
Design, Monitoring, and Analysis of Clinical 
Trials 

July 23, 2019

Scott S. Emerson, M.D., Ph.D. 1

Module 5:

Statistical Design, Conduct, and Analysis 

of Clinical Trials 

Scott S. Emerson, M.D., Ph.D.

Professor Emeritus of Biostatistics

University of Washington

Summer Institute in Statistics for

Clinical & Epidemiological Research

July 23, 2019

© 2006-2019

Scott S. Emerson M.D., Ph.D. & Daniel L. Gillen Ph.D.

Abstract

This module focuses on the statistical issues that must be addressed in the design, 
implementation, and reporting of randomized clinical trials. This module presumes the 
student has familiarity with the topics covered in Module 1. The premise of the module is 
that each clinical trial poses unique problems, and thus the best design for a particular 
clinical trial may not be appropriate for another. Hence, emphasis is placed on the 
iterative approach of considering alternative design structures, selecting candidate 
designs, evaluating the operating characteristics of those designs with respect to a 
variety of criteria, and comparing a number of designs to find an acceptable design for 
the scientific problem at hand. It will include discussion of
• alternative randomization strategies: randomization ratios, stratification, covariate 

adaptive randomization, response adaptive randomization
• choice of statistical analysis models: choice of statistic, covariate adjustment
• sequential adaptive designs: fixed sample, group sequential, blinded sample size re-

estimation, unblinded sample size re-estimation, adaptive enrichment
• overview of approaches to missing data: sensitivity to missing not at random
• analysis,including covariate adaptive and response adaptive randomization

The module concludes with a discussion of the ways that the complete design and its 
operating characteristics might be summarized in the study protocol and fully 
documented in a statistical analysis plan (SAP) in order to satisfy study investigators and 
regulatory agencies.
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Course Objectives

• Introduction to statistical design, monitoring, and analysis of 
randomized clinical trials (RCT)
– Presumes clinical/scientific issues have been decided in 

collaboration with other researchers

• Topics generally relate to achieving statistical precision 
through appropriate choices of sample size as dependent on
– Controls (parallel group vs matched, attenuated effects)
– Randomization scheme (complete, blocked, stratified)
– Analysis model (summary measure, covariate adjustment)
– Sequential testing (group sequential, other adaptive)
– Missing data analyses (overview)

• Discussion of plans for statistical analysis and content of a
Statistical Analysis Plan (SAP)

4

The Problem of Clinical Trial Design

Happy families are all alike; every unhappy family is 
unhappy in its own way.

Leo Tolstoy, Anna Karenina, 1873-77
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The Problem of Clinical Trial Design

Unbiased clinical trials are all alike; every biased clinical 
trial is biased in its own way.
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Take Home Message 0

• Clinical / scientific vs statistical issues in RCT design

– Clinical and scientific issues are most important in RCT design
• Define appropriate subjects, comparators, procedures, outcomes
• Maintain scientific rigor: randomization and blinding when possible

– Statistical expertise is crucial when addressing clinical and 
scientific issues

• Interpreting results of prior studies
• Understanding of conditional probabilities
• Anticipating confounding and other biases
• Looking ahead for statistical limitations that might preclude certain 

designs

– Once clinical and scientific issues mostly resolved, statistician’s
role is to maximize and quantify RCT precision
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Take Home Message 1

• Statistical criteria for evidence (frequentist vs Bayesian)

– Frequentist inference is best starting place for RCT design
• In designed experiment, frequentist inference has solid foundations
• Regulatory and journal standards more often on frequentist basis

– 95% confidence intervals, level 0.05 / .025 tests

– Approximate Bayesian inference can be easily derived from
frequentist inference (easier than vice versa)

• Sensitivity of conclusions to a spectrum of priors can be effected
using frequentist sampling distribution and conjugate normal priors

– Emphasize interval and point estimates rather than p values
• Facilitates clinical and scientific interpretation of results
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Take Home Message 2

• Probability models for RCT outcomes

– Avoid making strong (semi)parametric assumptions across 
treatment groups

• (Semi)parametric assumptions across arms are not consistent with 
possible heterogeneity of effect across individuals

• Fortunately many distribution-free approaches are very similar to
some standard (semi)parametric model

– Summarize outcome distribution according to clinical relevance
• Plausibility of effect and statistical precision are secondary issues

– Use distribution free estimates of summaries and their SE 
whenever possible

• Such estimates most often have an approximately normal sampling 
distribution
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Take Home Message 3

• Precision of inference

– Precision of RCT is measured in width of interval estimates and 
statistical power to discriminate between important hypotheses

– Statistical formulas to quantify precision are similar across a 
wide variety of commonly used statistical analysis models

– Determinants of precision modifiable in RCT design include
• Completeness of outcome collection (noninformative censoring)
• Distributional summary measure used to assess treatment effect
• Homogeneity of outcome within groups compared across arms
• Ratio of sample sizes across groups compared across arms
• Total sample size accrued to study
• Avoiding potentially informative missing data
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Take Home Message 4

• Summarizing distribution of outcomes

– Choose summary measure according to (in order of importance):
• Estimable within logistical constraints of RCT
• Clinically / scientifically most important
• Plausibly affected by treatment
• Estimated with greatest statistical precision

– Issues not related to precision
• Univariate summaries allow better comparisons across studies
• Proportion / odds above threshold often clinically most important
• Means / geometric means may better quantify effects in population
• With heavily censored data, some summaries may not be estimable 

– Means / geometric means most precise for many distributions
• Means: normal, Poisson, binomial, exponential
• Geometric means: lognormal
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Take Home Message 5

• Contrasting outcome distributions across treatment arms

– Differences or ratios of univariate summaries most interpretable

• Allow estimation and testing on same measures across studies

• Less desirable by this criterion: Wilcoxon rank sum test

– With binary outcomes

• Difference in proportions (attributable risk) gives population impact

• Ratio of proportions (relative risk) is invariant to “contamination” with 

subjects insusceptible to treatment (either always 0 OR 1, not both)

• Odds ratio may be better in adjusted analyses (less effect 

modification) and mimics relative risk in rare outcomes

– Differences are expressed in units of original measurements

– Ratios are dimensionless, hence need anchoring with baseline

• Odds and geometric means tend to use ratios as contrasts
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Take Home Message 6

• Why control for baseline variables in RCT analyses?
– Precision of inference is the primary issue

• Confounding is in some sense avoided by randomization
– However, some critics will second guess results post hoc

• Estimation of “within stratum” effect an issue with odds, hazards

• How to control for baseline variables in RCT design?
– Restrict eligibility to subset of eventual target population

• Only if certain no effect modification on efficacy or safety
– Stratified randomization based on prognostic factors especially if 

• Want face validity of key prognostic factors in Table 1
• Interested in prespecified analyses within subgroups
• Covariate adaptive minimization can be usually be avoided

– Obtain precision by prespecified adjustment for the most 
important prognostic factors known a priori

• Do not allow data driven selection of adjusted models
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Take Home Message 7

• Randomization strategies

– 1:1 randomization unless really good reason
• Most efficient randomization under strong null and homoscedasticity

– Stratification
• In large studies, no stratification necessary
• In small studies:

– Stratify on variables for which subgroup analyses are important
– Stratify on clinical center if possible
– No more than 4 important variables (including center)
– No real advantage to dynamic minimization

• Prespecify analysis including all fixed effects used in stratification
– Less of an issue in logistic regression, but might as well

– Use hidden blocks of varying sizes
• Block sizes 4, 6, or 8 in 1:1 randomization
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Take Home Message 8

• Group sequential, adaptive studies

– RCT have always been sequential and adaptive across phases
• Focus over past 50-70 years has been within individual studies

– Sequential designs can help address efficiency / ethics of RCT
• Greatest advantage is terminating “futile” studies earlier
• For effective therapies, larger sample sizes may be needed

– Safety and secondary endpoints

– Group sequential approaches are generally sufficient
• Fixed sample design as starting point
• Explore alternative designs varying in schedule/timing of analyses

and conservatism of stopping boundaries
• Fully evaluate inference corresponding to early termination, 

statistical power, sample size requirements
– Most boundary scales are nonlinear and difficult to predict
– Conditional and predictive power have difficult interpretations
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Take Home Message 9

• Adaptive RCT designs

– Group sequential designs a special, well understood case

– Methods based on unblinded adaptation 
• Statistical inference not based on minimal sufficient statistics
• Unblinded adaptive modifications of statistical aspects of design 

generally not recommended by me due to inefficiency
– Randomization ratio
– Maximal statistical information (SSRE)

» Possible exception: altering accrual in time to event

– Adaptive modifications of indication (phase 2 more than phase 3)
• Adaptive enrichment of patient population to find greatest efficacy
• Adaptive selection of doses or treatments
• Adaptive selection of outcomes

– Less useful because outcome should be based on clinical 
importance
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Take Home Message 10

• Statistical Analysis Plan

– Table 1: Compare distributions of baseline variables across arms 
• Materials and methods: range, quartiles, means, SD
• Randomization imbalance: means (geometric means, proportions)

– Formal sequential stopping rules

– Complete pre-specification of analysis models for all primary and 
secondary endpoints

• Adjustment for covariates and exact form used in modeling
– Model misspecification not much of issue

• Handling of missing data and sensitivity analyses
• Handling of multiple comparisons: Hierarchy of testing

– Confirmatory and supportive analyses re mechanism of action
• Alternative summary measures and alternative clinical endpoints

– Exploratory analyses of important subgroups
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Scientific Setting: Clinical Research

Experimentation in Human Volunteers

“Treatment Discovery”

Where am I going?
Improvements in population health are the result of a long 

history of scientific research into diagnosis, treatment and 

(ideally) prevention of disease

A succession of scientific studies and experiments

• “The result of a scientific study is another scientific study”

Knowledge about treatment indications solidified through RCT

• Clinical goals

• Rigorous scientific standard

• Ethical treatment of individuals and populations

18

Medical Science and Statistics

• Statistics is about science
– (Science in the broadest sense of the word)

• Science is about proving things to people
– (The validity of any proof rests solely on the willingness of the 

audience to believe it)

• Medical science is about improving the health of people, but

“The physician must ... have two special objects in view with
regard to disease, namely, to do good or to do no harm” 

- Epidemics I, Hippocratic Corpus, c. 410 BC

“…it is only the second law of therapeutics to do good, its first
law being this – not to do harm”

- Elisha Bartlett, 1844
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Goals of Medical Research

• Identify methods to diagnose disease

• Identify risk factors for disease

• Identify treatments for disease

• Identify methods for disease prognosis

• Identify strategies for prevention of disease

• Basic science

Scientific Method

• Observation

• Form hypotheses

• Designed study
– Overall goal
– Specific aims
– Materials and Methods
– Data collection
– Results (data analysis)
– Interpretation and conclusions

• Repeat (new, refined hypotheses)

20
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Bioethics in Clinical Research

• Classic principles
– Autonomy
– Beneficence
– Non-maleficence
– Justice

• Selected additional principles
– Authority
– Principle of double effect
– Confidentiality
– Equality
– Equity
– Mercy
– Ownership
– Privacy

21

Implementation in Clinical Research

• Governmental regulatory authorities
– FDA (US), EMA (Europe), PMDA (Japan), MHRA (UK), etc. 

– International Council on Harmonisation (ICH)

• Institutional Review Boards (IRBs)
– Institutional Ethics Commiteess, Research Ethics Boards, etc.

• Data Monitoring Committees

• Informed Consent Forms 22
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U.S. Regulation of Drugs / Biologics

• Wiley Act (1906)

– Labeling

• Food, Drug, and Cosmetics Act of 1938

– Safety

• Kefauver – Harris Amendment (1962)

– Efficacy / effectiveness
• " [If] there is a lack of substantial evidence that the drug will have the effect ... shall 

issue an order refusing to approve the application. “

• “...The term 'substantial evidence' means evidence consisting of adequate and well-
controlled investigations, including clinical investigations, by experts qualified by 

scientific training”

• FDA Amendments Act (2007)

– Registration of RCTs, Pediatrics, Risk Evaluation and Mitigation 
Strategies (REMS)

24

Medical Devices

• Medical Devices Regulation Act of 1976
– Class I: General controls for lowest risk
– Class II: Special controls for medium risk - 510(k)
– Class III: Pre marketing approval (PMA) for highest risk

• “…valid scientific evidence for the purpose of determining the safety or effectiveness 
of a particular device … adequate to support a determination that there is reasonable 
assurance that the device is safe and effective for its conditions of use…”

• “Valid scientific evidence is evidence from well-controlled investigations, partially 
controlled studies, studies and objective trials without matched controls, well-
documented case histories conducted by qualified experts, and reports of significant 
human experience with a marketed device, from which it can fairly and responsibly 
be concluded by qualified experts that there is reasonable assurance of the 
safety and effectiveness…”

• Safe Medical Devices Act of 1990
– Tightened requirements for Class 3 devices
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Clinical Trials

• Experimentation in human volunteers

• Investigates a new treatment, preventive agent, or diagnostic 
method

• Safety: 
– Are there adverse effects that clearly outweigh any potential 

benefit?

• Efficacy: 
– Can it alter the disease process in a beneficial way?

• Effectiveness: 
– Would its adoption as a standard affect morbidity / mortality in 

the population?

26

The Enemy

“Let’s start at the very beginning, a very 
good place to start…”

- Maria von Trapp

(as quoted by Rodgers and Hammerstein)
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Overall Goal

• “Drug discovery”

• More generally 
– a therapy or preventive strategy 

• drug, biologic, device, behavior
– for some disease
– in some population of patients

• Medical diagnosis / prognosis
– Evaluation of methods

28

Typical Chronology

• Observational epidemiology of disease, risk

• Preclinical experiments
– Laboratory, animal studies of mechanisms, toxicology

• Clinical trials
– Safety for further investigations / dose
– Safety of therapy
– Measures of efficacy
– Confirmation of efficacy / effectivenesss

• Synthesis and quantification of evidence

• Adoption of new treatment indication
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First: Where Do We Want To Be?

• Perform some innovative experiment?

• Find a use for some proprietary drug / biologic / device?
– “Obtain a significant p value”

• Find an efficacious treatment?
– “Efficacy” seems to benefit some people somehow

• Find a new treatment that improves health of individuals
– “Personalized medicine”  (fixed effect or random effect?)

• Find effective treatment that improves health of the population
– Treatments administered to a community

– Treatments tested on a population then administered correctly

30

Treatment “Indication”

• Disease
– Putative cause vs signs / symptoms

• May involve method of diagnosis, response to therapies

• Population
– Restrict by risk of AEs or actual prior experience

• Treatment or treatment strategy
– Formulation, administration, dose, frequency, duration, ancillary 

therapies

• Outcome
– Clinical vs surrogate; timeframe;  measurement
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Primary Endpoint: Clinical

• Consider (in order)
– The most relevant clinical endpoint

• Survival, quality of life (“feels, functions, or survives”)
– The endpoint the treatment is most likely to affect
– The endpoint that can be assessed most accurately and 

precisely

32

Additional Endpoints

• Other outcomes are then relegated to a “secondary” status
– Supportive and confirmatory
– Safety

• Some outcomes are considered “exploratory”
– Subgroup effects
– Effect modification
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Typical Regulatory Chronology

• Phase 1:

– PK/PD; dose finding; dose limiting toxicities

• Phase 2:

– Initial estimates of efficacy

• Perhaps surrogate in enriched population over short timeframe

– Initial assessment of safety

• Adverse events (AEs), serious adverse events (SAEs)

• Perhaps some protocolized safety measurements

• Phase 3: (“adequate and well-controlled investigations”)

– Confirmatory efficacy (closer to effectiveness)

– Detailed safety: protocolized as indicated and AEs, SAEs

• Phase 4: (post marketing)

– Additional safety and special populations as indicated

33

Some Regulatory Jargon

• Pivotal studies
– Results so conclusive (extremely small p value) that a single 

study will suffice

• Noninferiority studies
– Proof of efficacy by showing not unacceptably inferior to a 

previously proven treatment 

• Bioequivalence studies
– Neither markedly better than nor markedly worse than another 

(formulation of the same) treatment

• Bridging studies
– Small studies to handle changes in formulation, environment, 

etc.
34
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Clinical Trial Design

• Finding an approach that best addresses the often competing 
goals: Science, Ethics, Efficiency
– Basic scientists: focus on mechanisms
– Clinical scientists: focus on overall patient health
– Ethical: focus on patients on trial, future patients
– Economic: focus on profits and/or costs
– Governmental: focus on safety of public: treatment safety, 

efficacy, marketing claims
– Statistical: focus on questions answered precisely 
– Operational: focus on feasibility of mounting trial

36

Statistical Planning

• Satisfy collaborators as much as possible

• Discriminate between relevant scientific hypotheses
– Scientific and statistical credibility

• Protect economic interests of sponsor
– Efficient designs
– Economically important estimates

• Protect interests of patients on trial
– Stop if unsafe or unethical
– Stop when credible decision can be made

• Promote rapid discovery of new beneficial treatments
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Take Home Message 0

• Clinical / scientific vs statistical issues in RCT design

– Clinical and scientific issues are most important in RCT design
• Define appropriate subjects, comparators, procedures, outcomes
• Maintain scientific rigor: randomization and blinding when possible

– Statistical expertise is crucial when addressing clinical and 
scientific issues

• Interpreting results of prior studies
• Understanding of conditional probabilities
• Anticipating confounding and other biases
• Looking ahead for statistical limitations that might preclude certain 

designs

– Once clinical and scientific issues mostly resolved, statistician’s
role is to maximize and quantify RCT precision

38

Scientific Setting: Clinical Research

Statistical Criteria for Evidence

Where am I going?
Frequentist criteria are most often used in medical research, 
though Bayesian inference is also important

Quantifying precision by interval estimates is most important
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Ideal Results

• Goals of “drug discovery” are similar to those of diagnostic 
testing in clinical medicine

• We want a “drug discovery” process in which there is

– A low probability of adopting ineffective drugs 
• High specificity (low type I error)

– A high probability of adopting truly effective drugs
• High sensitivity (low type II error; high power)

– A high probability that adopted drugs are truly effective
• High positive predictive value
• Will depend on prevalence of “good ideas” among our ideas

40

Distinctions without Differences

• There is no such thing as a “Bayesian design”

• Every RCT design has a Bayesian interpretation
– (And each person may have a different such interpretation)

• Every RCT design has a frequentist interpretation
– (In poorly designed trials, this may not be known exactly)
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Diagnostic Medicine: Evaluating a Test

• We condition on diagnoses (from gold standard)
– Frequentist criteria: We condition on what is unknown in practice

• Sensitivity: Do diseased people have positive test?
– Denominator: Diseased individuals
– Numerator: Individuals with a positive test among denominator

• Specificity: Do healthy people have negative test?
– Denominator: Healthy individuals
– Numerator: Individuals with a negative test among denominator

42

Diagnostic Medicine: Using a Test

• We condition on test results
– Bayesian criteria: We condition on what is known in practice

• Pred Val Pos: Are positive people diseased?
– Denominator: Individuals with positive test result
– Numerator: Individuals with disease among denominator

• Pred Val Neg: Are negative people healthy?
– Denominator: Individuals with negative test result
– Numerator: Individuals who are healthy among denominator
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Points Meriting Special Emphasis

• Discover / evaluate tests using frequentist methods
– Sensitivity, specificity

• Consider Bayesian methods when interpreting results for a 
given patient
– Predictive value of positive, predictive value of negative

• Possible rationale for our practices
– Ease of study: Efficiency of case-control sampling

– Generalizability across patient populations
• Belief that sensitivity and specificity might be

• Knowledge that PPV and NPV are not

– Ability to use sensitivity and specificity to get PPV and NPV
• But not necessarily vice versa

44

Bayes’ Rule

• Allows computation of “reversed” conditional probability

• Can compute PPV and NPV from sensitivity, specificity
– BUT: Must know prevalence of disease
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Application to Drug Discovery

• We consider a population of candidate drugs

• We use RCT to “diagnose” truly beneficial drugs

• Use both frequentist and Bayesian optimality criteria
– Sponsor: 

• High probability of adopting a beneficial drug (frequentist power)

– Regulatory:
• Low probability of adopting ineffective drug (freq type 1 error)
• High probability that adopted drugs work (posterior probability)

– Public Health (frequentist sample space, Bayes criteria)
• Maximize the number of good drugs adopted
• Minimize the number of ineffective drugs adopted

46

Slightly Different Setting

• Usually we are interested in some continuous parameter
– E.g., proportion of infections cured is 0 < p < 1

• “Prevalence” is replaced by a probability distribution
– Prior (subjective) probability of selecting a drug to test that cures 

proportion p of the population

• Sum over two hypotheses replaced by weighted average (by 
some subjective prior) over all possibilities
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Frequentist Inference

• Control type 1 error: False positive rate
– Based on specificity of our methods

• Maximize statistical power: True positive rate
– Sensitivity to detect specified effect 

• Provide unbiased (or consistent) estimates of effect

• Standard errors: Estimate reproducibility of experiments

• Confidence intervals

• Criticism: Compute probability of data already observed
– “A precise answer to the wrong question”

48

Bayesian Inference

• Hypothesize prior prevalence of “good” ideas
– Subjective probability

• Using prior prevalence and frequentist sampling distribution
– Condition on observed data
– Compute probability that some hypothesis is true

• “Posterior probability”
– Estimates based on summaries of posterior distribution

• Criticism:  Which presumed prior distribution is relevant?
– “A vague answer to the right question”
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Frequentist vs Bayesian

• Frequentist and Bayesian inference truly complementary
– Frequentist: Design so the same data not likely from null / alt
– Bayesian: Explore updated beliefs based on a range of priors

• Bayes rule tells us that we can parameterize the positive 
predictive value by the type I error and prevalence
– Maximize new information by maximizing Bayes factor
– With simple hypotheses:

( )

oddsprioroddsposterior

prevalence
prevalence

PPV
PPV

prevalenceerrItypeprevalencepower
prevalencepower

PPV

´=

-
´=

-

-´+´
´

=

FactorBayes

errItype
power

11

1

50

Distribution-free Bayesian Models

• Regard estimate of summary measure as the data
– Use asymptotic distributions under population model
– Use conjugate normal priors to mimic other Bayesian analyses
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Goals of Statistical Inference

• Traditional approach
– Sample size to provide high power to “detect” a particular 

alternative

• Decision theoretic approach
– Sample size to discriminate between hypotheses

• “Discriminate” based on interval estimate
• Standard for interval estimate: 95% 

– Equivalent to traditional approach with 97.5% power

52

Reporting Inference

• At the end of the study analyze the data

• Report three measures (four numbers)
– Point estimate
– Interval estimate
– Quantification of confidence / belief in hypotheses
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Reporting Frequentist Inference

• Three measures (four numbers)

• Consider whether the observed data might reasonably be 
expected to be obtained under particular hypotheses
– Point estimate: minimal bias? MSE?
– Confidence interval: all hypotheses for which the data might 

reasonably be observed
– P value: probability such extreme data would have been 

obtained under the null hypothesis
• Binary decision: Reject or do not reject the null according to whether 

the P value is low

54

Reporting Bayesian Inference

• Three measures (four numbers)

• Consider the probability distribution of the parameter 
conditional on the observed data
– Point estimate: Posterior mean, median, mode
– Credible interval: The “central” 95% of the posterior distribution 
– Posterior probability: probability of a particular hypothesis 

conditional on the data
• Binary decision: Reject or do not reject the null according to whether 

the posterior probability is low
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Parallels Between Tests, CIs

• If the null hypothesis not in CI, reject null
• (Using same level of confidence)

• Relative advantages
– Test only requires sampling distn under null
– CI requires sampling distn under alternatives
– CI provides interpretation when null is not rejected

56

Scientific Information

• “Rejection” uses a single level of significance
– Different settings might demand different criteria

• P value communicates statistical evidence, not scientific 
importance

• Only confidence interval allows you to interpret failure to reject 
the null: 
– Distinguish between

• Inadequate precision (sample size)

• Strong evidence for null
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Hypothetical Example

• Clinical trials of treatments for hypertension

– Screening trials for four candidate drugs 

• Measure of treatment effect is the difference in average SBP at the 

end of six months treatment

• Drugs may differ in

– Treatment effect (goal is to find best)

– Variability of blood pressure

• Clinical trials may differ in conditions

– Sample size, etc.

58

Reporting P values

Study                                P value

A                                   0.1974

B                                   0.1974

C                                   0.0099

D                                   0.0099
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Point Estimates

Study       SBP Diff                 

A          27.16                   

B           0.27                   

C          27.16                   

D           0.27                   

60

Point Estimates

Study       SBP Diff                 P value

A          27.16                    0.1974

B           0.27                    0.1974

C          27.16                    0.0099

D           0.27                    0.0099
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Confidence Intervals

Study       SBP Diff      95% CI     P value

A          27.16    -14.14, 68.46   0.1974

B           0.27     -0.14,  0.68   0.1974

C          27.16      6.51, 47.81   0.0099

D           0.27      0.06,  0.47   0.0099

62

Interpreting Nonsignificance

• Studies A and B are both “nonsignificant”
– Only study B ruled out clinically important differences
– The results of study A might reasonably have been obtained if 

the treatment truly lowered SBP by as much as 68 mm Hg



Design, Monitoring, and Analysis of Clinical 
Trials 

July 23, 2019

Scott S. Emerson, M.D., Ph.D. 32

63

Interpreting Significance

• Studies C and D are both statistically significant results
– Only study C demonstrated clinically important differences
– The results of study D are only frequently obtained if the 

treatment truly lowered SBP by 0.47 mm Hg or less

64

Bottom Line

• If ink is not in short supply, there is no reason not to give point 
estimates, CI, and P value

• If ink is in short supply, the confidence interval provides most 
information
– (but sometimes a confidence interval cannot be easily obtained, 

because the sampling distribution is unknown under the null)
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Full Report of Analysis

Study    n  SBP Diff      95% CI     P value

A     20   27.16    -14.14, 68.46   0.1974

B     20    0.27     -0.14,  0.68   0.1974

C     80   27.16      6.51, 47.81   0.0099

D     80    0.27      0.06,  0.47   0.0099
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Take Home Message 1

• Statistical criteria for evidence (frequentist vs Bayesian)

– Frequentist inference is best starting place for RCT design
• In designed experiment, frequentist inference has solid foundations
• Regulatory and journal standards more often on frequentist basis

– 95% confidence intervals, level 0.05 / .025 tests

– Approximate Bayesian inference can be easily derived from
frequentist inference (easier than vice versa)

• Sensitivity of conclusions to a spectrum of priors can be effected
using frequentist sampling distribution and conjugate normal priors

– Emphasize interval and point estimates rather than p values
• Facilitates clinical and scientific interpretation of results
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Probability Models for RCT Outcomes

Where am I going?
Distribution-free models of outcome acknowledge that a 
treatment can affect many aspects of a distribution

68

Take Home Message 2

• Probability models for RCT outcomes

– Avoid making strong (semi)parametric assumptions across 
treatment groups

• (Semi)parametric assumptions across arms are not consistent with 
possible heterogeneity of effect across individuals

• Fortunately many distribution-free approaches are very similar to
some standard (semi)parametric model

– Summarize outcome distribution according to clinical relevance
• Plausibility of effect and statistical precision are secondary issues

– Use distribution free estimates of summaries and their SE 
whenever possible

• Such estimates most often have an approximately normal sampling 
distribution
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Precision of Inference

Where am I going?
A major (but not the only) role of statistical design is to 
maximize the precision with which clinical hypothesis can be 
investigated

Determinants of precision include study design, statistical 
analysis models, and sample size

70

Issues

• Summary measure

– Mean, geometric mean, median, proportion, hazard…

• Structure of trial

– One arm, two arms, k arms

– Independent groups vs cross over

– Cluster vs individual randomization

– Randomization ratio

• Statistic

– Parametric, semi-parametric, nonparametric

– Adjustment for covariates

• Attenuated treatment effects

– “Contamination” with patients who cannot benefit from treatment
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Refining Scientific Hypotheses

• Scientific hypotheses are typically refined into statistical 
hypotheses by identifying some parameter q measuring 
difference in distribution of response
– Difference/ratio of means
– Ratio of geometric means
– Difference/ratio of medians
– Difference/ratio of proportions
– Odds ratio
– Hazard ratio

72

Inference

• Generalizations from sample to population
– Estimation 

• Point estimates
• Interval estimates

– Decision analysis (testing)
• Quantifying strength of evidence
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Measures of Precision

• Estimators are less variable across studies
– Standard errors are smaller

• Estimators typical of fewer hypotheses
– Confidence intervals are narrower

• Able to statistically reject false hypotheses
– Z statistic is higher under alternatives

74

Std Errors: Key to Precision

• Greater precision is achieved with smaller standard errors
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Ex: One Sample Mean
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Ex: Difference of Indep Means
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Ex: Difference of Paired Means
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Ex: Mean of Clustered Data
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Ex: Independent Odds Ratios
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Ex: Diff of Indep Proportions
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Ex: Hazard Ratios
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Ex: Linear Regression
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Controlling Variation

• In a two sample comparison of means, we might control some 
variable in order to decrease the within group variability
– Restrict population sampled
– Standardize ancillary treatments
– Standardize measurement procedure

84

Adjusting for Covariates

• When comparing means using stratified analyses or linear 
regression, adjustment for precision variables decreases the 
within group standard deviation
– Var (Y | X) vs Var (Y | X, W)
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Ex: Linear Regression
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Precision with Proportions

• When analyzing proportions (means), the mean variance 
relationship is important
– Precision is greatest when proportion is close to 0 or 1
– Greater homogeneity of groups makes results more deterministic

• (At least, I always hope for this)
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Ex: Diff of Indep Proportions
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Precision with Odds

• When analyzing odds (a nonlinear function of the mean), 
adjusting for a precision variable results in more extreme 
estimates
– odds = p / (1-p)
– odds using average of stratum specific p is not the average of 

stratum specific odds

• Generally, little “precision” is gained due to the mean-variance 
relationship
– Unless the precision variable is highly predictive
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Precision with Hazards

• When analyzing hazards, adjusting for a precision variable 
results in more extreme estimates

• The standard error tends to still be related to the number of 
observed events
– Higher hazard ratio with same standard error è greater 

precision

90

Special Case: Baseline Adjustment

• Options

– Final only (throw away baseline)

• V = 2σ2

– Change (final – baseline)

• V = 4σ2 (1 – ρ)

– ANCOVA (change or final adj for baseline

• V = 2σ2 (1 – ρ2)

• Advantages (more precision) based on value of ρ
-1 < ρ < 0 : “ANCOVA” better than “Final only” which is better than “Change”

ρ = 0     : “ANCOVA” same as “Final only” which is better than “Change”

0 < ρ < 0.5: “ANCOVA” better than “Final only” which is better than “Change”

ρ = 0 .5  : “ANCOVA” better than “Final only” which is same as     “Change”

0.5 < ρ < 1: “ANCOVA” better than “Change”    which is better than “Final Only”

ρ = 1     : “ANCOVA” same as     “Change”    which is better than “Final Only”
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Ex: ANCOVA (Baseline Adjustment)
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Heteroscedasticity

• Previous results presumed common variance and common 
correlation across treatment arms

• If variance or correlation varies across treatment arm, ideal is

• Note that if sample sizes are equal, this is same as ANCOVA 
model
– Otherwise, need to estimate from each arm separately
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Criteria for Precision

• Standard error

• Width of confidence interval

• Statistical power
– Probability of rejecting the null hypothesis

• Select “design alternative”
• Select desired power
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Statistics to Address Variability

• At the end of the study:
– Frequentist and/or Bayesian data analysis to assess the 

credibility of clinical trial results
• Estimate of the treatment effect

– Single best estimate
– Precision of estimates

• Decision for or against hypotheses
– Binary decision
– Quantification of strength of evidence
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Sample Size Determination

• Based on sampling plan, statistical analysis plan, and 
estimates of variability, compute
– Sample size that discriminates hypotheses with desired power, 

or
– Hypothesis that is discriminated from null with desired power 

when sample size is as specified, or
– Power to detect the specific alternative when sample size is as 

specified
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Sample Size Computation

( )
( )

) : testsample (Fixed

:units sampling Required

unit       sampling 1 within y Variabilit
 ealternativDesign 

    when  cesignifican of Level

power   with detected   :1)(n test  level edStandardiz

2/1

2
01

2

1

0

baab

ab

ab

d

qq
d

qq
qqa

bda

zz

V
n

V

+=

-
=

=
=

=

-



Design, Monitoring, and Analysis of Clinical 
Trials 

July 23, 2019

Scott S. Emerson, M.D., Ph.D. 49

97

When Sample Size Constrained

• Often (usually?) logistical constraints impose a maximal 
sample size
– Compute power to detect specified alternative

– Compute alternative detected with high power

n
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abdqq += 01

( )01such that  Find qqdb ab -=
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Increasing Precision

• Options
– Increase sample size
– Decrease V
– (Decrease confidence level)
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Comparison of Study Designs

– Single Arm: Mean; absolute reference      N=    25

– Single Arm: Mean; historical data                      50                                     

– Two Arms : Diff in Means                                 100

– Two Arms : Diff in Mean Change (r = 0.3)       140

– Two Arms : Diff in Mean Change (r = 0.8)         40

– Two Arms : ANCOVA (r = 0.3)                           81

– Two Arms : ANCOVA (r = 0.8)                           36

– Cross-over: Diff in Means (r = 0.3)                    70

– Cross-over: Diff in Means (r = 0.8)                    20

100

General Comments: Alternative

• What alternative to use?
– Minimal clinically important difference (MCID)

• To detect? (use in sample size formula)
• To declare significant? (look at critical value)

– Subterfuge: 80% or 90%
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General Comments: Level

• What level of significance?
– “Standard”: one-sided 0.025, two-sided 0.05

– “Pivotal”: one-sided 0.005?
• Do we want to be extremely confident of an effect, or confident of an 

extreme effect
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General Comments: Power

• What power?
– Science: 97.5% 

• Unless MCID for significanceà ~50%

– Subterfuge: 80% or 90%
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Role of Secondary Analyses

• We choose a primary outcome to avoid multiple comparison 
problems
– That primary outcome may be a composite of several clinical 

outcomes, but there will only be one CI, test

• We select a few secondary outcomes to provide supporting 
evidence or confirmation of mechanisms
– Those secondary outcomes may be 

• alternative clinical measures and/or 
• different summary measures of the primary clinical endpoint

104

Secondary Analysis Models

• Selection of statistical models for secondary analyses should 
generally adhere to same principles as for primary outcome, 
including intent to treat

• Some exceptions:
– Exploratory analyses based on dose actually taken may be 

undertaken to generate hypotheses about dose response
– Exploratory cause specific time to event analyses may be used 

to investigate hypothesized mechanisms
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Subgroups

• Testing for effects in K subgroups
– Does the treatment work in each subgroup?
– Bonferroni correction: Test at α / K

• No subgroups:                                          N = 100
• Two subgroups:                                        N = 230

• Testing for interactions across subgroups
– Does the treatment work differently in subgroups?

• Two subgroups:                                        N = 400
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Safety Outcomes

• During the conduct of the trial, patients are monitored for 
adverse events (AEs) and serious adverse events (SAEs)
– We do not typically demand statistical significance before we 

worry about the safety profile
• We must consider the severity of the AE / SAE
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Safety Outcomes: Conservatism

• If we perform statistical tests, it is imperative that we not use 
overly conservative procedures
– When looking for rare events, Fisher’s Exact Test is far too 

conservative
• Safety criteria based on nonsignificance of FET is a license to kill

– Unconditional exact tests provide much better power
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Sample Size Considerations

• We can only choose one sample size

– Secondary and safety outcomes may be under- or over-powered

• With safety outcomes in particular, we should consider our 

information about rare, devastating outcomes (e.g., fulminant 

liver failure in a generally healthy population)

– The “three over N” rule pertains here

– Ensure minimal number of treated individuals 

• Control groups are not as important here, if the event is truly rare
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Sample Size Re-estimation

• Modify sample size to account for estimated information 
(variance or baseline rates)

• No effect on type I error IF
– Estimated information independent of estimate of treatment 

effect
• Proportional hazards,
• Normal data, and/or
• Carefully phrased alternatives

– And willing to use conditional inference
• Carefully phrased alternatives
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Estimate Alternative

• If maximal sample size is maintained, the study discriminates 
between null hypothesis and an alternative measured in units 
of statistical information

÷
÷
ø

ö
ç
ç
è

æ D-D
=

D-D
=

V

nVn
2

01

2
1

2
01

2
1

)()(
dd



Design, Monitoring, and Analysis of Clinical 
Trials 

July 23, 2019

Scott S. Emerson, M.D., Ph.D. 56

111

Estimate Sample Size

• If statistical power is maintained, the study sample size is 
measured in units of statistical information 
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Attenuation Due to “Contamination”

• We sometimes anticipate that some accrued subjects will not 
be susceptible to the treatment
– E.g., misdiagnosis of disease

• In that setting, both the mean and variance of the treatment 
effect can be affected

• We can, however use standard formulas to attenuate the 
expected treatment effect when proportion p is nonsuceptible
– "# = 1 − ' "( + '"*(
– +,- ."# = / +,- 0" 1 + +,-[/ 0" 1 ]

112
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Take Home Message 3

• Precision of inference

– Precision of RCT is measured in width of interval estimates and 
statistical power to discriminate between important hypotheses

– Statistical formulas to quantify precision are similar across a 
wide variety of commonly used statistical analysis models

– Determinants of precision modifiable in RCT design include
• Completeness of outcome collection (noninformative censoring)
• Distributional summary measure used to assess treatment effect
• Homogeneity of outcome within groups compared across arms
• Ratio of sample sizes across groups compared across arms
• Total sample size accrued to study
• Avoiding potentially informative missing data

114

Summarizing Distributions of Outcomes

Where am I going?
RCT hypotheses are stated in terms of “tendencies” toward 
larger or smaller outcomes

Clinical and scientific issues should drive the choice of mean, 
geometric mean, proportions, hazards, etc.

But some statistical considerations can also aid in choice of 
outcome
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Refining Scientific Hypotheses

• Scientific hypotheses are typically refined into statistical 
hypotheses by identifying some parameter q measuring 
difference in distribution of response
– Difference/ratio of means
– Ratio of geometric means
– Difference/ratio of medians
– Difference/ratio of proportions
– Odds ratio
– Hazard ratio

116

Geometric Mean

• Geometric mean is related to mean of log transformed data
– All comments about the arithmetic mean need to apply to the log 

transformed data
– Good scientific foundations for many biomedical measurements

• Greater statistical precision than mean when standard 
deviations are proportional to mean

• When variables are measured on a exponential scale, 
geometric means tend to be more stable
– E.g., Serial dilutions used for measuring titers

• Ratios of geometric means tend to be more stable than ratios 
of arithmetic means.
– The log of a ratio is the difference of logs

» http://www.emersonstatistics.com/GeneralMaterials

http://www.emersonstatistics.com/GeneralMaterials
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Take Home Message 4

• Summarizing distribution of outcomes

– Choose summary measure according to (in order of importance):
• Estimable within logistical constraints of RCT
• Clinically / scientifically most important
• Plausibly affected by treatment
• Estimated with greatest statistical precision

– Issues not related to precision
• Univariate summaries allow better comparisons across studies
• Proportion / odds above threshold often clinically most important
• Means / geometric means may better quantify effects in population
• With heavily censored data, some summaries may not be estimable 

– Means / geometric means most precise for many distributions
• Means: normal, Poisson, binomial, exponential
• Geometric means: lognormal

118

Contrasting Treatments Across 
Treatment Arms

Where am I going?
Differences between or ratios of summary measures across 
treatment arms are most commonly used in the quantification of 
treatment effect
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Take Home Message 5

• Contrasting outcome distributions across treatment arms

– Differences or ratios of univariate summaries most interpretable
• Allow estimation and testing on same measures across studies
• Less desirable by this criterion: Wilcoxon rank sum test

– With binary outcomes
• Difference in proportions (attributable risk) gives population impact
• Ratio of proportions (relative risk) is invariant to “contamination” with 

subjects insusceptible to treatment (either always 0 OR 1, not both)
• Odds ratio may be better in adjusted analyses (less effect 

modification) and mimics relative risk in rare outcomes

– Differences are expressed in units of original measurements

– Ratios are dimensionless, hence need anchoring with baseline
• Odds and geometric means tend to use ratios as contrasts

» http://www.emersonstatistics.com/GeneralMaterials
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Adjusting for Baseline Covariates in
Analyses of RCT Results

Where am I going?
Randomization precludes confounding on average.

However, precision of inference can be gained by making 
comparisons across groups that are more similar.

Adjusted analyses is one way of gaining such precision.

http://www.emersonstatistics.com/GeneralMaterials
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Regression Models

• According to the parameter compared across groups
– Means                             à Linear regression
– Geom Means                  à Linear regression on logs
– Odds                               à Logistic regression
– Rates                              à Poisson regression
– Hazards                          à Proportional Hazards regr
– Quantiles                        à Parametric (AFT) survival regr

122

Statistical Analysis Models in RCT

• Consider the distribution of response across groups defined 
by some “predictor of interest” (POI)

• We choose some summary measure of our response 
distribution

• We use regression to model our question
– Simple regression with a binary POI often the standard test

• We estimate a “contrast”
– Usually difference or ratio across treatment groups

• We operate as distribution-free as possible
– Frequently: Methods originally derived under strong parametric 

models are found to be robust in a distribution-free sense
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General Regression Notation

• General notation for variables and parameter

• The parameter might be the mean, geometric mean, odds, 
rate, instantaneous risk of an event (hazard), etc.

                 ofon distributi ofParameter 
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i

i

Y
i

i
i

WW
X
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q
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Multiple Regression

• General notation for multiple regression model

• The link function is usually either 
– none (difference of means), or
– log (ratio of means, geom means, odds, hazards, quantiles)

( )
( )

" covariatefor  Slope"      
         "Interest  of Predfor  Slope"
                                        Intercept""

      modelingfor  usedfunction  link""
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Comparison of Models

• The major difference between regression models is 
interpretation of the parameters
– Summary: Mean, geometric mean, odds, hazards
– Comparison of groups: Difference, ratio

• Issues related to inclusion of covariates remain the same
– Address the scientific question

• Predictor of interest (sometimes modeled with multiple variables)
• Effect modifiers

– Address confounding
– Increase precision
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Adjustment for Covariates

• We “adjust” for other covariates

• Define groups according to
– Predictor of interest, and
– Other covariates

• Compare the distribution of response across groups which
– differ with respect to the Predictor of Interest, but
– are the same with respect to the other covariates

• “holding other variables constant”
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Unadjusted vs Adjusted Models

• Adjustment for covariates changes the scientific question

• Unadjusted models

– Slope compares parameters across groups differing by 1 unit in 

the modeled predictor

• Groups may also differ with respect to other variables

• Adjusted models

– Slope compares parameters across groups differing by 1 unit in 

the modeled predictor but similar with respect to other modeled 

covariates

• (In RCT investigating a difference in means, the two questions 

may have similar numeric answers due to double expectation)
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Interpretation of Slopes

• Difference in interpretation of slopes

– β1 = Compares q for groups differing by 1 unit in X
• (The distribution of W might differ across groups being compared)

– γ1 = Compares q for groups differing by 1 unit in X, but agreeing in 
their values of W

[ ] iiii WXWXg ´+´+= 210,  :Model Adj gggq

[ ] ii XXg ´+= 10     :Model Unadj bbq
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Comparing models
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General Results

• These questions can not be answered precisely in the general 
case

• However, in linear regression we can derive exact results

• These will serve as a basis for later examination of
– Logistic regression
– Poisson regression
– Proportional hazards regression
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Linear Regression

• Difference in interpretation of slopes

– β1 = Diff in mean Y for groups differing by 1 unit in X
• (The distribution of W might differ across groups being compared)

– γ1 = Diff in mean Y for groups differing by 1 unit in X, but agreeing in 
their values of W

[ ] iiiii WXWXYE ´+´+= 210,  :Model Adjusted ggg

[ ] iii XXYE ´+= 10     :Model Unadjusted bb
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Relationships: True Slopes

• The slope of the unadjusted model will tend to be

• Hence, true adjusted and unadjusted slopes for X are estimating the 
same quantity only if

– ρXW = 0   (X and W are truly uncorrelated), OR

– (no association between W and Y after adjusting for X)
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srgb
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Relationships: Estimated Slopes

• The estimated slope of the unadjusted model will be

• Hence, estimated adjusted and unadjusted slopes for X are equal 
only if

– rXW = 0   (X and W are uncorrelated in the sample, which can be 
arranged by experimental design), OR

(which cannot be predetermined, because Y is random)
– sW = 0   (W is controlled at a single value in which case rXW = 0)
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Relationships: True SE
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Relationships: True SE
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Relationships: Estimated SE
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Special Cases

• Behavior of unadjusted and adjusted models according to 
whether
– X and W are uncorrelated (no association in means)
– W is associated with Y after adjustment for X

InflationVar Irrelevant0
gConfoundinPrecision0

00

2

2

=
¹

¹=

g
g

XWXW rr
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Simulations

• Unadjusted and adjusted estimates of effect of binary POI as 
a function of
– Effect of a covariate on summary of outcome (mean, odds, …)

– Sampling scheme: Association between covariate and POI
• Difference in mean covariate

• Difference in median covariate
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Linear Regression

• Simulation results

Truth                           Avg Estimates (SE)

ΔMdn α1 rXW γ2 γ1 β1 γ1

Irrelevant     0.0    0.0    0.00   0.0   0.0         0.0 (0.20)      0.0 (0.20)

Precision      0.0    0.0    0.00   1.0   0.0         0.0 (0.28)      0.0 (0.19)     

Precision    - 0.3    0.0    0.00   1.0   0.0         0.0 (0.28)      0.0 (0.20)     

Precision      0.0    0.0    0.00   1.0   1.0         1.0 (0.28)      1.0 (0.20)     

Confound     0.3    0.3    0.15   1.0   0.0         0.3 (0.28)      0.0 (0.21)     

Confound     0.0    0.3    0.15   1.0   0.0         0.3 (0.29)      0.0 (0.21)     

Var Inflatn 0.0    1.0    0.45   0.0   0.0         0.0 (0.20)     0.0 (0.22)     
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Linear Regression

• Simulation results

Truth                          Avg Estimates (SE)

ΔMdn   α1 rXW γ2 γ1 β1 γ1

Irrelevant     0.0    0.0    0.00   0.0   0.0         0.0 (0.20)      0.0 (0.20)

Precision      0.0    0.0    0.00   1.0   0.0         0.0 (0.28)      0.0 (0.19)     

Precision    - 0.3    0.0    0.00   1.0   0.0         0.0 (0.28)      0.0 (0.20)     

Precision      0.0    0.0    0.00   1.0   1.0         1.0 (0.28)      1.0 (0.20)     

Confound     0.3    0.3    0.15   1.0   0.0         0.3 (0.28)      0.0 (0.21)     

Confound     0.0    0.3    0.15   1.0   0.0         0.3 (0.29)      0.0 (0.21)     

Var Inflatn    0.0    1.0    0.45   0.0   0.0         0.0 (0.20)     0.0 (0.22)
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Linear Regression

• Simulation results

Truth                         Avg Estimates (SE)

ΔMdn   α1 rXW γ2 γ1 β1 γ1

Irrelevant     0.0    0.0    0.00   0.0   0.0         0.0 (0.20)      0.0 (0.20)

Precision      0.0    0.0    0.00   1.0   0.0         0.0 (0.28)      0.0 (0.19)     

Precision    - 0.3    0.0    0.00   1.0   0.0         0.0 (0.28)      0.0 (0.20)     

Precision      0.0    0.0    0.00   1.0   1.0         1.0 (0.28)      1.0 (0.20)     

Confound     0.3    0.3    0.15   1.0   0.0         0.3 (0.28)      0.0 (0.21)     

Confound     0.0    0.3    0.15   1.0   0.0         0.3 (0.29)      0.0 (0.21)     

Var Inflatn    0.0    1.0    0.45   0.0   0.0         0.0 (0.20)     0.0 (0.22)     
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Linear Regression

• Simulation results

Truth                         Avg Estimates (SE)

ΔMdn   α1 rXW γ2 γ1 β1 γ1

Irrelevant     0.0    0.0    0.00   0.0   0.0         0.0 (0.20)      0.0 (0.20)

Precision      0.0    0.0    0.00   1.0   0.0         0.0 (0.28)      0.0 (0.19)     

Precision    - 0.3    0.0    0.00   1.0   0.0         0.0 (0.28)      0.0 (0.20)     

Precision      0.0    0.0    0.00   1.0   1.0         1.0 (0.28)      1.0 (0.20)     

Confound     0.3    0.3    0.15   1.0   0.0         0.3 (0.28)      0.0 (0.21)     

Confound     0.0    0.3    0.15   1.0   0.0         0.3 (0.29)      0.0 (0.21)     

Var Inflatn    0.0    1.0    0.45   0.0   0.0         0.0 (0.20)     0.0 (0.22)
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Linear Regression

• Simulation results

Truth                         Avg Estimates (SE)

ΔMdn   α1 rXW γ2 γ1 β1 γ1

Irrelevant     0.0    0.0    0.00   0.0   0.0         0.0 (0.20)      0.0 (0.20)

Precision      0.0    0.0    0.00   1.0   0.0         0.0 (0.28)      0.0 (0.19)     

Precision    - 0.3    0.0    0.00   1.0   0.0         0.0 (0.28)      0.0 (0.20)     

Precision      0.0    0.0    0.00   1.0   1.0         1.0 (0.28)      1.0 (0.20)

Confound     0.3    0.3    0.15   1.0   0.0         0.3 (0.28)      0.0 (0.21)     

Confound     0.0    0.3    0.15   1.0   0.0         0.3 (0.29)      0.0 (0.21)     

Var Inflatn    0.0    1.0    0.45   0.0   0.0         0.0 (0.20)     0.0 (0.22)
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Linear Regression

• Simulation results

Truth                         Avg Estimates (SE)

ΔMdn   α1 rXW γ2 γ1 β1 γ1

Irrelevant     0.0    0.0    0.00   0.0   0.0         0.0 (0.20)      0.0 (0.20)

Precision      0.0    0.0    0.00   1.0   0.0         0.0 (0.28)      0.0 (0.19)     

Precision    - 0.3    0.0    0.00   1.0   0.0         0.0 (0.28)      0.0 (0.20)     

Precision      0.0    0.0    0.00   1.0   1.0         1.0 (0.28)      1.0 (0.20)     

Confound     0.3    0.3    0.15   1.0   0.0         0.3 (0.28)      0.0 (0.21)     

Confound     0.0    0.3    0.15   1.0   0.0         0.3 (0.29)      0.0 (0.21)

Var Inflatn    0.0    1.0    0.45   0.0   0.0         0.0 (0.20)     0.0 (0.22)     
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Linear Regr Take Home: Estimate

• The magnitude of confounding is a product of
– Magnitude of association between covariate and response AND
– Difference of mean covariate value across POI groups

• If adjustment would be linear, mean (not median, etc) matters

• If POI and covariate independent, adjusted and unadjusted 
estimates will tend to be equal
– Randomization will lead to such independence

• If POI and covariate orthogonal, adjusted and unadjusted 
estimates will be exactly equal
– Stratified, blocked randomization will lead to such orthogonality
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Linear Regr Take Home: Std Err

• Adjusting for a confounder, precision of estimates for 
response-POI association can be larger or smaller than 
unadjusted analysis

• Association between covariate and response will tend to 
decrease SE in adjusted model
– Thus some increased precision from modeling important 

prognostic variable in RCT

• Difference in mean covariate across treatment groups in 
sample will tend to increase SE in adjusted model
– But in RCT, any such difference in means will tend to be small in 

large sample sizes or with stratified blocked randomization

– And covariate adaptive minimization could attempt to minimize 
difference in means



Design, Monitoring, and Analysis of Clinical 
Trials 

July 23, 2019

Scott S. Emerson, M.D., Ph.D. 74

147

Noncollapsibility

• In logistic regression and proportional hazards regression, the 

differences between unadjusted and adjusted analyses is also 

affected by “noncollapsibility”

– Double expectation formula does not protect us

• Even in the absence of confounding, the odds ratio computed 

when combining two strata can differ from the stratum specific 

odds ratios

– And the hazard ratios behave similarly to the odds ratios

• We can consider l’Abbe plots
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Contours: Equal Risk Difference (RD)

• Graph of all possible values for disease incidences

– Two strata having the same RD will lie on the same line 

– Owing to the double expectation formula, with no confounding, 

the RD for the combined strata will also be on that same line
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Contours: Equal Odds Ratio (OR)

• Graph of all possible values for disease incidences 
– Two strata having the same OR will lie on the same line
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Deattenuation of OR

• When “collapsing strata”, the OR will lie on a different contour 
– Amount of attenuation will depend on prognostic strength
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Logistic Regression

• Simulation results

Truth                         Avg Estimates (SE)

ΔMdn   α1 rXW γ2 γ1 β1 γ1

Irrelevant     0.0    0.0    0.00   0.0   0.0         0.0 (0.42)      0.0 (0.42)

Precision      0.0    0.0    0.00   1.0   0.0         0.0 (0.40)      0.0 (0.42)     

Precision    - 0.3    0.0    0.00   1.0   0.0         0.0 (0.42)      0.0 (0.43)     

Precision      0.0    0.0    0.00   1.0   1.0         0.8 (0.43)      1.0 (0.49)     

Confound     0.3    0.3    0.15   1.0   0.0         0.3 (0.43)      0.0 (0.48)     

Confound     0.0    0.3    0.15   1.0   0.0         0.2 (0.41)      0.0 (0.47)     

Var Inflatn    0.0    1.0    0.45   0.0   0.0         0.0 (0.41)     0.0 (0.47)          
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Logist Regr Take Home: Estimate

• The magnitude of confounding is primarily a function of

– Magnitude of association between covariate and response AND

– Difference of mean covariate value across POI groups

• If adjustment would be linear, mean (not median, etc) matters most 

• Even if no confounding, adjusted and unadjusted estimates 
will be different if new covariate (conditionally) associated with 
response

– Adjusting for a precision variable will “deattenuate” OR (and 
estimate)

– The amount of “deattenuation” depends on 

• The strength of association between the added covariate and the 

response, and

• The adjusted strength of association between the POI and the 
response
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Logist Regr Take Home: Std Err

• Standard errors of estimated OR measuring POI – response 
association are largely driven by the mean-variance 
relationship
– SE of odds behaves like 1 / p(1-p)

– Greater homogeneity of groups leads to p closer to 0 or 1

– Usually statistical significance of the POI – response association 
is affected very little by adjustment for a “precision” variable 
unless it is very strongly associated with response

• Note that if we persist in estimating the population OR instead 
of the adjusted OR, we do gain precision by adjustment
– We do have to take a weighted average, however

– See Tangen & Koch, Stat Med, 2000
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Proportional Hazards Regression

• Simulation results

Truth                         Avg Estimates (SE)

ΔMdn   α1 rXW γ2 γ1 β1 γ1

Irrelevant     0.0    0.0    0.00   0.0   0.0         0.0 (0.20)      0.0 (0.20)

Precision      0.0    0.0    0.00   1.0   0.0         0.0 (0.21)      0.0 (0.22)     

Precision    - 0.3    0.0    0.00   1.0   0.0         0.0 (0.21)      0.0 (0.21)     

Precision      0.0    0.0    0.00   1.0   1.0         0.7 (0.21)      1.0 (0.22)     

Confound     0.3    0.3    0.15   1.0   0.0         0.2 (0.21)      0.0 (0.21)     

Confound     0.0    0.3    0.15   1.0   0.0         0.1 (0.20)      0.0 (0.22)     

Var Inflatn    0.0    1.0    0.45   0.0   0.0         0.0 (0.20)     0.0 (0.23)          Next
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PH Regr Take Home: Estimate

• The magnitude of confounding is primarily a function of
– Magnitude of association between covariate and response AND
– Difference of mean covariate value across POI groups

• If adjustment would be linear, mean (not median, etc) matters most 

• Even if no confounding, adjusted and unadjusted estimates 
will be different if new covariate (conditionally) associated with 
response (PH regression is related to logistic regression)
– Adjusting for a precision variable will “deattenuate” HR (and 

estimate)
– The amount of “deattenuation” depends on 

• The strength of association between the added covariate and the 
response, and

• The adjusted strength of association between the POI and the 
response
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PH Regr Take Home: Std Err

• Standard errors of estimated HR measuring POI – response 

association are largely driven by the mean-variance 

relationship of the sample size ratios

– Unless there is a very strong association, the SE tends to be 

fairly constant for a range of different HRs

• Holding the SE constant, we will obtain a lower p value with a 

deattenuated HR
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Precision: Linear Regression

• E.g., X, W independent in population (or completely 
randomized experiment) AND W associated with Y 
independent of X
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Precision: Logistic Regression

• Adjusting for a precision variable 
• Deattenuates slope away from the null
• Standard errors reflect mean-variance relationship

– Substantially increased power only in extreme cases
» (OR > 5 for equal samples sizes of binary W)
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Precision: Poisson Regression

• Adjusting for a precision variable (with robust SE)
• No effect on the slope (similar to linear regression)

– log ratios are linear in log means
• Standard errors reflect mean-variance relationship

– Virtually no effect on power
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Precision: PH Regression

• Adjusting for a precision variable 
• Deattenuates slope away from the null
• Standard errors stay fairly constant

– (Complicated result of binomial mean-variance)
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Lin Reg: Stratified Randomization

• Stratified (orthogonal) randomization in a designed 
experiment
– Also when designing observational study with matching

• Unless we adjust for the stratification variables, we estimate 
the true standard errors incorrectly
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Take Home Message 6

• Why control for baseline variables in RCT analyses?
– Precision of inference is the primary issue

• Confounding is in some sense avoided by randomization
– However, some critics will second guess results post hoc

• Estimation of “within stratum” effect an issue with odds, hazards

• How to control for baseline variables in RCT design?
– Restrict eligibility to subset of eventual target population

• Only if certain no effect modification on efficacy or safety
– Stratified randomization based on prognostic factors especially if 

• Want face validity of key prognostic factors in Table 1
• Interested in prespecified analyses within subgroups
• Covariate adaptive minimization can be usually be avoided

– Obtain precision by prespecified adjustment for the most 
important prognostic factors known a priori

• Do not allow data driven selection of adjusted models
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Randomization Strategies

Where am I going?
Randomization is the major tool by which we maintain scientific 
rigor in our attempts to investigate cause and effect

Alternative randomization strategies can be used to increase 
precision
• Randomization ratio
• Blocking
• Stratification
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Treatment of Variables

• Measure and compare distribution across groups
– Response variable in regression

• Vary systematically (intervention)

• Control at a single level (fixed effects)

• Control at multiple levels (fixed or random effects)
– Stratified (blocked) randomization

• Measure and adjust (fixed or random effects)

• Treat as “error”
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Complete Randomization (CRD)

• With each accrued subject a (possibly biased) coin is tossed 
to determine which arm
– Probability of treatment arm = r / (r + 1)
– Independence of successive randomizations

• Issues
– Bias
– Face validity
– Precision

166

CRD: Unbiased

• On average (across repeated experiments)
– No correlation between treatment variable and other covariates
– Individual type I errors come from samples in which other 

covariates are imbalanced

211 g
s
srgb
X

W
XW+=



Design, Monitoring, and Analysis of Clinical 
Trials 

July 23, 2019

Scott S. Emerson, M.D., Ph.D. 84

167

Face Validity: Table 1

Methotrexate Arm Placebo Arm

n Mean (SD; Min – Max) n Mean (SD; Min – Max)

Age (yrs) 132 50.4 (8.5; 32 - 69) 133 52.2 (8.5; 26 - 67)

Female 132 92.4% 133 92.5% 

Pruritus score 116 7.7 (3.8; 4 - 16) 124 6.9 (3.8; 4 - 20)

Splenomegaly 131 8.4% 133 10.5% 

Telangiectasia 132 4.6% 133 11.3% 

Edema 132 6.1% 133 3.0% 

Alkaline phosphatase 132 242.6 (145.9; 53 - 933) 133 245.0 (187.6; 66 - 1130)

ALT 131 54.5 (41.7; 12 - 202) 132 50.6 (41.4; 12 - 311)

Total bilirubin 132 0.7 (0.4; 0.1 - 2.7) 133 0.7 (0.4; 0.1 - 2.4)

Albumin 132 4.0 (0.3; 3.1 - 6.0) 133 4.0 (0.3; 3.0 - 4.8)

Prothrombin time INR 124 1.0 (0.1; 0.7 - 1.3) 132 1.0 (0.1; 0.7 - 1.3)

Mayo score 128 3.8 (0.8; 1.6 - 6.3) 133 3.9 (0.8; 1.6 - 6.1)

Avg stage 128 2.2 (0.9; 1.0 - 4.0) 128 2.3 (0.9; 1.0 - 4.0)

Avg fibrosis 128 1.2 (0.8; 0.0 - 3.0) 128 1.3 (0.9; 0.0 - 3.0)

168

CRD: Face Validity

• Table 1: Potential for imbalance in covariates
– Depends on number of covariates and correlations among them
– Probability of at least one “significant” imbalance

•
Number   Worst            Correlation
Displayed  Case   0.00   0.30   0.50   0.75   0.90

1       .050   .050   .050   .050   .050   .050
2       .100   .098   .095   .090   .081   .070
3       .150   .143   .137   .126   .104   .084
5       .250   .226   .208   .184   .138   .101
10       .500   .401   .353   .284   .193   .127
20      1.000   .642   .540   .420   .258   .154
50      1.000   .923   .806   .624   .353   .193
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CRD: Face Validity

• Of course, statistical significance is not the issue
– “Conditional confounding”

• How does unadjusted estimate compare to adjusted estimate?
• Product of sample correlation between X and W and adjusted 

association between Y and W
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Demonstration of the Problem

• Consider a CRD in presence of
– 4 highly correlated predictors with larger importance
– 6 independent predictors with smaller importance
– No treatment effect

• Questions about unadjusted analysis
– What is type I error? è 0.025
– What does imbalance in predictors tell us about type I error?

• Sensitivity, specificity of imbalance in predictors under null 
hypothesis

• Dependence on R2 of measured covariates
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Low Association: 1-sided

• ROC curve for covariate imbalance “explaining” statistical 
significance under the null

n100b0.1r0.5 One-Sided (Rsqr Maj 0.122 Full 0.223 )
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High Association: 1-sided

• ROC curve for covariate imbalance “explaining” statistical 
significance under the null

n100b0.3r0.5 One-Sided (Rsqr Maj 0.476 Full 0.536 )
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Face Validity

• Spurious results due to covariate imbalance
– Unconditionally: Unbiased so no problem
– Conditional on obtained randomization:

• IF covariates are strongly predictive of outcome, then covariate 
imbalance is predictive of type I error

• But need to consider that combined effect of other measured and 
unmeasured covariates may provide balance

• Ultimately, however, we need to have credible results
– We do not always get to choose what others believe

174

Precision

• Impact of completely randomized design on precision of 
inference

– Impact of imbalance in sample sizes
• The number accrued to each arm is random
• But maximum precision when 

– Impact of imbalance in covariates
• “One statistician’s mean is another statistician’s variance”
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CRD: Improved Performance

• If we adjust for important covariates, we will often gain 
precision
– Face validity in Table 1 if readers recognize that adjustment 

accounts for any observed imbalance

• Caveats:
– If covariate imbalance by arm, model misspecification can be an 

issue re conditional bias
– If covariate imbalance by arm, lack of effect can be an issue re 

variance inflation
– If adjustment not TOTALLY prespecified, “intent to cheat” 

analysis can be an issue 
• Not too much loss of precision from imperfect model

176

CRD: Continuous vs Dichotomized

CRD – Continuous Adjust CRD – Dichotomized Adjust

Tx Eff
SE Slope Power SE Slope Power

Unadj Adj Unadj Adj Unadj Adj Unadj Adj

0.0 .281 .211 .026 .024 .284 .231 .023 .026

0.1 .278 .209 .053 .062 .284 .229 .045 .062

0.3 .279 .209 .178 .285 .287 .231 .184 .243

0.5 .281 .209 .423 .655 .279 .225 .409 .581

0.7 .279 .209 .696 .909 .281 .229 .699 .858
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Issues with CRD

• Imbalance across arms in covariate distribution
– Loss of face validity
– Conditional bias
– Not much of an issue with large sample sizes
– Could be problematic with sequential sampling

• Interim analyses of data early in the study
– Could be problematic with subgroup analyses

• Possibility of very inefficient randomization ratio in small subgroups

178

Stratified Randomization

• Strata are defined based on values of important covariates
– E.g., sex, age, disease severity, clinical site

• Within each stratum defined by a unique combination of 
stratification variables, CRD or blocked randomization

• Important caveats:
– Number of strata is exponential in number of stratification 

variables
• E.g., 4 two level stratification variables è 16 strata
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Statistical Inference

• Impact on statistical inference relative to CRD
– Bias properties unchanged

– Face validity improved for most important variables

– Precision improved due to achieving closer to desired 
randomization ratio

– Precision could be further improved if adjust for stratification 
variables in analysis

• This should be done

– Without adjustment for strata, may even lose power for some 
alternatives

• Requires pre-specification of analysis model to avoid “intent to 
cheat” analysis
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CRD vs Orthogonal Randomization

CRD – Continuous Adjust Orthogonal Randomization

Tx Eff
SE Slope Power SE Slope Power

Unadj Adj Unadj Adj Unadj Adj Unadj Adj

0.0 .281 .211 .026 .024 .206 .206 .005 .026

0.1 .278 .209 .053 .062 .208 .208 .013 .069

0.3 .279 .209 .178 .285 .205 .205 .115 .313

0.5 .281 .209 .423 .655 .205 .205 .403 .684

0.7 .279 .209 .696 .909 .205 .205 .759 .924
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Advantages

• Additional advantages of stratification
– Balance within clinical center

• Especially if quality control issues
– Balance for interim analyses
– Balance for subgroup analyses

182

Issues with Stratified Analyses

• The need to stratify on all combinations of variables 
– Good news: 

• Balances on interactions as well as main effects
– Bad news:

• Effect of interactions might be quite small
• Really only need to adjust on “counterfactual” outcome based on 

linear combination of all covariates
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Dynamic Randomization

• Subjects are assigned to the treatment arm that will achieve 
best balance
– “Minimization”: minimize the difference between the distribution 

of covariate effects between arms
• Define a “distance” between arms for covariate vectors
• Probability of assignment depends upon arm that would provide 

smallest difference

184

Distance Between Arms

• Two arms are “distant” based on one of:

– Randomization ratio very different from r : 1 in some stratum

– Summary measure of distribution of (Wi1,…,Wip) differs
• Mean, median, variance, …

– Distribution of (Wi1,…,Wip) differs

– Contribution of covariates to the outcome differs
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Conditional Confounding
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Conditional Confounding
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Distance Metrics
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Probability of Assignment

• Subjects are assigned to the treatment arm that will achieve 
best balance
– When i-th patient accrued, compute a randomization probability

– 0  < πi   < 1
– Larger values of Δi è smaller values of πi

– Probably best to avoid πi =  0 and πi    =  1
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Inference: Population Model

• Impact on statistical inference relative to CRD

– Bias properties unchanged

– Face validity improved for most important variables

– Precision improved due to achieving closer to desired 

randomization ratio

– Precision could be further improved if adjust for stratification 

variables in analysis for population model

• This should be done

• Requires pre-specification of analysis model to avoid “intent to 

cheat” analysis

190

Inference: Randomization Model

• Proschan, Brittain, Kammerman, 2010: Precision could be 
greatly hampered if you analyze under randomization 
hypothesis

• Alternative randomization schemes may be quite restrictive, 
especially under unequal randomization
– Suppose sequential allocation

• Randomization P value is identically 1 (or 0.5?)
– If dynamic randomization has πi =  0 or πi    =  1 too often, range 

of randomization P values is greatly restricted

• Also: Statistical analysis can be quite involved
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Advantages / Disadvantages

• Advantages
– Typically improved face validity
– Can handle an arbitrary number of covariates

• Depending on distance metric

• Disadvantages
– Logistically more involved
– Decreased credibility if too deterministic

• Approaches sequential allocation
– Some analytic strategies more complex
– Does not necessarily facilitate subgroup analyses

• Unless distance metric chosen carefully

192

Take Home Message 7

• Randomization strategies

– 1:1 randomization unless really good reason
• Most efficient randomization under strong null and homoscedasticity

– Stratification
• In large studies, no stratification necessary
• In small studies:

– Stratify on variables for which subgroup analyses are important
– Stratify on clinical center if possible
– No more than 4 important variables (including center)
– No real advantage to dynamic minimization

• Prespecify analysis including all fixed effects used in stratification
– Less of an issue in logistic regression, but might as well

– Use hidden blocks of varying sizes
• Block sizes 4, 6, or 8 in 1:1 randomization
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Group Sequential Adaptive Designs

Where am I going?
Issues related to efficiency and ethics are often addressed 
through period monitoring of accruing data.

Special methods must be used to protect the statistical 
inference from the multiple comparisons inherent in such 
sequential testing

To ensure that clinical, scientific, ethical, and statistical issues 
are adequately addressed, candidate designs must be carefully
evaluated.

194

Classical Fixed Sample Designs

• Design stage: 
– Choose a sample size

• Conduct stage: 
– Recruit subjects, gather all the data

• Analysis stage: 
– When all data available, analyze and report
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Statistical Sampling Plan

• Ethical and efficiency concerns are addressed through 
sequential sampling

• During the conduct of the study, data are analyzed at periodic 
intervals and reviewed by the DMC

• Using interim estimates of treatment effect
– Decide whether to continue the trial

• Stop if scientifically relevant and statistically credible results have 
been obtained

– If continuing, decide on any modifications to 
• sampling scheme
• scientific / statistical hypotheses and/or

196

Ultimate Goal

• Modify the sample size accrued so that minimal number of 
subjects treated when
– new treatment is harmful,
– new treatment is minimally effective, or
– new treatment is extremely effective

• Only proceed to maximal sample size when
– not yet certain of treatment benefit, or
– potential remains that results of clinical trial will eventually lead 

to modifying standard practice
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Group Sequential Designs

• Design stage: 
– Choose an interim monitoring plan
– Choose a maximal stopping time

• Statistical information, sample size, calendar time

• Conduct stage: 
– Recruit subjects, gather data in groups
– After each group, analyze for DMC

• DMC recommends termination or continuation

• Analysis stage: 
– When study stops, analyze and report

198

Group Sequential Approach

• Perform analyses when sample sizes N1. . . NJ

– Can be randomly determined if independent of effect

• At each analysis choose stopping boundaries

– aj < bj < cj < dj

• Compute test statistic Tj= T(X1. . . XNj)

– Stop if      Tj < aj (extremely low)

– Stop if   bj < Tj < cj (approximate equivalence)

– Stop if      Tj > dj (extremely high)

– Otherwise continue
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Statistical Design Issues

• Under what conditions should we use fewer subjects?
– Ethical treatment of patients
– Efficient use of resources (time, money, patients)
– Scientifically meaningful results
– Statistically credible results
– Minimal number of subjects for regulatory agencies

• How do we control false positive rate?
– Repeated analysis of accruing data involves multiple 

comparisons

200

Sample Path for a Statistic
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Fixed Sample Methods Wrong

• Simulated trials under null stop too often

202

Simulated Trials (Pocock)

• Three equally spaced level .05 analyses
Pattern of                 Proportion Significant
Significance           1st      2nd      3rd      Ever

1st only             .03046                      .03046
1st, 2nd             .00807   .00807             .00807
1st, 3rd             .00317            .00317    .00317
1st, 2nd, 3rd        .00868   .00868   .00868    .00868
2nd only                      .01921             .01921
2nd, 3rd                      .01426   .01426    .01426
3rd only                               .02445    .02445

Any pattern          .05038   .05022   .05056    .10830
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Pocock Level 0.05

• Three equally spaced level .022 analyses
Pattern of                 Proportion Significant
Significance           1st      2nd      3rd      Ever

1st only             .01520                      .01520
1st, 2nd             .00321   .00321             .00321
1st, 3rd             .00113            .00113    .00113
1st, 2nd, 3rd        .00280   .00280   .00280    .00280
2nd only                      .01001             .01001
2nd, 3rd                      .00614   .00614    .00614
3rd only                               .01250    .01250

Any pattern          .02234   .02216   .02257    .05099
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Unequally Spaced Analyses

• Level .022 analyses at 10%, 20%, 100% of data
Pattern of                 Proportion Significant
Significance           1st      2nd      3rd      Ever

1st only             .01509                      .01509
1st, 2nd             .00521   .00521             .00521
1st, 3rd             .00068            .00068    .00068
1st, 2nd, 3rd        .00069   .00069   .00069    .00069
2nd only                      .01473             .01473
2nd, 3rd                      .00165   .00165    .00165
3rd only                               .01855    .01855

Any pattern          .02167   .02228   .02157    .05660
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Varying Critical Values (O’Brien-Fleming)

• a=0.10; equally spaced using naïve  .003, .036, .087
Pattern of                 Proportion Significant
Significance           1st      2nd      3rd      Ever

1st only             .00082                      .00082
1st, 2nd             .00036   .00036             .00036
1st, 3rd             .00037            .00037    .00037
1st, 2nd, 3rd        .00127   .00127   .00127    .00127
2nd only                      .01164             .01164
2nd, 3rd                      .02306   .02306    .02306
3rd only                               .06223    .01855

Any pattern          .00282   .03633   .08693    .09975

206

Error Spending: Pocock 0.05

Pattern of                 Proportion Significant
Significance           1st      2nd      3rd      Ever

1st only             .01520                      .01520
1st, 2nd             .00321   .00321             .00321
1st, 3rd             .00113            .00113    .00113
1st, 2nd, 3rd        .00280   .00280   .00280    .00280
2nd only                      .01001             .01001
2nd, 3rd                      .00614   .00614    .00614
3rd only                               .01250    .01250

Any pattern          .02234   .02216   .02257    .05099
Incremental error    .02234   .01615   .01250
Cumulative error     .02234   .03849   .05099
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Distinctions without Differences

• Sequential sampling plans
– Group sequential stopping rules
– Error spending functions
– Conditional / predictive power
– Bayesian posterior probabilities

• Statistical treatment of hypotheses
– Superiority / Inferiority / Futility
– Two-sided tests / bioequivalence

208

Major Statistical Issue

• Frequentist operating characteristics are based on the 
sampling distribution

• Stopping rules do affect the sampling distribution of the usual 
statistics 
– MLEs are not normally distributed

– Z scores are not standard normal under the null
• (1.96 is irrelevant)

– The null distribution of fixed sample P values is not uniform
• (They are not true P values)

• Bayesian operating characteristics are based on the sampling 
distribution and a prior distribution
– Is stopping rule relevant?
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Sampling Distribution of MLE

210

Sampling Distribution of MLE
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Sampling Distributions

212

So What?

• Demystification: All we are doing is statistics
– Planning a study

– Gathering data

– Analyzing it
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Sequential Studies

• Demystification: All we are doing is statistics
– Planning a study

• Added dimension of considering time required
– Gathering data

• Sequential sampling allows early termination
– Analyzing it

• The same old inferential techniques
• The same old statistics
• But new sampling distribution

214

Familiarity and Contempt

• For any known stopping rule, however, we can compute the 
correct sampling distribution with specialized software
– Standalone programs

• PEST (some integration with SAS)
• EaSt

– Within statistical packages
• S+SeqTrial
• SAS PROC SEQDESIGN
• R: gsDesign and RCTdesign (SeqTrial)



Design, Monitoring, and Analysis of Clinical 
Trials 

July 23, 2019

Scott S. Emerson, M.D., Ph.D. 108

215

Sampling Density

• Armitage, McPherson, and Rowe (1969)
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Familiarity and Contempt

• From the computed sampling distributions we then compute
– Bias adjusted estimates
– Correct (adjusted) confidence intervals
– Correct (adjusted) P values

• Candidate designs can then be compared with respect to their 
operating characteristics



Design, Monitoring, and Analysis of Clinical 
Trials 

July 23, 2019

Scott S. Emerson, M.D., Ph.D. 109

217

Example: P Value

• Null sampling density tail

218

Evaluation of Designs

• Define candidate design constraining two operating 
characteristics
– Type I error, power at design alternative
– Type I error, maximal sample size

• Evaluate other operating characteristics
– Sample size requirements
– Power curve
– Inference to be reported upon termination
– (Probability of a reversed decision)

• Modify design

• Iterate
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Group Sequential Approach

• Perform analyses when sample sizes N
1
. . . N

J

– Can be randomly determined if independent of effect

• At each analysis choose stopping boundaries

– a
j
< b

j
< c

j
< d

j

– Often chosen according to some boundary shape function

• O’Brien-Fleming, Pocock, Triangular, …

• Compute test statistic T
j
= T(X

1
. . . X

Nj
)

– Stop if      T
j
< a

j
(extremely low)

– Stop if   b
j
< T

j
< c

j
(approximate equivalence)

– Stop if      T
j
> d

j
(extremely high)

– Otherwise continue
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Stopping Boundary Scales

• Boundary scales (1:1 transformations among these)
– Z statistic
– P value

• Fixed sample (so wrong)
• Computed under sequential sampling rule (so correct)

– Error spending function
– Estimates

• MLE (biased due to stopping rule)
• Adjusted for stopping rule

– Conditional power
• Computed under design alternative
• Computed under current MLE

– Predictive power
• Computed under flat prior (possibly improper)
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Boundary Scales: Notation

• One sample inference about means
– Generalizable to most other commonly used models
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“S”: Partial Sum Scale

• Uses:
– Cumulative number of events

• Boundary for 1 sample test of proportion
– Convenient when computing density
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“X”: MLE Scale

• Uses:
– Natural (crude) estimate of treatment effect
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“Z”: Normalized (Z) Statistic Scale

• Uses:
– Commonly computed in analysis routines

[ ]
s
µ0-

= j
jj

x
Nz



Design, Monitoring, and Analysis of Clinical 
Trials 

July 23, 2019

Scott S. Emerson, M.D., Ph.D. 113

225

“P”: Fixed Sample P Value Scale

• Uses:
– Commonly computed in analysis routine
– Robust to use with other distributions for estimates of treatment 

effect
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“E”: Error Spending Scale

• Uses:
– Implementation of stopping rules with flexible determination of 

number and timing of analyses
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“B”: Bayesian Posterior Scale

• Uses:
– Bayesian inference (unaffected by stopping)
– Posterior probability of hypotheses
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“C”: Conditional Power Scale

• Uses:
– Conditional power

• Probability of significant result at final analysis conditional on data 
so far (and hypothesis)

– Futility of continuing under specific hypothesis
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“C”: Conditional Power Scale (MLE)

• Uses:
– Conditional power
– Futility of continuing under specific hypothesis
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“H”: Predictive Power Scale

• Uses:
– Futility of continuing study
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“H”: Predictive Power (Flat Prior)

• Uses:
– Futility of continuing study
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Specification of Designs

Error Spending Functions

Where am I going?
The default family in RCTdesign is the Unified Family that 
includes a wide variety of previously described families.

RCTdesign also includes a number of designs defined on the 
error spending scale.

It is generally unimportant which scale is used for definition of a 
stopping rule, so long as they are fully evaluated

In my experience, people do not understand the scientific impact of 
particular error spending functions very well
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Error Spent at Each Analysis

• seqOC() returns stopping probabilities at each analysis

• When called under the null hypothesis, this is the error spent 
at each analysis

234

Error Spending Functions in RCTdesign

• No matter how a design is specified, RCTdesign returns the 
error spending function
– “error.spend” component of a seqDesign object has the 

cumulative proportion of error spent

– The efficacy boundary is the type 1 error spending function

– The futility boundary is the type 2 error spending function for the 
alternative used to define that boundary

• (Need to fully understand the stopping boundaries)
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Error Spending Families in RCTdesign

• seqDesign() argument design.family allows specification of 
error spending families
– design.family=“E” uses Kim & DeMets power family
– design.family=“Hwang” uses Hwang, Shih, & DeCani family

• Authors have described approximate correspondences to 
OBF and Pocock boundaries within unified family

236

“O’Brien-Fleming” Design in Power Family

• I use P=-3.25 to approximate an OBF design
– Others use P=-3
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Comparison of Designs

• Overlay of O’Brien-Fleming design and approximation based 
on power family error spending function
– plot(obf, obfE)

238

Relative Advantages

• Which is the best scale to view a stopping rule?
– Maximum likelihood estimate
– Z score / fixed sample P value
– Error spending scale
– Stochastic curtailment

• Conditional power
• Predictive power 
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Current Relevance

• Many statisticians (unwisely?) focus on error spending scales, 
Z statistics, fixed sample P values when describing designs

• Some statisticians have (unwisely?) suggested the use of 
stochastic curtailment for
– Defining prespecified sampling plans
– Adaptive modification of sampling plans

240

Z scale, Fixed Sample P value

• Interpretation of Z scale and fixed sample P value is difficult
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Error Spending Functions

• My view: Poorly understood even by the researchers who 

advocate them

• There is no such thing as THE Pocock or O’Brien-Fleming 

error spending function

– Depends on type I or type II error

– Depends on number of analyses

– Depends on spacing of analyses

242

OBF, Pocock Error Spending
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Function of Alternative

• Error spending functions depend on the alternative used to 
compute them
– The same design has many error spending functions

• JSM 2009: Session on early stopping for harm in a 
noninferiority trial
– Attempts to use error spending function approach
– How to calibrate with functions used for lack of benefit?

244

Error Spent by Alternative

OBF Error Spending Functions by Theta
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Stochastic Curtailment

• Stopping boundaries chosen based on predicting future data

• Probability of crossing final boundary
– Frequentist: Conditional Power

• A Bayesian prior with all mass on a single hypothesis
– Bayesian: Predictive Power

• Users are typically poor at guessing good thresholds
– More on this later

Well Understood Methods

Group Sequential Designs

Where am I going?
Borrowing terminology from the draft CDER/CBER Guidance, 
we first review the extent to which the “well understood” group 
sequential designs can be viewed as adaptive designs.

I show that almost all of the motivation for adaptation of the 
maximal sample size is easily addressed in the group 
sequential framework.
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Evaluation of Designs

• Process of choosing a trial design
– Define candidate design

• Usually constrain two operating characteristics
– Type I error, power at design alternative
– Type I error, maximal sample size

– Evaluate other operating characteristics
• Different criteria of interest to different investigators

– Modify design
– Iterate

248

Collaboration of Disciplines

Discipline Collaborators Issues

Scientific
Epidemiologists
Basic Scientists
Clinical Scientists

Hypothesis generation
Mechanisms
Clinical benefit

Clinical Experts in disease / treatment
Experts in complications

Efficacy of treatment
Adverse experiences

Ethical Ethicists
Individual ethics
Group ethics

Economic
Health services
Sponsor management
Sponsor marketers

Cost effectiveness
Cost of trial / Profitability
Marketing appeal

Governmental Regulators
Safety
Efficacy

Statistical Biostatisticians
Estimates of treatment effect
Precision of estimates

Operational Study coordinators
Data management

Collection of data 
Study burden
Data integrity
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Which Operating Characteristics

• The same regardless of the type of stopping rule 

– Frequentist power curve

• Type I error (null) and power (design alternative)

– Sample size requirements

• Maximum, average, median, other quantiles

• Stopping probabilities

– Inference at study termination (at each boundary)

• Frequentist  or Bayesian (under spectrum of priors)

– (Futility measures

• Conditional power, predictive power)

250

At Design Stage

• In particular, at design stage we can know 
– Conditions under which trial will continue at each analysis

• Estimates
– (Range of estimates leading to continuation)

• Inference
– (Credibility of results if trial is stopped) 

• Conditional and predictive power

– Tradeoffs between early stopping and loss in unconditional 
power
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Operating Characteristics

• For any stopping rule, however, we can compute the correct 
sampling distribution with specialized software
– From the computed sampling distributions we then compute

• Bias adjusted estimates
• Correct (adjusted) confidence intervals
• Correct (adjusted) P values

– Candidate designs are then compared with respect to their 
operating characteristics

252

Evaluation: Sample Size

• Number of subjects is a random variable
– Quantify summary measures of sample size distribution as a 

function of treatment effect
• maximum (feasibility of accrual) 
• mean (Average Sample N- ASN) 
• median, quartiles

– Stopping probabilities
• Probability of stopping at each analysis as a function of treatment 

effect
• Probability of each decision at each analysis

(Sponsor)
(Sponsor, DMC)

(Sponsor)
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Sample Size

• What is the maximal sample size required?
– Planning for trial costs
– Regulatory requirements for minimal N treated

• What is the average sample size required?
– Hopefully low when treatment does not work or is harmful
– Acceptable to be high when uncertainty of benefit remains
– Hopefully low when treatment is markedly effective

• (But must consider burden of proof)

254

ASN Curve

• Expected sample size as function of true effect
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Evaluation: Power Curve

• Probability of rejecting null for arbitrary alternatives
– Level of significance (power under null)
– Power for specified alternative

– Alternative rejected by design                          
• Alternative for which study has high power

– Interpretation of negative studies

(Scientists)

(Regulatory)

256

Evaluation: Boundaries

• Decision boundary at each analysis: Value of test statistic 
leading to early stopping
– On the scale of estimated treatment effect

• Inform DMC of precision
• Assess ethics

– May have prior belief of unacceptable levels
• Assess clinical importance

– On the Z or fixed sample P value scales

(DMC)

(Marketing)

(DMC, 
Statisticians)

(Often asked 
for, but of 

questionable 
relevance)
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Evaluation: Inference

• Inference on the boundary at each analysis
– Frequentist

• Adjusted point estimates
• Adjusted confidence intervals
• Adjusted P values

– Bayesian
• Posterior mean of parameter distribution
• Credible intervals
• Posterior probability of hypotheses
• Sensitivity to prior distributions

(Scientists,
Statisticians, 
Regulatory)

(Scientists,
Statisticians, 
Regulatory)
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Evaluation: Futility

• Consider the probability that a different decision would result if 
trial continued
– Compare unconditional power to fixed sample test with same 

sample size

– Conditional power
• Assume specific hypotheses
• Assume current best estimate

– Predictive power
• Assume Bayesian prior distribution

(Scientists,
Sponsor)

(Often asked 
for, but of 

questionable 
relevance)
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Efficiency / Unconditional Power

• Tradeoffs between early stopping and loss of power

• Boundaries                            Loss of Power                           Avg Sample Size 

260

Evaluation: Marketable Results

• Probability of obtaining estimates of treatment effect with 
clinical or marketing appeal
– Modified power curve

• Unconditional
• Conditional at each analysis

– Predictive probabilities at each analysis

(Marketing,
Clinicians)
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Exploring Group Sequential Designs

• Candidate designs
– J = 2 equal spaced analyses; O’Brien-Fleming efficacy boundary

• Do not increase sample size (so lose power)
• Maintain power under alternative (so inflate maximal sample size)

– J = 2 equal spaced analyses; OBF efficacy, futility boundaries
• Do not increase sample size (so lose power)
• Maintain power under alternative (so inflate maximal sample size)

– J = 2 equal spaced analyses; OBF efficacy, more efficient futility 
• Do not increase sample size (so lose power)
• Maintain power under alternative (so inflate maximal sample size)

– J = 4 equal spaced analyses; OBF efficacy, more efficient futlility
• Do not increase sample size (so lose power)
• Maintain power under alternative (so inflate maximal sample size)

– J = 2 optimally spaced analyses; optimal symmetric boundaries
• Maintain power under alternative (inflate NJ, but optimize ASN)

262

Exploring Group Sequential Designs

• Examining operating characteristics
– Stopping boundaries

• Z scale
• Conditional power under hypothesized effects
• Conditional power under current MLE
• Predictive power under flat prior

– Estimates and inference
• MLE  (Bias adjusted estimates suppressed for space)
• 95% CI properly adjusted for stopping rule
• P value properly adjusted for stopping rule

– Power at specified alternatives
– Sample size distribution (as function of true effect)

• Maximal sample size
• Average sample size
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O’Brien-Fleming Efficacy: J = 2

• Introduce two evenly spaced analyses
– Type 1 error of 0.025

• Stopping boundary table

Info
Frac

Futility Efficacy

Z CPalt CPest PPflat Z CPnull CPest PPflat

0.5 -- -- -- -- 2.796 0.500 0.997 0.976

1.0 1.977 -- -- -- 1.977 -- -- --

264

O’Brien-Fleming Efficacy: J = 2, N = 1

• Introduce two evenly spaced analyses
– Maintain sample size NJ = 1

• Estimates and inference table

Samp
Size

Futility Efficacy

MLE 95% CI P MLE 95% CI P

0.5 -- -- -- 3.955 (1.16, 5.72) 0.003

1.0 1.977 (0.00, 3.93) 0.025 1.977 (0.00, 3.93) 0.025
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O’Brien-Fleming Efficacy: J = 2, N = 1

• Introduce two evenly spaced analyses
– Maintain sample size NJ = 1

• Power and sample size table

True Effect Power Avg N

0.00 0.025 0.999

1.96 0.496 0.960

2.80 0.797 0.896

3.24 0.898 0.847

3.92 0.974 0.755

266

O’Brien-Fleming Efficacy: J = 2, Power

• Introduce two evenly spaced analyses
– Maintain power 0.975 at alternative 3.92

• Estimates and inference table

Samp
Size

Futility Efficacy

MLE 95% CI P MLE 95% CI P

0.50 -- -- -- 3.943 (1.16, 5.70) 0.003

1.01 1.977 (0.00, 3.92) 0.025 1.977 (0.00, 3.92) 0.025
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O’Brien-Fleming Efficacy: J = 2, Power

• Introduce two evenly spaced analyses

– Maintain power 0.975 at alternative 3.92

• Power and sample size table

True Effect Power Avg N

0.00 0.025 1.005

1.96 0.499 0.966

2.80 0.799 0.901

3.24 0.900 0.851

3.92 0.975 0.758
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Take Home Messages GSD1

• Introduction of a very conservative efficacy boundary

– Minimal effect on power even if do not increase max N

– Minimal increase in max N needed to maintain power

• Ease and importance of evaluating a stopping rule

– Even before we start the study, we can consider 

• Thresholds for early stopping in terms of estimated effects

• Inference corresponding to stopping points

• Conditional and predictive power under various hypotheses

– We can judge a stopping rule by comparing it to a fixed sample 

test and look at the tradeoffs between

• Increase in maximal sample size

• Decrease in average sample size

• Changes in unconditional power
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O’Brien-Fleming Symmetric: J = 2

• Introduce two evenly spaced analyses
– Type 1 error of 0.025

• Stopping boundary table

Info
Frac

Futility Efficacy

Z CPalt CPest PPflat Z CPnull CPest PPflat

0.5 0.000 0.500 0.003 0.024 2.796 0.500 0.997 0.976

1.0 1.977 -- -- -- 1.977 -- -- --
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O’Brien-Fleming Symmetric: J = 2, N = 1

• Introduce two evenly spaced analyses
– Maintain sample size NJ = 1

• Estimates and inference table

Samp
Size

Futility Efficacy

MLE 95% CI P MLE 95% CI P

0.5 0.000 (-1.76, 2.80) 0.375 3.945 (1.15, 5.71) 0.003

1.0 1.973 (0.00, 3.94) 0.025 1.973 (0.00, 3.94) 0.025
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O’Brien-Fleming Symmetric: J = 2, N = 1

• Introduce two evenly spaced analyses
– Maintain sample size NJ = 1

• Power and sample size table

True Effect Power Avg N

0.00 0.025 0.749

1.96 0.495 0.919

2.80 0.795 0.883

3.24 0.897 0.840

3.92 0.974 0.752
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O’Brien-Fleming Symmetric: J = 2, Power

• Introduce two evenly spaced analyses
– Maintain power 0.975 at alternative 3.92

• Estimates and inference table

Samp
Size

Futility Efficacy

MLE 95% CI P MLE 95% CI P

0.51 0.00 (-1.75, 2.78) 0.375 3.920 (1.14, 5.67) 0.003

1.01 1.960 (0.00, 3.92) 0.025 1.960 (0.00, 3.92) 0.025
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O’Brien-Fleming Symmetric: J = 2, Power

• Introduce two evenly spaced analyses
– Maintain power 0.975 at alternative 3.92

• Power and sample size table

True Effect Power Avg N

0.00 0.025 0.758

1.96 0.500 0.930

2.80 0.800 0.893

3.24 0.900 0.848

3.92 0.975 0.758
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Take Home Messages GSD2

• Introduction of a very conservative futility boundary
– Again, minimal effects on power and/or max N
– Dramatic improvement in ASN under the null
– Conditional and predictive power thresholds are surprising

• CPalt = 0.50 for the extremely conservative OBF boundary
– But the CI has already eliminated 3.92 with high confidence

• CPest = 0.003 and PPflat = 0.024 are both very low thresholds
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O’Brien-Fleming & Futility: J = 2

• Introduce two evenly spaced analyses
– Type 1 error of 0.025

• Stopping boundary table

Info
Frac

Futility Efficacy

Z CPalt CPest PPflat Z CPnull CPest PPflat

0.5 0.331 0.644 0.017 0.068 2.776 0.500 0.997 0.975

1.0 1.963 -- -- -- 1.963 -- -- --
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O’Brien-Fleming & Futility: J = 2, N = 1

• Introduce four evenly spaced analyses
– Maintain sample size NJ = 1

• Estimates and inference table

Samp
Size

Futility Efficacy

MLE 95% CI P MLE 95% CI P

0.5 0.468 (-1.30, 3.27) 0.228 3.925 (1.13, 5.69) 0.003

1.0 1.963 (0.00, 3.98) 0.025 1.963 (0.00, 3.98) 0.025
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O’Brien-Fleming & Futility: J = 2, N = 1

• Introduce two evenly spaced analyses
– Maintain sample size NJ = 1

• Power and sample size table

True Effect Power Avg N

0.00 0.025 0.684

1.96 0.492 0.886

2.80 0.791 0.869

3.24 0.893 0.830

3.92 0.972 0.747
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O’Brien-Fleming & Futility: J = 2, Power

• Introduce two evenly spaced analyses
– Maintain power 0.975 at alternative 3.92

• Estimates and inference table

Samp
Size

Futility Efficacy

MLE 95% CI P MLE 95% CI P

0.52 0.461 (-1.28, 3.22) 0.228 3.867 (1.11, 5.61) 0.003

1.03 1.934 (0.00, 3.92) 0.025 1.934 (0.00, 3.92) 0.025
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O’Brien-Fleming & Futility: J = 2, Power

• Introduce two evenly spaced analyses
– Maintain power 0.975 at alternative 3.92

• Power and sample size table

True Effect Power Avg N

0.00 0.025 0.705

1.96 0.504 0.914

2.80 0.803 0.892

3.24 0.901 0.850

3.92 0.975 0.762
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Take Home Messages GSD3

• More aggressive futility boundary better addresses ethical 
issues associated with ineffective drugs
– I often find that sponsors are willing to accept this futility bound 

without increasing the sample size
– But the minimal increase in maximal sample size would seem 

more appropriate to me
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O’Brien-Fleming & Futility: J = 4

• Introduce four evenly spaced analyses
– Type 1 error of 0.025

• Stopping boundary table

Info
Frac

Futility Efficacy

Z CPalt CPest PPflat Z CPnull CPest PPflat

0.25 -1.108 0.719 0.000 0.008 3.976 0.500 0.999 0.999

0.50 0.321 0.648 0.015 0.063 2.811 0.500 0.997 0.977

0.75 1.258 0.592 0.142 0.177 2.295 0.500 0.907 0.874

1.00 1.988 -- -- -- 1.988 -- -- --
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O’Brien-Fleming  & Futility: J = 4, N = 1

• Introduce four evenly spaced analyses
– Maintain sample size NJ = 1

• Estimates and inference table

Samp
Size

Futility Efficacy

MLE 95% CI P MLE 95% CI P

0.25 -2.216 (-4.71, 1.74) 0.846 7.951 (4.00, 10.5) 0.000

0.50 0.454 (-1.60, 3.31) 0.263 3.976 (1.14, 6.04) 0.003

0.75 1.452 (-0.36, 3.85) 0.053 2.650 (0.30, 4.48) 0.013

1.00 1.988 (0.00, 4.06) 0.025 1.988 (0.00, 4.06) 0.025
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O’Brien-Fleming  & Futility: J = 4, N = 1

• Introduce four evenly spaced analyses
– Maintain sample size NJ = 1

• Power and sample size table

True Effect Power Avg N

0.00 0.025 0.580

1.96 0.478 0.783

2.80 0.776 0.761

3.24 0.882 0.723

3.92 0.966 0.650
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O’Brien-Fleming  & Futility: J = 4, Power

• Introduce four evenly spaced analyses

– Maintain power 0.975 at alternative 3.92

• Estimates and inference table

Samp
Size

Futility Efficacy

MLE 95% CI P MLE 95% CI P

0.27 -2.141 (-4.55, 1.68) 0.846 7.682 (3.86, 10.1) 0.000

0.54 0.439 (-1.55, 3.20) 0.263 3.841 (1.10, 5.84) 0.003

0.80 1.403 (-0.34, 3.72) 0.053 2.561 (0.29, 4.33) 0.013

1.07 1.920 (0.00, 3.92) 0.025 1.920 (0.00, 3.92) 0.025
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O’Brien-Fleming  & Futility: J = 4, Power

• Introduce four evenly spaced analyses
– Maintain power 0.975 at alternative 3.92

• Power and sample size table

True Effect Power Avg N

0.00 0.025 0.622

1.96 0.504 0.840

2.80 0.803 0.808

3.24 0.902 0.762

3.92 0.975 0.680
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Take Home Messages GSD4

• Effect of adding more analyses
– Greater loss of power if maximal sample size not increased
– Greater increase in maximal sample size if power maintained
– But, improvement in average efficiency

• Can also use this example for guidance in how to judge 
thresholds for conditional and predictive power
– The same threshold should not be used at all analyses
– It is not, however, clear what threshold should be used

• I look at tradeoffs between average efficiency and power
– We can look at optimal (on average) designs for more guidance
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Efficient: J = 2

• Introduce two optimally spaced analyses to minimize ASN
– Type 1 error of 0.025

• Stopping boundary table

Info
Frac

Futility Efficacy

Z CPalt CPest PPflat Z CPnull CPest PPflat

0.43 0.573 0.818 0.049 0.141 2.776 0.182 0.951 0.859

1.00 2.129 -- -- -- 2.129 -- -- --
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Efficient: J = 2, Power

• Introduce two optimally spaced analyses
– Maintain power 0.975 at alternative 3.92

• Estimates and inference table

Samp
Size

Futility Efficacy

MLE 95% CI P MLE 95% CI P

0.50 0.808 (-0.82, 3.58) 0.129 3.112 (0.34, 4.74) 0.014

1.18 1.960 (0.00, 3.92) 0.025 1.960 (0.00, 3.92) 0.025
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Efficient: J = 2, Power

• Introduce two optimally spaced analyses
– Maintain power 0.975 at alternative 3.92

• Power and sample size table

True Effect Power Avg N

0.00 0.025 0.685

1.96 0.500 0.900

2.80 0.805 0.847

3.24 0.904 0.788

3.92 0.975 0.685
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Take Home Messages GSD5

• Optimal spacing of analyses not quite equal information

• Optimal early conservatism close to a Pocock design
– In unified family, OBF has P=1, Pocock has P= 0.5
– Optimal P= .54

• With two analyses, increase maximal N by 18% over fixed 
sample
– ASN decreases by about one third

• Again, the thresholds to use for conditional or predictive 
power are not at all clear

• Search for best designs should include many candidates
– Examine many operating characteristics
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Spectrum of Boundary Shapes

• All of the rules depicted have the same type I error and power 
to detect the design alternative
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Efficiency / Unconditional Power

• Tradeoffs between early stopping and loss of power

Boundaries                      Loss of Power             Avg Sample Size 
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Delayed Measurement of Outcome

• Longitudinal studies

– Measurement might be 6 months – 2 years after randomization

– Interim analyses on variable lengths of follow-up

• Use of partial data can improve efficiency (Kittelson, et al.)

• Time to event studies

– Statistical information proportional to number of events

– Calendar time requirements depend on number accrued and 

length of follow-up

• In either case: Interim analyses may occur after accrual 

completed

• Group ethics of identifying beneficial treatments faster

• Savings in calendar time costs, rather than per patient costs

Example

Series of RCT

Where am I going?
The investigation of new treatments, preventive strategies, and 
diagnostic procedures typically progresses through several 
phases.

This example illustrates decisions that might be made between 
Phase II and Phase III
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Example: ROC HS/D Shock Trial

• Resuscitation Outcomes Consortium

– 11 Geographic sites serving ~ 20 million

• University based investigators 

– More than 250 EMS agencies

• Over 35,000 EMS providers: EMTs and paramedics

• Conduct definitive clinical trials in the resuscitation of pre-

hospital cardiac arrest and severe traumatic injury

– Treat patients 20-50 minutes on average before delivering them 

to ED / hospital
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Hypertonic Resuscitation in Shock

• Hypotheses: Use of hypertonic fluids (instead of normal 
saline) in patients with hypovolemic shock
– Osmotic action to maintain fluid in vascular space
– Anti-inflammatory effect to minimize reperfusion injury

• Randomized, double blind clinical trial
– Hypotensive subjects following trauma receive 250 ml bolus of 

• 7.5% NaCl
• 7.5% NaCl with dextran
• Normal saline

– All other treatments per standard medical care
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21 CFR 50.24

• Exception to informed consent for research in an emergency 
setting
– Unmet need
– Study effectiveness of a therapy with some preliminary evidence 

of possible benefit
– Consent impossible 
– Scientific question cannot be addressed in another setting
– Patients in trial stand chance of benefit
– Independent physicians attest to above
– Community consultation / notification
– As soon as possible notify subjects / next of kin of participation 

and right to withdraw
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Background: Phase II Study

• HS/D vs Lactate Ringers in shock from blunt trauma

– Primary endpoint: ARDS free survival at 28 days

• Group sequential design

– Planned maximal sample size: 400 patients (200 / arm) 

• Interim results after 200 patients

– 28 day ARDS-free survival : 54% with HSD, 64% with LRS

– DMC recommendation: Stop for futility

• Trial results have excluded the hypothesized treatment effect

• Subgroup analysis

– Suggestion of a benefit in the 20% needing massive transfusions

• 28 day ARDS-free survival: 13% with HSD, 0% with LRS

– (Results must be quite unpromising in the other subgroup

Bulger, et al., Arch Surg 2008 143(2): 139 - 148.
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ROC Phase III Study

• HS/D vs HS vs NS in shock from trauma
– Primary endpoint: All cause survival at 28 days
– Hypotheses: 69.2 % with HS/D or HS vs 64.6% with NS

• Eligibility criteria modified to try to exclude patients that do not 
require transfusion
– Phase II study: 

• SBP < 90 mmHg
– Modification from exploratory analyses of Phase II data: 

• SBP < 70 mmHg or
• 70 mmHg < SBP < 90 mmHg and HR > 108
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Sample Size

• Fixed sample study:
– Type I error 0.0125 due to multiple comparisons
– 3,726 subjects regardless of observed treatment effect
– Statistical significance if 4.1% improvement at end

• Group sequential monitoring:
– No increase in maximal sample size
– Therefore will have slight decrease in power depending on 

stopping boundary that is chosen
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Sample Size: Group Sequential Study

• Group sequential rule for efficacy: 
– “O’Brien-Fleming” rule known for “early-conservativism”

– Maximal sample size 3,726

N 
Accrue

Efficacy Boundary

Z Crude Diff Est (95% CI; One-sided P)

First 621 6.000 0.272 0.263 (0.183, 0.329); P < 0.0001

Second 1,242 4.170 0.134 0.129 (0.070, 0.181); P < 0.0001

Third 1,863 3.350 0.088 0.082 (0.035, 0.129); P = 0.0004

Fourth 2,484 2.860 0.065 0.060 (0.019, 0.102); P = 0.0025

Fifth 3,105 2.540 0.052 0.048 (0.010, 0.085); P = 0.0070

Sixth 3,726 2.290 0.042 0.040 (0.005, 0.078); P = 0.0130
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Statistical License to Kill

• Initial evaluation of group sequential rule for futility
– Considers noninferiority and superiority decisions 

Futility Boundary

N 
Accrue Z

First 621 -4.000

Second 1,242 -2.800

Third 1,863 -1.800

Fourth 2,484 -1.200

Fifth 3,105 -0.700

Sixth 3,726 -0.290
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Statistical License to Kill

• Initial evaluation of group sequential rule for futility
– Considers noninferiority and superiority decisions 

Futility Boundary

N 
Accrue Z

Type II 
Error Spent 
(hyp 2.6%)

CP Noninf 
(hyp 4.8%)

First 621 -4.000 0.000 0.81

Second 1,242 -2.800 0.000 0.68

Third 1,863 -1.800 0.003 0.66

Fourth 2,484 -1.200 0.010 0.61

Fifth 3,105 -0.700 0.026 0.58

Sixth 3,726 -0.290 0.050
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Sample Size: Group Sequential Study

• Tentative group sequential rule for noninferiority: 
– DoD interested in lesser volume of fluid in battlefield if equivalent
– Ultimately rejected by DMC due to lack of benefit for subjects

Futility Boundary

N 
Accrue Z

Crude 
Diff Est (95% CI; One-sided P)

First 621 -4.000 -0.181 -0.172 (-0.238, -0.092); P > 0.9999

Second 1,242 -2.800 -0.090 -0.084 (-0.137, -0.026); P = 0.9973

Third 1,863 -1.800 -0.047 -0.041 (-0.088, 0.006); P = 0.9581

Fourth 2,484 -1.200 -0.027 -0.022 (-0.064, 0.019); P = 0.8590

Fifth 3,105 -0.700 -0.014 -0.010 (-0.048, 0.028); P = 0.7090

Sixth 3,726 -0.290 -0.005 -0.003 (-0.041, 0.032); P = 0.5975
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Sample Size: Group Sequential Study

• Group sequential rule for futility: 
– Based on rejecting the hypothesized treatment effect
– Tradeoffs between average sample size and loss of power

Futility Boundary

N 
Accrue Z

Crude 
Diff Est (95% CI; One-sided P)

First 621 -2.148 -0.097 -0.088 (-0.154 -0.008); P = 0.9837

Second 1,242 -0.605 -0.019 -0.011 (-0.066, 0.045); P = 0.6684

Third 1,863 0.372 0.010 0.017 (-0.031, 0.063); P = 0.2591

Fourth 2,484 1.120 0.025 0.030 (-0.011, 0.072); P = 0.0738

Fifth 3,105 1.740 0.035 0.038 (0.001, 0.078); P = 0.0209

Sixth 3,726 2.276 0.042 0.043 (0.005, 0.080); P = 0.0125
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Comparison of Average Sample Size

• Average number of subjects treated according to the true 
effect (benefit or harm) of the treatment

Average Sample Size (Power)
True

Benefit / 
Harm

Fixed
Sample

Efficacy
Only

Efficacy /
Noninferiority

Efficacy /
Futility

0.10 3,726 (.999) 1,968 (.999) 1,968 (.999) 1,940 (.998)        

0.06 3,726 (.841) 2,930 (.832) 2,929 (.832) 2,754 (.817)

0.03 3,726 (.267) 3,578 (.259) 3,535 (.259) 2,729 (.252)

0.00 3,726 (.012) 3,720 (.012) 3,264 (.012) 1,995 (.012)

-0.03 3,726 (.000) 3,726 (.000) 2.374 (.000) 1,473 (.000)

-0.06 3,726 (.000) 3,726 (.000) 1,710 (.000) 1,181 (.000)
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Benefit of Sequential Sampling

• Group sequential design can maintain type I error and power 
while greatly improving average sample size
– To maintain power exactly, need slight increase in maximal N

• Improving average sample size increases number of 
beneficial treatments found by a consortium

• Advantage of group sequential over other adaptive strategies
– Generally just as efficient
– Better able to provide inference (“better understood” per FDA)
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Why Not “Scientific Adaptation”

• From Phase II to Phase III we modified patient population to 

try to remove nontransfused subjects

– Subjects with low blood pressure due to fainting?

– Subjects who died before treatment could be administered?

• Why not do this in the middle of a trial?

– A priori: Need to confirm and provide inference for indication

• In hindsight: Phase III still showed increased mortality in this 

subgroup that is identified post-randomization

– Should we have modified treatment and/or eligibility?

– More conservative approach in (at least) exception to informed 

consent argues for careful evaluation of confusing results
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Final Comments

• In a large, expensive study, it is well worth our time to 
carefully examine the ways we can best protect
– Patients on the study
– Patients who might be on the study
– Patients who will not be on the study, but will benefit from new 

knowledge
– Sponsor’s economic interests in cost of trial
– Eventual benefit to health care 
– Eventual benefit to health care costs

• Adaptation to interim trial results introduces complications, but 
they can often be surmounted using methods that are 
currently well understood
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Bottom Line

You better think (think) 

about what you’re 

trying to do…

-Aretha Franklin, “Think”
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Case Study

A RCT of an Antibody to Endotoxin

in the Treatment of Gram Negative Sepsis

312

The Enemy

“Let’s start at the very beginning, a very 
good place to start…”

- Maria von Trapp
(as quoted by Rodgers and Hammerstein)
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First

• Where do we want to be?

– Describe some innovative experiment?

– Find a use for some proprietary drug / biologic / device?
• “Obtain a significant p value”

– Find a new treatment that improves health of some individuals
• “Efficacy” seems to benefit some people somehow

– Find a new treatment that improves health of the population
• “Effectiveness” requires proper use of a treatment that modifies an 

important clinical  endpoint

6
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Treatment “Indication”

• Disease
– Therapy: Putative cause vs signs / symptoms

• May involve method of diagnosis, response to therapies
– Prevention / Diagnosis: Risk classification

• Population
– Therapy: Restrict by risk of AEs or actual prior experience
– Prevention / Diagnosis: Restrict by contraindications

• Treatment or treatment strategy
– Formulation, administration, dose, frequency, duration, ancillary 

therapies

• Outcome
– Clinical vs surrogate; timeframe; method of measurement
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Evidence Based Medicine: PICO

• Population (patient)
– Disease
– Restrictions due to concomitant disease, etc.

• Intervention
– Treatment or treatment strategy

• Comparator
– Other alternatives being considered

• Outcome
– Clinical vs surrogate; timeframe; method of measurement

316

Scientific Hypotheses: Background

• Critically ill patients often get overwhelming bacterial infection 
(sepsis), after which mortality is high

• Gram negative sepsis often characterized by production of 
endotoxin, which is thought to be the cause of much of the ill 
effects of gram negative sepsis

• Hypothesize that administering antibody to endotoxin may 
decrease morbidity and mortality

• Two previous randomized clinical trials showed slight benefit 
with suggestion of differences in benefit within subgroups

• No safety concerns
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Indication

• Disease: Gram negative sepsis
– Proven vs suspected
– Gram stain, culture, abdominal injury

• Population: ICU patients

• Treatment
– Single administration of antibody to endotoxin within 24 hours of 

diagnosis of sepsis
– Reductions in dose not applicable
– Ancillary treatments unrestricted

• Outcome?
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Clinical Outcomes

• Goals
– Primary: Increase survival

• Long term (always best)
• Short term (many other disease processes may intervene)

– Secondary: Decrease morbidity

• Relevant logistical considerations 
– Multicenter clinical trial

• Long term follow-up difficult in trauma centers
• Data management is complicated
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Candidate Clinical Outcomes

• Possible primary endpoints
– Time to death

• Heavy early censoring due to constraints of trauma centers
• May emphasize clinically meaningless short term improvements

– Mortality rate at fixed point in time
• Allows choice of scientifically relevant time frame

– single administration; short half life
• Allows choice of clinically relevant time frame

– avoid sensitivity to fleeting short term improvements
– Time alive out of  ICU during fixed period of time

• Incorporates morbidity endpoints
• May be sensitive to clinically meaningless improvements depending 

upon time frame chosen
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Trial Design Strategy

• Selection of clinical trial design is iterative, involving scientists, 
statisticians, management, and regulators

– Focus on measures with scientific meaning

– Search through extensive space of designs

– Compare designs with respect to variety of operating 
characteristics
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Primary Endpoint: Statistical

• For a specific clinical endpoint, we still have to summarize its 
distribution

• Consider (in order or importance)
– The most relevant summary measure of the distribution of the 

primary endpoint
• Based on a loss function?
• Mean, median, geometric mean, …

– The summary measurement the treatment is most likely to affect
– The summary measure that can be  that can be assessed most 

accurately and precisely
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Statistical Design

• Steps
– Defining the probability model

• Defining the comparison group, primary endpoint, analysis model
– Defining the statistical hypotheses

• Null, alternative
– Defining the statistical criteria for evidence

• Type I error, power
– Determining the sample size

• At each analysis, and maximal sample size
– Evaluating the operating characteristics
– Planning for monitoring

• Updating stopping boundaries according to actual conditions
– Plans for analysis and reporting results

• Inference adjusted for sequential sampling plan
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Chosen Endpoint / Study Structure

• Primary endpoint: 28 day all cause mortality

• Comparison group
– Randomized, double blind, placebo controlled
– 1:1 randomization

• Hypotheses
– Treatment effect of 7% absolute increase in mortality

• On placebo: 30% 28 day mortality
• On antibody: 23% 28 day mortality

• Burden of proof: Registrational trial
– Type I error: one-sided 0.025
– Statistical power: high
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Probability Models

• Common summary measures (contrasts) used in clinical trials
– Means (difference)

• 1, 2, k arms; regression
– Geometric means (lognormal medians) (ratio)

• 1, 2, k arms; regression
– Proportions (difference)

• 1, 2 arms
– Odds (ratio)

• 1, 2 arms; regression
– Rates (ratio)

• 1, 2 arms; regression
– Hazard (ratio)

• 2 arms



Design, Monitoring, and Analysis of Clinical 
Trials 

July 23, 2019

Scott S. Emerson, M.D., Ph.D. 163

325

Creating a RCT Design : Model

• seqDesign (
prob.model = “proportions”,  (vs several others)

arms = 2,                    (default)

ratio = 1,                   (default)

variance = “alternative”,    (default vs “null”,”intermediate”, number)

(many others)
)
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Creating a RCT Design : Hypotheses

• seqDesign (
null.hypothesis = 0.30,
alt.hypothesis = 0.23,         (vs unspecified)

variance = “alternative”,      (vs “null”,”intermediate” or number)

(many others)
)
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Creating a RCT Design : Fixed Sample

• seqDesign (
nbr.analyses = 1,              (default)

test.type = “less”,            (vs “greater”,”two.sided”)
size = 0.025,                  (default)

(many others)
)
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Creating a RCT Design : Statistical Task

• seqDesign (
alt.hypothesis = 0.23,         (vs unspecified)

power = “calculate”,           (vs a number, say, 0.90)
sample.size = 1700,            (vs unspecified)

(many others)
)
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Creating a RCT Design : Output

• seqDesign (
display.scale = “X”,             (default vs any boundary scale)

(many others)
)
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Creating a RCT Design : GUI via Rcmdr (soon)
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Evaluation of Fixed Sample Designs

• Clinical trial design is most often iterative
– Specify an initial design
– Evaluate operating characteristics
– Modify the design
– Iterate
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Fixed Sample Operating Characteristics

• Level of Significance (often pre-specified)

• Sample size requirements
– Scientific / regulatory credibility; Feasibility

• Power Curve
– Under null (type I error); design alternative

• Decision Boundary
– Clinical significance

• Frequentist / Bayesian inference on the Boundary
– Clinical significance of hypotheses discriminated

– Sensitivity to Bayesian priors
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Evaluation in RCTdesign

• Printing
– Design: changeSeqScale (x, scale)
– Operating characteristics: seqOC (x, theta, power) 
– Inference at boundary: seqInference (x, theta, power)
– Everything: seqEvaluate (x, theta, power)

• Plotting
– plot (x); seqPlotBoundary (x)
– seqPlotASN (x)
– seqPlotPower (x)
– seqPlotStopProb (x)
– seqPlotInference (x)
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RCTdesign: Creation of Design
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RCTdesign: evalGST
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Alternative Fixed Sample Designs

• Alternative sample sizes

• Sensitivity to assumptions about variability
– Comparison of means, geometric means

• Need to estimate variability of observations
– Comparison of proportions, odds, rates

• Need to estimate event rate
– Comparison of hazards

• Need to estimate number of subjects and time required to observe 
required number of events
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What if Lower Event Rate?

338

What if Lower Event Rate?
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Stopping Rules

• Basic Strategy
– Find stopping boundaries at each analysis such that desired 

operating characteristics (e.g., type I and type II statistical errors) 
are attained

• Issues
– Conditions under which the trial might be stopped early
– When to perform analyses
– Test statistic to use
– Relative position of boundaries at successive analyses
– Desired operating characteristics
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Boundary Scales

• Stopping boundaries can be defined on a wide variety of 
scales 
– Sum of observations
– Point estimate of treatment effect
– Normalized (Z) statistic
– Fixed sample P value
– Error spending function
– Conditional probability
– Predictive probability
– Bayesian posterior probability
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Boundary Shape Function

• Boundary shape functions
– Pj measures the proportion of information accrued at the j-th 

analysis
• often Pj = Nj / NJ

– Boundary shape function f(Pj) is a monotonic function used to 
relate the dependence of boundaries at successive analyses on 
the information accrued to the study at that analysis
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Unified Design Family

• Stopping Boundaries for Sample Mean Statistic:

– aj = µa - fa (Pj)

– bj = µb +    fb (Pj)

– cj = µc - fc (Pj)

– dj = µd +    fd (Pj)
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Unified Design Family

• Parameterization of boundary shape functions 

– Distinct parameters possible for each boundary
– Parameters A*, P*, R* typically chosen by user
– Critical value G* usually calculated from search

*** ])1([)( ** GAf R
j

P
jj ´P-P+=P -
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Unified Design Family

• Choice of P parameter
– P ³ 0:

• Larger positive values of P make early stopping more difficult 
(impossible when P infinite)

• When A=R=0, 0.5 < P < 1 corresponds to power family parameter 
(D) in Wang & Tsiatis (1987): P= 1 - D

• Reasonable range of values: 0 < P < 2.5
• P=0 with A=R=0 possible for some (not all) boundaries, but not 

particularly useful
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Unified Design Family

• Effect of varying P>0 (when A=0, R=0)
– Higher P leads to early conservatism

– P > 0 has infinite boundaries when N=0
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Unified Design Family

• Choice of P parameter

– P < 0:
• Must have R = 0 and (typically) A < 0
• More negative values of P make early stopping more difficult

348

Unified Design Family

• Effect of varying P<0 (when A=2, R=0)
– More negative P leads to early conservatism
– P < 0 has finite boundaries when N=0
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Unified Design Family

• Choice of R parameter
– R > 0:

• Larger positive values of R make early stopping easier
• When R>0 and P=0, typically need A>0

• Reasonable range of values: 0.1 < R < 20
• R < 1 is convex outward

• R > 1 is convex inward 
• When R>0 and P>0, can get change in convexity of boundaries
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Unified Design Family

• Effect of varying R (when A=1, P=0)
– R < 1 leads to convex outward

– R > 1 leads to convex inward
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Unified Design Family

• Effect of varying R (when A=1, P=0.5)
– With P > 0, boundaries infinite when N=0
– R < 1 and P > 0 has change in convexity

352

Unified Design Family

• Choice of A parameter
• Lower absolute values of A makes it harder to stop at early analyses

• Valid choices of A depend upon choices of P and R

• Useful ranges for A

– P ³ 0, R ³ 0:      0.2  £ A  £ 15

– P £ 0, R = 0:      -15  £ A  £ -1.25
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Unified Design Family

• Effect of varying A (when P=0, R=1.2)
– Values of A close to 0 make it harder to stop early

– Higher absolute value of A -> flatter boundaries

354

Unified Design Family

• Parameterization of boundary shape function includes many 
previously described approaches

– Wang & Tsiatis Boundary Shape Functions:
• A* = 0,  R* = 0, P* > 0   
• P* measures early conservatism 

P* = 0.5   Pocock (1977)
P* = 1.0   O’Brien-Fleming (1979)

• (P* = ¥ precludes early stopping)
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Unified Design Family

• Parameterization of boundary shape function includes many 
previously described approaches

– Triangular Test Boundary Shape Functions (Whitehead)
• A* =     1,  R* =     0, P* = 1

– Sequential Conditional Probability Ratio Test (Xiong):
• R* =     0.5, P* = 0.5

356

Creating a RCT Design : Sequential

• seqDesign (
nbr.analyses = 4,              (default is 1)

sample.size = (1:4)/4*1700,    (default spacing)

design.family = “X”,           (default)

early.stopping = “both”,       (default vs “null”, “alternative”)

P = c(1,1),                    (default corresponds to OBF)

A = c(0,0),                    (default)

R = c(0,0),                    (default)

minimum.constraint = ,         (default)

maximum.constraint = ,         (default)

exact.constraint = ,           (default)

(many others)
)
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Evaluation of Designs

• Process of choosing a trial design

– Define candidate design
– Evaluate operating characteristics
– Modify design
– Iterate

358

Evaluation of Designs: Fixed Sample

• Operating characteristics for fixed sample studies 

– Level of Significance (often pre-specified)
– Sample size requirements
– Power Curve
– Decision Boundary
– Frequentist inference on the Boundary
– Bayesian posterior probabilities
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Evaluation of Designs: Sequential

• Additional operating characteristics for group sequential 
studies 

– Probability distribution for sample size
– Stopping probabilities
– Boundaries at each analysis
– Frequentist inference at each analysis
– Bayesian inference at each analysis
– Futility measures at each analysis

360

Evaluation of Designs

• Sample size requirements 
– Number of subjects needed is a random variable

– Quantify summary measures of sample size distribution
• maximum (feasibility of accrual)
• mean (Average Sample N- ASN)
• median, quartiles

– (Particularly consider tradeoffs between power and sample size 
distribution)
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Evaluation of Designs

• Stopping probabilities

– Consider probability of stopping at each analysis for arbitrary 
alternatives

– Consider probability of each decision (for null or alternative) at 
each analysis

362

Evaluation of Designs

• Power curve
– Probability of rejecting null for arbitrary alternatives

• Power under null: level of significance
• Power for specified alternative

– Alternative rejected by design
• Alternative for which study has high power

– RCTdesign defines
• Power curves for upper and lower boundaries
• Alternatives having specified power for each boundary
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Evaluation of Designs

• Decision boundary at each analysis
– Value of test statistic leading to rejection of null

• Variety of boundary scales possible

– Often has meaning for applied researchers (especially on scale 
of estimated treatment effect)

• Estimated treatment effects may be viewed as unacceptable for 
ethical reasons based on prior notions

• Estimated treatment effect may be of  little interest due to lack of 
clinical importance or futility of marketing

364

Evaluation of Designs

• Frequentist inference on the boundary at each analysis
– Consider P values, confidence intervals when observation 

corresponds to decision boundary at each analysis

– Ensure desirable precision for negative studies
• Confidence interval identifies hypotheses not rejected by analysis
• Have all scientifically meaningful hypotheses been rejected?
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Evaluation of Designs

• Bayesian posterior probabilities at each analysis

– Examine the degree to which the frequentist inference leads to 
sensible decisions under a range of prior distributions for the 
treatment effect

• Posterior probability of hypotheses

– Bayesian estimates of treatment effect
• Median (mode) of posterior distribution
• Credible interval (quantiles of posterior distribution

366

Evaluation of Designs

• Futility measures
– Consider the probability that a different decision would result if 

trial continued

– Can be based on particular hypotheses, current best estimate, or 
predictive probabilities

– (Perhaps best measure of futility is whether the stopping rule has 
changed the power curve substantially)        
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O’Brien-Fleming Symmetric

368

O’Brien-Fleming Efficacy with Futility
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Plotting Stopping Boundaries

• plot() or seqPlotBoundary()
– Arbitrary number of designs
– By default, include fixed design with same power as first 

specified design

• Axes
– Y-axis: Critical values for stopping on arbitrary boundary scale

• MLE scale as default

– X-axis: Statistical information
• Sample size (number of events for hazards probability models)

• Display of boundaries
– Vertical lines are true stopping regions
– Critical values connected to allow better visualization of 

boundary shape

370

Display of Boundaries

• plot(obf, fut)
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Plotting Power Functions

• seqPlotPower()
– Arbitrary number of designs
– By default, include fixed design with same maximal sample size 

as first specified design

• Axes
– Y-axis: Power or difference in power from reference design
– X-axis: Treatment effect (θ)

• Interpretation based on probability model

372

Display of Power Curves

• seqPlotPower(obf, fut)
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Display of Power Curves (Reference)

• seqPlotPower(obf, fut, reference= T)

374

Plotting Sample Size Distribution

• seqPlotASN()
– Arbitrary number of designs
– Average sample N (ASN) and arbitrary quantiles

• Default is 75th percentile
– By default, include fixed design with same power as first 

specified design

• Axes
– Y-axis: Statistical Information (average or quantile)
– X-axis: Treatment effect (θ)

• Interpretation based on probability model
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Display of ASN Curves

• seqPlotASN(obf, fut)
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Plotting Stopping Probabities

• seqPlotStopProb()

– Arbitrary number of designs

• By default, separate plots for each design

• Different designs may have different sample sizes

– Essentially plots of error spending functions for each alternative

• Axes

– Y-axis: Cumulative stopping probability

– X-axis: Treatment effect (θ)

• Interpretation based on probability model

– Contours labeled by analysis number

• May not correspond to same sample size

– Color coding by decision corresponding to stopping rule
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Display of Stopping Probabilities

378

Take Home Message 8

• Group sequential, adaptive studies

– RCT have always been sequential and adaptive across phases
• Focus over past 50-70 years has been within individual studies

– Sequential designs can help address efficiency / ethics of RCT
• Greatest advantage is terminating “futile” studies earlier
• For effective therapies, larger sample sizes may be needed

– Safety and secondary endpoints

– Group sequential approaches are generally sufficient
• Fixed sample design as starting point
• Explore alternative designs varying in schedule/timing of analyses

and conservatism of stopping boundaries
• Fully evaluate inference corresponding to early termination, 

statistical power, sample size requirements
– Most boundary scales are nonlinear and difficult to predict
– Conditional and predictive power have difficult interpretations
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Additional Adaptive Designs

Where am I going?
Other approaches have been described for the adaptive 
modification of RCT designs.

Distinctions should be made between adaptations that are 
primarily statistical in nature and those that substantially change 
the scientific hypotheses being addressed

380

But What If …?

• Possible motivations for adaptive designs
– Changing conditions in medical environment

• Approval / withdrawal of competing / ancillary treatments
• Diagnostic procedures

– New knowledge from other trials about similar treatments

– Evidence from ongoing trial
• Toxicity profile (therapeutic index)
• Interim estimates of primary efficacy / effectiveness endpoint

– Overall
– Within subgroups

• Interim alternative analyses of primary endpoints
• Interim estimates of secondary efficacy / effectiveness endpoints
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Adaptive Sampling Plans

• At each interim analysis, possibly modify statistical or 
scientific aspects of the RCT

• Primarily statistical characteristics
– Maximal statistical information           (UNLESS: impact on MCID)
– Schedule of analyses                   (UNLESS: time-varying effects)
– Conditions for stopping                (UNLESS: time-varying effects)
– Randomization ratios
– Statistical criteria for credible evidence

• Primarily scientific characteristics
– Target patient population (inclusion, exclusion criteria)
– Treatment (dose, administration, frequency, duration)
– Clinical outcome and/or statistical summary measure

382

Adaptive Sampling: Examples

• Response adaptive modification of sample size
– Proschan & Hunsberger (1995); Cui, Hung,  & Wang (1999)

• Response adaptive randomization
– Play the winner (Zelen, 1979)

• Adaptive enrichment of promising subgroups
– Wang, Hung & O’Neill (2009)

• Adaptive modification of endpoints, eligibility, dose, …
– Bauer & Köhne (1994); LD Fisher (1998)
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Adaptive Sampling: Issues

• How do the newer adaptive approaches relate to the 
constraint of human experimentation and scientific method?

• Effect of adaptive sampling on trial ethics and efficiency
– Avoiding unnecessarily exposing subjects to inferior treatments
– Avoiding unnecessarily inflating the costs (time / money) of RCT

• Effect of adaptive sampling on scientific interpretation
– Exploratory vs confirmatory clinical trials

• Effect of adaptive sampling on statistical credibility
– Control of type I error in frequentist analyses
– Promoting predictive value of “positive” trial results

384

Topic for Today: Optimizing the Process

• How do we maximize the number of drugs adopted while
– Ensuring effectiveness of adopted drugs
– Ensuring availability of information needed to use drugs wisely
– Minimizing the use of resources

• Patient volunteers
• Sponsor finances
• Calendar time

• The primary tool at our disposal: Sequential sampling
– Decrease average sample size used for each drug
– Maximize number of new drugs using limited resources
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Distinctions without Differences

• 1:1 correspondence between sequential sampling plans
– Group sequential stopping rules
– Error spending functions
– Conditional / predictive power
– Bayesian posterior probabilities

• Statistical treatment of hypotheses
– Superiority / Inferiority / Futility
– Two-sided tests / bioequivalence

386

Phases of Investigation

• Series of studies support adoption of new treatment

• Preclinical
– Epidemiology including risk factors
– Basic science: 

• Biochemistry, physiologic mechanisms,  physics / engineering
– Animal experiments: Toxicology / safety

• Clinical
– Phase I: Initial safety / dose finding
– Phase II: Preliminary efficacy / further safety
– Phase III: Confirmatory efficacy / effectiveness

• Approval of indication
– (Phase IV:  Post-marketing surveillance, REMS)
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Phase III Confirmatory Trials

• The major goal of a “registrational trial” is to confirm a result 

observed in some early phase study

• Rigorous science: Well defined confirmatory studies 

– Eligibility criteria

– Comparability of groups through randomization

– Clearly defined treatment strategy

– Clearly defined clinical outcomes (methods, timing, etc.)

– Unbiased ascertainment of outcomes (blinding)

– Prespecified primary analysis

• Population analyzed as randomized

• Summary measure of distribution (mean, proportion, etc.)

• Adjustment for covariates

388

Why Confirmation: Real-life Examples

• Effects of arrhythmias post MI on survival
– Observational studies: high risk for death

– CAST: Specific anti-arrhythmics have higher mortality

• Effects of beta-carotene on lung CA and survival
– Observational studies: high dietary beta carotene has lower 

cancer incidence and longer survival

– CARET: beta carotene supplementation in smokers leads to 
higher lung CA incidence and lower survival

• Effects of hormone therapy on cardiac events
– Observational studies: HT has lower cardiac morbidity and 

mortality

– WHI: HT in post menopausal women leads to higher cardiac 
mortality
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Multiple Comparisons in Biomedicine

• Observational studies
– Observe many outcomes
– Observe many exposures
– Perform many alternative analyses

• Summary of outcome distribution, adjustment for covariates
– Consequently: Many apparent associations

• May be type I errors
• But even when valid, may be poorly understood due to confounding

• Interventional experiments
– Exploratory analyses (“Drug discovery”)

• Modification of analysis methods
• Multiple endpoints
• Restriction to subgroups

390

Statistics and Game Theory

• Multiple comparison issues
– Type I error for each endpoint – subgroup combination

• In absence of treatment effect, will still decide a benefit exists with 
probability, say, .025 in each such combination

• Multiple endpoints and subgroups increase the chance of 
deciding an ineffective treatment should be adopted
– This problem exists with either frequentist or Bayesian criteria for 

evidence
– The actual inflation of the type I error depends

• the number of multiple comparisons, and
• the correlation between the endpoints 

• Impact of increased type I error on Bayes factor is huge
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U. S. Regulation of Drugs / Biologics

• Wiley Act (1906)

– Labeling

• Food, Drug, and Cosmetics Act of 1938

– Safety

• Kefauver – Harris Amendment (1962)

– Efficacy / effectiveness

• " [If] there is a lack of substantial evidence that the drug will have the effect 

... shall issue an order refusing to approve the application. “

• “...The term 'substantial evidence' means evidence consisting of adequate 
and well-controlled investigations, including clinical investigations, by 

experts qualified by scientific training”

• FDA Amendments Act (2007)

– Registration of RCTs, Pediatrics, Risk Evaluation and Mitigation 

Strategies (REMS)

392

U.S. Regulation of Medical Devices

• Medical Devices Regulation Act of 1976

– Class I: General controls for lowest risk

– Class II: Special controls for medium risk - 510(k)

– Class III: Pre marketing approval (PMA) for highest risk

• “…valid scientific evidence for the purpose of determining the safety or 

effectiveness of a particular device … adequate to support a determination 

that there is reasonable assurance that the device is safe and effective for 

its conditions of use…”

• “Valid scientific evidence is evidence from well-controlled investigations, 

partially controlled studies, studies and objective trials without matched 

controls, well-documented case histories conducted by qualified experts, 

and reports of significant human experience with a marketed device, from 
which it can fairly and responsibly be concluded by qualified experts 
that there is reasonable assurance of the safety and effectiveness…”

• Safe Medical Devices Act of 1990

– Tightened requirements for Class 3 devices
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Phase III Clinical Trials

• Confirmation of efficacy / effectiveness
– Goals:

• Obtain measure of treatment’s efficacy on disease process
• Incidence of major adverse effects
• Therapeutic index
• Modify clinical practice (obtain regulatory approval)

– Methods
• Relatively large number of participants from true target population 

(almost)
• Clinically relevant outcome

394

Need for Exploratory Science

• Before we can do a large scale, confirmatory Phase III trial, 
we must have
– A hypothesized treatment indication to confirm

• Disease
• Patient population
• Treatment strategy
• Outcome

– Comfort with the safety / ethics of human experimentation

• In “drug discovery”, in particular, we will not have much 
experience with the intervention
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Phase II Clinical Trials

• Preliminary evidence of efficacy
– Goals:

• Screening for any evidence of treatment efficacy
• Incidence of major adverse effects
• Decide if worth studying in larger samples

– Gain information about best chance to establish efficacy
» Choose population, treatment, outcomes

– Methods
• Relatively small number of participants
• Participants closer to true target population
• Outcome often a surrogate
• Sometimes no comparison group (especially in cancer)

396

Screening Studies as Diagnostic Tests

• Clinical testing of a new treatment, preventive agent, or 
diagnostic method is analogous to using laboratory or clinical 
tests to diagnose a disease
– Goal is to find a procedure that identifies truly beneficial 

interventions

• Not surprisingly, the issues that arise when screening for 
disease apply to clinical trials
– Predictive value of a positive test is best when prevalence is high
– Use screening trials to increase prevalence of beneficial 

treatments
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Preliminary Studies in Screening

• In cancer less than 5% of treatments studied in clinical trials 
are adopted

• NCI drug development program 1970 - 1985
– 350,000 unique chemical structures studied
– 83 pass preclinical and phase I testing
– 24 pass phase II tests for biological activity

398

A Simple (Simplistic?) Setting

• We consider best use of 1,000,000 patients who consent to 
RCT
– We consider at most one phase 2 RCT and 
– One phase 3 RCT only among drugs that “pass” phase 2

• We presume a binary prior at the start of phase 2
– 10% of candidate drugs truly work with a treatment effect of 

0.125
– 90% of candidate drugs have a treatment effect of 0.000

• We presume outcome variability such that 500 subjects 
provide 80% statistical power in a one-sided level 0.025 test
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Preliminary Studies in Screening

• Two general approaches to studying new treatments

• Scenario 1:
– Study every treatment in a large definitive experiment

• Only do Phase III studies
– Level of significance 0.025, high power

• (Ignore, for now, the safety / ethics of this)

• Scenario 2:
– Perform small screening trials, with confirmatory trials of 

promising treatments passing early tests
• Phase II studies

– Level of significance, power (sample size) to be determined

400

Scenario 1: Only Phase III

• Only large trials using 1,000,000 subjects
– 10% of drugs being investigated truly work
– Level of significance .025, .025, or 0.05

– Sample size / power
• 979 subjects, α=0.025, 97.5% power è 1,021 RCT
• 500 subjects, α=0.025, 80.0% power è 2,000 RCT
• 394 subjects, α=0.050, 80.0% power è 2,538 RCT

– Results
• N=    979:   99 effective /   23 ineffective (PV+ = .81)
• N=    500: 160 effective /   45 ineffective (PV+ = .78)
• N=    394: 202 effective / 114 ineffective (PV+ = .64)
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Scenario 2a: Screening Phase II

• Use 700,000 subjects in Phase II studies
– 10% of drugs being investigated truly work
– Level of significance .025
– Sample size / power

• 100 subjects provide 24% power è 7,000 RCT
– Results

• N= 100:  168 effective /   158 ineffective (PV+ = .52)

• Use 300,000 subjects in confirmatory Phase III studies
– 52% of drugs being investigated truly work
– Level of significance .025
– Sample size / power

• 921 subjects provide 96.7% power è 326 RCT

– Results
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Scenario 2b: Screening Phase II

• Use 700,000 subjects in Phase II studies
– 10% of drugs being investigated truly work
– Level of significance .10
– Sample size / power

• 342 subjects provide 85% power è 2,047 RCT
– Results

• N= 342:   173 effective /   184 ineffective (PV+ = .49)

• Use 300,000 subjects in confirmatory Phase III studies
– 49% of drugs being investigated truly work
– Level of significance .025
– Sample size / power

• 839 subjects provide 95% power è 357 RCT
– Results



Design, Monitoring, and Analysis of Clinical 
Trials 

July 23, 2019

Scott S. Emerson, M.D., Ph.D. 202

Summary
Scenario 1 Scenario 2a Scenario 2b

Number RCT 2,000 (10% eff) 7,000 (10% eff) 2,047 (10% eff)

N per RCT 0 100 342

Type 1 err; Pwr 0.025;  24% 0.100;  85%

“Positive” RCT 168 eff; 158 not 173 eff; 184 not

Number RCT 2,000 (10% eff) 326 (52% eff) 357 (49% eff)

N per RCT 500 921 839

Type 1 err, Pwr 0.025;  80% 0.025;  97% 0.025;  95%

# Effctve Adopt 160 162 165

# Ineff Adopt 45 4 5

Pred Val Pos 78% 98% 97%

N per Adopt 500 1,021 1,181
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Summary: Phase 2
Scenario 1 Scenario 2a Scenario 2b

Number RCT 2,000 (10% eff) 7,000 (10% eff) 2,047 (10% eff)
N per RCT 0 100 342

Type 1 err; Pwr 0.025;  24% 0.100;  85%

“Positive” RCT 168 eff; 158 not 173 eff; 184 not

Number RCT 2,000 (10% eff) 326 (52% eff) 357 (49% eff)
N per RCT 500 921 839

Type 1 err, Pwr 0.025;  80% 0.025;  97% 0.025;  95%

# Effctve Adopt 160 162 165

# Ineff Adopt 45 4 5

Pred Val Pos 78% 98% 97%
N per Adopt 500 1,021 1,181
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Summary: Phase 3
Scenario 1 Scenario 2a Scenario 2b

Number RCT 2,000 (10% eff) 7,000 (10% eff) 2,047 (10% eff)
N per RCT 0 100 342

Type 1 err; Pwr 0.025;  24% 0.100;  85%

“Positive” RCT 168 eff; 158 not 173 eff; 184 not

Number RCT 2,000 (10% eff) 326 (52% eff) 357 (49% eff)
N per RCT 500 921 839

Type 1 err, Pwr 0.025;  80% 0.025;  97% 0.025;  95%

# Effctve Adopt 160 162 165

# Ineff Adopt 45 4 5

Pred Val Pos 78% 98% 97%
N per Adopt 500 1,021 1,181
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Screening Phase II: Bottom Line

• Pilot studies increase the predictive value of a positive study 

while using the same number of subjects. 

– Screening parameters can be optimized

• Proportion of subjects in Phase II vs Phase III

• Type I error at Phase II

• Power at Phase II

• Additional considerations when choosing among screening 

parameters

– Will we have same prevalence of “good” ideas when we screen 

2,000 drugs vs 7,000 drugs?

– Holding predictive value of positive constant, which strategy 

provides more information about safety and secondary endpoints 

for the treatments eventually adopted?
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Summary: “Drug Discovery”
Scenario 1 Scenario 2a Scenario 2b

Number RCT 2,000 (10% eff) 7,000 (10% eff) 2,047 (10% eff)
N per RCT 0 100 342

Type 1 err; Pwr 0.025;  24% 0.100;  85%

“Positive” RCT 168 eff; 158 not 173 eff; 184 not

Number RCT 2,000 (10% eff) 326 (52% eff) 357 (49% eff)
N per RCT 500 921 839

Type 1 err, Pwr 0.025;  80% 0.025;  97% 0.025;  95%

# Effctve Adopt 160 162 165

# Ineff Adopt 45 4 5

Pred Val Pos 78% 98% 97%
N per Adopt 500 1,021 1,181
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Burden of Larger Phase II Studies?

• It appears to be advantageous to use larger Phase 2 studies 

than is typical currently in cancer research

• BUT: Ethical and efficiency concerns can be addressed 

through sequential sampling

– During the conduct of the study, data are analyzed at periodic 

intervals and reviewed by the DMC

– Using interim estimates of treatment effect decide whether to 

continue the trial

– If continuing, decide on any modifications to 

• scientific / statistical hypotheses and/or

• sampling scheme
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Ultimate Goal

• Modify the sample size accrued so that minimal number of 
subjects treated when
– new treatment is harmful,
– new treatment is minimally effective, or
– new treatment is extremely effective

• Only proceed to maximal sample size when
– not yet certain of treatment benefit, or
– potential remains that results of clinical trial will eventually lead 

to modifying standard practice

410

General Classification of Approaches

• What aspects of the RCT are modified?
– Statistical: Modify only the sample size to be accrued 

– Scientific: Possibly modify the hypotheses related to patient 
population, treatment, outcomes

• Are all planned modifications described at design?
– “Prespecified adaptive rules”: Investigators describe

• Conditions under which trial will be modified and

• What those modification will consist of

– “Fully adaptive”: At each analysis, investigators are free to use 
current data to modify future conduct of the study
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Statistical Design Issues

• Under what conditions should we use fewer subjects?
– Ethical treatment of patients
– Efficient use of resources (time, money, patients)
– Scientifically meaningful results
– Statistically credible results
– Minimal number of subjects for regulatory agencies

• How do we control false positive rate?
– Repeated analysis of accruing data involves multiple 

comparisons

412

Potential Benefits of Stopping Rules

• Group sequential sampling

– Aggressive early stopping for futility: Pocock boundaries

• Greatest efficiency (or nearly so)

– Conservative early stopping for efficacy: O’Brien-Fleming

• Burden of proof, other endpoints

• Type I error, power maintained exactly at each phase

– Worst case maximum sample size increases

• Average sample size requirements assuming 10% truly 

effective drugs at start of Phase II

– Only large studies : 58.5% of fixed sample

– Pilot scenario 2a   : 56.0%
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Relevance to Adaptive SSRE

• Rather than using group sequential designs, we could have 

considered unblinded sample size re-estimation

• At the penultimate analysis, unblinded estimates of treatment 

effect are used to determine the final sample size

• Our experience: Most people “adapt” using an inefficient rule

– They most often try to use conditional power without fully 

understanding its behavior

• Furthermore, if the adaptive rule is not fully pre-specified, the 

test statistic must be based on an inefficient weighting of the 

data

414

Average Efficiency of Adaptive SSRE

• When using minimal sufficient statistics, the “optimal” adaptive 

design is negligibly more efficient on average than the 

“optimal” group sequential design (Levin, et al., 2011)

– When using the reweighted statistic, virtually all of those slight 

efficiency gains disappear

– The maximal sample size for adaptive SSRE is greater
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Furthermore

• Additional advantages of screening trials
– Gathering more detailed preliminary safety data before 

embarking on expensive, large scale Phase 3 trials
– Gathering preliminary efficacy data that allows fine tuning
– Fine tune eligibility criteria

• Include only susceptible patient populations
• Exclude patients at high risk for AEs

– Optimal treatment strategies
• Fine tune formulation, dose, administration, frequency, duration
• Develop dose modification strategies
• Prophylactic treatments, rescue treatments for AEs

– Optimal clinical endpoints

• Major disadvantage
– “White space” (time delay) between phase 2 and phase 3
– (Truly an issue for sponsors, rather than public health)

416

What Can Go Wrong?

• We ignore bias / lack of precision and believe our phase 2 
results
– Phase 3 study will be poorly designed

• We fish through phase 2 data to change outcome
– We might inflate type 1 error without sufficient increase in power

• We use a surrogate at phase 2 that is not sensitive/specific for 
true clinical outcome used at phase 3
– We inflate “effective” type 1 error without increasing power

We fish through phase 2 data to change eligibility criteria or 
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Phase 3 Sample Size from Phase 2

• Phase 2: type 1 error 0.10 with N= 342 provides 85% power
– Estimated treatment effects:                  mn   ( sd;      min – max)

• Ineffective drugs                               0.095   (0.022; 0.069 - 0.313)
• Effective drugs                                  0.140   (0.043; 0.069 - 0.396)

• Phase 3 using Phase 2 results
– Estimated N for 95% power:

• Ineffective drugs                                 1665    ( 610;    134 – 2745)
• Effective drugs                                      893    ( 571;      84 – 2745)

– Type 1 error 0.025, avg power 86%

• Screen 1,759 patients with 1,000,000 patients
– End of phase 2: 150 effective, 159 ineffective (PVP= 0.49)

418

Relevance to Adaptive SSRE

• The above results highlight a major problem with adaptive 

sample size re-estimation

• Partway through a RCT, estimates of treatment effect are 

markedly imprecise

• The average efficiency of “optimal” adaptive RCT is best when 

adaptation occurs late in the trial (Levin, et al., 2011)
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Coherent vs Incoherent Bayes

• The previous results were based on “staying the course”

• A priori we presumed a certain treatment effect
– Phase 2 studies powered for that treatment effect
– When progress to phase 3, still power for that treatment effect

• The problem: Phase 2 results are used to decide to go to 
phase 3
– Results from “promising phase 2 trials” are biased

420

The Problem of Small Studies

• Using 700,000 patients
– Small sample size è Big bias of “positive” studies

Null: Δ =0 Alt: Δ= .125
N per 
RCT RCTs

Crit 
Value

Prob
Sig

N Sig 
RCT

Expected
Estimate

Prob
Sig

N Sig 
RCT

Expected
Estimate

7000 100 0.0234 0.025 2 0.028 1.000 100 0.125

3500 200 0.0331 0.025 5 0.039 1.000 200 0.125

700 1000 0.0741 0.025 25 0.089 0.912 912 0.132

350 2000 0.1048 0.025 50 0.125 0.649 1,298 0.156

70 10000 0.2343 0.025 250 0.280 0.180 1,801 0.299

35 20000 0.3313 0.025 500 0.390 0.114 2,271 0.407
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Coherent vs Incoherent Bayes

• An alternative optimistic strategy
– Phase 2 studies powered for presumed treatment effect
– Phase 3 studies powered for observed phase 2 estimate

• An alternative Bayesian strategy
– Phase 2 studies powered for presumed treatment effect
– Phase 3 studies powered for posterior mean treatment effect

• (up to some maximum)

Summary
Scenario 2b Optimistic Mod. Bayes

Number RCT 2,047 (10% eff) 1,759 (10% eff) 1,959 (10% eff)
N per RCT 342 342 342

Type 1 err; Pwr 0.100;  85% 0.100;  85% 0.100;  85%

“Positive” RCT 173 eff; 184 not 150 eff; 159 not 163 eff; 176 not

Number RCT 357 (49% eff) 309 (49% eff) 339(48% eff)
N per RCT 839 894 vs 1665 941 vs 998

Type 1 err, Pwr 0.025;  95% 0.025;  95 vs 86% 0.025;  95%

# Effctve Adopt 165 129 156

# Ineff Adopt 5 4 4

Pred Val Pos 97% 97% 97%
N per Adopt 1,181 1,259 1,285

Phase

2

C
onfirm

taory Phase 

3
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Inflation of the Type I Error

• Recall that in order to avoid inflation of type I error, we require 
confirmatory studies using prespecified
– Patient population
– Treatment
– Primary clinical outcome
– Statistical analysis

• Hence, we must be concerned about data dredging (“data 
mining”) of the phase 2 data, because it may lead to 
differences between phase 2 and phase 3 due to
– Revising outcomes to reflect the most promising results
– Revising eligibility criteria based on subgroup analyses
– Changing from surrogate efficacy to effectiveness endpoints

• “Treating the symptom not the disease”

424

Data Dredging Examples: Endpoints

• We might look for the endpoint for which the treatment has 
the largest estimated effect

• Examples
– Overall survival

• Logrank test vs Wilcoxon logrank vs survival at fixed time …
– Progression free survival
– Major adverse cardiovascular events (MACE)
– MACE plus hospitalization
– …
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Data Dredging Examples: Dose / Arms

• We might look for the dose group or treatment arm with 
largest effect
– Treatment effect
– Risk / benefit ratio
– P value

426

Data Dredging Examples: Subgroups

• In phase 2 trials that are not significant, we search for 
subgroups that might show significant differences
– If the results were significant overall, we use the overall results

• In phase 2 trials that are significant, we look for cases in 
which all the effect seems to be in a subgroup
– Statistical significance in, say, males
– Point estimate in wrong direction in females

• We look for the smallest p value among the overall 
comparison and several subgroups
– We choose the indication with the smallest p value
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Examples

• We can explore the impact of adaptive changes in RCT in 
several examples
– Consideration of multiple summary measures

• Mean, geometric mean, Wilcoxon, median, two proportions
– Consideration of subgroups

• Overall sample 
• Plus equal sized subgroups defined by three variables

– Consideration of change of endpoint between phase 2 and 3
• Phase 2: potential surrogate
• Phase 3: clinical outcome

• We consider
– Adaptations that do or do not control type I error
– Treatment effect in all groups or only in one subgroup
– Surrogates that do or do not always predict outcome

428

Homogeneous Effects, No Error Control

• First we consider treatments that are equally effective in all 

subjects

• Prevalence of beneficial treatments: 10%

• Possible adaptations

– Adaptive choice of statistical summary measure

• Mean, geometric mean, median, Wilcoxon, two thresholds

– Look for subgroups having effects

• Sex, Age (young vs old), BMI (normal vs obese)

• Strategies

– If significant overall, proceed with all, otherwise choose most 

significant subgroup

– Choose subgroup if it is highly significant and opposite 

subgroup has estimated nil effect

– Choose analysis with smallest p value
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Summary (Homogeneous Effects)
Scenario 2b Alt Smry Meas Subgroups

Number RCT 2,047 (10% eff) 1,695 (10% eff) 1,485 (10% eff)
N per RCT 342 342 342

Type 1 err; Pwr 0.100;  85% 0.227;  92% 0.334;  95%

“Positive” RCT 173 eff; 184 not 155 eff; 346 not 141 eff; 446 not

Number RCT 357 (49% eff) 501 (31% eff) 587 (24% eff)
N per RCT 839 839 839

Type 1 err, Pwr 0.025;  95% 0.025;  94% 0.025;  95%

# Effctve Adopt 165 147 134

# Ineff Adopt 5 9 11

Pred Val Pos 97% 94% 92%
N per Adopt 1,181 1,181 1,181

P
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Inhomogeneous Effects, No Error Control

• Consider treatments effective only in females

• Prevalence of beneficial treatments: 10%

• Look for subgroups having effects

– Sex, Age (young vs old), BMI (normal vs obese)

– Strategies
• If significant overall, proceed with all, otherwise choose most 

significant subgroup
• Choose subgroup if it is highly significant and opposite subgroup 

has estimated nil effect
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Impact of Strategies for Subgroups

Analysis Sig Pref All Choice Min P

All                                 .64            .64            .40            .07

Females                       .85            .20            .40            .60

Males                           .10            .00            .00            .00

Young                          .45            .02            .03            .06

Old                               .45            .02            .03            .06

Norm Wt                      .45            .02            .03            .06

Obese                          .45            .02            .03            .06

Summary (Inhomogeneous Effects)
Scenario 2b Prefer All Choose Subgrp

Number RCT 2,123 (10% eff) 1,490 (10% eff) 1,490 (10% eff)
N per RCT 342 342 342

Type 1 err; Pwr 0.100;  64% 0.334;  92% 0.334;  92%

“Positive” RCT 136 eff; 191 not 137 eff; 448 not 137 eff; 448 not

Number RCT 327 (42% eff) 584 (23% eff) 584 (23% eff)
N per RCT 839 839 839

Type 1 err, Pwr 0.025;  73% 0.025;  75% 0.025;  80%

# Effctve Adopt 99 103 109

# Ineff Adopt 5 11 11

Pred Val Pos 95% 90% 91%
N per Adopt 1,181 1,181 1,181
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Adaptive Sampling Plans

• At each interim analysis, possibly modify
– Conditions for early stopping
– Schedule of analyses
– Randomization ratios
– Maximal statistical information
– Statistical criteria for credible evidence
– Scientific and statistical hypotheses of interest

• Summary measures used to quantify treatment effect 
– Mean, median, etc.

• Clinical endpoint
– Objective response rate, progression, survival, etc.

• Eligibility criteria
– Restrict to a subgroup

• Definition of treatment
– Drop dose groups, change ancillary treatments, etc.

434

When Stopping Rules Not Pre-specified

• Methods to control the type I error have been described for 
fully adaptive designs
– Most popular: Preserve conditional error function from some 

fixed sample or group sequential design
– Can have loss of efficiency relative to prespecified plan

• Can choose revised sample size to maintain power

• Methods to compute bias adjusted estimates and confidence 
intervals not yet well-developed
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“Partitioning Type 1 Error”

• When designing an adaptive design to look for alternative 
endpoints, subgroups, doses, we have to decide how to 
prioritize the different decisions

• This is akin to “spending type 1 error” in sequential trials

• We have to consider our relative beliefs in the treatment effect
– Is it likely to be homogeneous across all subgroups examined?

– Is it likely to be concentrated in some pre-specified subgroup?

436

Strategies for Subgroups: Type 1 Error

Example: Assuming independent covariates with 50-50 split

Analysis Sig Pref All Choice Min P

All             .023   .022      .021    .007

Females         .023   .013      .013    .015

Males           .023   .013      .013    .015

Young           .023   .013      .013    .015

Old             .023   .013      .013    .015

Norm Wt         .023   .013      .013    .015
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Strategies for Subgroups: Alternatives

• Need to consider how we thing the overall treatment effect 

might differ from effects within subgroups

• Cases we have considered

– Hypothesized treatment effect actually occurs only in 

subpopulation

• Overall test is extremely underpowered: 45% instead of 85%

– Slightly stronger hypothesized treatment effect only in 

subpopulation

– Overall population’s treatment effect as hypothesized

• But one subgroup has double that effect and opposite subgroup has 

no effect 

438

Generalizability

• We need to consider type 1 and type 2 errors relative to the 
ultimate result of the “drug discovery” process

• The previous results are dependent on

– A mixture of 10% effective drugs and 90% ineffective drugs, 
where “effectiveness” is defined based on the clinical outcome 
used in the phase 3 trial

– Phase 2 and phase 3 type I errors being controlled at the 
specified level based on the phase 3 outcome

– Phase 2 and phase 3 power being controlled at the specified 
level based on the phase 3 outcome

• Many early phase RCT use alternative outcomes

– “Surrogate endpoints” in restricted populations
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Inhomogeneous Effects, Control Errors

• Consider treatments effective only in females

• Prevalence of beneficial treatments: 10%

• Look for subgroups having effects
– Sex, Age (young vs old), BMI (normal vs obese)
– Strategies as before

• Perform all tests using type I error of 0.023
– Yields experimentwise type I error of 0.100

Control Error (Inhomogeneous Effects)
Scenario 2b Inflate Error Control Error

Number RCT 2,123 (10% eff) 1,490 (10% eff) 1,720 (10% eff)
N per RCT 342 342 438

Type 1 err; Pwr 0.100;  64% 0.334;  92% 0.100;  80%

“Positive” RCT 136 eff; 191 not 137 eff; 448 not 138 eff; 156 not

Number RCT 327 (42% eff) 584 (23% eff) 294 (47% eff)
N per RCT 839 839 839

Type 1 err, Pwr 0.025;  73% 0.025;  80% 0.025;  76%

# Effctve Adopt 99 109 105

# Ineff Adopt 5 11 4

Pred Val Pos 95% 91% 96%
N per Adopt 1,181 1,181 1,277
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Control Error (Inhomogeneous Effects)

• With inhomogeneous effects, we also need to consider 

additional errors

• A “True Positive” would be adoption of a new treatment in 

exactly the population that benefits

• “False Positives” might include drugs with too broad an 

indication

– It does not work in part of the population

• “False Negatives” might include a drug that has omitted part 

of the population that would truly benefit

442

Homogeneous Effects, Surrogates

• We consider treatments that are equally effective in all 
subjects

• Prevalence of beneficial treatments: 10%
– “Beneficial” defined based on phase 3 endpoint

• Prevalence of misleading treatments: 0%, 10%, or 20%
– “Misleading” = efficacious on surrogate but not effective
– 85% power to detect efficacy on surrogate

• No adaptations
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Surrogates (Homogeneous Effects)
0% Misleading 10% Misleading 20% Misleading

Number RCT 2,046 (10% eff) 1,812 (10% eff) 1,627 (10% eff)

N per RCT 342 342 342

Type 1 err; Pwr 0.100;  85% 0.100;  85% 0.100;  85%

“Positive” RCT 174 eff; 184 not 154 eff; 337 not 138 eff; 494 not

Number RCT 358 (49% eff) 491 (31% eff) 632 (22% eff)

N per RCT 839 839 839

Type 1 err, Pwr 0.025;  95% 0.025;  95% 0.025;  95%

# Effctve Adopt 166 147 132

# Ineff Adopt 5 8 12

Pred Val Pos 97% 95% 91%

N per Adopt 1,181 1,181 1,181
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Comparisons

RCT     Eff (TP)    Not(FP)       
n

Nonadaptive

• Homogeneous effect                    2,040  165(165)   5  
1,181

• Homogeneous,10% misleading    1,812  147(147)   8  
1,181

• Homogeneous,20% misleading    1,627  132(132)  12  
1,181

• Inhomogeneous effect                  2,123   99(  0)   5  
1,181
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Seamless Phase 2 / 3

• In cases that no changes will be made between Phase 2 and 
Phase 3, can try to use same trial
– Need to ensure that same level of evidence is provided as would 

be in two independent trials
• Pivotal 0.005 vs 0.000625 in two independent trials?
• One RCT setting vs two RCT settings (random effects)

• Such would eliiminate “white space”
– But note that white space is truly an issue for those whose focus 

is on a particular agent
– During “white space” other agents in the pipeline can be 

investigated
– Eliminating “white space” limits scientific, regulatory, and ethical 

review of phase 2 results

446

Comments

• Screening Phase II trials provide great protection 
– Ensure that overwhelming majority of adopted therapies are truly 

effective

• However, control of type I and II errors are of great 
importance even at phase 2
– But note that type 1 error of 0.025 not necessarily indicated

• Adaptive designs can help provide that control
– But need to re-power the study to get greatest benefit
– The added benefit over nonadaptive designs is not huge, but 

there are advantages
• Higher power and predictive value of the positive
• More beneficial drugs identified
• More patient exposure for adopted drugs

• Adaptation cannot protect against false surrogates
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Adaptive Sample Size Determination

• Design stage: 
– Choose an interim monitoring plan
– Choose an adaptive rule for maximal sample size

• Conduct stage: 
– Recruit subjects, gather data in groups
– After each group, analyze for DMC

• DMC recommends termination or continuation
– After penultimate group, determine final N

• Analysis stage: 
– When study stops, analyze and report

448

Adaptive Sample Size Approach

• Perform analyses when sample sizes N1. . . NJ

• N1. . . NJ-1 can be randomly determined indep of effect

• At each analysis choose stopping boundaries
• aj < bj < cj < dj

• At N1. . . NJ-1 compute test statistic Tj= T(X1. . . XNj)
• Stop if      Tj < aj (extremely low)
• Stop if   bj < Tj < cj (approximate equivalence)
• Stop if      Tj > dj (extremely high)
• Otherwise continue

– At NJ-1 determine  NJ according to value of Tj
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When Stopping Rules Not Pre-specified

• Methods to control the type I error have been described for 
fully adaptive designs
– Most popular: Preserve conditional error function from some 

fixed sample or group sequential design
– Can have loss of efficiency relative to pre-specified designs

• Recently methods to compute bias adjusted estimates and 
confidence intervals have been developed
– Loss of precision relative to pre-specified designs

450

Scientific Design Issues

• Under what conditions should we alter our hypotheses?
– Definition of a “Treatment Indication”

• Disease
• Patient population
• Definition of treatment (dose, frequency, ancillary treatments, …)
• Desired outcome

• How do we control false positive rate?
– Multiple comparisons across subgroups, endpoints

• How do we provide inference for Evidence Based Medicine?
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Adaptive Sampling: Issues

“Make new friends, but don’t forget the old.                   
One is silver and the other is gold”

- Children’s song

452

CDER/CBER Guidance on Adaptive Designs

• Recommendations for use of adaptive designs in confirmatory 
studies
– Fully pre-specified sampling plans
– Use well understood designs

• Fixed sample
• Group sequential plans
• Blinded adaptation

– For the time-being, avoid less understood designs
• Adaptation based on unblinded data

• Adaptive designs may be of use in early phase clinical trials
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Perpetual Motion Machines

• A major goal of this course is to discern the hyperbole in much 
of the recent statistical literature
– The need for adaptive clinical trial designs

• What can they do that more traditional designs do not?

– The efficiency of adaptive clinical trial designs
• Has this been demonstrated?

• Are the statistical approaches based on sound statistical 
foundations?

– “Self-designing” clinical trials
• When are they in keeping with our scientific goals?

454

Important Distinctions in this Course

• What aspects of the RCT are modified?
– Statistical: Modify only the sample size to be accrued 
– Scientific: Possibly modify the hypotheses related to patient 

population, treatment, outcomes

• Are all planned modifications described at design?
– “Prespecified adaptive rules”: Investigators describe

• Conditions under which trial will be modified and
• What those modification will consist of

– “Fully adaptive”: At each analysis, investigators are free to use 
current data to modify future conduct of the study

• When do the modifications take place?
– Immediately: Potential to stop study at current analysis
– Future stages of the RCT: Change plans for next analysis
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Response Adaptive Modifications
of an RCT Design

Overview of General Methods

Where am I going?
Various authors have advocated the use of unblinded interim 
estimates of the treatment effect to modify a broad spectrum of 
RCT design parameters.

In this section of this course, I review the most commonly 
espoused statistical methods that would be used to maintain an 
experimentwise type I error.

456

Blinded Adaptive Sampling

• Modify sample size to account for estimated information 
(variance or baseline rates)

• No effect on type I error IF
– Estimated information independent of estimate of treatment 

effect
• Proportional hazards,
• Normal data, and/or
• Carefully phrased alternatives

– And willing to use conditional inference
• Carefully phrased alternatives
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Estimation of Statistical Information

• If maximal sample size is maintained, the study discriminates 
between null hypothesis and an alternative measured in units 
of statistical information
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Estimation of Statistical Information

• If statistical power is maintained, the study sample size is 
measured in units of statistical information 
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Adaptation to Gain Efficiency?

• Consider adaptation merely to repower study
– “We observed a result that was not as good as we had 

anticipated”

• All GST are within family of adaptive designs
– Don’t we have to be at least as efficient?

• Issues
– Unspecified adaptations
– Comparing apples to apples

460

Two Stage Design

• Proschan & Hunsberger consider worst case

– At first stage, choose sample size of second stage
• N2 = N2(Z1) to maximize type I error

– At second stage, reject if Z2 > a2
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Proschan & Hunsberger

• Worst case type I error of two stage design

• Can be more than two times the nominal
– a2 = 1.96 gives type I error of 0.0616
– (Compare to Bonferroni results)
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Flexible Adaptive Designs

• Proschan and Hunsberger describe adaptations to maintain 
experimentwise type I error and increase conditional power
– Must prespecify a conditional error function

– Often choose function from some specified test

– Find critical value to maintain type I error
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Other Approaches

• Self-designing Trial (Fisher, 1998)
– Combine arbitrary test statistics from sequential groups
– Prespecify weighting of groups “just in time”

• Specified at immediately preceding analysis
– Fisher’s test statistic is N(0,1) under the null hypothesis of no 

treatment difference on any of the endpoints tested

• Combining P values (Bauer & Kohne, 1994)
– Based on R.A. Fisher’s method

464

Incremental Statistics

• Statistic at the j-th analysis a weighted average of data 
accrued between analyses
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Conditional Distribution
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Protecting Type I Error

• LD Fisher’s variance spending method
– Arbitrary hypotheses H0j:θj = θ0j

– Incremental test statistics Zj
*

– Allow arbitrary weights Wj specified at stage j-1

• RA Fisher’s combination of P values (Bauer & Köhne)
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Unconditional Distribution

• Under the null
– SDCT: Standard normal
– Bauer & Kohne: Sum of exponentials

• Under the alternative
– Unknown unless prespecified adaptations
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Sufficiency Principle

• It is easily shown that a minimal sufficient statistic is (Z, N) at 
stopping

• All methods advocated for adaptive designs are thus not 
based on sufficient statistics
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Response Adaptive Modifications
of an RCT Design

Modification of the Maximal Sample Size

Where am I going?
The majority of the statistical literature on adaptive clinical trial 
design is directed toward using interim estimates of the 
treatment effect to re-power a study.

In this section of the course I review the basis for those 
methods and demonstrate the settings in which such adaptive 
designs can improve substantially on more traditional methods.

470

Adaptive Sample Size Determination

• Design stage: 
– Choose an interim monitoring plan
– Choose an adaptive rule for maximal sample size

• Conduct stage: 
– Recruit subjects, gather data in groups
– After each group, analyze for DMC

• DMC recommends termination or continuation
– After penultimate group, determine final N

• Analysis stage: 
– When study stops, analyze and report
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Adaptive Sample Size Approach

• Perform analyses when sample sizes N1. . . NJ

• N1. . . NJ-1 can be randomly determined indep of effect

• At each analysis choose stopping boundaries
• aj < bj < cj < dj

• At N1. . . NJ-1 compute test statistic Tj= T(X1. . . XNj)
• Stop if      Tj < aj (extremely low)
• Stop if   bj < Tj < cj (approximate equivalence)
• Stop if      Tj > dj (extremely high)
• Otherwise continue

– At NJ-1 determine  NJ according to value of Tj

472

Operating Characteristics

• Given an adaptive rule that modifies the final sample size at 
the penultimate stage, this can be viewed as adaptively 
switching between two group sequential tests
– Standard group sequential software can be used
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Apples with Apples

• Can adapting beat a GST with the same number of analyses?
– Fixed sample design: N=1
– Most efficient symmetric GST with two analyses

• N = 0.5, 1.18
• ASN = 0.6854

– Most efficient adaptive design with two possible N
• N = 0.5 and either 1.06 or 1.24
• ASN = 0.6831 ( 0.34% more efficient)

– “Most efficient” adaptive design with four possible N
• N = 0.5 and either 1.01, 1.10, 1.17, or 1.31
• ASN = 0.6825 ( 0.42% more efficient)

474

Apples with Apples (continued)

• GST with more analyses?

– Fixed sample design: N=1

– Most efficient symmetric GST with two analyses

• N = 0.5, 1.18

• ASN = 0.6854

– GST with same three analyses

• N = 0.5,1.06 and 1.24

• ASN = 0.6666 ( 2.80% more efficient)

– GST with same five analyses

• N = 0.5, 1.01, 1.10, 1.17, or 1.31

• ASN = 0.6576 ( 4.20% more efficient)



Design, Monitoring, and Analysis of Clinical 
Trials 

July 23, 2019

Scott S. Emerson, M.D., Ph.D. 238

475

Prespecified Modification Rules

• Adaptive sampling plans exact a price in statistical efficiency

• Tsiatis & Mehta (2002); Jennison & Turnbull (2003)

– A classic prespecified group sequential stopping rule can be 

found that is more efficient than a given adaptive design

• Shi  (2003, unpublished thesis)

– Fisher’s test statistic in the self-designing trial provides markedly 

less precise inference than that based on the MLE

• To compute the sampling distribution of the latter, the sampling plan 

must be known

476

Comments re Conditional Power

• Many authors propose adaptations based on conditional or 
predictive power

• Neither conditional power nor predictive power have good 
foundational motivation
– Frequentists should use Neyman-Pearson paradigm and 

consider optimal unconditional power across alternatives
• And conditional/predictive power is not a good indicator in loss of 

unconditional power
– Bayesians should use posterior distributions for decisions
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Optimal Adaptions by Conditional Power

• Difficulty understanding conditional / predictive power scales 
can lead to bad choices for designs

478

Optimal Timing of Adaptation

• When should adaptive analysis take place relative to minimal 
acceptable sample size?
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Example

• http://www.cytel.com/pdfs/Mehta_Pocock_PromisingZone_StatsinMed_9.11.10.pdf

480

Example Modification Plan
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Alternative Approaches

482

Alternative Approaches
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Alternative Approaches

• The authors plan for adaptation could increase sample size by 
100%

• Using their adaptive plan, the probability of continuing until a 
25% increase in maximal sample size
– .064 under null hypothesis

– .162 if treatment effect is new target of 1.6

– .142 if treatment effect is old target of 2.0

• By way of contrast
– A fixed sample test with 11% increase in sample size has same 

power

– A group sequential test with 11% increase in maximal sample 
size has same power and better ASN

484

Apparent Problem

• The authors chose extremely inefficient thresholds for 
conditional power
– Adaptation region 0.365 < CPest < 0.8
– From optimal test, 0.049 < CPest < 0.8  is optimal 

• Even experienced clinical trialists get it wrong
– The authors also seemed somewhat chagrined that efforts to 

boost conditional power did not result in substantial gains in 
unconditional power
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Delayed Measurement of Response

• This example had delayed measurement of response

• It is in that situation that we have found the greatest 
advantage of an adaptive design
– Early evidence of an effect may allow curtailing accrual
– If constraining schedule of analyses, then adaptive design 

sometimes outperform GST depending on relative magnitude of
• Per patient costs
• Calendar time costs

• With relaxation of constraints, we easily found a better GST
– (Emerson, Rudser, Emerson, 2011)

486

The Cost of Planning Not to Plan

• In order to provide frequentist estimation, we must know the 
rule used to modify the clinical trial
– We can then evaluate candidate designs

• Hypothesis testing of a null is possible with fully adaptive trials
– Statistics: type I error is controlled
– Game theory: chance of “winning” with completely ineffective 

therapy is controlled
– Science:

• At best: ability to discriminate clinically relevant hypothesis may be 
impaired

• At worst: uncertainty as to what the treatment has effect on

• With prespecified adaptation, we know how to do inference, 
but standard orderings may lead to surprising results
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Take Home Message 9

• Adaptive RCT designs

– Group sequential designs a special, well understood case

– Methods based on unblinded adaptation 
• Statistical inference not based on minimal sufficient statistics

• Unblinded adaptive modifications of statistical aspects of design 
generally not recommended by me due to inefficiency

– Randomization ratio

– Maximal statistical information (SSRE)
» Possible exception: altering accrual in time to event

– Adaptive modifications of indication (phase 2 more than phase 3)
• Adaptive enrichment of patient population to find greatest efficacy

• Adaptive selection of doses or treatments
• Adaptive selection of outcomes

– Less useful because outcome should be based on clinical 
importance

488

Statistical Analysis Plan

Where am I going?
A formal Statistical Analysis Plan (SAP) is developed and 
finalized prior to unblinding treatments.

This serves to ensure that all analysis methods are totally pre-
specified, thereby avoiding data-driven hypothesis.
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Purpose of Descriptive Statistics

• Identify errors in measurement, data collection

• Characterize materials and methods

• Assess validity of assumptions needed for analysis

• Straightforward estimates to address scientific question

• Hypothesis generation

490

Purpose #3: Validity of Assumptions

• Sampling scheme (of crucial importance)

– Is our sample relevant to our question?

– Missing data

– Confounding

• A function of means (arithmetic, geometric, proportions)

– Influential cases

• Modeling of dose response (importance depends on question)

– Not so important with modeling of baseline covariates for 

precision

– Effect modification (scientific question or exploration)

– Linearity of association (estimation in groups or exploration)

• Distributional assumptions 

– Technical assumptions with strong (semi)parametric models

– Avoided with use of distribution-free approaches
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Take Home Message 10

• Statistical Analysis Plan

– Table 1: Compare distributions of baseline variables across arms 
• Materials and methods: range, quartiles, means, SD
• Randomization imbalance: means (geometric means, proportions)

– Formal sequential stopping rules

– Complete pre-specification of analysis models for all primary and 
secondary endpoints

• Adjustment for covariates and exact form used in modeling
– Model misspecification not much of issue

• Handling of missing data and sensitivity analyses
• Handling of multiple comparisons: Hierarchy of testing

– Confirmatory and supportive analyses re mechanism of action
• Alternative summary measures and alternative clinical endpoints

– Exploratory analyses of important subgroups

Implementation for Monitoring
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Schedule of Analyses

• Design of clinical trial : Selection of stopping rule to provide 
desired operating characteristics
– Type I error
– Statistical power to detect design alternative
– Efficiency
– Bayesian properties
– Futility considerations

494

Schedule of Analyses

• At time of study design : Sample size (power, alternative) 
calculations based on
– Specifying a maximum of J analyses
– Specifying sample sizes at which analyses will be performed

• During conduct of study: Number and timing of analyses may 
be different
– Monitoring scheduled by calendar time
– Slow (or fast) accrual
– Estimation of available information at time of locking database
– External causes
– (should not be influenced by study results)
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Impact of Altered Schedule

• Summary for Pocock boundary relationships

Analysis Times           Alt    Max N   Bound
========================     ====   ======   =====
.25, .50, .75, 1.00          .500   345.23   .2500
.40, .60, .80, 1.00          .500   329.91   .2500
.40, .60, .80, 1.00          .489   345.23   .2444
.20, .40, .60, .80, 1.00     .500   360.51   .2500
.20, .40, .60, .80, 1.00     .511   345.23   .2555

496

Impact of Altered Schedule

• Summary for O’Brien-Fleming boundary relationships

Analysis Times           Alt    Max N   Bound
========================     ====   ======   =====
.25, .50, .75, 1.00          .500   256.83   .2500
.40, .60, .80, 1.00          .500   259.44   .2500
.40, .60, .80, 1.00          .503   256.83   .2513
.20, .40, .60, .80, 1.00     .500   259.45   .2500
.20, .40, .60, .80, 1.00     .503   256.83   .2513
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Implementation

• Need methods that allow flexibility in determining number and 
timing of analyses

• Should maintain some (but not, in general, all) desired 
operating characteristics, e.g.:
– Type I error
– Type II error
– Maximal sample size
– Futility properties
– Bayesian properties

498

Estimation of Statistical Information

• At time of study design: Sample size (power, alternative) 
calculations based on
– Specifying statistical information available from each sampling 

unit

• During conduct of study: Statistical information from a 
sampling unit may be different than originally estimated
– Variance of measurements
– Baseline event rates
– (Altered sampling distribution for treatment levels)
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Estimation of Statistical Information

• Effect of using incorrect estimates of statistical information at 
the design stage
– Using  the specified sample size, the design alternative will not 

be detected with the desired power

– Using the specified sample size, the alternative detected with the 
desired power will not be the design alternative

– In order to detect the design alternative with the desired power, a 
different sample size is needed

500

Blinded Adaptive Sampling

• Modify sample size to account for estimated information 
(variance or baseline rates)

• No effect on type I error IF
– Estimated information independent of estimate of treatment 

effect
• Proportional hazards,
• Normal data, and/or
• Carefully phrased alternatives

– And willing to use conditional inference
• Carefully phrased alternatives
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Estimation of Statistical Information

• If maximal sample size is maintained, the study discriminates 
between null hypothesis and an alternative measured in units 
of statistical information
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Estimation of Statistical Information

• If statistical power is maintained, the study sample size is 
measured in units of statistical information 
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Schedule of Analyses

• Use of constrained families is necessary because critical 

values are dependent upon exact schedule

– In Unified Family, boundary at first analysis is affected by timing 

of later analyses

– Compare boundary at first analysis when timing of second 

analysis differs:

• `a’ boundary: -0.0743  versus -0.0740

• ‘d’ boundary: 0.5744 versus 0.5713

– Must constrain first boundaries at the levels actually used, and 

then use parametric form for future analyses

504

Flexible Determination of Boundaries

• When implementing stopping rules, must be able to 
accommodate changes

• Previously described methods for implementing stopping rules
– (Adhere exactly to monitoring plan)
– (Approximations based on design parameters: Emerson and 

Fleming, 1989)
– Christmas tree approximation for triangular tests: Whitehead and 

Stratton, 1983
– Error spending functions: Lan and DeMets, 1983; Pampallona, 

Tsiatis, and Kim, 1995
– Constrained boundaries in unified design family: Emerson, 2000; 

Burington and Emerson, 2003
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Common Features

• Stopping rule specified at design parameterizes the boundary 
for some statistic (boundary scale)

• At the first interim analysis, parametric form is used to 
compute the boundary for actual time on study

• At successive analyses, the boundaries are recomputed 
accounting for the exact boundaries used at previously 
conducted analyses

• Maximal sample size estimates may be updated

506

Constrained Boundaries Approach

• Use of constrained families in flexible implementation of 
stopping rules
– At the first analysis, compute stopping boundary from parametric 

family

– At successive analyses, use parametric family with constraints 
(on some scale) for the previously conducted interim analyses

– When the error spending scale is used, this is just the error 
spending approach of Lan & DeMets or Pampallona, Tsiatis, & 
Kim
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Case Study: Summary of Study

• Target population
– Patients in ICU with newly diagnosed gram negative sepsis

• Primary endpoint
– 28 day mortality (binary)

• Summary measure (contrast)
– Difference in probability of mortality within 28 days

• Test type
– One-sided level .025 test of binomial proportions

• Baseline event rate and clinically relevant difference
– Assumed to be 30%
– 5% absolute difference in 28 day mortality

508

Case Study: Monitoring the Trial

• Maintaining operating characteristics
– Depends upon statistical information

– In the binomial case, this is determined by the event rates 

– If event rates are different from those assumed at design stage, 
need to choose whether to 

• Re-estimate maximum sample size to maintain power
• Maintain maximum sample size and re-compute power

– Re-compute these by using the POOLED event rate on 
observed data
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• Simulated example
– Event rate in control arm is 0.35
– Event rate in treatment arm is 0.25

• First interim analysis takes place after 400 patients observed (200 
per arm)

Case Study: Simulated Monitoring

510

First Monitoring Analysis: Re-estimate N
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First Monitoring Analysis

512

Second Monitoring Analysis
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Second Monitoring Analysis

Time to Event Endpoints

Estimating Subject Accrual

Where am I going?
In time to event analyses, statistical information is roughly 
proportional to the number of events.

Additional consideration must be given to accrual of subjects.
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Time to Event Endpoints

• RCTdesign allows specification of the “hazard” probability 
model for time to event data
– Logrank statistic
– Estimates of hazard ratio using Cox model

• “Sample size” computations return number of events primarily

• Additional accrual models are used to estimate
– Number of subjects to accrue
– Calendar time of interim analyses

516

Case Study: Stopping Rule

• Design of RCT to test a new drug for NSCLC

– One-sided type 1 error: 0.025 for null of HR=1.0

– Power: 90% to detect HR= 0.77

– Four interim analyses with OBF efficacy, intermediate futility
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Specification of Accrual

• Need to observe 655 events

• Accrual pattern can be specified in a variety of ways
– Accrual and additional follow-up time

• Calculates accrual rate
– Accrual rate and study time

• Calculates accrual time

• Wide variety of distributions for
– Accrual (uniform, beta, rates for each time period)
– Loss to follow-up (exponential, Weibull, piecewise exponential)
– Time to event (exponential, Weibull, piecewise exponential)

• Accrual parameters can be specified in seqDesign()

518

Case Study: Accrual

• Need to observe 655 events

• Assume accrual over 3 years
– Use uniform accrual

• Assume additional follow-up of 1 year
– Total study time of 4 years

• Assume median survival of 3 years
– Use exponential survival distribution



Design, Monitoring, and Analysis of Clinical 
Trials 

July 23, 2019

Scott S. Emerson, M.D., Ph.D. 260

519

Case Study: Accrual

• tte <- update(tte, accrualTime= 3, studyTime= 4, 
eventQuantiles= 3)

520

Case Study: Accrual (months)

• tte <- update(tte, accrualTime= 36, studyTime= 48, 
eventQuantiles= 36)
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Case Study: Accrual Plots

• seqPlotPHNSubjects(tte)

522

Case Study: Accrual Plots

• seqPlotPHNSubjects(tte)
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Frequentist Inference Following GSD

Where am I going?
Group sequential and adaptive testing modifies the sampling 
distribution of the estimates.

Frequentist inference must account for the proper sampling
distribution.

Methods have been well-developed for these situations.
• There is no uniformly optimal method of computing CI and p 

values, so particular orderings of the sample space must be 
selected.
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Frequentist Inference

( )

( )
( )

5.0ˆ|Pr                 :estimates edMdn Unbias

2
1|Pr

2
:                                :for  CI

|Pr                                            : valueP

,~|                        :modely Probabilit

                                         :data Observed

0

=÷
ø
öç

è
æ >

þ
ý
ü

î
í
ì -£>£

>

=

q

aqaqq

q

qq

!!!

!!!!!

!!!

!!!!
!!

yY

yY

yY

yFY

yY

XX



Design, Monitoring, and Analysis of Clinical 
Trials 

July 23, 2019

Scott S. Emerson, M.D., Ph.D. 263

525

Implementation

• Define “extreme data” for each hypothesis
– Choose test statistic to define ordering
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Statistical Theory

• Parametric probability models
– Neyman – Pearson Lemma

• LR is MP for simple hypotheses
– Karlin – Rubin

• LR is UMP if monotone likelihood ratio

– Cramer – Rao
• Efficient estimates in “regular” problems

– Asymptotic likelihood theory
• CAN estimators in “regular” problems
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Clinical Trials

• Nonparametric probability models
– Regulatory agencies do not allow model checking

• Nuisance parameters
– Continuous data: Within group variance
– Binary data: Placebo event rate in comparative trials

• Finite sample sizes
– Especially when assessing severe toxicity

528

Sequential Sampling

• Curved sample space
– With one dimensional parameter, the sufficient statistic is two-

dimensional
– Impact on completeness

• No uniformly most powerful tests

• No uniformly most accurate CI
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Ordering the Outcome Space

• Issue similar to decisions commonly faced with 2 x 2 
contingency tables
– Chi squared vs Fisher’s exact vs LR vs Wald ordering

• Ordering of the sequential outcome space
– Orderings of outcomes within an analysis time intuitive

• Based on the value of Tj at that analysis
– Need to define ordering between outcomes at successive 

analyses
• How does sample mean of 3.5 at second analysis compare to 

sample mean of 3 at first analysis (when estimate more variable)?

530

Stagewise Ordering

• Jennison & Turnbull, 1983; Tsiatis, Rosner, & Mehta, 1984

• Results leading to earlier stopping are more extreme

– Linearizes the outcome space

– Depends on the sequential stopping rule

– Not defined for two-sided tests with early stopping for both null 
and alternative

– Independent of alternative
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Stagewise Ordering

532

MLE ordering

• Duffy and Santner, 1987; Emerson and Fleming, 1990

• Consider only magnitude of sample mean
• Independent of stopping rule

( ) ( ) 212211 ,, xxxmxm >Û>
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MLE Ordering

• Contours of equality

534

LR ordering

• Chang and O’Brien, 1986; Chang, 1988

• Consider only Likelihood Ratio
• Independent of stopping rule
• Depends on alternative
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LR Ordering

• Contours of equality
– Under null and alternative
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Optimality Criteria

• Dependence on sampling plans
– AT: depends on sampling plan, but not future analysis times

• Shorter CI (on average)
– MLE < AT
– MLE < LR for O’Brien-Fleming; LR < MLE for Pocock

• Probability of obtaining a low P value (Pivotal studies)
– LR > MLE > AT

• Agreement with stopping boundaries
– MLE: if boundaries are appropriately monotonic
– AT: unless different thresholds at similar sample sizes
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Adaptive Sample Size Approach

• Perform analyses when sample sizes N1. . . NJ

• N1. . . NJ-1 can be randomly determined indep of effect

• At each analysis choose stopping boundaries

• aj < bj < cj < dj

• At N1. . . NJ-1 compute test statistic Tj= T(X1. . . XNj)

• Stop if      Tj < aj (extremely low)

• Stop if   bj < Tj < cj (approximate equivalence)

• Stop if      Tj > dj (extremely high)

• Otherwise continue

– At NJ-1 determine  NJ according to value of Tj

538

Inference: Major Issues

• Prespecification of adaptive plan is necessary to know 
sampling distribution
– FDA CDER/CBER Guidance suggest prespecification is 

necessary for adequate and well-controlled studies

• How to generalize orderings used in GST to adaptive designs
– MLE, LR straightforward
– SW needs to consider multiple possible analysis times with 

empty continuation region
• Use stage (creates many ties similar to MLE)
• Use sample size instead of stage
• Use weighted statistics instead of sufficient statistic

• Ordering specific to adaptive designs
– Branath, Mehta, Posch (2009)
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Prespecified Two-stage Adaptive Design

• Approximately optimal ASN under null and alternative
– 0.44% more efficient than optimal two-stage GST (N2 = 1.18)
– ASN: GST 0.6854; Adaptive 0.6824
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Inference on the Boundary by Ordering

• 95% CI for results on boundary at second analysis
– Using sufficient statistic

N      MLE,SWm       SWz            AT            LR
0.98    0, 3.92   -0.11, 3.83   -1.87, 3.62   -0.11, 4.03
1.03    0, 3.92   -0.08, 3.86   -1.77, 3.66   -0.08, 4.00
1.08    0, 3.92   -0.05, 3.88   -1.66, 3.71   -0.05, 3.97
1.13    0, 3.92   -0.03, 3.90   -1.53, 3.75   -0.03, 3.95 
1.17    0, 3.92   -0.01, 3.92   -1.39, 3.79   -0.01, 3.93
1.21    0, 3.92    0.01, 3.94   -1.20, 3.83    0.01, 3.91
1.24    0, 3.92    0.03, 3.96   -0.92, 3.86    0.03, 3.89
1.28    0, 3.92    0.04, 3.98    0.00, 3.92    0.04, 3.88
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Control of Type 1 Error

• Methods to control the type 1 error for adaptive designs
– Ignore the data and generate a random uniform
– Use only the data gathered prior to adaptation
– Use only the data gathered after adaptation
– Most popular: Preserve conditional error function from some 

fixed sample or group sequential design
– (Prespecification and proper sampling distribution)

542

When Stopping Rules Not Pre-specified

• Methods to control the type 1 error for fully adaptive designs
– Most popular: Preserve conditional error function from some 

fixed sample or group sequential design
• Note the impact this would have on pre-specified inference

– Alternative: Reweighting of the information accrued at different 
stages

• Methods to compute bias adjusted estimates and confidence 
intervals not yet well-developed
– Have to anticipate what adaptations performed under other 

results
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Two-stage Fully Adaptive Design

• Critical values determined using conditional error function
– Loss of power relative to use of sufficient statistic:
– Maintain N:          Power 0.9744 vs 0.975
– Maintain power:   Inflate N by 0.902% to achieve ASN 0.6852 

• cf: Group sequential design had ASN of 0.6854
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Comparison of CI Precision

• O’Brien-Fleming conditional error function
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Comparison of MSE of Estimates

• O’Brien-Fleming conditional error function
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Enrichment, Dropping Arms

• When using adaptive designs to drop subgroups or to drop 
doses or treatments, the indication that is being investigated 
is a random variable

• CI can be computed conditionally on the “winning” indication
– Sampling distribution depends on full dose response
– Conservative coverage

• (CI for dropped groups is infinite)
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CDER/CBER Guidance on Adaptive Designs

• Recommendations for use of adaptive designs in confirmatory 
studies
– Fully pre-specified sampling plans
– Use well understood designs

• Fixed sample
• Group sequential plans
• Blinded adaptation

– For the time-being, avoid less understood designs
• Adaptation based on unblinded data

• Adaptive designs may be of use in early phase clinical trials
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Major Conclusions

• There is no substitute for planning a study in advance
– At Phase II, adaptive designs may be useful to better control 

parameters leading to Phase III

– At Phase III, there seems little to be gained from adaptive trials
• We need to be able to do inference, and adaptive trials can lead to 

some very perplexing estimation methods

• “Opportunity is missed by most people because it is dressed 
in overalls and looks like work.”  -- Thomas Edison

• In clinical science, it is the steady, incremental steps that are 
likely to have the greatest impact. 
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Additional Resources

• www.RCTdesign.org
– SS Emerson, DL Gillen, JM Kittelson, GP Levin, SC Emerson

• Software
– Documentation
– Tutorials
– Extensions (Bayesian evaluation; adaptive design evaluation)

• Learning
– Short courses
– Research talks
– Case studies

• Methodology
– Technical reports on a variety of RCT-related topics

http://www.rctdesign.org/

