: Difference of Indep Means
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Ex: Hazard Ratios
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Increasing Precision

• Options

– Increase sample size
• Time to event: Accrue more patients or follow for longer

– Decrease V
• Improve reliability of measurements

– Time to event: Decrease probability of censoring
• Alter study design (e.g., cross-over)
• (Alter eligibility to decrease heterogeneity)
• (Alter clinical endpoint)

– Time to event: Adjust  (control) for precision variables
• De-attenuate the hazard ratio

– (Decrease confidence level)

92

Simulations

• Unadjusted and adjusted estimates of effect of binary POI as a 
function of
– Effect of a covariate on summary of outcome (mean, odds, …)
– Sampling scheme: Association between covariate and POI

• Difference in mean covariate
• Difference in median covariate
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Linear Regression
• Simulation results

Truth                         Avg Estimates (SE)
ΔMdn α1 rXW γ2 γ1 β1 γ1

Irrelevant     0.0    0.0    0.00   0.0   0.0         0.0 (0.20)      0.0 (0.20)
Precision      0.0    0.0    0.00   1.0   0.0         0.0 (0.28)      0.0 (0.19)     
Precision    - 0.3    0.0    0.00   1.0   0.0         0.0 (0.28)      0.0 (0.20)     
Precision      0.0    0.0    0.00   1.0   1.0         1.0 (0.28)      1.0 (0.20)     
Confound     0.3    0.3    0.15   1.0   0.0         0.3 (0.28)      0.0 (0.21)     
Confound     0.0    0.3    0.15   1.0   0.0         0.3 (0.29)      0.0 (0.21)     
Var Inflatn 0.0    1.0    0.45   0.0   0.0         0.0 (0.20)     0.0 (0.22)

94

Proportional Hazards Regression
• Simulation results

Truth                         Avg Estimates (SE)
ΔMdn α1 rXW γ2 γ1 β1 γ1

Irrelevant     0.0    0.0    0.00   0.0   0.0         0.0 (0.20)      0.0 (0.20)
Precision      0.0    0.0    0.00   1.0   0.0         0.0 (0.21)      0.0 (0.22)     
Precision    - 0.3    0.0    0.00   1.0   0.0         0.0 (0.21)      0.0 (0.21)     
Precision      0.0    0.0    0.00   1.0   1.0         0.7 (0.21)      1.0 (0.22)     
Confound     0.3    0.3    0.15   1.0   0.0         0.2 (0.21)      0.0 (0.21)     
Confound     0.0    0.3    0.15   1.0   0.0         0.1 (0.20)      0.0 (0.22)     
Var Inflatn 0.0    1.0    0.45   0.0   0.0         0.0 (0.20)     0.0 (0.23)          

Next
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Subjects vs Time

• Sample size computations for time to event generally return the 
number of events that are needed

• We then have to decide on 
– The length of accrual time
– The pattern of accrual (e.g., uniform vs increasing rates)
– How many subjects to accrue
– The follow-up time after accrual ends
– Any noninformative loss to follow-up
– The event rates (over time)

• Note that the event rates are presumed to differ according to 
treatment effects
– Different rates of statistical information accrual under null and 

alternative 95

Time to Event Endpoints

Estimating Subject Accrual in RCTdesign

Where am I going?
In time to event analyses, statistical information is roughly 
proportional to the number of events.

Additional consideration must be given to accrual of subjects.
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Time to Event Endpoints
• RCTdesign allows specification of the “hazard” probability model 

for time to event data
– Logrank statistic
– Estimates of hazard ratio using Cox model

• “Sample size” computations return number of events primarily
• Additional accrual models are used to estimate

– Number of subjects to accrue
– Calendar time of interim analyses

98

Case Study: Stopping Rule

• Design of RCT to test a new drug for NSCLC

– One-sided type 1 error: 0.025 for null of HR=1.0

– Power: 90% to detect HR= 0.77

– Four interim analyses with OBF efficacy, intermediate futility
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Specification of Accrual

• Need to observe 655 events
• Accrual pattern can be specified in a variety of ways

– Accrual and additional follow-up time
• Calculates accrual rate

– Accrual rate and study time
• Calculates accrual time

• Wide variety of distributions for
– Accrual (uniform, beta, rates for each time period)
– Loss to follow-up (exponential, Weibull, piecewise exponential)
– Time to event (exponential, Weibull, piecewise exponential)

• Accrual parameters can be specified in seqDesign()

100

Case Study: Accrual
• Need to observe 655 events
• Assume accrual over 3 years

– Use uniform accrual
• Assume additional follow-up of 1 year

– Total study time of 4 years
• Assume median survival of 3 years

– Use exponential survival distribution
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Case Study: Accrual
• tte <- update(tte, accrualTime= 3, studyTime= 4, eventQuantiles= 

3)

102

Case Study: Accrual (months)
• tte <- update(tte, accrualTime= 36, studyTime= 48, 

eventQuantiles= 36)
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Case Study: Accrual Plots
• seqPlotPHNSubjects(tte)

104

Case Study: Accrual Plots
• seqPlotPHNSubjects(tte)
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Evaluation of Designs
• Process of choosing a trial design

– Define candidate design
• Usually constrain two operating characteristics

– Type I error, power at design alternative
– Type I error, maximal sample size

– Evaluate other operating characteristics
• Different criteria of interest to different investigators

– Modify design

– Iterate

106

Collaboration of Disciplines

Discipline Collaborators Issues

Scientific
Epidemiologists
Basic Scientists
Clinical Scientists

Hypothesis generation
Mechanisms
Clinical benefit

Clinical Experts in disease / treatment
Experts in complications

Efficacy of treatment
Adverse experiences

Ethical Ethicists Individual ethics
Group ethics

Economic
Health services
Sponsor management
Sponsor marketers

Cost effectiveness
Cost of trial / Profitability
Marketing appeal

Governmental Regulators Safety
Efficacy

Statistical Biostatisticians Estimates of treatment effect
Precision of estimates

Operational Study coordinators
Data management

Collection of data 
Study burden
Data integrity
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Which Operating Characteristics

• The same regardless of the type of stopping rule 

• Frequentist power curve

– Type I error (null) and power (design alternative)

• Sample size requirements

– Maximum, average, median, other quantiles

– Stopping probabilities

• Inference at study termination (at each boundary)

– Frequentist  or Bayesian (under spectrum of priors)

• (Futility measures

– Conditional power, predictive power)

108

Efficiency / Unconditional Power
• Tradeoffs between early stopping and loss of power

Boundaries                      Loss of Power             Avg Sample Size 
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At Design Stage

• In particular, at design stage we can know 
– Conditions under which trial will continue at each analysis

• Estimates
» (Range of estimates leading to continuation)

• Inference
» (Credibility of results if trial is stopped) 

• Conditional and predictive power

– Tradeoffs between early stopping and loss in unconditional power

110

Operating Characteristics
• For any pre-specified stopping rule, however, we can compute 

the correct sampling distribution with specialized software
• From the computed sampling distributions we then compute

– Bias adjusted estimates
– Correct (adjusted) confidence intervals
– Correct (adjusted) P values

• Candidate designs are then compared with respect to their 
operating characteristics
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But What If …?

• Possible motivations for adaptive designs
– Changing conditions in medical environment

• Approval / withdrawal of competing / ancillary treatments
• Diagnostic procedures

– New knowledge from other trials about similar treatments

– Evidence from ongoing trial
• Toxicity profile (therapeutic index)
• Interim estimates of primary efficacy / effectiveness endpoint

– Overall
– Within subgroups

• Interim alternative analyses of primary endpoints
• Interim estimates of secondary efficacy / effectiveness endpoints

112

Adaptive Sampling Plans
• At each interim analysis, possibly modify

– Maximal statistical information
– Schedule of analyses
– Conditions for early stopping
– Randomization ratios
– Statistical criteria for credible evidence
– Scientific and statistical hypotheses of interest
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Adaptive Sampling: Examples
• Response adaptive modification of sample size

– Proschan & Hunsberger (1995); Cui, Hung,  & Wang (1999)

• Response adaptive randomization
– Play the winner (Zelen, 1979)

• Adaptive enrichment of promising subgroups
– Wang, Hung & O’Neill (2009)

• Adaptive modification of endpoints, eligibility, dose, …
– Bauer & Köhne (1994); LD Fisher (1998)

114

Adaptive Sampling: Issues
• How do the newer adaptive approaches relate to the constraint of 

human experimentation and scientific method?

• Effect of adaptive sampling on trial ethics and efficiency
– Avoiding unnecessarily exposing subjects to inferior treatments
– Avoiding unnecessarily inflating the costs (time / money) of RCT

• Effect of adaptive sampling on scientific interpretation
– Exploratory vs confirmatory clinical trials

• Effect of adaptive sampling on statistical credibility
– Control of type I error in frequentist analyses
– Promoting predictive value of “positive” trial results
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Typical Adaptive Design

• Perform analyses when sample sizes N1. . . NJ

– Can be randomly determined

• At each analysis choose stopping boundaries

– aj < bj < cj < dj

• Compute test statistic Tj=T(X1. . . XNj)

– Stop if      Tj < aj (extremely low)

– Stop if   bj < Tj < cj (approximate equivalence)

– Stop if      Tj > dj (extremely high)

– Otherwise continue 

• At penultimate analysis (J-1), use unblinded interim test statistic 

to choose final sample size NJ or to modify other aspects of RCT

116

Proschan & Hunsberger
• Worst case type I error of two stage design

• Can be more than two times the nominal
– a2 = 1.96 gives type I error of 0.0616
– (Compare to Bonferroni results)
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Adaptive Control of Type 1 Errors

• Proschan and Hunsberger (1995)
– Adaptive modification of RCT design at a single interim analysis 

can more than double type 1 error unless carefully controlled

• Those authors describe adaptations to maintain experimentwise 
type I error and increase conditional power
– Must prespecify a conditional error function

– Often choose function from some specified test

– Find critical value to maintain type I error

118

Incremental Statistics
• Statistic at the j-th analysis a weighted average of data accrued 

between analyses

.

ˆ
ˆ

ˆ :incrementth on  computed Statistics

*

1

**

1

*

***

1
*

j

k

j

k
k

j
j

k

j

k
k

j

kkk

kkk

N

ZN
Z

N

N

PZk

NNN

åå
==

-

==

-=

q
q

q



Summer Institute in Statistics for Clinical Research July 25, 2019

Module 12: Advanced Adaptive  RCT 
Scott S Emerson MD PhD 60

119

Conditional Distribution
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Protecting Type I Error

• LD Fisher’s variance spending method
– Arbitrary hypotheses H0j:θj = θ0j

– Incremental test statistics Zj
*

– Allow arbitrary weights Wj specified at stage j-1

• RA Fisher’s combination of P values (Bauer & Köhne)
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Unconditional Distribution
• Under the null

– SDCT: Standard normal
– Bauer & Kohne: Sum of exponentials

• Under the alternative
– Unknown unless prespecified adaptations
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Approaches for Testing
• If modify sample size at second stage (Cui, Hung, & Wang)

• Equivalently, calculate Z statistic as usual and use different critical 
value
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Sufficiency Principle
• It is easily shown that a minimal sufficient statistic is (Z, N) at 

stopping

• All methods advocated for adaptive designs are thus not based 
on sufficient statistics

124

Topics of Special Interest
• Proportional Hazards

– Sample size re-estimation
• General case and in presence of an extreme effect

– Surrogate information

• Nonproportional hazards
– Weighted logrank statistics
– Crossing survival curves
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Proportional Hazards

Sample Size Re-estimation (SSRE)

Where am I going?
Some investigators desire to modify sample size more flexibly 
than allowed with GST

126

Example

• http://www.cytel.com/pdfs/Mehta_Pocock_PromisingZone_StatsinMed_9.11.10.pdf
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Example Modification Plan

128

Comparisons Unconditional Power
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Comparisons Conditional Power

130

Adaptation to Gain Efficiency?

• Consider adaptation merely to repower study
– “We observed a result that was not as good as we had 

anticipated”

• All GST are within family of adaptive designs
– Don’t we have to be at least as efficient?

• Issues
– Unspecified adaptations
– Comparing apples to apples
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Apples with Apples
• Can adapting beat a GST with the same number of analyses?

– Fixed sample design: N=1
– Most efficient symmetric GST with two analyses

• N = 0.5, 1.18
• ASN = 0.6854

– Most efficient adaptive design with two possible N
• N = 0.5 and either 1.06 or 1.24
• ASN = 0.6831 ( 0.34% more efficient)

– “Most efficient” adaptive design with four possible N
• N = 0.5 and either 1.01, 1.10, 1.17, or 1.31
• ASN = 0.6825 ( 0.42% more efficient)

132

Apples with Apples (continued)

• GST with more analyses?

– Fixed sample design: N=1

– Most efficient symmetric GST with two analyses

• N = 0.5, 1.18

• ASN = 0.6854

– GST with same three analyses

• N = 0.5,1.06 and 1.24

• ASN = 0.6666 ( 2.80% more efficient)

– GST with same five analyses

• N = 0.5, 1.01, 1.10, 1.17, or 1.31

• ASN = 0.6576 ( 4.20% more efficient)
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Comments re Conditional Power
• Many propose adaptations based on conditional /predictive power

• Neither have good foundational motivation
– Frequentists should use Neyman-Pearson paradigm and consider 

optimal unconditional power across alternatives
• And conditional/predictive power is not a good indicator in loss of 

unconditional power
– Bayesians should use posterior distributions for decisions

• Difficulty understanding conditional / predictive power scales can 
lead to bad choices for designs

134

Comparisons of Designs
• The example used here was a longitudinal study, rather than time 

to event, though the same issues obtain

• Statistical power

• Sample size accrued
– With time to event, often all subjects have been accrued when 

half the statistical information is not yet available

• Calendar time
– Number of events is more a surrogate for savings in time 

monitoring subjects and marketing time lost
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Alternative Approaches

136

Alternative Approaches
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Alternative Approaches

• The authors plan for adaptation could increase sample size by 
100%

• Using their adaptive plan, the probability of continuing until a 25% 
increase in maximal sample size
– .064 under null hypothesis
– .162 if treatment effect is new target of 1.6
– .142 if treatment effect is old target of 2.0

• By way of contrast
– A fixed sample test with 11% increase in sample size has same 

power
– A group sequential test with 11% increase in maximal sample size 

has same power and better ASN

138

Apparent Problem

• The authors chose extremely inefficient thresholds for conditional 
power
– Adaptation region 0.365 < CPest < 0.8
– From optimal test, 0.049 < CPest < 0.8  is optimal 

• Of course, we do not always choose the most efficient designs
– O’Brien-Fleming designs are markedly inefficient for primary 

endpoint, but do allow adequate sample size for safety and 
secondary endpoints

• But more careful evaluation can allow us to choose adaptations 
that satisfy desired operating characteristics
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The Cost of Planning Not to Plan
• Hypothesis testing of a null with fully adaptive trials

– Statistics: type I error is controlled
– Game theory: chance of “winning” with completely ineffective 

therapy is controlled
– Science:

• Discrimination of clinically relevant hypothesis may be impaired
• May be ncertainty as to what the treatment has effect on

• Frequentist estimation: (Levin, Emerson, Emerson, 2012)
– Ideally pre-specify the adaptive rule

• GST methods can be extended to adaptive sampling density
– When fully adaptive, Brannath, Mehta, Posch (2009) have 

proposed a very clever method that works reasonably well.

How many subjects to accrue

140

Proportional Hazards

Accrual vs Follow-up in Time to Event Analyses

Where am I going?
We can sometimes gain from unblinded adaptation by changing
the number accrued



Comparing Sequential Designs: Group Sequential vs.
Adaptive

In general setting (when statistical information is proportional to
number of subjects) the advantage of adaptive designs is
questionable. Claims made for adaptive sequential designs focus
on:

• Increased flexibility: fix a trial designed with an incorrect
alternative

• Possibly improve efficiency
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Comparing Sequential Designs: Group Sequential vs.
Adaptive

But it has also been shown that certain forms of adaptive designs
are uniformly inferior to standard group sequential designs (Tsiatis
and Mehta, Biometrika, 2003; Jennison and Turnbull, Biometrika,
2006).

Other issues with the use of adaptive designs include (Emerson,
2006):

• Changing scientific question

• Relevance of experimentwise error

• Full inference is difficult or impossible

• Loss of efficiency with statistics not based on sufficient
statistics

• Maintaining blind to interim results
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Motivating Example

• An industry sponsor desired sample size re-estimation based
on estimated treatment effect.

• At an interim analysis, the sample statistic is computed and
then used to determine the number and sample sizes of future
analyses.

• Claims of designs better addressing trial costs in time-to-event
analyses

Question:

• Does sample size vs number of events question modify more
general results?

• Is this an issue of what parameters are being constrained?
• Maximal sample size
• Number and timing of analyses
• Conservatism at early analyses
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Motivating Example: Adaptive Design

We considered the following design model:

• One-sided test of inferiority at level α= 0.025 constructed from
two group sequential designs:

• Design A with analyses at 100 and 200 events
• Design B with analyses at 100, 200, and 300 events, constructed

to have the same stopping boundaries as Design A at the first
analysis.
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Motivating Example: Adaptive Design

• Choose parameters A,D : a1 <A<D< d1.

• If the statistic at the first analysis is in the range (a1,A) or
(D,d1), continue the trial using the Design A stopping rule.

• If the statistic at the first analysis is in the range (A,D),
continue the trial using an appropriately adjusted Design B
stopping rule:

• Maintain the type 1 error for adaptive procedure at α= 0.025 by
adjusting the level of Design B, dependent upon values of A and
D, resulting in Design B∗(A,D)

• Let ASD(A,D) denote the resulting adaptive design procedure
that switches between Design A and Design B∗(A,D).
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Motivating Example: Adaptive Design

Graphical representation of adaptive stopping rule
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Motivating Example: Adaptive Design

Graphical representation of adaptive stopping rule
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Motivating Example: Adaptive Design

Graphical representation of adaptive stopping rule
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Finding Hybrid Design

P
(
θ̂1 ≤ a1

∣∣ θ = 1
)+P

(
a1 ≤ θ̂1 ≤ d1, θ̂2 ≤ a2

∣∣ θ = 1
)=α.

Now, suppose that if we do not terminate the clinical trial at the first
analysis, we want to switch to an alternative stopping rule whenever
θ̂1 is observed between pre-specified values of A and D satisfying

a1 ≤A≤D≤ d1.

If a1 < θ̂(N1)<A or D< θ̂(N1)< d1, we will continue to use the
sampling plan that specified a maximal sample size of N2, with a
threshold for statistical significance of a2 at that last analysis.
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Finding Hybrid Design

Based on the pre-specified values of A and D, we further
prospectively identify a group sequential design B∗(A,D) having
continuation sets C ∗

2 = (a∗
2 ,d∗

2 ) and C ∗
3 =� for θ̂(N∗

2 ) and θ̂(N∗
3 ),

respectively, computed at analyses performed when the accrued
sample sizes are N∗

2 =N1 +n∗
2 and N∗

3 =N∗
2 +n∗

3 , respectively.
Values of θ̂(N∗

2 )≤ a∗
2 or θ̂(N∗

3 )≤ a∗
3 will be judged cause to reject the

null hypothesis. Hence, we need to pre-specify values of a∗
2 , d∗

2 , and
a∗

3 that, when used in conjunction with the group sequential design
A and the adaptation pre-specified through the choice of A and D,
will preserve the experimentwise error of α:
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Finding Hybrid Design

P
(
Reject H0

∣∣ θ = 1
) = P

(
θ̂(N1)≤ a1

∣∣ θ = 1
)

+ P
(
D≤ θ̂(N1)< d1, θ̂(N2)≤ a2

∣∣ θ = 1
)

+ P
(
a1 < θ̂(N1)≤A, θ̂(N2)≤ a2

∣∣ θ = 1
)

+ P
(
A< θ̂(N1)<D, θ̂(N∗

2 )≤ a∗
2

∣∣ θ = 1
)

+ P
(
A< θ̂(N1)<D, a∗

2 < θ̂(N∗
2 )< d∗

2 , θ̂(N∗
3 )≤ a∗

3

∣∣ θ
= α.
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Finding Hybrid Design

Now using the fact that the original specification of group
sequential design A was a level α test, and the fact that (a1,A], (A,D),
and [D,d1) form a partition of (a1,d1), we have that we only need

P
(
Reject H0

∣∣ θ = 1
) = α−P

(
A< θ̂(N1)<D, θ̂(N2)≤ a2

∣∣ θ = 1
)

+ P
(
A< θ̂(N1)<D, θ̂(N∗

2 )≤ a∗
2

∣∣ θ = 1
)

+ P
(
A< θ̂(N1)<D, a∗

2 < θ̂(N∗
2 )< d∗

2 , θ̂(N∗
3 )≤ a∗

3

∣∣ θ
= α
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Finding Hybrid Design

which in turn yields that we only need find a∗
2 , d∗

2 , and a∗
3 to satisfy

P
(
A< θ̂(N1)<D, θ̂(N2)≥ d2

∣∣ θ = 1
)= P

(
A< θ̂(N1)<D, θ̂(N∗

2 )≤ a∗
2

∣∣ θ = 1
)

+P
(
A< θ̂(N1)<D, a∗

2 < θ̂(N∗
2 )< d∗

2
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Finding Hybrid Design

In particular, we can define a group sequential design using the
constrained boundary approach of Burington and Emerson (2003)
in which analyses are performed at sample sizes N1, N∗

2 , and N∗
3 ,

the continuation set (a∗
1 ,d∗

1 ) at the first analysis is constrained to be
a∗

1 =A and d∗
1 =D, and a∗

2 , d∗
2 , and a∗

3 can be chosen as any
resulting group sequential design that has type I error of

α∗ = P
(
θ̂1 ≤A

∣∣ θ = 1
)+P

(
A< θ̂(N1)<D, θ̂(N2)≤ a2

∣∣ θ = 1
)
.

Any such choice will thus preserve an experimentwise error of α for
the adaptive procedure.
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Sampling Density
For a particular value of μ, we desire to find the sampling density
p(m,s;μ) for the test statistic (M =m,S= s), m= 1, . . . , J , s ∈ (−∞,∞),
as defined by eqn (??). This can be shown to be (Armitage,
McPherson, and Rowe, 1969)

p(m,s;μ)=
{

f (m,s;μ) s �∈CSm,and

0 else
(1)

where the function f (j,s;μ) is recursively defined as

f (1,s;μ) = 1	
n1σ

φ

(
s−n1μ	

n1σ

)

f (j,s;μ) =
∫
CS(j−1)

1	
njσ

φ

(
s−u−njμ	

njσ

)
f (j−1,u;μ) du, j = 2, . . . ,m(2)

where φ(x)= e−x2/2/
	

2π is the density for the standard normal
distribution and n1 =N1 and nj =Nj −Nj−1 for j = 2, . . . , J denote the
size of the groups accrued between successive analyses.
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Motivating Example: Adaptive Design

• To explore the spectrum of behavior exhibited by this family of
adaptive designs, we consider a full range of A and D values.

• In practice, A and D might be chosen based on desired
operating charactistics, symmetry constraints, or conditional
power considerations

• The boundary at analysis time 1 is a1 = 0.5792,d1 = 0.8645, so
we present results for
A,D ∈ {0.58,0.62,0.66,0.70,0.74,0.78,0.82,0.86} with the
constraint that A<D.

• Note that if A=D, the adaptive design reduces to Design A, and
if A= a1,D= d1 the adaptive design reduces to Design B.

Standard group sequential software can be used to calculate
operating characteristics of this design.
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Adaptive Design: Power Differences

Adaptive Design Power Differences
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Increase in power over Design A for the adaptive designs considered.
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Adaptive Design: ASN Differences

Adaptive Design ASN Differences
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Comparing Sequential Designs

In comparing different types of sequential designs, we must select
criteria that we wish to constrain or optimize. Possibilities include:

• Maximal possible sample size

• Average sample size (ASN) across a range of alternatives

• Power across a range of alternatives

• Probability of using more than S subjects

• Median sample size (or any other quantile)

We will focus on ASN and power, with the additional constraints of
equal maximal sample size and matching boundaries at the first
analysis.
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Motivating Example: Matching Group Sequential Designs

We attempted to identify group sequential designs that closely
matched the power curve of the adaptive design. We discovered
that this could be accomplished by:

• Group sequential design with 3 analyses at 100, 200, and 300
subjects

• Match the Design B stopping boundary at analyses 1 and 3

• Vary the shape of the design by choosing the P parameter in
the unified family of group sequential designs (P = 0.5 results
in a Pocock design; P = 1 produces an O’Brien-Fleming
design):
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Motivating Example: Matching Group Sequential Designs
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Stopping boundaries for adaptive and group sequential designs. Design A is shown in blue;

Design B∗(A,D) is shown in red. The green boundary is the group sequential design

GSD(A,D) that matches the adaptive design.
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Motivating Example: Matching Group Sequential Designs

Matching Design Power Differences

Hazard Ratio

C
ha

ng
e 

in
 P

ow
er

 fr
om

 D
es

ig
n 

A

0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
02

0.
04

0.
06

0.
08

0.
10

0.62,  0.66

0.78,  0.82

0.78,  0.86

0.66,  0.78

0.70,  0.86

0.66,  0.86

A,  D

0.08

0.18

0.30

0.52

0.80

1.05

P(d)

Change in power (increase from power of Design A) curves for a selection of adaptive designs

along with corresponding group sequential design. Numbers on the left are values of A and D

for the adaptive design; numbers on the right are the values of the P parameter for the d

boundary of the group sequential design.
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Motivating Example: Matching Group Sequential Designs

Matching Design ASN Differences
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boundary of the group sequential design.
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Motivating Example: Matching Group Sequential Designs

• In each matched pair (ASD(A,D) and GSD(A,D)) the group
sequential design has equal or slightly higher power than the
adaptive design.

• In an uncensored setting it is clear that this adaptive design
offers no benefit.

• Similar results are found for trials involving a normal mean
endpoint.
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Survival Analysis Setting

Issues involved in sequential trials are more complicated for
time-to-event endpoint:

• Statistical information proportional to number of events
observed rather than number of subjects

• Subjects accrued to trial for a certain amount of time: the
accrual period of length t

• After accrual ends there may be a follow-up period of length tF ,
when no more subjects are allowed to join the trial, but current
subjects are still being followed

• Subjects followed until an event is observed, until they drop
out, or until the trial ends

• Length of the trial and the number of subjects accrued are
efficiency concerns, along with power and ASN (ASN in this
case is the average number of events)
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Survival Analysis: Group Sequential vs. Adaptive Designs

• Adaptive designs that limit the maximal possible sample size
may offer unique benefits in the survival analysis setting.

• If it is known at an early point in the trial that the number of
events needed will be limited to a certain number, accrual of
subjects may be stopped early.

• This has the potential to reduce trial costs by limiting number
of patients involved as compared to a group sequential design,
even when the group sequential design requires fewer events
on average.
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Motivating Example: Time and Number of Subject
Calculations

• To compare the cost behavior of the adaptive designs, we fixed
values for A, D, median event rate on control arm, and accrual
rate.

• Accrual model:
• Uniform accrual over accrual time period at rate r per unit time
• No drop-out
• Exponential event rates in both arms
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Motivating Example: Time and Number of Subject
Calculations

• We must consider two independent accrual times tA and tB

depending on whether Design A or Design B is adaptively
chosen.

• Each combination of tA and tB produces an estimated number
of subjects and trial duration. Factors involved in choosing tA
and tB:

• Each of tA and tB must be larger than the time of the first
analysis. We consider the case of accrual finishing before the
first analysis separately.

• tA and tB are required to be large enough to obtain at least 200
and 300 subjects respectively.

• The maximum accrual time considered for each design was
chosen to be the accrual time that resulted in zero follow-up
time after the end of accrual for that design.
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Motivating Example: Time and Number of Subject
Calculations
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Motivating Example: Time and Number of Subject
Calculations
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Matching Design Power Differences

Hazard Ratio

C
ha

ng
e 

in
 P

ow
er

 fr
om

 D
es

ig
n 

A

0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
02

0.
04

0.
06

0.
08

0.
10

0.62,  0.66

0.78,  0.82

0.78,  0.86

0.66,  0.78

0.70,  0.86

0.66,  0.86

A,  D

0.08

0.18

0.30

0.52

0.80

1.05

P(d)

Matching Design ASN Differences

Hazard Ratio

C
ha

ng
e 

in
 A

SN
 fr

om
 D

es
ig

n 
A

0.5 0.6 0.7 0.8 0.9 1.0

0
10

20
30

0.62,  0.66

0.78,  0.82

0.78,  0.86

0.66,  0.78

0.70,  0.86

0.66,  0.86

A,  D

0.08
0.18

0.30

0.52

0.80

1.05

P(d)

0.5

0.6

0.7

0.8

0.9

1.0

0 50 100 150 200 250 300

a

A
D

d

Design A Design B*(A, D) GSD(A, D)

Es
tim

at
ed

 H
az

ar
d 

R
at

io

Sample Size

49 / 71

Motivating Example: Accrual Results
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A = 0.62, D = 0.66, Control Median = 1,  Accrual Rate = 40

The adaptive design ASD(A,D) is represented by the black dots, and the matching group

sequential design GSD(A,D) is represented by the green line.
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Motivating Example: Accrual Results
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A = 0.62, D = 0.66, Control Median = 1,  Accrual Rate = 60

The adaptive design ASD(A,D) is represented by the black dots, and the matching group

sequential design GSD(A,D) is represented by the green line.
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Motivating Example: Accrual Results
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A = 0.62, D = 0.66, Control Median = 1,  Accrual Rate = 100

The adaptive design ASD(A,D) is represented by the black dots, and the matching group

sequential design GSD(A,D) is represented by the green line.
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Motivating Example: Accrual Results

Estimated Number of Subjects

Es
tim

at
ed

 S
tu

dy
 D

ur
at

io
n

285 295 305 315
2.

15
2.

20
2.

25

Hazard Ratio =  0.5

Estimated Number of Subjects

Es
tim

at
ed

 S
tu

dy
 D

ur
at

io
n

280 300 320 340

2.
4

2.
5

2.
6

2.
7

Hazard Ratio =  0.6

Estimated Number of Subjects

Es
tim

at
ed

 S
tu

dy
 D

ur
at

io
n

280 300 320 340 360

2.
4

2.
6

2.
8

3.
0

Hazard Ratio =  0.7

Estimated Number of Subjects

Es
tim

at
ed

 S
tu

dy
 D

ur
at

io
n

260 280 300 320 340

2.
3

2.
5

2.
7

2.
9 Hazard Ratio =  0.8

Estimated Number of Subjects

Es
tim

at
ed

 S
tu

dy
 D

ur
at

io
n

260 280 300
2.

1
2.

2
2.

3
2.

4

Hazard Ratio =  0.9

Estimated Number of Subjects

Es
tim

at
ed

 S
tu

dy
 D

ur
at

io
n

250 260 270

1.
85

1.
95

2.
05

Hazard Ratio =  1

A = 0.62, D = 0.66, Control Median = 1,  Accrual Rate = 150

The adaptive design ASD(A,D) is represented by the black dots, and the matching group

sequential design GSD(A,D) is represented by the green line.
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Motivating Example: Accrual Results
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A = 0.62, D = 0.66, Control Median = 1,  Accrual Rate = 200

The adaptive design ASD(A,D) is represented by the black dots, and the matching group

sequential design GSD(A,D) is represented by the green line.
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Motivating Example: Accrual Results
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A = 0.62, D = 0.66, Control Median = 1,  Accrual Rate = 250

The adaptive design ASD(A,D) is represented by the black dots, and the matching group

sequential design GSD(A,D) is represented by the green line.
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Matching Design Power Differences
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Motivating Example: Accrual Results
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A = 0.66, D = 0.86, Control Median = 1,  Accrual Rate = 40

The adaptive design ASD(A,D) is represented by the black dots, and the matching group

sequential design GSD(A,D) is represented by the green line.
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Motivating Example: Accrual Results
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The adaptive design ASD(A,D) is represented by the black dots, and the matching group

sequential design GSD(A,D) is represented by the green line.
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Motivating Example: Accrual Results
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The adaptive design ASD(A,D) is represented by the black dots, and the matching group

sequential design GSD(A,D) is represented by the green line.
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Motivating Example: Accrual Results
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The adaptive design ASD(A,D) is represented by the black dots, and the matching group

sequential design GSD(A,D) is represented by the green line.
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Motivating Example: Accrual Results
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A = 0.66, D = 0.86, Control Median = 1,  Accrual Rate = 200

The adaptive design ASD(A,D) is represented by the black dots, and the matching group

sequential design GSD(A,D) is represented by the green line.
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Motivating Example: Accrual Results
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A = 0.66, D = 0.86, Control Median = 1,  Accrual Rate = 250

The adaptive design ASD(A,D) is represented by the black dots, and the matching group

sequential design GSD(A,D) is represented by the green line.
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Motivating Example: Cost Estimation

• To explore tradeoffs between sample size and study duration
we introduce a simple model for trial costs

• Trial costs based on a per-patient cost p and a prior or start-up
cost c.

• Duration costs incorporated with an interest rate ω per unit of
time, calculated based on total trial costs so far.

• Surrogate for all time-related costs such as maintaining
databases, personnel, and the cost of money.

• Interested in ratio of minimal group sequential design cost to
minimal adaptive design cost, over a range of parameter
values, so cost presented in standardized units.
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Motivating Example: Cost Estimation Results

A = 0.66, D = 0.86, Control Median = 1, Accrual Rate = 60
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Motivating Example: Cost Estimation Results

A = 0.66, D = 0.86, Control Median = 1, Accrual Rate = 60

Prior:Patient Cost Ratio = 10000, Interest = 0.5
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Motivating Example: Cost Estimation Results
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Motivating Example: Cost Estimation Results
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Discussion
• It is clear that this adaptive design offers no advantages over

the matched group sequential design in uncensored settings
• There are some cost advantages to the adaptive design in

certain survival analysis settings.
• The degree of benefit depends on the distributions of event

times and accrual rate as well as on the particular adaptive
design under consideration.

• This suggests it may therefore be worth considering the
cost-effectiveness of using such an adaptive design in
time-to-event endpoints.

• There remain difficulties with inference following the use of
such an adaptive design, so in cases where there is
questionable or insignificant gain from the adaptive design it
may be wiser to continue to use a standard group sequential
design.
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Relaxing Constraints

• We also considered relaxing the constraint that the adaptive
and group sequential designs should have the same maximal
sample size, but maintaining the boundary at the first analysis.

• Explored a range of possible maximal sample sizes from 205 to
300 in steps of 5

• Explored a range of P parameters
• We found that a design GSD∗(0.62,0.66) with analyses at 100,

155, and 210 events, with P = (Pa,Pd)= (1.3,1.3) matched the
power curve of ASD(0.62,0.66) while dramatically improving
ASN.

• Cost ratio plots comparing GSD∗(0.62,0.66) to ASD(0.62,0.66)
show a significant reduction in cost using the group sequential
design.

69 / 71

Theta

C
os

t R
at

io
 G

SD
*:A

SD

0.5 0.7 0.9

0.
8

1.
0

1.
2

Accrual Rate = 40

Theta

C
os

t R
at

io
 G

SD
*:A

SD

0.5 0.7 0.9

0.
8

1.
0

1.
2

Accrual Rate = 60

Theta

C
os

t R
at

io
 G

SD
*:A

SD

0.5 0.7 0.9

0.
8

1.
0

1.
2

Accrual Rate = 100

Theta

C
os

t R
at

io
 G

SD
*:A

SD

0.5 0.7 0.9

0.
8

1.
0

1.
2

Accrual Rate = 150

Theta

C
os

t R
at

io
 G

SD
*:A

SD

0.5 0.7 0.9

0.
8

1.
0

1.
2

Accrual Rate = 200

Theta

C
os

t R
at

io
 G

SD
*:A

SD

0.5 0.7 0.9

0.
8

1.
0

1.
2

Accrual Rate = 250

Prior:Patient =  100
Prior:Patient =  1000
Prior:Patient =  10000

A = 0.62, D = 0.66: GSD*

70 / 71



Bottom Line

• The dimensionality of stopping rules is quite high:
• Number and timing of analyses
• Number of boundaries allowing early stopping
• Degree of early conservatism
• Type I and 2 errors

• Often comparisons made between standard group sequential
designs and adaptive designs unnecessarily constrain
parameters

• Efficiency plays a role, but many other issues need to be
considered

• Full evaluation of designs is all important

"You better think (think), think about what you are trying to do..."
- Aretha Franklin
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Proportional Hazards

SSRE with Extreme Treatment Effects

Where am I going?
Design of a RCT is based on a variety of assumptions that may 
not obtain in practice

Investigators then may have an interest in adjusting the RCT 
design to better address the actual conditions

142

Motivation

• Consider the design of an RCT that investigates prevention 
strategies in HIV / AIDS

• Our primary clinical endpoint is sero-conversion to HIV positive

• We will randomize individuals 1:1 experimental treatment to 
control
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Recall

• In the presence of time to event endpoint that is subject to 

censoring, the most commonly used analyses are the logrank test 

and the proportional hazards regression model (Cox regression)

• When using PH regression with alternatives that satisfy the PH 

assumption, statistical information is proportional to the number of 

events

– We can separately consider number accrued and calendar time 

of ending study

• Sample size calculations thus return the number of events that 

are necessary to obtain desired power

– There are multiple ways that we can obtain that number of events 

as a function of

• Number and timing of accrued subjects

• Length of follow-up after start of study

144

Motivation

• Highly effective treatment and possibly low event rate

• HPTN052: 2011 scientific breakthrough of the year

– Early vs Delayed ART is effective treatment in the prevention of 

HIV-1 transmission

– Design: 188 events anticipated 

• based on (Placebo: 13.2% vs Treatment: 8.3%)

– Blinded analysis: Total of 28 events

– Unblinded analysis: 27 from the delayed ART arm

– HR: 0.04 95% CI 0.01 - 0.27
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Motivation
• Highly effective treatment and possibly low event rate

• Partners PrEP: 2012
– Three arm double-blind trial of daily oral tenofovir (TDF) and 

emtricitabine/tenofovir (FTC/TDF)
• 1:1:1 randomization of 4578 serodiscordant couples

– Study halted 18 months earlier than planned due to demonstrated  
effectiveness in reduction of HIV-1 transmission

• Of 78 infections, 18 in tenofovir, 13 in Truvada, 47 in control
• Reduction in risk of infection 62% (95% CI 34-78%) in tenofovir, 

73% (95% CI 49-85%); p < 0.0001 vs control
– Special note: Placebo event rate was 1.99 per 100 PY rather than 

planned 2.75 per 100 PY

146

Issues
• In both of these trials the number of events observed was much 

lower than had been anticipated

• A priori, there are two reasons observed event rates could be 
lower than anticipated
– Lower event rate in the control arm that had been guessed
– Highly effective treatment leads to very few events in the 

experimental treatment

• In retrospect, both of these trials had both of these problems
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Possible Solutions
• Well-understood methods

– Wrong baseline event rate
• Extend planned follow-up time
• Live with lower power at planned calendar time EOS
• Adaptive sample size re-estimation based on blinded results

– Tradeoffs between accrual size and follow-up
– Highly effective therapy

• Group sequential design

• Less understood methods
– Adaptive sample size re-estimation based on blinded results

• Differentially revise maximum number of events and/or 
accrual/follow-up based on interim estimates of treatment effect

148

Extending Time of Follow-Up
• Under “information time” monitoring, this presents no statistical 

issues when proportional hazards holds
– And “information time” monitoring is the usual standard in 

prespecifying RCT design in the time to event setting, and we 
would be supposed to do this

• Sometimes, however, we are only willing to believe PH 
assumption over some shorter time of follow-up
– National Lung Screening Trial
– Vaccine trials where need for boosters is not known

• Always, calendar time is ultimately more costly than number of 
patients
– Emerson SC, et al. considers tradeoffs between time and number 

of patients
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Accepting Lower Power
• If the prespecified RCT design defined the maximal statistical 

information according to calendar time, there is no statistical 
issue

• Under “information time” monitoring, this represents an 
unplanned change in the maximal statistical information
– When this decision is made without knowledge of the unblinded 

treatment effect, regulatory agencies will usually allow the 
reporting of a “conditional analysis”

– But the sponsor will need to be able to convincingly establish that 
it was still blinded to treatment effect

• Ethics of performing a grossly underpowered study must be 
considered

• The predictive value of a “positive” study is greatly reduced

150

Blinded Adaptation of Sample Size

• If the prespecified RCT design defined the maximal statistical 
information according to number of events, then we must be 
talking about blinded adaptation of accrual size
– Under PH distribution with PH analysis, no statistical issue

• Under “calendar time” monitoring, this represents an unplanned 
change in the maximal statistical information
– When this decision is made without knowledge of the unblinded 

treatment effect, regulatory agencies will usually allow the 
reporting of a “conditional analysis”

– But the sponsor will need to be able to convincingly establish that 
it was still blinded to treatment effect

– This is likely only credible if you were delaying end of study
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Group Sequential Design
• Instead of a fixed sample design, pre-specify a group sequential 

design with, say, 10 possible analyses
– Example: level 0.025, 90% power to detect HR=0.6

seqDesign(prob.model = "hazard", alt.hyp = 0.6, nbr.an = 10, power = 0.9)
PROBABILITY MODEL and HYPOTHESES:
Theta is hazard ratio (Treatment : Comparison) 
One-sided hypothesis test of a lesser alternative: 

Null hypothesis : Theta >= 1.0    (size  = 0.025)
Alternative hypothesis : Theta <= 0.6    (power = 0.900)
(Emerson & Fleming (1989) symmetric test) 
STOPPING BOUNDARIES: Sample Mean scale 

Efficacy Futility
Time  1 (NEv=  17.47)   0.0454  11.8598
Time  2 (NEv=  34.95)   0.2132   2.5280
Time  3 (NEv=  52.42)   0.3568   1.5101
Time  4 (NEv=  69.90)   0.4617   1.1672
Time  5 (NEv=  87.37)   0.5389   1.0000
Time  6 (NEv= 104.85)   0.5974   0.9021
Time  7 (NEv= 122.32)   0.6430   0.8381
Time  8 (NEv= 139.79)   0.6795   0.7931
Time  9 (NEv= 157.27)   0.7093   0.7597
Time 10 (NEv= 174.74)   0.7341   0.7341
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Group Sequential Design
• Stopping boundaries, stopping probabilities
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Group Sequential Design

• Using this example, we see that if the true HR was 0.4 or less, we 
are virtually assured of stopping at the 4th analysis or earlier

• While the maximal number of events was 175, the 4th analysis 
occurs with 70 events.

• Suppose, a slow accrual of events is due solely to a highly 
effective treatment
– Placebo has the planned event rate, Experimental treatment has 

extremely low event rate

• Relatively frequent monitoring will cause early termination long 
before the maximal event size needs to be observed

• We examine how calendar time might be affected

154

Calendar Time: Half Event Rate
• Stopping probabilities under planned event rate



Summer Institute in Statistics for Clinical Research July 25, 2019

Module 12: Advanced Adaptive  RCT 
Scott S Emerson MD PhD 78

155

Incorporating Lower Event Rates

• We have not totally addressed problems that might arise with 

lower baseline event rates in the control group

– If the treatment effect is not extreme, then the GSD might dictate 
that we proceed to the maximal sample size

• One approach is to build in an “escape clause” in the pre-

specification of the RCT design

– “The study will definitely terminate when we have 412 events or 
at 78 months after start of RCT, whichever comes first.”

156

Calendar Time: Half Event Rate
• If control group event rate is halved

– Power is affected relatively little
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The Escape Clause
• Prior to pre-specified maximal calendar time, perform group 

sequential test as usual

158

The Escape Clause
• When the maximum calendar time is attained, modify the GST 

according to a constrained boundary approach / error spending 
function
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Unblinded Adaptation
• With unblinded adaptation, we can try to discriminate between

– Strong treatment effect è choose lower maximal event size
– Low control event rate è accrue more information

• We will have to decide whether to do adaptation prior to stopping 
accrual or whether to restart accrual
– Early adaptation è Less precise estimates of treatment effect
– Late adaptation è Have to restart accrual

160

What if Unblinded?
• When the maximum calendar time is attained, have to adjust the 

critical value according to the conditional error (CHW) or similar
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Simulations

162

Final Comments

• The group sequential design definitely protects us from the 
extreme treatment effect

• In general, the group sequential design protected us from 
problems so long as the event rate was at least 25% of the 
planned rate

• There was definitely a price to pay when using the adaptive 
design
– If the sponsor has access to unblinded results, adjustment for the 

adaptive analysis must be made
– There is no allowance for the “escape clause” approach
– Even more difficulty if non PH is possible
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Proportional Hazards

Availability of Surrogate Data

Where am I going?
Methods for preserving type 1 errors presume an accurate 
representation of the statistical information available at the 
adaptive analysis

With time to event data (as well as other longitudinal 
endpoints), however, we may have information on surrogate 
prognostic endpoints.

To the extent that those surrogate endpoints inform the 
adaptation of the clinical trial, we may not be adequately 
preserving the type 1 error

164

Special Issues
• A basic premise of adaptive methods is that we can control the 

type 1 error, even when we have re-designed the trial based on 
interim estimates of the treatment effect

• Two special scenarios that we need to examine more closely
– Do the interim statistics used in adjusting critical values truly 

contain all the information we had at our disposal?
– Have we quantified the information growth correctly when using 

those statistics?
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Approaches for Testing
• If modify sample size at second stage (Cui, Hung, & Wang)

• Equivalently, calculate Z statistic as usual and use different critical 
value
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Data at j-th Analysis: Immediate Outcome
• Subjects accrued at different stages are independent
• Statistics as weighted average of data accrued between analyses
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Conditional Distn: Immediate Outcomes
• Sample size Nj

* and parameter θj can be adaptively chosen based 
on data from prior stages 1,…,j-1
– (Most often we choose θj = θ with immediate data)
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Estimands by Stage: Time to Event

• In time to event data, a common treatment effect across stages is 
reasonable under some assumptions
– Strong null hypothesis (exact equality of distributions)
– Strong parametric or semi-parametric assumptions

• The most common methods of analyzing time to event data will 
often lead to varying treatment effect parameters across stages
– Proportional hazards regression with non proportional hazards 

data
– Weak null hypotheses of equality of summary measures (e.g., 

medians, average hazard ratio)
• E.g., noninferiority trials
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Impact on Noninferiority Trials
• Weak null hypothesis is of greatest interest

– Standard superior to placebo
– Comparator (on average) equivalent to placebo

170

Conditional Distn: Immediate Outcomes
• Sample size Nj

* and parameter θj can be adaptively chosen based 
on data from prior stages 1,…,j-1
– (Most often we choose θj = θ with immediate data)
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Protecting Type I Error
• Test based on weighted averages of incremental test statistics

– Allow arbitrary weights Wj specified by stage j-1
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Complications: Longitudinal Outcomes
• Bauer and Posch (2004) noted that in the presence of incomplete 

data, partially observed outcome data may be informative of the 
later contributions to test statistics
– E.g., tumor progression and overall survival

• This can be a large problem if we allow adaptation to a much 
smaller sample size
– Data quite often becomes available between database lock and a 

DSMB meetin
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Complications: Longitudinal Outcomes
• We need to make distinctions between

– Independent subjects accrued at different stages
– Statistical information about the primary outcome available at 

different analyses

• Owing to delayed observations, contributions to the primary test 
statistic at the k-th stage may come from subjects accrued at prior 
stages
– Baseline and secondary outcome data available at prior analyses 

on those subject may inform the value of future data
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Data at j-th Analysis: Delayed Outcome
• Subjects accrued at different stages are independent
• Some data is “missing”
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Major Problem: Delayed Outcome
• When sample size Nj

* and parameter θj adaptively chosen based 
on data from prior stages 1,…,j-1, some aspect of the “future” 
contributions may already be known
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Potential Solutions

• Jenkins, Stone & Jennison (2010)
– Only use data available at the k-th stage analysis

• Irle & Schaefer (2012)
– Prespecify how the full k-th stage data will eventually contribute to 

the estimate of θk

• Magirr, Jaki, Koenig & Posch  (2014, arXiv.org)
– Assume worst case of full knowledge of future data and sponsor 

selection of most favorable P value
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Comments: Burden of Proof Dilemma
• There is a contradiction of standard practices when viewing the 

incomplete data 
– We would never accept the secondary outcomes as validated 

surrogates
– But we feel that we must allow for the possibility that the 

secondary outcomes were perfectly predictive of the eventual 
data

• We are in some sense preferring mini-max optimality criteria over 
a Bayes estimator

178

Comments: Impact on RCT Design

• The candidate approaches will protect the type 1 error, but the 
impact on power (and PPV) is as yet unclear

• Weighted statistics are not based on minimal sufficient statistics
– But greatest loss in efficiency comes from late occurring adaptive 

analyses with large increases in maximal statistical information
– Time to event will not generally have this

• The adaptation is based on imprecise estimates of the estimates 
that will eventually contribute to inference

• We may have to eventually either
– Ignore some observed data (JS&S, I&S), or
– Adjust for worst case multiple comparisons



Summer Institute in Statistics for Clinical Research July 25, 2019

Module 12: Advanced Adaptive  RCT 
Scott S Emerson MD PhD 90

179

Nonproportional Hazards

Weighted Logrank Statistics

Where am I going?
Early phase clinical trials sometimes show treatment effects that 
are more pronounced early or more pronounced late

Weighted versions of the logrank statistic have been proposed 
to accentuate those portions of the survival curve that are most 
plausibly different

180

Nonproportional Hazards

Adaptation with Weighted Logrank Statistics

Where am I going?
Early phase clinical trials sometimes show treatment effects that 
are more pronounced early or more pronounced late

Weighted versions of the logrank statistic have been proposed 
to accentuate those portions of the survival curve that are most 
plausibly different
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Motivating example

Atrasentan for the treatment of hormone-refractory prostate
cancer

� Phase II results for time to progression of disease
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Motivating example

Atrasentan for the treatment of hormone-refractory prostate
cancer

� From the ODAC briefing document:

“In study M96-594, an exploratory analysis of time to
disease progression had been performed using the G1,1

test statistic, a variant of the log-rank test described by
Fleming et al. The G1,1 test statistic reduces the weight
given to events that occur very early or very late in
time-to-progression distributions. This statistic was chosen
due to the shape of the disease progression curve
(greatest separation between treatment at the median) as
observed in study M96-594."
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Motivating example

Atrasentan for the treatment of hormone-refractory prostate
cancer

� Phase III results for time to progression of disease
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Motivating example

Atrasentan for the treatment of hormone-refractory prostate
cancer

� From the ODAC briefing document (next paragraph):

“Based on the anticipation that the time to disease
progression curve would be similar in study M00-211, the
G1,1 statistic was the protocol-specified primary analysis
for the endpoint of time to disease progression.
Unfortunately, the impact of the protocol-defined 12-week
scheduling of radiographic scans resulted in approximately
50% of patients completing the study at the time of their
first scan (around 12 weeks). Thus, in retrospect, the G1,1

statistic was no longer optimal and the median statistic is
not a good indicator of the treatment effect of atrasentan.
To present results in a more clinically relevant fashion, Cox
proportional hazards modeling, which describes the
relative risk across the entire distribution of events, was
used."
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Motivating example

Atrasentan for the treatment of hormone-refractory prostate
cancer

� A few take-home messages:

1. “Past performance may not be indicative of future results"
-Any TV channel randomly selected at 3am

2. The choice of summary measure has great impact and
should be chosen based upon (in order of importance):

� Most clinically relevant summary measure
� Summary measure most likely to be affected by the

intervention
� Summary measure affording the greatest statistical precision

3. Outside of an assumed semi-parametric framework, the
censoring (accrual) distribution plays a key role in the
estimation of effects on survival
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The logrank statistic

Notation

� The logrank statistic is given by

LR =

(
M1 + M0

M1M0

)1/2 ∫ ∞

0

{
Y1(t)Y0(t)

Y1(t) + Y0(t)

}{
dN1(t)
Y1(t)

− dN0(t)
Y0(t)

}

with

Mi = number of subjects initially at risk in group i , i = 01
Yi(t) = number of subjects at risk in group i at time t
Ni(t) = the counting process for group i at time t
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The logrank statistic

The logrank statistic

� The logrank statistic can be rewritten as the sum, over all
failure times, of the weighted difference in estimated
hazards

LR =

(
M1 + M0

M1M0

)1/2 ∑
t∈F

w(t)
[
λ̂1(t)− λ̂0(t)

]

with λ̂i = dNi(t)/Yi(t) and w(t) = Y1(t)Y0(t)
Y1(t)+Y0(t)
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The logrank statistic

The logrank statistic

� Weights are determined by the number of subjects at risk
at each failure time

� Number of subjects at risk is determined by:

� Number initially at risk
� The censoring distribution (accrual and dropout

distributions)
� The survival distribution

Yi(t) = Mi × Si(t)× (1 − FC(t))

with Si the survival distribution of group i and FC the cdf of
the censoring distribution (potentially group-specific)
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The logrank statistic

The logrank statistic

� Under proportional hazards

� Terms composing the logrank statistic are roughly constant
(in a neighborhood of the null hypothesis of equal hazards)

� Under nonproportional hazards

� Differences in hazards (likely to) change with time
� As the weights change, what we are estimating/testing

changes
� As the censoring distribution changes, what we are

estimating/testing changes
� Need to consider sensitivity to the accrual/dropout

distribution



SISCR 

Motivating Example

Sensitivity to Accrual
Patterns
Impact of censoring on LR
statistics

Evaluation of Designs
When Testing with a
WLR Statistic
Weighted LR statistics

Definition of alternatives

Output from seqOCWLR()

Monitoring Survival
Trials with a WLR
Statistic
Information growth for
weighted LR statistics

Ex: Sensitivity of operating
characteristics to the
censoring distribution

RCTdesign implementation
of group sequential rules

SISCR - GSSurv - 4 : 11

The logrank statistic

Example 1: Sensitivity to the censoring distribution

� Grossly exaggerated depiction of a non-proportional
hazards treatment effect in the absence of censoring
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The logrank statistic

Example 1: Sensitivity to the censoring distribution

� Simple example of parametric censoring distribution
� C = 0 ⇒ Heavy early accrual
� C = 0.25 ⇒ Uniform accrual
� C = 0.5 ⇒ Slow early accrual
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The logrank statistic

Example 1: Sensitivity to the censoring distribution

� Estimated survival curves when C = 0 (heavy early
accrual)
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The logrank statistic

Example 1: Sensitivity to the censoring distribution

� Estimated survival curves when C = 0.5 (slow early
accrual)
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The logrank statistic

Example 1: Sensitivity to the censoring distribution

� Upper (harm) and lower (efficacy) power as a function of C

Censoring Paramater 
 C=0 : Inc(0,4), C=0.25 : Unif(0,4), C=0.5 : Dec(0,4)
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The logrank statistic

Example 2: Sensitivity to the censoring distribution

� Consider the Hodgkin’s trial

� Suppose that there was a delayed treatment effect

� No change in survival over the first year
� Hazard ratio of 0.4 after first year
� (Subset of sickest patients that could not be helped)

� What would we estimate if we uniformly accrued

� 40 patients per year for 6 years?
� 80 patients per year for 3 years?
� 1000 patients for 1 month?
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The logrank statistic

Example 2: Sensitivity to the censoring distribution

� Sample size chosen to provide desired operating
characteristics

� Type I error : 0.025 when no difference in mortality
� Power : 0.80 when 33% reduction in hazard

� Expected number of events determined by assuming

� Exponential survival in placebo group with median survival
of 9 months

� Uniform accrual of patients over 3 years
� Negligible dropout
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The logrank statistic

Example 2: Sensitivity to the censoring distribution

� General sample size formula:

� δ = standardized alternative

� Δ = log-hazard ratio

� πi = proporiton of patients in group i , i = 0, 1

� D = number of sampling units (events)

D =
δ2

π0π1Δ2
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The logrank statistic

Example 2: Sensitivity to the censoring distribution

� Fixed sample test (no interim analyses):

� δ = (z1−α + zβ) for size α and power β

� For current study, we assume 1:1 randomization

� π0 = π1 = 0.5

� Number of events for planned trial:

D =
(1.96 + 0.84)2

0.52 × [log(.67)]2]
= 195.75
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The logrank statistic

Example 2: Sensitivity to the censoring distribution

� In general, it necessary to know the expected number of
patients required to obtain the desired operating
characteristics

� This is given by:

N =
D

π0 Pr0[Event] + π1 Pr1[Event]

where D is the total number of required events and πi is
the proportion of patients allocated to group i
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The logrank statistic

Example 2: Sensitivity to the censoring distribution

� Under proportional hazards, Pr[Event] for each group
depends upon

1. The total followup (TL) and accrual (TA) time

2. The underlying survival distribution

3. The accrual distribution

4. Drop-out
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The logrank statistic

Example 2: Sensitivity to the censoring distribution

� From the above, if we assume a uniform accrual pattern
we have:

Pr[Event] =
∫ TA

0
Pr[Event & Entry at t ]dt

=

∫ TA

0
Pr[Event | Entry at t ]Pr[Entry at t ]dt

= 1 −
∫ TA

0
Pr[No Event | Entry at t ]Pr[Entry at t ]dt

= 1 −
∫ TA

0
S(TL − t)fE(t)dt
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The logrank statistic

Example 2: Sensitivity to the censoring distribution

� Accrual of 40 patients per year for 6 years
� 196th event occurs at 6.36 yrs after first enrollment
� HR estimate of 0.70 (0.53,0.94)
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The logrank statistic

Example 2: Sensitivity to the censoring distribution

� Accrual of 80 patients per year for 3 years
� 196th event occurs at 4.07 yrs after first enrollment
� HR estimate of 0.67 (0.50,0.89)
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The logrank statistic

Example 2: Sensitivity to the censoring distribution

� Accrual of 1000 patients for 1 month
� 196th event occurs at 0.3 yrs after first enrollment
� HR estimate of 0.98 (0.74,1.31)
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The logrank statistic

Sensitivity to the censoring distribution

� Bottom line

� Under a hypothesized nonproportional hazards alternative,
need to assess sensitivity to the censoring (accrual and
dropout) distribution

� Consider the usual operating characteristics under
variations

� Sample size
� Power curve
� Estimates corresponding to boundary decisions (HR?)

� Need to ask whether the hazard ratio is the best functional
to test

� Alternatives?
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The logrank statistic

Sensitivity to the censoring distribution

� Problem gets even more difficult when moving to group
sequential testing

� Interim analyses truncate the length of observed support

� Analyses are scheduled based upon the number of
observed events

� Number of events is partially determined by accrual rate
� Faster/slower accrual implies shorter/longer support
� If hazard ratio is changing with time, what will be tested at

each analysis?

SISCR 

Motivating Example

Sensitivity to Accrual
Patterns
Impact of censoring on LR
statistics

Evaluation of Designs
When Testing with a
WLR Statistic
Weighted LR statistics

Definition of alternatives

Output from seqOCWLR()

Monitoring Survival
Trials with a WLR
Statistic
Information growth for
weighted LR statistics

Ex: Sensitivity of operating
characteristics to the
censoring distribution

RCTdesign implementation
of group sequential rules

SISCR - GSSurv - 4 : 28

Weighted LR statistics

Gρ,γ statistic

� When a non-proportional hazards treatment effect is
hypothesized some have suggested the use of weighted
logrank statistics

� Potential for increased power by up-weighting areas of
survival where largest (most clinically relevant?) effects are
hypothesized to occur

� Gρ,γ family of weighted logrank statistics (Fleming &
Harrington, 1991)

Gρ,γ =

(
M1 + M0

M1M0

)1/2 ∫ ∞

0
w(t)

{
Y1(t)Y0(t)

Y1(t) + Y0(t)

}{
dN1(t)
Y1(t)

− dN0(t)
Y0(t)

}

with

w(t) = [Ŝ(t−)]ρ[1 − Ŝ(t−)]γ
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Weighted LR statistics

Gρ,γ statistic

� Can be rewritten as the sum, over all failure times, of the
weighted difference in estimated hazards

Gρ,γ =

(
M1 + M0

M1M0

)1/2 ∑
t∈F

w∗(t)
[
λ̂1(t)− λ̂0(t)

]

with λ̂i = dNi(t)/Yi(t) and

w∗(t) =
{

Y1(t)Y0(t)
Y1(t) + Y0(t)

}
[Ŝ(t−)]ρ[1 − Ŝ(t−)]γ
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Evaluation of designs when testing with a WLR statistic

seqOCWLR()

� seqOCWLR() uses simulation to evaluate the operating
characteristics of potential designs when a Gρ,γ statistic is
used for testing survival effects

� Relies upon user-inputted pilot data

� Simulates alternatives in a non-parametric fashion

� Considers sensitivity of other relevant summary statistics
when testing based upon a WLR statistic
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Evaluation of designs when testing with a WLR statistic

Definition of null survival distribution

� seqOCWLR() simulates alternatives by resampling
repeatedly from a single set of Kaplan-Meier estimates of
survival curves arising from user-supplied pilot data

� Two reasonable choices for the null survival distribution:

1. 50-50 mixture of the estimated survival experience of the
control and treatment samples from the pilot study

2. control sample alone
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Evaluation of designs when testing with a WLR statistic

Definition of alternatives

� Given the existence of pilot data, one natural alternative to
the chosen null distribution is the observed survival
experience of the comparison group

� Need to consider a variety of alternatives for evaluating
operating characteristics, but outside of a
parametric/semi-parametric model

� In seqOCWLR() we consider mixtures of the control and
comparison Kaplan-Meier estimates of survival from the
pilot data

� 0% mixing : indicates no treatment effect on survival
� 50% mixing : indicates a treatment effect where treated

group represents a 50-50 mixture of the control and
comparison survival experience from the pilot data

� 100% mixing : corresponds to a treatment effect that results
in a survival experience that is equivalent to that of the
comparison sample in the pilot study
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Evaluation of designs when testing with a WLR statistic

Algorithm for simulating operating characteristics

1. Compute the Kaplan-Meier estimate of the survival
distribution for the control and treatment groups in the pilot
study, Ŝ0 and Ŝ1, respectively.

2. Define the alternative via the percentage that the control
and treatment groups are to be mixed, 0 ≤ m ≤ 1.

3. For i = 0, 1 do

3.1 Let Ni = ceiling(N ∗ |(1 − i)− m|).
3.2 Sample Ni survival times�ti = (t∗1 , t

∗
2 , ..., t

∗
Ni
) with

replacement from (t1i , t2i , ..., tni i ,∞) with probability
(1 − Ŝi(t1i), Ŝi(t1i)− Ŝi(t2i), ...., Ŝi(tni i)− 0).

3.3 For j = 1, ...,Ni , if t∗j = ∞ set δj = 0, otherwise set δj = 1.

4. Combine the sampled survival times�t = (�t0,�t1) and event
indicators �δ = (�δ0, �δ1).
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Output from seqOCWLR()

Output from seqOCWLR()

� seqOCWLR() produces similar operating characteristics
as seqOC()

� Point estimates on the boundary (min/max estimates for
Cox estimate and others)

� ASN

� Power / Relative Power

� Stopping probabilities

� All operating characteristics are reported as a function of
mixings from the supplied pilot data
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Output from seqOCWLR()

Operating characteristics under the G1,1 statistic

� Example pilot data exhibiting a late-occurring treatment
effect

Time from study start (yrs)

S
ur

vi
va

l

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.2

0.4

0.6

0.8

1.0

Treatment 500 (0) 289 (212) 100 (323) 40 (351) 1 (356)
Control 500 (0)

1000 (0)

302 (199)

591 (411)

142 (273)

242 (596)

47 (299)

87 (650)

1 (304)

2 (660)Total

Treatment
Control
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Output from seqOCWLR()

Designs to consider

� DSN1: A one-sided level .025 Pocock stopping rule
(corresponding to P = .5, R = 0, and A = 0) on both the
lower (efficacy) and upper (futility) boundaries

� DSN2: A one-sided level .025 test utilizing the
O’Brien-Fleming stopping rule (corresponding to P = 1,
R = 0, and A = 0) on both the lower (efficacy) and upper
(futility) boundaries

� DSN3: A one-sided level .025 test parameterized using an
O’Brien-Fleming lower (efficacy) boundary corresponding
to P = 1.0, R = 0, and A = 0, and an upper (futility)
boundary corresponding to P = 1.5, R = 0, and A = 0

� DSN4: A one-sided level .025 test with lower (efficacy)
boundary takes P = 1.2,R = 0, and A = 0 and upper
(futility) boundary P = 0,R = 0.5, and A = 0.3
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Output from seqOCWLR()

Operating characteristics under the G1,1 statistic

� Potential point estimates that could be observed on the
boundary of a symmetric O’Brien-Fleming design (DSN1)

Summary Statistic Efficacy (Min Effect) Futility (Max Effect)
Analysis 1 (Π1 = .229)

Z statistic -4.176 2.263
Hazard rato – 1.009
Trimmed hazard ratio – 0.873

Analysis 2 (Π2 = .510)
Z statistic -2.797 -0.058
Hazard rato 0.930 0.856
Trimmed hazard ratio 0.872 0.718

Analysis 3 (Π3 = .687)
Z statistic -2.411 -0.902
Hazard rato 0.969 0.817
Trimmed hazard ratio 0.904 0.734

Analysis 4 (Π4 = 1.00)
Z statistic -1.998 -1.998
Hazard rato 0.988 0.801
Trimmed hazard ratio 0.929 0.708
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Output from seqOCWLR()

Operating characteristics under the G1,1 statistic

� Power as a function of % mixing
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Output from seqOCWLR()

Operating characteristics under the G1,1 statistic

� Relative power as a function of % mixing
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Output from seqOCWLR()

Operating characteristics under the G1,1 statistic

� Average number of events required as a function of %
mixing
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Output from seqOCWLR()

Operating characteristics under the G1,1 statistic

� Average number of patients required as a function of %
mixing
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Output from seqOCWLR()

Operating characteristics under the G1,1 statistic

� Stopping probabilities as a function of % mixing for DSN1
(Pocock)
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Output from seqOCWLR()

Operating characteristics under the G1,1 statistic

� Stopping probabilities as a function of % mixing for DSN2
(OBF)
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Monitoring group sequential trials

Popular methods for flexible implementation of group sequential
boundaries

1. Christmas tree approximation for triangular tests:
Whitehead and Stratton (1983)

2. Error spending functions: Lan and DeMets (1983);
Pampallona, Tsiatis, and Kim (1995)

3. Constrained boundaries in unified design family: Emerson
(2000); Burrington & Emerson (2003)

2 and 3 implemented in RCTdesign via seqMonitor()
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Monitoring group sequential trials

Common features

� Stopping rule specified at design stage parameterizes the
boundary for some statistic (boundary scale)

� Error spending family (Lan & Demets, 1983) → proportion
of type I error spent

� Unified family (Emerson & Kittelson, 1999) → point estimate
(MLE)

� At the first interim analysis, parametric form is used to
compute the boundary for actual time on study

� At successive analyses, the boundaries are recomputed
accounting for the exact boundaries used at previously
conducted analyses

� Maximal sample size estimates may be updated to
maintain power
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Monitoring group sequential trials

Use of constrained boundaries in flexible implementation of
stopping rules

1. At the first analysis, compute stopping boundary (on some
scale) from parametric family

2. At successive analyses, use parametric family with
constraints (on some scale) for the previously conducted
interim analyses

� When the error spending scale is used, this is just the
error spending approach of Lan & DeMets (1983) or
Pampallona, Tsiatis, & Kim (1995)
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Group sequential testing in survival trials

Further considerations when considering survival endpoints

� Common to use the logrank statistic for testing survival
differences

� Locally efficient for proportional hazards alternatives

� In this case, translation between sample size and
statistical information is trivial

� Information is proportional to the number of observed events
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Information growth for the Gρ,γ family

Information growth for the Gρ,γ family

� Under the null hypothesis H0 : S0 = S1, the variance of the
Gρ,γ statistic calculated at calendar time τ reduces to

σ2 ∝
∫ τ

0
w2(t)FE(τ − t)[1 − FC(t)]dS(t)

� Let σ2
j equal the estimated variance of the Gρ,γ statistic

applied at interim analysis j . Then the proportion of
information at analysis j , relative to the maximal analysis
J, is given by

∏
j
≡

(
M1,j + M0,j

M1,jM0,j

)−1

σ2
j

/(
M1,J + M0,J

M1,JM0,J

)−1

σ2
J ,
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Information growth for the Gρ,γ family

Example: Information Growth for the G1,0 and G1,1 statistics

� Consider information growth for the G1,0 and G1,1 statistics
as a function of observed events

� Assume

� S1(t) and S0(t) are Exponential(1)

� Assume accrual follows a “powered uniform" distribution

FE(t) =
(

t
θ

)r

, with θ > 0, r > 0, 0 < t ≤ θ

� Enrollment occurs over interval (0, θ)
� r = 1 ⇒ Unif(0,θ) enrollment
� r → 0 ⇒ Instantaneous enrollment at time 0
� r → ∞ ⇒ Instantaneous enrollment at time θ
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Example: Difference in Information by Accrual for the G1,0

Statistic
Effect of total censoring: No censoring (solid line) to 66%
censoring
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Example: Difference in Information by Accrual for the G1,1

Statistic
Effect of total censoring: No censoring (solid line) to 66%
censoring
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Example: Information Growth for the G1,1 Statistic
Uniform accrual with no administrative censoring
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Example: Difference in Information by Accrual for the G1,1

Statistic
Uniform accrual with no administrative censoring
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Example: Information Growth for the G1,1 Statistic
Nonuniform accrual with no administrative censoring
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Example: Difference in Information by Accrual for the G1,1

Statistic
Nonuniform accrual with no administrative censoring
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Example: Operating characteristics with misspecified
accrual distribution

Example: Operating characteristics when testing with the G1,1

Statistic

� Design

� One-sided level .05 test
� O’Brien-Fleming efficacy bound; Pocock futility bound
� 4 analyses occurring at proportional information of .25, .50,

.75, and 1
� Power of .90 at alternative HR of .75 → 507 max events

� Assumed survival and accrual distributions

� Pooled survival distributed Exponential(.4)
� Accrual uniform over 3 years

� Suppose true accrual is uniform over 1 year
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Example: Operating characteristics with misspecified
accrual distribution

Example: Operating characteristics when testing with the G1,1

Statistic

� Stopping boundaries for original design on Z -statistic
scale

STOPPING BOUNDARIES: Normalized Z-value scale
efficacy futility

Time 1 (Pi_1= 0.25) -3.2642 0.2094
Time 2 (Pi_2= 0.50) -2.3082 -0.5534
Time 3 (Pi_3= 0.75) -1.8846 -1.1387
Time 4 (Pi_4= 1.00) -1.6321 -1.6321

SISCR 
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Impact of censoring on LR
statistics

Evaluation of Designs
When Testing with a
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Weighted LR statistics

Definition of alternatives

Output from seqOCWLR()
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Example: Operating characteristics with misspecified
accrual distribution
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Example: Operating characteristics with misspecified
accrual distribution

Example: Operating characteristics when testing with the G1,1

Statistic

� Stopping boundaries if Unif(0,3) accrual assumed, but true
accrual Unif(0,1)

STOPPING BOUNDARIES: Normalized Z-value scale
efficacy futility

Time 1 (Pi_1= 0.12) -3.2642 0.2094
Time 2 (Pi_2= 0.36) -2.3082 -0.5534
Time 3 (Pi_3= 0.66) -1.8846 -1.1387
Time 4 (Pi_4= 1.00) -1.6321 -1.6321
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Example: Operating characteristics with misspecified
accrual distribution
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Example: Operating characteristics with misspecified
accrual distribution
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Implementation of group sequential rules

Goal: Maintain operating characteristics to be as close to design
stage as possible

1. Need to choose between

� maintaining maximal statistical information
� maintaining statistical power

2. In addition, need to update our estimate of the information
growth curve at each analysis

� requires updating our estimate of S(t) and FE(t) at each
analysis
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Sensitivity to Accrual
Patterns
Impact of censoring on LR
statistics

Evaluation of Designs
When Testing with a
WLR Statistic
Weighted LR statistics

Definition of alternatives

Output from seqOCWLR()

Monitoring Survival
Trials with a WLR
Statistic
Information growth for
weighted LR statistics

Ex: Sensitivity of operating
characteristics to the
censoring distribution

RCTdesign implementation
of group sequential rules

SISCR - GSSurv - 4 : 63

Implementation of group sequential rules

Algorithm as implemented in RCTdesign: Step 1

1. Specify original design using a parametric design family to
satisfy desired operating characteristics

1.1 specify timing of analyses

1.2 assume S(t) and FE(t)

1.3 estimate information growth curve

1.4 map information increments to proportion of events for
desired timing of first analysis

SISCR 

Motivating Example

Sensitivity to Accrual
Patterns
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statistics
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When Testing with a
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Weighted LR statistics
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Ex: Sensitivity of operating
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RCTdesign implementation
of group sequential rules

SISCR - GSSurv - 4 : 64

Implementation of group sequential rules

Algorithm as implemented in RCTdesign: Step 2

2. At first analysis,

2.1 estimate S(t) and FE(t) via parametric model

� Use pooled data so that constraint does not depend on
observed treatment effect

� Estimate survival and accrual distributions via parametric
models (weibull and scaled beta)

2.2 re-estimate information growth curve

2.3 map information increments to proportion of events for
desired timing of future analyses

2.4 constrain first boundary to exact timing (based upon current
best estimate) and re-estimate future boundaries using
pre-specified design family
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Implementation of group sequential rules

Algorithm as implemented in RCTdesign: Step 3

3. At future analyses,

3.1 re-estimate S(t) and FE(t) via parametric model available
data up to the analysis

3.2 re-estimate information growth curve

3.3 map information increments to proportion of events for
desired timing of future analyses

3.4 constrain previous boundaries to exact timing (based upon
current best estimate) and re-estimate future boundaries
using pre-specified design family
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Weighted Logrank Statistics
• Choose additional weights to detect anticipated effects
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What if No Adjustment?
• Many methods for adaptive designs seem to suggest that there is 

no need to adjust for the adaptive analysis if there were no 
changes to the study design

• However, changes to the censoring distribution definitely affect
– Distribution-free interpretation of the treatment effect parameter
– Statistical precision of the estimated treatment effect
– Type 1 error when testing a weak null (e.g., noninferiority)

• Furthermore, “less understood” analysis models prone to inflation 
of type 1 error when testing a strong null
– Information growth with weighted log rank tests is not always 

proportional to the number of events
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“Intent to Cheat” Zone
• At interim analysis, choose range of interim estimates that lead to 

increased accrual of patients

• How bad can we inflate type 1 error when holding number of 
events constant?

• Logrank test under strong null: Not at all

• Weighted logrank tests: Up to relative increase of 20%
– Sequela of true information growth 

• Information growth not linear in number of events
– Power largely unaffected, so PPV decreases

184

Information Growth with Adaptation
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Inflation of Type 1 Error
• Function of definition of the adaptation zone

– Varies according to weighted log rank test

186

Comments re WLR
• Hence, unblinded access to trial results can allow an investigator 

to inflate the type 1 error

• This might not be noticeable to a naïve audience if the number of 
events stays constant

• Proper handling of information growth can fix this
– However, description of the information growth is often difficult 

with weighted log rank statistics
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Nonproportional Hazards

Crossing Survival Curves

Where am I going?
Recently some authors have proposed sequential tests to be 
used in the presence of crossing survival curves

This example illustrates many of the difficulties inherent in 
applying time to event analyses

188

A Further Example
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189

Logan, et al.: Motivation

190

Logan, et al.: Comparisons
• Logrank starting from time 0
• Weighted logrank test (rho=0, gamma=1) from time 0
• Survival at a single time point after time t0
• Logrank starting from time t0
• Weighted area between survival curves (restricted mean)

– Most weight after time t0
• Pseudovalues after time t0
• Combination tests (linear and quadratic)

– Compare survival at time t0
– Compare hazard ratio after time t0
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Logan, et al.: Simulations

192

Logan, et al.: Results
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Logan, et al.: Critique
• In considering the combination tests, crossing survival curves 

might have
– No difference at time t0 (perhaps we are looking for equivalence)
– Higher hazard after time  t0

• Presumably, the authors are interested in the curve that is higher 
at longer times post treatment
– The authors did not describe how to use their test in a one-sided 

setting

• PROBLEM: The authors do not seem to be considering the 
difference between crossing survival curves and crossing hazard 
functions
– Higher hazard over some period of time does not imply lower 

survival curves

194

Logan, et al.: Critique
• Additional scenarios that are of interest
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Logan, et al.: Critique
• How might a naïve investigator use this test?

– If the observed survival curves cross and the hazard is 
significantly higher after that point, the presumption might be that 
we have significant evidence that the group with higher hazard at 
later times has worse survival at those times

• “But it would be wrong” (Richard Nixon, March 21, 1973)

• We can create a scenario in which
– Survival curves are truly stochastically ordered SA(t) > SB(t)"t>0
– The probability of observing estimated curves that cross at t0 is 

arbitrarily close to 50%
– The probability of obtaining statistically significant higher hazards 

for group A after t0 is arbitrarily close to 100% 
– Thus, the one-sided type 1 error is arbitrarily close to 50%

196

Relevance to Today
• Even experts in survival analysis sometimes lose track of the way 

that time to event analyses behave, relative to our true goals
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Combination statistics

197

• Dominance of methods of combining two statistics according to 
effect prior to pre-specified threshold time

Quadrants 1 & 3                                 Quadrant 4

Simulations: Proportional Hazards 

198
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Simulations: Stochastic Ordering 

199

Simulations: Crossing Survival

200
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Comments
• Sequential adaptive studies with crossing survival curves are

fraught with peril

• One must a priori identify likely scenarios and ensure that any 
monitoring does not terminate before the best treatment is 
revealed

• More importantly, one must have a clear definition of what is best

201

202

Final Comments
• There is still much for us to understand about the implementation 

of adaptive designs

• Most often the “less well understood” part is how they interact 
with particular data analysis methods
– In particular, the analysis of censored time to event data has 

many scientific and statistical issues

• How much detail about accrual patterns, etc. do we want to have 
to examine for each RCT?

• How much do we truly gain from the adaptive designs?
– (Wouldn’t it be nice if statistical researchers started evaluating 

their new methods in a manner similar to evaluation of new 
drugs?)
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Bottom Line
• There is no substitute for planning a study in advance

– At Phase 2, adaptive designs are clearly useful to better control 
parameters leading to Phase 3

• Most importantly, learn to take “NO” for an answer
– At Phase 3, it is less clear whether much is gained from 

unblinded adaptation
• And scientific / statistical credibility can suffer

• “Opportunity is missed by most people because it is dressed 
in overalls and looks like work.” -- Thomas Edison

• In clinical science, it is the steady, incremental steps that are 
likely to have the greatest impact. 

204

Really Bottom Line

“You better think (think) 
about what you’re 

trying to do…”

-Aretha Franklin, “Think”


