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What To Expect From This Module

• Brief review of some key features of longitudinal studies

• Exploratory analysis and graphical displays for longitudinal data

• Learn about two key families of longitudinal models in some depth:
▶ Generalized estimating equations
▶ (Generalized) linear mixed models

• General approach:
▶ The focus will be on practical application of these methods, with

illustrative examples in R
▶ Some theoretical background and technical details will be provided

• At the conclusion of this module, you should be able to apply
appropriate exploratory and regression techniques to summarize and
generate inference from longitudinal data
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Resources

• Module website: slides, R code, schedule, etc.

• Slack: ask us questions, interact with other module participants,
access recordings

• Office hours:
▶ Anna: 1-2pm PT on Monday, July 18
▶ Katie: 1-2pm PT on Tuesday, July 19

• We’ll recommend textbooks and articles for further reading
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A Bit About You

Please type in the chat:

• Briefly introduce yourself - what’s your name, and what state or
country are you currently located in?

• What’s your primary role in most of the studies in which you
participate?
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Overview

Today, July 18, 8:30-12:
8:30-9:30 Introduction to longitudinal studies + some key terminology
9:30-9:45 Break

9:45-10:30 Generalized least squares, generalized estimating equations
10:30-10:45 Break
10:45-11:15 Linear mixed models
11:15-11:50 Data activity (individual or group)

Tomorrow, July 19, 8:30-12:
8:30-9:00 Recap and review of generalized linear models
9:00-9:30 Generalized estimating equations
9:30-9:45 Break

9:45-10:15 Generalized linear mixed models
10:15-10:45 Special topics (special challenges)
10:45-11:00 Break
11:00-11:45 Data activity (individual or group)
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Resources

Introductory

• Fitzmaurice GM, Laird NM, Ware JH. Applied Longitudinal Analysis.
Wiley, 2011.

• Gelman A, Hill J. Data Analysis Using Regression and Multilevel/
Hierarchical Models. Cambridge University Press, 2007.

• Hedeker D, Gibbons RD. Longitudinal Data Analysis. Wiley, 2006.

Advanced

• Diggle PJ, Heagerty P, Liang K-Y, Zeger SL. Analysis of Longitudinal
Data, 2nd Edition. Oxford University Press, 2002.

• Molenbergs G, Verbeke G. Models for Discrete Longitudinal Data.
Springer Series in Statistics, 2006.

• Verbeke G, Molenbergs G. Linear Mixed Models for Longitudinal
Data. Springer Series in Statistics, 2000.
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Overview

Introduction

General Linear Model

Linear Mixed Model

Activity
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Longitudinal Studies

Repeatedly collect information on the same individuals over time
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Cohort vs. Age Effects
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Cohort vs. Age Effects
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Cohort vs. Age Effects

• On average, older individuals have lower computer literacy
▶ Visible from both cross-sectional and longitudinal data

• Longitudinal data shows that:
▶ Older individuals began at a lower level (cohort effect)

▶ Everyone’s computer literacy improved as they get older (age effect)

• Note: period effects (calendar date) are also sometimes important
▶ Any two of age, cohort, period determine the third
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Cohort vs. Age Effects
Cohort and age effects can also be similar:
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Two-Stage Model

• Formally, cohort and age effects may be represented as a two-stage
model (subjects i = 1, ...,N; time points j = 1, ..., ni ):

1. Cross-sectional comparison at baseline,

E[Yi1] = β0 + βCxi1

2. Longitudinal comparison,

E[Yij − Yi1] = βL(xij − xi1)

• Overall association:

E[Yij ] = βCxi1 + βL(xij − xi1) + ϵij

• To estimate change over time, cross-sectional studies assume βC = βL
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Longitudinal Studies

Repeatedly collect information on the same individuals over time

Benefits

• Separate cohort and age effects

• Demonstrate time ordering of exposure and outcome
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Timing of Exposure and Outcome

• Cross-sectional study:

Less lonely → Healthier

Healthier → Less lonely

• Longitudinal study (e.g., Harvard Study of Adult Development):

Close relationships at age 50 → Physical health at age 80

• Provides some evidence towards causality
▶ One of Hill’s Criteria for Causality
▶ ⋆ There are several other challenges to generating causal inference

⋆ from longitudinal data, particularly observational longitudinal data
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Longitudinal Studies

Repeatedly collect information on the same individuals over time

Benefits

• Separate cohort and age effects

• Demonstrate time ordering of exposure and outcome

• Statistically:
▶ Gains in efficiency: fewer subjects needed to detect the same effect
▶ Partition within-subject and between-subject variability
▶ “Each subject acts as their own control”
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Longitudinal Studies

Repeatedly collect information on the same individuals over time

Challenges

• Analysis must account for longitudinal correlation
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Accounting for Correlation

• Individuals are assumed to be independent

• Longitudinal dependence may be a “nuisance” feature
(not the primary scientific interest)

• Ignoring dependence may lead to incorrect inference
▶ Longitudinal correlation usually positive

▶ Estimated standard errors may be too small

▶ Confidence intervals are too narrow; too often exclude true value
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Longitudinal Studies

Repeatedly collect information on the same individuals over time

Challenges

• Analysis must account for longitudinal correlation

• Account for incomplete participant follow-up
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Missing Data in Longitudinal Studies

• Balanced design: all participants measured at the same time points

• Unbalanced design: measurement times not intended to match

• Incomplete data: observations not available at all intended times

A Plantinga and K Wilson (Module 9) GEE and MM for LDA SISCER 2022 22 / 132



Longitudinal Studies

Repeatedly collect information on the same individuals over time

Challenges

• Analysis must account for longitudinal correlation

• Account for incomplete participant follow-up

• Time-varying covariates
▶ Complicates causal argument
▶ Requires choosing exposure lag
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Longitudinal Studies: Disambiguation

• Time to clinical outcome: survival analysis
▶ Longitudinal observations and time-to-event outcomes: see Module 14

• Time series: many time points, one or a few “individuals”
▶ Stock market, climate, etc.
▶ Different statistical methods apply

• Panel studies: social scientists’ name for longitudinal studies
▶ Many of the same methods apply

• Clustered data: Larger class that includes longitudinal studies
▶ Correlation may be due to other shared characteristics (e.g., school,

family, neighborhood)
▶ Many of the same methods apply
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Exploratory Data Analysis

• Summary statistics over time (by group)

• Plots of individual trajectories and/or mean values

• Empirical covariance structure

Goal: Summarize mean and covariance structure

(Easier for quantitative outcomes than other types!)

A Plantinga and K Wilson (Module 9) GEE and MM for LDA SISCER 2022 25 / 132



Exploratory Data Analysis: Best Practices

1. Show as much of the data as possible

2. Highlight aggregate patterns of potential scientific interest

3. Identify both cross-sectional (cohort) and longitudinal (age) patterns

4. Facilitate identification of unusual individuals or observations
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Three Case Studies

1. Dental Growth

2. Air Pollution and Health

3. Amenorrhea with Birth Control
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Case Study 1: Dental Growth

• Study: Dental growth in preteens
▶ Measured distance between the pituitary gland and the

pterygomaxillary fissure at ages 8, 10, 12, and 14
▶ Easy to identify on x-rays of the side of the head
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Case Study 1: Dental Growth

• Study: Dental growth in preteens
▶ 11 girls and 16 boys
▶ A measure of growth (see below) taken at ages 8, 10, 12, and 14
▶ Balanced and complete data

• Outcome of interest
▶ Distance (mm) from center of the pituitary gland to the

pteryomaxillary fissure

• Research questions
▶ What is the trajectory of growth in preteens?
▶ Does the growth rate differ between boys and girls?
▶ How much heterogeneity is there in children’s growth rates?
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Case Study 1: Dental Growth
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Case Study 1: Dental Growth
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Case Study 1: Dental Growth
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Case Study 2: Air Pollution and Health

• Six Cities Study of Air Pollution and Health
▶ 300 school-age female children in Topeka, Kansas, most enrolled in 1st

or 2nd grade (age 6-7)
▶ Height, age, FEV1 (lung function) measured annually until high school

graduation or loss to follow-up
▶ Incomplete data (severity depends on what is considered “time 0”)

• Outcome of interest
▶ FEV1 (lung function)

• Research questions
▶ How does lung function change as children age?
▶ (Original study also compared more-polluted to less-polluted cities)
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Case Study 2: Air Pollution and Health
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Case Study 2: Air Pollution and Health
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Case Study 2: Air Pollution and Health
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Case Study 3: Amenorrhea with Birth Control

• Clinical Trial of Contracepting Women
▶ 1151 women randomized to either 100mg or 150mg of DMPA
▶ Four injections given at 90-day intervals; final follow-up 90 days after

last injection
▶ Menstrual diary to record vaginal bleeding pattern disturbances
▶ Substantial dropout: over 1/3 of participants dropped out before the

study ended

• Outcome of interest
▶ Amenorrhea (absence of menstrual bleeding) during each 3-month

interval after an injection (note: this is binary!)

• Research questions
▶ How do subject-specific risks of amenorrhea change over the course of

the study?
▶ What is the influence of dosage on amenorrhea risk?
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Case Study 3: Amenorrhea with Birth Control

Visit 1 Visit 2 Visit 3 Visit 4 % among 100mg % among 150mg

0 0 0 0 24.7 20.7

0 0 0 1 8.5 6.3

0 0 1 1 7.1 7.7
...

...
...

...
...

...

0 0 0 2 3.5 1.9

0 0 1 2 2.3 1.7
...

...
...

...
...

...

0 2 2 2 13.2 11.8

1 2 2 2 4.0 5.4
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Case Study 3: Amenorrhea with Birth Control
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Review of Key Stats/Regression Concepts

1. Big Picture of Statistics

2. Linear regression - interpretation and inference

3. Linear regression - effect modification
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Big Picture of Statistics

Description &
Estimation (Ȳ )

Sample

µ
(parameter)

Population

InferenceDesign
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Linear Regression - Estimation and Inference

X Y
β

E[Y | X = x ] = β0 + β1x

Estimation

• Coefficient estimates β̂

• Standard errors for β̂

Inference

• Confidence intervals for β

• Hypothesis tests for β = 0
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Linear Regression - Interpretation (Dental Growth)

We estimate that, comparing two children one year apart in age, the
average orthodontic distance is 0.7 mm longer for the older child.
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Multiple Linear Regression

• Another variable affects the level of the outcome

• Mechanistically: ”adjust” for additional variables

E[Y | x , t] = β0 + β1x + β2t

• Results in parallel lines for groups based on x .

• E.g., if x is sex (0 = female, 1 = male):

Female: E[Y | x = 0, t] = β0 + β2t

Male: E[Y | x = 1, t] = β0 + β1 + β2t

= (β0 + β1) + β2t
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Multiple Linear Regression - Interpretation (Dental
Growth)

We estimate that, comparing two children of the same sex, but one year
apart in age, the average distance is 0.7 mm longer for the older child.
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Linear Regression - Effect Modification

• Association of interest depends on value of another variable

• Mechanistically: interaction terms

E[Y | x , t] = β0 + β1x + β2t + β3x × t

• Results in separate models for groups based on x .

• E.g., if x is sex (0 = female, 1 = male):

Female: E[Y | x = 0, t] = β0 + β2t

Male: E[Y | x = 1, t] = β0 + β1 + β2t + β3t

= (β0 + β1) + (β2 + β3)t

• Does association differ between females and males? H0 : β3 = 0
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Linear Regression - Effect Modification (Dental Growth)
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Effect Modification

Full equation:

Distance = 17.4 + 0.5× Age− 1.0×Male + 0.3× Age×Male

Can be broken down into sex-specific equations:

• If child i is female,

E[Distij |Malei = 0,Ageij ] = 17.4 + 0.5× Ageij

• If child i is male,

E[Distij |Malei = 1,Ageij ] = (17.4− 1.0) + (0.5 + 0.3)× Ageij

= 16.4 + 0.8× Ageij
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Effect Modification: Why Do We Care?

• Many longitudinal studies are interested in whether associations differ
over time

• E.g., do placebo and treatment group have different disease
progression trajectories?

• Interaction term (between treatment and time) tests this hypothesis
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A Note About Notation

• ni = number of observations for subject i = 1, ...,N

• Yi = (Yi1,Yi2, ...,Yini )
⊤ = outcome for subject i at times j = 1, ..., ni

• Xi =


Xi11 · · · Xi1p

Xi21
. . . Xi2p

...
. . .

...

Xini1 · · · Xinip

 = exposure/covariate matrix for subject i
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A Note About Notation

• Mean of Yij is µij = E[Yij ]

• Variance of Yij is σ
2
j = E[(Yij − µij)

2]

• Covariance between responses at time j and time k is
σjk = E[(Yij − µij)(Yik − µik)]

• So for subject i (and n observations), the full variance-covariance
matrix is

Σi = Cov


Yi1

Yi2

...

Yini

 =


σ2
1 σ12 · · · σ1n

σ21 σ2
2 · · · σ2n

...
...

. . .
...

σn1 σn2 · · · σ2
n
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Today: Methods for continuous outcomes

• General linear models

• Linear mixed models

• Data analysis: Management of Multicenter AIDS Cohort Study
(MACS)

▶ Model CD4+ data over time; various levels of R scaffolding
▶ Individual or group
▶ Stay on Zoom (breakout rooms) if you want to ask questions in person
▶ We’ll also be monitoring Slack as time permits
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Overview

Introduction

General Linear Model

Linear Mixed Model

Activity
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Case Study: Dental Growth

Goals:

1. Estimate average growth curve
for all children

2. Estimate growth curves for
individual children

3. Characterize heterogeneity in
children’s growth rates

4. Assess whether the growth rate
differs between boys and girls

●

●

●

●

●

●

●

●

16

20

24

28

32

8 10 12 14
Age (years)

D
is

ta
nc

e 
(m

m
)

● ●Female Male

A Plantinga and K Wilson (Module 9) GEE and MM for LDA SISCER 2022 55 / 132



Case Study: Dental Growth

Goals:

1. Estimate average growth curve for all children

✓ We will focus on this

2. Estimate growth curves for individual children

X We will look into this when we talk about linear mixed models

3. Characterize heterogeneity in children’s growth rates

X We will look into this when we talk about linear mixed models

4. Assess whether the growth rate differs between boys and girls

✓ We will focus on this
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Case Study: Dental Growth

Mean model:

E [Distanceij |Malei ,Ageij ] = β0 + β1(Ageij − 8) + β2Malei + β3(Ageij − 8)×Malei

So the sex-specific mean models are:

• If child i is a girl:

E [Distanceij |Malei = 0,Ageij ] = β0 + β1(Ageij − 8)

• If child i is a boy:

E [Distanceij |Malei = 1,Ageij ] = (β0 + β2) + (β1 + β3)(Ageij − 8)
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Case Study: Dental Growth

Mean model:

E [Distanceij |Malei ,Ageij ] = β0 + β1(Ageij − 8) + β2Malei + β3(Ageij − 8)×Malei

Covariance: Cov[Distancei | Malei , Agei ] = Σi

Working covariance model:

Cov[Distancei | Malei , Agei ] = Vi = σ2Ri

where Ri is the working correlation model
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Correlation Models
Independence: Corr[Yij ,Yij ′ | Xi ] = 0

1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


Exchangeable: Corr[Yij ,Yij ′ | Xi ] = α

1 α α · · · α

α 1 α · · · α

α α 1 · · · α
...

...
...

. . .
...

α α α · · · 1
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Correlation Models
Auto-regressive: Corr[Yij ,Yij ′ | Xi ] = α|j−j ′|

1 α α2 · · · αn−1

α 1 α · · · αn−2

α2 α 1 · · · αn−3

...
...

...
. . .

...

αn−1 αn−2 αn−3 · · · 1


Unstructured: Corr[Yij ,Yij ′ | Xi ] = αjj ′

1 α21 α31 · · · αn1

α12 1 α32 · · · αn2

α13 α23 1 · · · αn3
...

...
...

. . .
...

α1n α2n α3n · · · 1
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Correlation models

Correlation between any two observations on the same subject. . .
• Independence: . . . is assumed to be zero

▶ Appropriate with use of robust variance estimator (large N)

• Exchangeable: . . . is assumed to be constant
▶ More appropriate for clustered data

• Auto-regressive: . . . is assumed to depend on time or distance
▶ More appropriate for equally-spaced longitudinal data

• Unstructured: . . . is assumed to be distinct for each pair
▶ Only appropriate for short series (small n) on many subjects (large N)
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General Linear Model

Goal: How can we estimate and make inference on parameters, β, in a
linear model in the presence of correlation?

For individual i , i = 1, . . . ,N:

E [Yi |Xi ] = Xiβ

Cov[Yi |Xi ] = Σi

• Review the setting of independent responses
▶ Approach: ordinary least squares
▶ Considerations: robust standard errors

• Extend to the setting of correlated responses
▶ Approach: multivariate weighted least squares
▶ Considerations: robust standard errors
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Notation Reminder
N
o
ta
ti
o
n

Independent responses:

E [Yi |Xi ] = Xiβ

Var[Yi |Xi ] = σ2

• Suppose we have one
measurement on subject i ,
i = 1, . . . ,N

• Yi = outcome for subject i

• Xi = (Xi1, . . . ,Xip)=
exposure/covariate vector for
subject i

Correlated responses:

E [Yi |Xi ] = Xiβ

Cov[Yi |Xi ] = Σi

• Suppose we have ni
measurements on subject i ,
i = 1, . . . ,N

• Yi = (Yi1,Yi2, ...,Yini )
⊤ =

outcome for subject i at times
j = 1, ..., ni

• Xi =


Xi11 · · · Xi1p

Xi21
. . . Xi2p

...
. . .

...

Xini1 · · · Xinip

 =

exposure/covariate matrix for
subject i
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Estimation and Inference
S
et
u
p

E
st
im

a
ti
o
n
P
ro
ce

d
u
re

Independent responses:

E [Yi |Xi ] = Xiβ

Var[Yi |Xi ] = σ2

We can use the method of
ordinary least squares to find
estimates for β, which involves
minimizing:

N∑
i=1

(Yi − Xiβ)
2

Correlated responses:

E [Yi |Xi ] = Xiβ

Cov[Yi |Xi ] = Σi

We can use the method of
multivariate weighted least
squares to find estimates for β,
which involves minimizing:

N∑
i=1

(Yi − Xiβ)
⊤Wi (Yi − Xiβ)

where Wi is a weight matrix
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Estimation and Inference
E
st
im

a
ti
n
g
E
q
u
a
ti
o
n
s

β̂

To find β̂ we take the derivatives (with respect to β0, β1, . . . , βp), set
the functions equal to 0 to give the following estimating equations
for β:

Independent responses:

0 =
N∑
i=1

X⊤
i (Yi − Xi β̂)

Therefore,

β̂ =

(
N∑
i=1

X⊤
i Xi

)−1 N∑
i=1

X⊤
i Yi

Correlated responses:

0 =
N∑
i=1

X⊤
i Wi (Yi − Xi β̂)

Therefore,

β̂ =

(
N∑
i=1

X⊤
i WiXi

)−1 N∑
i=1

X⊤
i WiYi
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Estimation and Inference
V
ar
ia
n
ce

o
f
β̂

Independent responses:

Cov(β̂) =

(
N∑
i=1

X⊤
i Xi

)−1

︸ ︷︷ ︸
bread

×

(
N∑
i=1

X⊤
i Var(Yi )Xi

)
︸ ︷︷ ︸

cheese

×

(
N∑
i=1

X⊤
i X

)−1

︸ ︷︷ ︸
bread

Correlated responses:

Cov(β̂) =

(
N∑
i=1

X⊤
i WiXi

)−1

︸ ︷︷ ︸
bread

×

(
N∑
i=1

X⊤
i WiCov(Yi )WiXi

)
︸ ︷︷ ︸

cheese

×

(
N∑
i=1

X⊤
i WiX

)−1

︸ ︷︷ ︸
bread
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Estimation and Inference
S
u
m
m
ar
y

Independent responses:

• Assumes that observations are
independent

• Do not need to have an
assumption that the errors
have a normal distribution

• We can use a robust
variance estimate if we do
not want to assume constant
σ2 (does require large enough
sample size to work)

Correlated responses:

• Assumes that observations are
independent across
individuals but there may be
correlation between
observations on the same
individual

• Do not need to have an
assumption that the errors
have a (multivariate) normal
distribution

• We can use a robust
variance estimate if we do
not want to assume correctly
specified Σ (more on this...)
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Properties of β̂

• Unbiased given X1,X2, . . . ,XN and W1,W2, . . . ,WN

E [β̂] =

(
N∑
i=1

X⊤
i WiXi

)−1( N∑
i=1

X⊤
i WiE [Yi ]

)

=

(
N∑
i=1

X⊤
i WiXi

)−1( N∑
i=1

X⊤
i WiXiβ

)
= β

• The variance of β̂ depends on the weights:

Cov(β̂) =

(
N∑
i=1

X⊤
i WiXi

)−1

︸ ︷︷ ︸
bread

(
N∑
i=1

X⊤
i WiCov(Yi )WiXi

)
︸ ︷︷ ︸

cheese

(
N∑
i=1

X⊤
i WiX

)−1

︸ ︷︷ ︸
bread
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Summary

• Any set of reasonable (‘positive definite’) weights provides a valid
estimator

• β̂ is consistent for β, which loosely means it ‘hones’ in on the truth
as the sample size N gets larger no matter what the weights are!

• When Wi = Σ−1
i , we get an estimator for β that is most efficient

(among linear estimators)

• In the GEE approach, we will specify a form for the weights which
may depend on unknown parameters (α) that need to be estimated
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GEE approach
Setting: For linear regression of Yij on covariates Xij1, . . . ,Xijp, i.e. with
mean model:

E [Yij |Xij ] = β0 + β1Xij1 + β2Xij2 + · · ·+ βpXijp

= Xijβ j = 1, . . . , ni ; i = 1, . . . ,N

and a working covariance matrix V.

Algorithm:

1. Fit the weighted linear regression where the weights of each cluster
are the inverse of their current working covariances (Wi = V̂−1

i )

β̂ =

(
N∑
i=1

X⊤
i V̂

−1
i Xi

)−1 N∑
i=1

X⊤
i V̂

−1
i Yi

2. Update the working covariances using the residuals obtained from
fitting the model in (1), Yij − Xij β̂

3. Iterate steps (1) and (2) until the result converges
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GEE approach

The resulting estimator β̂, the solution to the generalized estimating
equations, is robust:

• The regression coefficient estimates will be correct (in large samples)
even if the working covariance model does not match the true
covariance model

• However, the variance of the regression estimate must capture the
correlation in the data, either through choosing the correct covariance
model, or using an alternative variance estimate

• Correctly specified (or close to the truth) covariance model will yield
regression estimate β̂ that is most (or more) efficient (smaller
variance)
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Robust Variance Estimate

• GEE computes a sandwich variance estimator
▶ Aka empirical variance, robust variance, Huber-White correction
▶ This is the default standard error output when using geeglm()

• Empirical variance gives valid standard errors for the estimated
regression coefficients even if the working covariance model was
wrong

▶ Valid in large samples (this means it can be used with data sets that
contain at least 40 subjects)

Ĉov(β̂) =

(
N∑
i=1

X⊤
i V̂

−1
i Xi

)−1

︸ ︷︷ ︸
bread

(
N∑
i=1

X⊤
i V̂

−1
i C̃ov(Yi )V̂

−1
i Xi

)
︸ ︷︷ ︸

cheese

(
N∑
i=1

X⊤
i V̂

−1
i X

)−1

︸ ︷︷ ︸
bread

where we can use the residuals, i.e., C̃ov(Yi ) has the entries eijeik where

eij = Yij − β̂0 − β̂1Xij1 − β̂2Xij2 − · · · − β̂pXijp
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GEE: Inference

With the GEE approach, we can perform Wald tests and construct Wald
confidence intervals:

• β̂k/s.e. - valid test

• β̂k ± 1.96× s.e. - valid 95% confidence interval

Cannot perform a likelihood ratio test (no fully specified probability
model) so no AIC or BIC either.
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Case Study: Dental Growth

Mean model:

E [Distanceij |Malei ,Ageij ] = β0 + β1(Ageij − 8) + β2Malei + β3(Ageij − 8)×Malei

Working covariance model:

Cov[Distancei | Malei , Agei ] = σ2Ri

where we will show results for Ri :

• Independent: [corstr = "independence"]

• Exchangeable: [corstr = "exchangeable"]

• Auto-regressive: [corstr = "ar1"]

• Unstructured: [corstr = "unstructured"]
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Case Study: Dental Growth

R Code:

library(geepack)

m_ind <- geeglm(distance ~ I(age-8)*Sex, id = Subject,

data = Orthodont, corstr = "independence")

m_exc <- geeglm(distance ~ I(age-8)*Sex, id = Subject,

data = Orthodont, corstr = "exchangeable")

m_ar1 <- geeglm(distance ~ I(age-8)*Sex, id = Subject,

data = Orthodont, corstr = "ar1")

m_uns <- geeglm(distance ~ I(age-8)*Sex, id = Subject,

data = Orthodont, corstr = "unstructured")

m_ols <- lm(distance ~ I(age-8)*Sex, data=Orthodont)
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Case Study: Dental Growth

geeglm(formula = distance ~ I(age - 8) * Sex, data = Orthodont,

id = Subject, corstr = "independence")

Coefficients:

Estimate Std.err Wald Pr(>|W|)

(Intercept) 21.2091 0.5604 1432.2 < 2e-16 ***

I(age - 8) 0.4795 0.0631 57.7 3.1e-14 ***

SexMale 1.4065 0.7738 3.3 0.0691 .

I(age - 8):SexMale 0.3048 0.1169 6.8 0.0091 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation structure = independence

Estimated Scale Parameters:

Estimate Std.err

(Intercept) 4.91 1.01

Number of clusters: 27 Maximum cluster size: 4
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Case Study: Dental Growth

geeglm(formula = distance ~ I(age - 8) * Sex, data = Orthodont,

id = Subject, corstr = "exchangeable")

Coefficients:

Estimate Std.err Wald Pr(>|W|)

(Intercept) 21.2091 0.5604 1432.2 < 2e-16 ***

I(age - 8) 0.4795 0.0631 57.7 3.1e-14 ***

SexMale 1.4065 0.7738 3.3 0.0691 .

I(age - 8):SexMale 0.3048 0.1169 6.8 0.0091 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation structure = exchangeable

Estimated Scale Parameters:

Estimate Std.err

(Intercept) 4.91 1.01

Link = identity

Estimated Correlation Parameters:

Estimate Std.err

alpha 0.618 0.131

Number of clusters: 27 Maximum cluster size: 4
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Case Study: Dental Growth
β̂0 (SE) β̂1 (SE) β̂2 (SE) β̂3 (SE)

Ind 21.2 (0.56) 0.5 (0.06) 1.4 (0.77) 0.3 (0.12)

Exch 21.2 (0.56) 0.5 (0.06) 1.4 (0.77) 0.3 (0.12)

AR1 21.2 (0.59) 0.5 (0.06) 1.6 (0.83) 0.3 (0.12)

Unst 21.2 (0.55) 0.5 (0.06) 1.4 (0.76) 0.3 (0.12)

OLS 21.2 (0.57) 0.5 (0.15) 1.4 (0.74) 0.3 (0.20)

• Working independence and OLS give exactly the same point estimates

▶ The estimating equations and thus estimator are exactly the same

• OLS standard errors too large for β̂1 and β̂3

▶ This is because age varies within-subject
▶ Inference using OLS would be wrong

• Working independence and exchangeable provide exactly the same results

▶ Data are balanced and complete

• Unstructured results are similar

• Autoregressive results are slightly (but not importantly) different
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Case Study: Dental Growth

Results from working independence:

• β̂1: The estimated rate of
change in dental length per year
for female children is 0.48
mm/year (95% CI: 0.36, 0.60
mm/year)

• β̂1 + β̂3: The estimated rate of
change in dental length per year
for male children is 0.78
mm/year (95% CI: 0.59, 0.98
mm/year)
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Dental Growth: Did We Answer Our Questions?

1. Estimate average growth curve for all children
▶ Coefficients β̂ from our mean model

2. Estimate growth curves for individual children
▶ See next section

3. Characterize heterogeneity in children’s growth rates
▶ See next section

4. Assess whether the growth rate differs between boys and girls
▶ It does! Interaction term is significantly nonzero (p-value < 0.01)
▶ (and scientifically interesting - growth rate 0.8 mm/yr for boys, 0.5

mm/yr for girls)
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Modeling the Mean Response over Time

Linear Quadratic Linear Splines

(Images from Fitzmaurice, Garrett M., Nan M. Laird, and James H. Ware. Applied longitudinal analysis.)

A Plantinga and K Wilson (Module 9) GEE and MM for LDA SISCER 2022 81 / 132



Case Study: Six Cities

• 300 school-age female children,
most enrolled around ages 6-7

• Height, age, FEV1 (lung
function) measured
approximately annually until
high school graduation or loss to
follow-up

• Goal: Explore various ways to
model mean FEV1 as children
age
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Linear Trend

Notation:

• logFEV1ij : log FEV1 for subject
i at measurement occasion j

• ageij : age of subject i at
measurement occasion j

Mean Model:

E [logFEV1ij |ageij ] = β0 + β1ageij

In this model, the rate of change is
constant (β1)

R Code:

geeglm(logFEV1 ~ age,

id = id, data = dat)
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Quadratic Trend

Mean Model:

E [logFEV1ij |ageij ] = β0 + β1ageij +

β2age
2
ij

In this model, the rate of change is
non-constant (β1 + 2β2ageij)

R Code:

geeglm(logFEV1 ~ age + I(age^2),

id = id, data = dat)
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Linear Splines

Notation:

• (ageij − agek)+ =
max(ageij − agek , 0): linear
spline based on knot agek

Mean Model:

E [logFEV1ij |ageij ] = β0 + β1ageij +

β2(ageij − 10)+ +

β3(ageij − 14)+

In this model, the rate of change is:

• β1: for ageij < 10

• β1 + β2: for 10 ≤ ageij < 14

• β1 + β2 + β3: for ageij ≥ 14

R Code:

dat$ageSpline10 <- pmax(dat$age - 10, 0)

dat$ageSpline14 <- pmax(dat$age - 14, 0)

geeglm(logFEV1 ~ age + ageSpline10 +

ageSpline14,

id = id, data = dat)

A Plantinga and K Wilson (Module 9) GEE and MM for LDA SISCER 2022 85 / 132



Modeling the Mean Response over Time

• Mean models as regression with time, and perhaps additional
functions of time

• Polynomial models:
▶ Quadratic: β1tij + β2t

2
ij

▶ Others: higher order polynomials
▶ Allow for non-linear mean curve
▶ Allow for non-constant rate of change

• Regression splines:
▶ Linear splines: β1tij + β2(tij − 14)+
▶ Others: cubic splines
▶ Allow for non-linear mean curve
▶ Allow for non-constant rate of change
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Assumptions

Valid inference from a general linear model relies on

• Mean model: As with any regression model for an average outcome,
need to correctly specify the functional form of Xijβ

▶ Included important covariates in the model
▶ Correctly specified any transformations or interactions

• Covariance model: Correct covariance model is required for correct
standard error estimates for β̂ if using model-based variance
estimate otherwise we can use robust/empirical variance estimate

• N sufficiently large
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Summary

• Primary focus is on the mean model

• Longitudinal correlation is secondary to mean model of interest and is
treated as a nuisance

• Requires selection of a ‘working‘ correlation model

• Semi-parametric model: mean + correlation

• Working correlation model does not need to be correctly specified to
obtain consistent estimator for β or valid standard errors for β̂ but
efficiency gains possible if correlation model is correct

• Wald testing

Issues:

• Accommodates only one source of correlation: longitudinal or cluster

• Requires that any missing data are missing completely at random

• Issues arise with time-dependent exposures and covariance weighting
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Overview

Introduction

General Linear Model

Linear Mixed Model

Activity
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Case Study: Dental Growth

Goals:

1. Estimate average growth curve
for all children

2. Estimate growth curves for
individual children

3. Characterize heterogeneity in
children’s growth rates

4. Assess whether the growth rate
differs between boys and girls
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Case Study: Dental Growth

Goals:

1. Estimate average growth curve for all children

✓ GEE and LMM can do this

2. Estimate growth curves for individual children

X GEE isn’t meant to do this - will address with LMM

3. Characterize heterogeneity in children’s growth rates

X GEE is not great at this - will address with LMM

4. Assess whether the growth rate differs between boys and girls

✓ GEE and LMM can do this
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Population-Averaged vs. Individual-Specific Models

• GEE coefficients have population-averaged interpretations
▶ E.g., average dental length for male children increases by 0.3mm more

per year than average dental length for female children

• What if we want individual-specific trajectories?
▶ Not enough data to estimate separate regression lines for everyone
▶ Instead, assume that each subject has a regression model that includes

fixed effect parameters common to everyone, and subject-specific
parameters (random effects) that follow some distribution

• Subject-specific random effects also induce a correlation structure
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Linear Mixed Effects Model (Simplest Case)

The simplest format for a mixed effects model is:

Yij = µj Shared mean model

+ bi Random intercept for subject i

+ ϵij Measurement error

where

Var(bi ) = τ2 Between-person variation

Var(ϵij) = σ2 Within-person variation

bi ⊥ ϵij
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Induced Correlation Structure

Random effects implicitly specify covariance structure:

Cov(Yij ,Yik) = Cov(µj + bi + ϵij , µk + bi + ϵik)

= Cov(bi + ϵij , bi + ϵik)

= Cov(bi , bi ) + Cov(bi , ϵik) + Cov(ϵij , bi ) + Cov(ϵij , ϵik)

= Var(bi ) + 0 + 0 + 0 = τ2

and similarly

Var(Yij) = Var(µj + bi + ϵij)

= Var(bi + ϵij)

= Var(bi ) + Var(ϵij) + Cov(bi , ϵij)

= σ2 + τ2 + 0
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Induced Correlation Structure

From last slide, we have:

Cov(Yij ,Yik) = Var(bi ) + 0 + 0 + 0 = τ2

Var(Yij) = σ2 + τ2 + 0

And since subjects are independent, each subject’s covariance matrix is:

Σi =


σ2 + τ2 τ2 · · · τ2

τ2 σ2 + τ2 · · · τ2

...
...

. . .
...

τ2 · · · τ2 σ2 + τ2
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Induced Correlation Structure

This looks awfully similar to exchangeable correlation – and in fact, it is:

Σi = (σ2 + τ2)


1 ρ · · · ρ

ρ 1
. . .

...
...

. . .
. . . ρ

ρ · · · ρ 1


ρ =

τ2

σ2 + τ2

• ρ is called the ”intraclass correlation coefficient”

• Ratio of between-person variation to total variation
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Example: Dental Growth
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Example: Dental Growth
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Example: Dental Growth

Random intercept model with interaction between sex and age:

Distij = β0 + β1 × (Ageij − 8) + β2 ×Malei

+ β3 × (Ageij − 8)×Malei + bi

So the sex- and subject-specific models are:

• If child i is a girl:

E[Distanceij |Ageij ,Malei = 0] = (β0 + bi ) + β1 × (Ageij − 8)

• If child i is a boy:

E[Distanceij |Ageij ,Malei = 1] = (β0 + β2 + bi ) + (β1 + β3)× (Ageij − 8)
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Example: Dental Growth
Visualization of results:
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Example: Dental Growth

Zooming in on just two subjects:
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Example: Dental Growth

Observations:

• The two lines are parallel (slope can’t vary by subject)

• M11 has a shorter length at every time than M10

• Variability within subject (around their line) looks smaller than
variability between subjects

▶ Intraclass correlation coefficient will help quantify this
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Example: Dental Growth

R output:
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Example: Dental Growth

Systematic part of model:

D̂istij = 21.2 + 0.5× (Ageij − 8) + 1.4×Mi + 0.3× (Ageij − 8)×Mi

Interpretations can be the same as before:

• β̂1: The estimated rate of change in dental length per year for female
children is 0.48 mm/year (95% CI: 0.29, 0.67 mm/year)

• β̂1 + β̂3: The estimated rate of change in dental length per year for
male children is 0.78 mm/year (95% CI: 0.63, 0.94 mm/year)

Note: May be interpreted marginally or conditionally (mathematical
property for linear models; more tomorrow about this)
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Example: Dental Growth

R output:
Partitioning variability:

V̂ar(ϵ) = σ̂2 = 1.392 = 1.93

V̂ar(bi ) = τ̂2 = 1.822 = 3.31

ÎCC =
τ̂2

σ̂2 + τ̂2

=
3.31

1.93 + 3.31

= 0.632

Between-subject variability is 63% of
total variability
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Example: Dental Growth

Observations:

• The two lines are parallel (slope can’t vary by subject)
▶ What if we don’t want them to be parallel?

• M11 has a shorter length at every time than M10

• Variability within subject (around their line) looks smaller than
variability between subjects

▶ Intraclass correlation coefficient will help quantify this
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Choices For Random Effects
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Choices For Random Effects
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Linear Mixed Effects Model (General Framework)
(Laird and Ware, 1982)

The model includes the following components (i = 1, ...,N; j = 1, ..., ni ):

Yi = (Yi1, ...,Yini )
⊤ Outcomes

β = (β1, ..., βp) Fixed effects

X ij = (Xij1, ...,Xijp)
⊤

X i = (X i1, ...,X ini ) Covariate matrix for fixed effects

bi = (bi1, ..., biq) Random effects

Z ij = (Zij1, ...,Zijq)
⊤

Z i = (Z i1, ...,Z ini ) Covariate matrix for random effects

(typically a subset of X)
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Linear Mixed Effects Model (General Framework)

1. Model for response given random effects:

Yij = X ijβ + Z ijbi + ϵij

2. Model for random effects

bi ∼ N(0,D)

ϵij ∼ N(0, σ2)

with bi and ϵij assumed to be independent
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Choices for Random Effects

Common linear mixed effects models include:

• Random intercepts

Yij = β0 + β1tij + bi0 + ϵij

= (β0 + bi0) + β1tij + ϵij

• Random intercepts and slopes

Yij = β0 + β1tij + bi0 + bi1tij + ϵij

= (β0 + bi0) + (β1 + bi1)tij + ϵij
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Choices for Random Effects: D

D quantifies random variation in trajectories across subjects

D =

[
D11 D12

D21 D22

]
• √

D11 is the typical deviation in the level of the response

• √
D22 is the typical deviation in the change in the response

• D12 is the covariance between subject-specific intercepts and slopes
▶ D12 = 0 indicates subject-specific intercepts and slopes are uncorrelated
▶ D12 > 0 indicates subjects with high level have high rate of change
▶ D12 < 0 indicates subjects with high level have low rate of change

(D12 = D21)
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Induced Correlation Structure

Correlation induced by a random intercepts and slopes model:
(derivation is similar to before)

Cov(Yij ,Yik) = D11 + (tij + tik)D12 + tij tikD22

Var(Yij) = D11 + t2ijD22 + 2tijD12 + σ2

Observations:

1. Allows heteroskedasticity across time as a function of t2

2. Variance can possibly decrease over time if Cov(b0i , b1i ) < 0, but will
otherwise increase over time.

3. This is a special case of the general form:

Σi = Cov(Yi ) = ZiDZ⊤
i + R i

where R i is the covariance for the errors ϵi
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Example: Dental Growth

Random intercept and slope model with interaction between sex and age:

E[Distanceij |Ageij ,Malei , bi ] = β0 + β1 × (Ageij − 8) + β2 ×Malei

+β3 × (Ageij − 8)×Malei + bi0 + bi1 × (Ageij − 8)

Now the sex- and subject-specific models are:

• If child i is a girl:

E[Distanceij |Ageij ,Malei = 0, bi ] = (β0 + bi0) + (β1 + bi1)× (Ageij − 8)

• If child i is a boy:

E[Distanceij |Ageij ,Malei = 1, bi ] = (β0+β2+bi0)+(β1+β3+bi1)×(Ageij−8)
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Example: Dental Growth
Taking a look at the results:
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Example: Dental Growth

Zooming in on just two subjects again:
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Example: Dental Growth

Observations:

• The two lines are not parallel (subject-specific slopes)
▶ M10 has a slightly steeper slope, M11 has a less steep slope

• The differences are not large! (Do we really need random slopes?)

• Think: what do you expect to see in the covariance of the random
effects?
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Example: Dental Growth

R output:

Systematic part of model:
D̂istij = 21.2+0.5× (Ageij −8)+
1.4×Mi +0.3× (Ageij − 8)×Mi

(identical estimates!)

Random Effects Covariance:

D̂ =

[
1.802 −0.09

−0.09 0.182

]
σ̂2 = 1.312

Observations:

• D̂22 << D̂11

• D̂12 = −0.09: kids who start
with larger distances may
grow more slowly
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What’s Beneath the Hood?

Maximum Likelihood:

Y i |bi ∼ MVN(X iβ + Z ibi , ϵi )

bi ∼ MVN(0,D)

So the likelihood function is a product of normal densities,

P(Y i ,bi ) = P(Y i |bi )P(bi ),

which is easy to integrate and maximize (continuous outcomes only!).

Restricted Maximum Likelihood:

• ML estimation of Σ is biased (e.g., n vs. n− p in denominator for σ2)
• REML (default) provides less-biased estimation of Σ

▶ Details are beyond the scope of this module

A Plantinga and K Wilson (Module 9) GEE and MM for LDA SISCER 2022 119 / 132



Likelihood-based inference for β

• Consider testing fixed effects in nested linear mixed-effects models,
e.g.,

Dist = β0 + β1 × (Ageij − 8) + β2 ×M vs.

Dist = β0 + β1 × (Ageij − 8) + β2 ×M+ β3 × (Ageij − 8)×M

(equivalent to H0 : β3 = 0)

• Likelihood ratio test is valid with maximum likelihood estimation
▶ Requires computation under the null and alternative hypotheses

• Likelihood ratio test may not be valid with other estimation methods
(e.g., REML - R will warn you)

• Wald test (based on coefficient and standard error) is generally valid
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Example: Dental Growth

Both tests agree: the association between age and distance differs by sex!
(LR p=0.013, Wald p=0.014)
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Choosing a Random Effects Structure

• Covariance model choice determines the standard error estimates
for β̂; correct model is required for correct standard error estimates

• Suppose we want to decide between two candidate random effect
structures:

H0 : D =

[
D11 0

0 0

]
versus H1 : D =

[
D11 D21

D12 D22

]
,

• Could we formally test whether random intercepts are adequate, e.g.,
with LRT?
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Likelihood-based inference for D

• Consider testing H0 : D12 = D22 = 0
▶ Fit both models with REML, compare with LRT

• This is possible in R

• Seems to suggest random intercept is sufficient
(AIC is lower for RI than RS, p-value is big)

▶ Consistent with our prior exploratory analysis

A Plantinga and K Wilson (Module 9) GEE and MM for LDA SISCER 2022 123 / 132



Choosing a Random Effects Structure

Problem: testing D22 = 0 is a nonstandard problem

• P-values tend to be conservative, could lead to over-simplifying
correlation structure

• (Ad hoc fix proposed by Fitzmaurice, Laird, Ware: use α = 0.1)

Alternatives:
• If only interested in inference on β:

▶ Choose based on a priori scientific knowledge and exploratory analysis
▶ Use robust standard errors (see module code; R package clubSandwich)

• If this is an exploratory analysis and you’re interested in correlation
structure, ok to test structures

▶ Can cause type 1 error problems if your focus is inference on β
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Dental Growth: Robust SE, Random Intercepts

Variable β̂ Estimation P-value CI

Intercept 21.2 Model-based 1.28× 10−47 (19.9, 22.5)

Robust 6.35× 10−12 (19.9, 22.5)

(Age-8) 0.48 Model-based 2.02× 10−6 (0.29, 0.67)

Robust 2.78× 10−5 (0.33, 0.63)

Male 1.41 Model-based p=0.108 (-0.33, 3.14)

Robust p=0.095 (-0.27, 3.08)

(Age-8)*Male 0.30 Model-based p=0.014 (0.06, 0.55)

Robust p=0.020 (0.05, 0.56)
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Choosing a Random Effects Structure

A priori considerations:

• Random intercepts only:
▶ Simpler (+/-) and easy to interpret (e.g., ICC)
▶ Induces exchangeable correlation (+/-)

• Random intercepts and slopes:
▶ More information about individual trajectories and covariance (+)
▶ More complex (+/-)

⋆ Over-parameterization of covariance =⇒ inefficient estimation of
fixed-effects parameters β
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Dental Growth: Did We Answer Our Questions?

1. Estimate average growth curve for all children
▶ Fixed effects coefficients

2. Estimate growth curves for individual children
▶ Random intercept and slope model gives estimate for each child

3. Characterize heterogeneity in children’s growth rates
▶ Variability in random intercepts is quite high (distance at age 8)
▶ Variability in random slopes is quite small (growth rates are fairly

homogeneous)

4. Assess whether the growth rate differs between boys and girls
▶ It does! Fixed effect interaction term is significantly nonzero
▶ (and scientifically interesting - growth rate 0.8 mm/yr for boys, 0.5

mm/yr for girls)
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Assumptions

Valid inference from a linear mixed-effects model relies on

• Mean model: As with any regression model for an average outcome,
need to correctly specify the functional form of X ijβ (here also Z ijbi )

▶ Included important covariates in the model
▶ Correctly specified any transformations or interactions

• Covariance model: Correct covariance model (random-effects

specification) is required for correct standard error estimates for β̂
▶ Or robust SE

• Normality: Normality of ϵij and bi is required for normal likelihood
function to be the correct likelihood function for Yij

▶ Especially important for small samples & trusting individual trajectories

• N sufficiently large for asymptotic inference to be valid
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Summary

• Mixed-effects models combine population-average (systematic) model
components with subject-specific (random effects) components

• Estimation and inference for:
▶ Average level or trajectory
▶ Between-subject heterogeneity in level or trajectory

• Subject-specific random effects induce a correlation structure
(conceptually nice, easy even for unbalanced data)

• Parametric approach; ML estimation is valid (but... assumptions)

• Could have multiple levels of random effects (e.g., clustering and
longitudinal)

Issues

• Requires that any missing data are missing at random
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Activity: MACS

• Multicenter Aids Cohort Study

• Goal: Characterize time course of CD4+ T-cell depletion
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Activity Guidelines

• Prefer to work alone? Feel free to stay here (in case you have
questions) or ask on Slack

• Prefer to work with others? Join a breakout room and call us in if
your group has questions:

▶ Practicing in R
▶ Statistical and interpretation questions only
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Assumptions: GEE

Valid inference from a general linear model relies on

• Mean model: As with any regression model for an average outcome,
need to correctly specify the functional form of Xijβ

▶ Included important covariates in the model
▶ Correctly specified any transformations or interactions

• Covariance model: Correct covariance model is required for correct
standard error estimates for β̂ if using model-based variance
estimate otherwise we can use robust/empirical variance estimate

• N sufficiently large
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Summary: GEE

• Primary focus is on the mean model

• Longitudinal correlation is secondary to mean model of interest and is
treated as a nuisance

• Requires selection of a ‘working‘ correlation model

• Semi-parametric model: mean + correlation

• Working correlation model does not need to be correctly specified to
obtain consistent estimator for β or valid standard errors for β̂ but
efficiency gains possible if correlation model is correct

• Wald testing

Issues:

• Accommodates only one source of correlation: longitudinal or cluster

• Requires that any missing data are missing completely at random

• Issues arise with time-dependent exposures and covariance weighting
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Assumptions: LMM

Valid inference from a linear mixed-effects model relies on

• Mean model: As with any regression model for an average outcome,
need to correctly specify the functional form of X ijβ (here also Z ijbi )

▶ Included important covariates in the model
▶ Correctly specified any transformations or interactions

• Covariance model: Correct covariance model (random-effects

specification) is required for correct standard error estimates for β̂
▶ Or robust SE

• Normality: Normality of ϵij and bi is required for normal likelihood
function to be the correct likelihood function for Yij

▶ Especially important for small samples & trusting individual trajectories

• N sufficiently large for asymptotic inference to be valid
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Summary: LMM

• Mixed-effects models combine population-average (systematic) model
components with subject-specific (random effects) components

• Estimation and inference for:
▶ Average level or trajectory
▶ Between-subject heterogeneity in level or trajectory

• Subject-specific random effects induce a correlation structure
(conceptually nice, easy even for unbalanced data)

• Parametric approach; ML estimation is valid (but... assumptions)

• Could have multiple levels of random effects (e.g., clustering and
longitudinal)

Issues

• Requires that any missing data are missing at random
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