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Review of Generalized Linear Models

Generalized linear models (GLMs): class of models for regression
analysis of observations that includes linear regression models for
continuous responses, but also others:

• Logistic regression for binary response (e.g. yes/no or 0/1)

• Log-linear or Poisson regression for counts

• Others. For example ordinal models
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Review of Generalized Linear Models

• Assume the outcomes are independent of each other

• Suppose we have N independent observations of a response variable Y

• Let Yi denote the response variable for the ith subject

• Xi = (Xi1, . . . ,Xip) where Xik denotes the kth covariate for the ith
subject

Two part specification:

1. Random component (usually a distributional assumption)

2. Systematic component (how the mean relates to covariates)
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Review of GLMs: Random Component

Assume we know the distribution of the outcome,

Yi |µi ∼ exponential family distribution

• Linear regression: Yi ∼ N(µi , σ
2)

• Logistic regression: Yi ∼ Bernoulli(µi )

• Poisson regression: Yi ∼ Poisson(µi )

Distribution Mean Variance Function

Normal µi σ2

Bernoulli µi µi (1− µi )

Poisson µi µi
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Review of GLMs: Systematic Component

Assume the transformed mean of Yi given Xi (µi = E [Yi |Xi ]) are related
to the covariates in the following manner:

g(µi ) = β0 + β1Xi1 + · · ·+ βpXip = Xiβ

The link function g(·) describes the relationship between the linear
predictor (Xiβ) and the expected value of Yi (i.e., µi )

Distribution Typical link function g(·)
Normal Identity: g(µi ) = µi

Bernoulli Logit: g(µi ) = logit(µi ) = log
(

µi
1−µi

)
Poisson Log: g(µi ) = log(µi )
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Binary Outcome: Example

Clinical Trial of Contracepting Women:

• 1151 women randomized to either 100mg or 150mg of DMPA
• Outcome of interest: Amenorrhea during each 3-month interval
after an injection

▶ Since participants were measured multiple times we would want to use
correlated data techniques to analyze all responses

▶ We will focus on the response at the 4th (last scheduled) visit

• Is there a difference in the odds of amenorrhea after 1 year of
injections by dose?

Data:

• 100mg: 50.1% (181 out of 361) experienced amenorrhea at 1 year

• 150mg: 53.5% (189 out of 353) experienced amenorrhea at 1 year
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Binary Outcome: Example

We will use logistic regression:

• Random component: Yi ∼ Bernoulli(µi ) → Var(Yi ) = µi (1− µi )

• Systematic component:

logit(µi ) = log

(
µi

1− µi

)
= β0 + β1Dosei

where µi = Pr(Yi = 1) where Yi is an indicator for whether person i
experienced amenorrhea at 1 year (1 = yes; 0 = no)

In R:

glm(amenorrhea ~ dose, family = binomial(link = "logit"),

data = amenorrhea[amenorrhea$visit==4,])
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Binary Outcome: Example

glm(formula = amenorrhea ~ dose, family = binomial(link = "logit"),

data = amenorrhea[amenorrhea$visit == 4, ])

Deviance Residuals:

Min 1Q Median 3Q Max

-1.24 -1.18 1.12 1.18 1.18

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.00554 0.10526 0.05 0.96

dose 0.13634 0.14990 0.91 0.36

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 988.87 on 713 degrees of freedom

Residual deviance: 988.04 on 712 degrees of freedom

(437 observations deleted due to missingness)

AIC: 992

Number of Fisher Scoring iterations: 3
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Binary Outcome: Example

• Estimate for (Intercept) = estimate of the log odds of amenorrhea
for 100mg dose

• Estimate for dose = estimate of the log odds ratio of amenorrhea
comparing 150mg dose to 100mg dose

Interpretation: the odds of amenorrhea is estimated to be 15%
(= exp(0.136)− 1) higher for those on the 150mg dose as compared to
those on the 100mg dose. We do not have evidence that amenorrhea after
1 year differs by dose (p = 0.36).
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GEE

⋆ Contrast average outcome values across populations of individuals
⋆ defined by covariate values, while accounting for correlation

• Focus on a generalized linear model with regression parameters β,
which characterize the systemic variation in Y across covariates X

Yi = {Yi1,Yi2, . . . ,Yini}T Outcomes

Xij = {1,Xij1,Xij2, . . . ,Xijp} Covariates

Xi = {Xi1,Xi2, . . . ,Xini}T Design matrix

β = {β0, β1, β2, . . . , βp}T Regression parameters

for i = 1, . . . ,N and j = 1, . . . , ni
• Longitudinal correlation structure is a nuisance feature of the data

(Liang and Zeger, 1986)
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Mean model
Assumptions

• Observations are independent across subjects

• Observations may be correlated within subjects

Mean model: Primary focus of the analysis

E[Yij | Xij ] = µij

g(µij) = Xijβ

• May correspond to any generalized linear model with link g(·)

Continuous outcome Count outcome Binary outcome

E[Yij | Xij ] = µij E[Yij | Xij ] = µij P[Yij = 1 | Xij ] = µij

µij = Xijβ log(µij) = Xijβ logit(µij) = Xijβ

• Characterizes a marginal mean regression model
▶ µij does not condition on anything other than Xij
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Covariance model

Longitudinal correlation is a nuisance; secondary to mean model of interest

1. Assume a form for variance that may depend on µij

Continuous outcome: Var[Yij | Xij ] = σ2

Count outcome: Var[Yij | Xij ] = µij

Binary outcome: Var[Yij | Xij ] = µij(1− µij)

which may also include a scale or dispersion parameter ϕ > 0

2. Select a model for longitudinal correlation with parameters α

Independence: Corr[Yij ,Yij ′ | Xi ] = 0

Exchangeable: Corr[Yij ,Yij ′ | Xi ] = α

Auto-regressive: Corr[Yij ,Yij ′ | Xi ] = α|j−j ′|

Unstructured: Corr[Yij ,Yij ′ | Xi ] = αjj ′
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Covariance model

Longitudinal correlation is a nuisance; secondary to mean model of interest

• Assume a form for variance that depends on µ

• Select a model for longitudinal correlation with parameters α

Var[Yij | Xij ] = V (µij) → Si (µi ) = diag V (µij)

Corr[Yij , Yij ′ | Xi ] = ρijj ′(α) → Ri (α) = matrix ρ(α)

Cov[Yi | Xi ] = Vi (β, α) = S
1/2
i RiS

1/2
i
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Correlation models
Independence: Corr[Yij ,Yij ′ | Xi ] = 0

1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


Exchangeable: Corr[Yij ,Yij ′ | Xi ] = α

1 α α · · · α

α 1 α · · · α

α α 1 · · · α
...

...
...

. . .
...

α α α · · · 1
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Correlation models
Auto-regressive: Corr[Yij ,Yij ′ | Xi ] = α|j−j ′|

1 α α2 · · · αm−1

α 1 α · · · αm−2

α2 α 1 · · · αm−3

...
...

...
. . .

...

αm−1 αm−2 αm−3 · · · 1


Unstructured: Corr[Yij ,Yij ′ | Xi ] = αjj ′

1 α21 α31 · · · αm1

α12 1 α32 · · · αm2

α13 α23 1 · · · αm3
...

...
...

. . .
...

α1m α2m α3m · · · 1
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Correlation models

Correlation between any two observations on the same subject. . .
• Independence: . . . is assumed to be zero

▶ Appropriate with use of robust variance estimator (large N)

• Exchangeable: . . . is assumed to be constant
▶ More appropriate for clustered data

• Auto-regressive: . . . is assumed to depend on time or distance
▶ More appropriate for equally-spaced longitudinal data

• Unstructured: . . . is assumed to be distinct for each pair
▶ Only appropriate for short series (small n) on many subjects (large N)
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Semi-parametric

• Specification of a mean model and correlation model does not identify
a complete probability model for the outcomes

• The [mean, correlation] model is semi-parametric because it only
specifies the first two moments of the outcomes

Question: Without a likelihood function, how do we estimate β and
generate valid statistical inference, while accounting for correlation?

Answer: Construct an unbiased estimating function
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Estimating functions

The estimating function for estimation of β is given by

U(β) =
N∑
i=1

D⊤
i (β)V

−1
i (β,α)[Yi − µi (β)]

g(µi ) = Xiβ

Di (β) =
∂µi

∂β

Di (j , k) =
∂µij

∂βk
• Vi is the ‘working’ variance-covariance matrix: Cov[Yi | Xi ]

▶ Depends on the assumed form for the variance: Var[Yij | Xij ]
▶ Depends on the specified correlation model: Corr[Yij ,Yij′ | Xi ]

• U(β) depends on the model or value for α
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Generalized estimating equations

Setting an estimating function equal to 0 defines an estimating
equation

0 = U(β̂)

=
N∑
i=1

DT
i (β̂)V

−1
i (β̂,α)[Yi − µi (β̂)]

• ‘Generalized’ because it corresponds to a GLM with link function g(·)
• Solution to the estimation equation defines an estimator β̂

• Note U(β̂) depends on the model or value for α
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Generalized estimating equations: Intuition

0 =
N∑
i=1

D⊤
i (β̂)︸ ︷︷ ︸
3

V−1
i (β̂,α)︸ ︷︷ ︸

2

[Yi − µi (β̂)]︸ ︷︷ ︸
1

1 The model for the mean µi (β), is compared to the observed data Yi .
Setting the functions equal to 0 tries to minimize the difference between the
observed and expected

2 Estimation uses the inverse of the variance (covariance) to weight the data
from subject i ; more weight is given to differences between observed and
expected for those subjects who contribute more information

3 This is simply a ‘change of scale’ from the scale of the mean, µi (β), to the
scale of the regression coefficients (covariates)

Because the GEE depends on both β and α, an iterative procedure is used
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GEE: Properties of β̂

Question: What are the properties of β̂, the regression estimate?

Answer:

• The regression coefficient estimate will be correct (in large samples)
even if you choose the wrong dependence model

• However, the variance of the regression estimate must capture the
correlation in the data, either through choosing the correct covariance
model, or using an alternative variance estimate

• Correctly specified (or close) covariance model will yield regression
estimate that is most (or more) efficient (smaller variance)
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GEE: Sandwich variance estimator

The empirical estimator is:

Ĉov(β̂) =

(
N∑
i=1

D̂⊤
i V̂

−1
i D̂i

)−1

︸ ︷︷ ︸
bread

(
N∑
i=1

D̂⊤
i V̂

−1
i C̃ov(Yi )V̂

−1
i D̂i

)
︸ ︷︷ ︸

cheese

(
N∑
i=1

D̂⊤
i V̂

−1
i D̂

)−1

︸ ︷︷ ︸
bread

where we can use the residuals for C̃ov(Yi), i.e., has the entries eijeik
where eij = Yij − µ̂ij .

Note that with linear regression (Gaussian family with identity link),
Di = Xi and Vi = ϕRi where Ri is our working correlation matrix and
ϕ = σ2
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GEE: Sandwich variance estimator

Ĉov(β̂) =

(
N∑
i=1

D̂⊤
i V̂

−1
i D̂i

)−1

︸ ︷︷ ︸
bread

(
N∑
i=1

D̂⊤
i V̂

−1
i C̃ov(Yi )V̂

−1
i D̂i

)
︸ ︷︷ ︸

cheese

(
N∑
i=1

D̂⊤
i V̂

−1
i D̂

)−1

︸ ︷︷ ︸
bread

• Also known as sandwich, robust, or Huber-White variance estimator

• Requires large enough sample size (N ≥ 40)

• Requires large enough sample size relative to cluster size (N ≫ n )

• Gives valid standard errors for the estimated regression
coefficients even if the correlation model is wrong!
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GEE: Inference

Can perform Wald test and construct a Wald confidence interval:

• β̂k/s.e. - valid test

• β̂k ± 1.96× s.e. - valid 95% confidence interval

Cannot perform a likelihood ratio test (no fully specified probability
model) so no AIC or BIC either.
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Case Study: Clinical Trial of Contracepting Women

Longitudinal clinical trial where people who menstruate received an
injection of either 100 mg or 150 mg of DMPA at randomization and then
every 90 days. Final follow-up visit after the 4th injection, 1 year after the
randomization.

• N = 1151 people completed
menstrual diaries

• Response: whether the person
experienced amenorrhea in the
previous 3 months

• Substantial dropout: more than
1/3 dropped out before
completing the trial
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Case Study: Clinical Trial of Contracepting Women

log

(
µij

1− µij

)
= β0 + β1tij + β2t

2
ij + β3Dosei × tij + β4Dosei × t2ij

where µij = Pr(Yij = 1)

• Yij : indicator for whether person i experienced amenorrhea in the jth
injection interval (1 = yes; 0 = no)

• tij : measurement occasion (corresponds to the four consecutive
90-day injection intervals)

• Dosei : indicator for whether the person i was randomized to 150 mg
of DMPA or 100 mg (1 = 150 mg; 0 = 100 mg)
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Case Study: Clinical Trial of Contracepting Women

m_ind <- geeglm(amenorrhea ~ visit + visit:dose + I(visit^2) + I(visit^2):dose,

id = id, data = amenorrhea, family = binomial, waves = visit,

corstr = "independence")

m_exc <- geeglm(amenorrhea ~ visit + visit:dose + I(visit^2) + I(visit^2):dose,

id = id, data = amenorrhea, family = binomial, waves = visit,

corstr = "exchangeable")

m_ar1 <- geeglm(amenorrhea ~ visit + visit:dose + visit2 + visit2:dose,

id = id, data = amenorrhea, family = binomial, waves = visit,

corstr = "ar1")

m_uns <- geeglm(amenorrhea ~ visit + visit:dose + I(visit^2) + I(visit^2):dose,

id = id, data = amenorrhea, family = binomial, waves = visit,

corstr = "unstructured")

m_glm <- glm(amenorrhea ~ visit + visit:dose + I(visit^2) + I(visit^2):dose,

data = amenorrhea, family = binomial)
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Case Study: Clinical Trial of Contracepting Women

geeglm(formula = amenorrhea ~ visit + visit:dose + I(visit^2) +

I(visit^2):dose, family = binomial, data = amenorrhea, id = id,

waves = visit, corstr = "independence")

Coefficients:

Estimate Std.err Wald Pr(>|W|)

(Intercept) -2.1955 0.1784 151.37 < 2e-16 ***

visit 0.6698 0.1622 17.04 3.7e-05 ***

I(visit^2) -0.0303 0.0328 0.86 0.3549

visit:dose 0.2973 0.1135 6.87 0.0088 **

dose:I(visit^2) -0.0624 0.0296 4.44 0.0351 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation structure = independence

Estimated Scale Parameters:

Estimate Std.err

(Intercept) 1 0.0289

Number of clusters: 1151 Maximum cluster size: 4
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Case Study: Clinical Trial of Contracepting Women
geeglm(formula = amenorrhea ~ visit + visit:dose + I(visit^2) +

I(visit^2):dose, family = binomial, data = amenorrhea, id = id,

waves = visit, corstr = "exchangeable")

Coefficients:

Estimate Std.err Wald Pr(>|W|)

(Intercept) -2.2370 0.1765 160.64 < 2e-16 ***

visit 0.6967 0.1586 19.31 1.1e-05 ***

I(visit^2) -0.0328 0.0320 1.05 0.3055

visit:dose 0.3284 0.1100 8.91 0.0028 **

dose:I(visit^2) -0.0637 0.0286 4.97 0.0259 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation structure = exchangeable

Estimated Scale Parameters:

Estimate Std.err

(Intercept) 1 0.0287

Link = identity

Estimated Correlation Parameters:

Estimate Std.err

alpha 0.363 0.0243

Number of clusters: 1151 Maximum cluster size: 4
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Case Study: Clinical Trial of Contracepting Women

β̂0 (SE) β̂1 (SE) β̂2 (SE) β̂3 (SE) β̂4 (SE)

Ind -2.2 (0.18) 0.67 (0.16) -0.03 (0.03) 0.30 (0.11) -0.06 (0.03)

Exch -2.2 (0.18) 0.70 (0.16) -0.03 (0.03) 0.33 (0.11) -0.06 (0.03)

AR1 -2.2 (0.18) 0.71 (0.16) -0.03 (0.03) 0.36 (0.11) -0.08 (0.03)

Unst -2.2 (0.18) 0.70 (0.16) -0.03 (0.03) 0.34 (0.11) -0.07 (0.03)

GLM -2.2 (0.21) 0.67 (0.19) -0.03 (0.04) 0.30 (0.11) -0.06 (0.03)

• Working independence and using glm() give exactly the same point
estimates

• glm() standard errors are not correct (here, too large)

• Working independence, exchangeable, AR1, and unstructured provide
similar results
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Case Study: Clinical Trial of Contracepting Women

Using working exchangeable:

• The ratio of the population odds
of amenorrhea at 12 months
comparing high dose to low dose
is estimated to be 1.34 (95% CI:
1.01 - 1.78)

• Conducting a multivariate Wald
test (H0 : β3 = β4 = 0) we find
a statistically significant effect
of dose, p-value = 0.002
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GEE: Which Correlation Model to Choose?

Question: Which correlation model should I choose?

Answer: Ideally, to preserve CI statements, Type I error, the choice of
working correlation should be based on external information or substantive
grounds rather than exploratory analysis

Question: If the correlation model does not need to be correctly specified
to obtain a consistent estimator for β or valid standard errors for β̂, why
not always use an independence working correlation model?

Answer: Selecting a non-independence or weighted correlation model

• Permits use of the model-based variance estimator

• May provide improved efficiency for β̂
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GEE: Summary

• Primary focus of the analysis is a marginal mean regression model
that corresponds to any GLM

• Longitudinal correlation is secondary to the mean model of interest
and is treated as a nuisance feature of the data

• Requires selection of a ‘working’ correlation model

• Lack of a likelihood function implies that likelihood ratio test statistics
are unavailable; hypothesis testing with GEE uses Wald statistics

• Working correlation model does not need to be correctly specified
to obtain a consistent estimator for β or valid standard errors for β̂,
but efficiency gains are possible if the correlation model is correct

Issues

• Accommodates only one source of correlation: Longitudinal or cluster

• GEE requires that any missing data are missing completely at random

• Issues arise with time-dependent exposures and covariance weighting
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LMM: What’s Beneath the Hood?
Maximum Likelihood:

Y i |bi ∼ MVN(X iβ + Z ibi , ϵi )

bi ∼ MVN(0,D)

So the likelihood function is a product of normal densities,

P(Y i ,bi ) = P(Y i |bi )P(bi ),

which is easy to integrate and maximize (continuous outcomes only!).

Restricted Maximum Likelihood:

• ML estimation of Σ is biased (e.g., n vs. n− p in denominator for σ2)
• REML (default) provides less-biased estimation of Σ

▶ Details are beyond the scope of this module
▶ Can’t use LRT to compare models with different fixed effects if fit

with REML – use ML instead
▶ Okay to compare random effects structures (same fixed effects)
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Choosing a Random Effects Structure

• Covariance model choice determines the standard error estimates
for β̂; correct model is required for correct standard error estimates

• Suppose we want to decide between two candidate random effect
structures:

H0 : D =

[
D11 0

0 0

]
versus H1 : D =

[
D11 D21

D12 D22

]
,

• Could we formally test whether random intercepts are adequate, e.g.,
with LRT?
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Likelihood-based inference for D

• Consider testing H0 : D12 = D22 = 0
▶ Fit both models with REML, compare with LRT

• This is possible in R

• Seems to suggest random intercept is sufficient
(AIC is lower for RI than RS, p-value is big)

▶ Consistent with our prior exploratory analysis
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Choosing a Random Effects Structure

Problem: testing D22 = 0 is a nonstandard problem

• P-values tend to be conservative, could lead to over-simplifying
correlation structure

• (Ad hoc fix proposed by Fitzmaurice, Laird, Ware: use α = 0.1)

Alternatives:
• If only interested in inference on β:

▶ Choose based on a priori scientific knowledge and exploratory analysis
▶ Use robust standard errors (see module code; R package clubSandwich)

• If this is an exploratory analysis and you’re interested in correlation
structure, ok to test structures

▶ Can cause type 1 error problems if your focus is inference on β
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Dental Growth: Robust SE, Random Intercepts

Variable β̂ Estimation P-value CI

Intercept 21.2 Model-based 1.28× 10−47 (19.9, 22.5)

Robust 6.35× 10−12 (19.9, 22.5)

(Age-8) 0.48 Model-based 2.02× 10−6 (0.29, 0.67)

Robust 2.78× 10−5 (0.33, 0.63)

Male 1.41 Model-based p=0.108 (-0.33, 3.14)

Robust p=0.095 (-0.27, 3.08)

(Age-8)*Male 0.30 Model-based p=0.014 (0.06, 0.55)

Robust p=0.020 (0.05, 0.56)
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Choosing a Random Effects Structure

A priori considerations:

• Random intercepts only:
▶ Simpler (+/-) and easy to interpret (e.g., ICC)
▶ Induces exchangeable correlation (+/-)

• Random intercepts and slopes:
▶ More information about individual trajectories and covariance (+)
▶ More complex (+/-)

⋆ Over-parameterization of covariance =⇒ inefficient estimation of
fixed-effects parameters β
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Non-Continuous Outcomes: What Changes?

• We’ve seen specification of GLMs earlier today:

Y i |µi ∼ exponential family distribution

g(µi ) = X iβ

• We’ll focus on binary outcomes, but distribution and link function
may be swapped out for other outcome types

Y i |µi ∼ Bernoulli(µi )

logit(µi ) = ηi = X iβ

• Can’t we just add Z ibi to ηi , and update our likelihood function?
▶ ... yes and no.

A Plantinga and K Wilson (Module 9) GEE and MM for LDA SISCER 2022 43 / 81



Generalized Linear Mixed Effects Models

LMM:

Yi |µi ,bi ∼ Normal(µi , σ
2I )

µi |bi = X iβ + Z ibi

bi ∼ Normal(0,D)

GLMM:

Yi |µi ,bi ∼ Bernoulli(µi )

logit(µi |bi ) = X iβ + Z ibi

bi ∼ Normal(0,D)
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Generalized Linear Mixed Effects Models

• Conceptually very similar!

• Computationally, GLMM is much more complicated
▶ Likelihood: product of non-Normal exponential density (for Y i |bi ) and

Normal density (for bi )
▶ Typically fit using approximation or numerical techniques
▶ (NB: centering and scaling predictors can help with convergence issues)

• Interpretation is (importantly) different
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Conditional and Marginal Effects

• Parameter estimates obtained from a marginal model (as obtained
via GEE) estimate population-averaged contrasts

• Parameter estimates obtained from a conditional model (as obtained
via GLMM) estimate subject-specific contrasts

• In a linear model for a Gaussian outcome with an identity link, these
are equivalent; not the case with non-linear models

▶ Depends on the outcome distribution

▶ Depends on the specified random effects
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Conditional = Marginal for LMM, Not GLMM. Why?

For an LMM, we use the identity link function. Then:

• Taking the expected value over bi :

Eb {E(Yij |Xij ,bi )} = Eb

{
X⊤
ij β + Z⊤

ij bi

}
= Z⊤

ij β = E(Yij |Xij)

• So the average conditional mean Eb {E(Yij |Xij ,bi )}
is the same as the marginal mean E(Yij |Xij)

For a GLMM, we use a non-identity link function. Then:

• Taking the expected value over bi :

Eb {g(E(Yij |Xij ,bi ))} = Eb

{
g(X⊤

ij β + Z⊤
ij bi )

}
̸= g(E(Yij |Xij))

• So average conditional mean is not the same as marginal mean, in
general

A Plantinga and K Wilson (Module 9) GEE and MM for LDA SISCER 2022 47 / 81



Conditional ̸= Marginal for GLMM

Note: marginal is ”attenuated” (smaller estimate) compared to conditional
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Interpretation of GLMM

Fitted model

Outcome Coefficient Random intercept Random intercept/slope

Continuous Intercept Marginal Marginal

Slope Marginal Marginal

Binary Intercept Conditional Conditional

Slope Conditional Conditional

Count Intercept Conditional Conditional

Slope Marginal Conditional

⋆ Marginal = population-averaged; conditional = subject-specific
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Example: Amenorrhea in Contracepting Women
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Scientific Questions

• How do subject-specific risks of amenorrhea change over the course of
the study?

• What is the influence of dosage on amenorrhea risk?
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GLMM for Amenorrhea (random intercepts)

Same fixed effects component of model as GEE, plus random intercepts:

log

(
µij

1− µij

)
= β0 + β1tij + β2t

2
ij + β3Dosei × tij + β4Dosei × t2ij + bi

where µij = Pr(Yij = 1)

In R:

library(lme4)

glmm.ri <- glmer(amenorrhea ~ visit + visit:dose +

I(visit^2) + I(visit^2):dose + (1 | id),

data = ctcw, nAGQ = 10,

family = "binomial")
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Case Study: Clinical Trial of Contracepting Women

Generalized linear mixed model fit by maximum likelihood

(Adaptive Gauss-Hermite Quadrature, nAGQ = 10) [’glmerMod’]

Family: binomial ( logit )

Formula: amenorrhea ~ visit + visit:dose + I(visit^2) + I(visit^2):dose + (1 | id)

Data: ctcw

Random effects:

Groups Name Variance Std.Dev.

id (Intercept) 5.054 2.248

Number of obs: 3616, groups: id, 1151

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.80348 0.30470 -12.483 < 2e-16 ***

visit 1.13259 0.26811 4.224 2.4e-05 ***

I(visit^2) -0.04187 0.05479 -0.764 0.44475

visit:dose 0.56417 0.19214 2.936 0.00332 **

dose:I(visit^2) -0.10952 0.04959 -2.209 0.02721 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Case Study: Clinical Trial of Contracepting Women
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GLMM for Amenorrhea (random intercepts)

logit(P(Amenorrheai |Dosei ,Visitij ,bi )) = −3.80 + 1.13× Visitij

−0.04× Visit2ij + 0.56× Dosei × Visitij − 0.11× Dosei × Visit2ij + bi

• On average, the odds of amenorrhea at 12 months (Visit 4) for a
woman who took the high dose is 1.66 times higher than a woman
with the same baseline risk who took the low dose (95% CI:
1.03-2.65).

• Conducting a likelihood ratio test (H0 : β3 = β4 = 0), we find a
statistically significant effect of dose (p=0.002)

(NB: conditional interpretations for all parameters in logistic GLMM)
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GLMM vs. GEE for Amenorrhea

• GEE: marginal estimates (population-averaged odds ratios)

• GLMM: conditional estimates (within-subject odds ratios)

• Marginal is attenuated relative to conditional
• Note: unlike LMM, random intercept in GLMM does not induce
exchangeable correlation

▶ So these models do not assume the same correlation structure

Model GEE (Exch) GLMM (RI)

β̂0 (SE) -2.2 (0.18) -3.8 (0.30)

β̂1 (SE) 0.70 (0.16) 1.13 (0.27)

β̂2 (SE) -0.03 (0.03) -0.04 (0.05)

β̂3 (SE) 0.33 (0.11) 0.56 (0.19)

β̂4 (SE) -0.06 (0.03) -0.11 (0.05)
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Assumptions and Notes

• Same set of assumptions as LMM:
▶ Correct mean model (fixed effects + random effects)
▶ Correct covariance specification (random effects)
▶ Correct distributional assumptions for Y i |bi and bi

• Interpretations:
▶ Conditional = marginal for LMM, so can interpret either way
▶ Conditional ̸= marginal for GLMM; interpret appropriately (usually

conditional/subject-specific interpretation)
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Overview

Review of Generalized Linear Models

Generalized Estimating Equations

Generalized Linear Mixed Models

Advanced topics
Missing data
Time-dependent exposures

Activity

Summary
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Missing data

• Missing values arise in longitudinal studies whenever the intended
measurements are not obtained

▶ Collect fewer data than planned ⇒ decreased efficiency (power)
▶ Missingness can depend on outcome values ⇒ potential bias

• Important to distinguish between missing data and unbalanced data,
although missing data necessarily result in unbalanced data

• Missing data require consideration of the factors that influence the
missingness of intended observations

• Also important to distinguish between intermittent missing values
(non-monotone) and dropouts in which all observations are missing
after subjects are lost to follow-up (monotone)

Pattern t1 t2 t3 t4 t5

Monotone 3.8 3.1 2.0 2 2

Non-monotone 4.1 2 3.8 2 2
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Mechanisms

In order to obtain valid inference from incomplete data, the mechanism
producing the missingness must be considered

• Missing completely at random (MCAR)
Missingness does not depend on either the observed or missing
responses

• Missing at random (MAR)
Missingness depends only on the observed responses

• Missing not at random (MNAR)
Missingness depends on the missing responses

MNAR also referred to as informative or non-ignorable missingness;
thus MAR and MCAR as non-informative or ignorable missingness
(Rubin, 1976)
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Examples and implications

• MCAR: Administrative censoring at a fixed calendar time
▶ Generalized estimating equations are valid
▶ Mixed-effects models are valid
▶ Note: If missingness depends on covariates, the covariates need to be

incorporated into the analysis (missingness would be a problem if you
do not condition on them)

• MAR: Study protocol that a subject be removed once the value of an
outcome variable is below a certain threshold

▶ Generalized estimating equations are not valid
▶ Mixed-effects models are valid (as long as model is correctly specified)

• MNAR: Outcome is a measure of ‘quality-of-life’ and subjects fail to
complete the questionnaire when their quality-of-life is compromises

▶ Generalized estimating equations are not valid
▶ Mixed-effects models are not valid

⋆ Without knowing the reasons for missingness or having the missing data
cannot know which mechanism for sure.
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Missing Data: Analytic Approaches

1. Complete-case analysis: use observations from only those that have
complete data

▶ Valid if data are MCAR

2. Available data analysis: use all available observations
▶ Valid if data are MCAR
▶ Tends to be more efficient than complete case
▶ Likelihood-based methods valid if data are MAR and correctly specified

3. Imputation: fill in missing values
▶ Multiple imputation helps to account for uncertainty

4. Weighting methods: accounts for under-representation of certain
responses in the observed data by weighting the observed data
according to probability of remaining in the study

5. Others...
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WGEE
• Extend marginal GEE approach to longitudinal studies with MAR
dropout

• Define Rij = 1 if jth observation from subject i is observed.

• Observations in the estimating equation are weighted inversely
proportional to the probability of being observed

N∑
i=1

Di (β̂)
⊤V−1

i (β̂,α)∆i (θ)[Yi − µi (β̂)] = 0

where

∆i (θ) =


Ri1wi1 0 · · · 0

0 Ri2wi2 · · · 0
...

. . .
. . .

...

0 0 · · · Rinwin


(Robins et al., 1995)
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WGEE

• Valid under MAR provided the model for probability of dropout is
correct

▶ Requires either a priori knowledge of the weights wij or
▶ Correctly specified dropout model (the probability of remaining in the

study at the current time point, given dropout not occurring at
previous time points):

πij = Pr(Rij = 1|,Ri,j−1 = 1,Xi ,Yi1, . . . ,Yi,j−1) → wij =

[
j∏

k=1

πik

]−1

• Usual comments regarding GEE apply:
▶ Correct specification for the mean µ and sufficiently large N
▶ Use of robust variance estimator provides robustness to misspecification

of the correlation structure
▶ Choice of working correlation matrix affects efficiency
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Example

log

(
µij

1− µij

)
= β0 + β1tij + β2t

2
ij + β3Dosei × tij + β4Dosei × t2ij

β̂0 (SE) β̂1 (SE) β̂2 (SE) β̂3 (SE) β̂4 (SE)

CC -2.4 (0.22) 0.77 (0.19) -0.04 (0.04) 0.25 (0.13) -0.04 (0.03)

AD -2.2 (0.18) 0.70 (0.16) -0.03 (0.03) 0.33 (0.11) -0.06 (0.03)

WGEE -2.3 (0.18) 0.71 (0.16) -0.03 (0.03) 0.34 (0.11) -0.07 (0.03)

• Complete case (CC) and available data (AD) analyses valid if data are
MCAR

• For WGEE, assumed the probability of remaining in the study
depends on measurement occasion, dose group, and previous response

log

(
πij

1− πij

)
= θ0 + θ1Dosei + θ2tij + θ3Yi ,j−1 + θ4Dosei × Yi ,j−1
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Last observation carried forward

• Extrapolate the last observed measurement to the remainder of the
intended serial observations for subjects with any missing data

ID t1 t2 t3 t4 t5

1 3.8 3.1 2.0 2.0 2.0

2 4.1 3.5 3.8 2.4 2.8

3 2.7 2.4 2.9 3.5 3.5

• May result in serious bias in either direction (even when missingness is
MCAR)

• May result in anti-conservative p-values; variance is understated

• Has been thoroughly repudiated, but still a standard method used by
the pharmaceutical industry and appears in published articles

• A refinement would extrapolate based on a regression model for the
average trend, which may reduce bias, but still understates variance
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Last observation carried forward
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Last observation carried forward
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Time-dependent exposures

Important analytical issues arise with time-dependent exposures

1. May be necessary to correctly specify the lag relationship over time
between outcome Yi (t) and exposure Xi (t), Xi (t − 1), Xi (t − 2), . . .
to characterize the underlying biological latency in the relationship

▶ Example: Air pollution studies may examine the association between
mortality on day t and pollutant levels on days t, t − 1, t − 2, . . .

2. May exist exposure endogeneity in which the outcome at time t
predicts the exposure at times t ′ > t; motivates consideration of
alternative targets of inference and corresponding estimation methods

▶ Example: If Yi (t) is a symptom measure and Xi (t) is an indicator of
drug treatment, then past symptoms may influence current treatment
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Definitions

Factors that influence Xi (t) require consideration when selecting analysis
methods to relate a time-dependent exposure to longitudinal outcomes

• Exogenous: An exposure is exogenous w.r.t. the outcome process
if the exposure at time t is conditionally independent of the history
of the outcome process Yi (t) = {Yi (s) | s ≤ t} given the history
of the exposure process Xi (t) = {Xi (s) | s ≤ t}

[Xi (t) | Yi (t), Xi (t)] = [Xi (t) | Xi (t)]

• Endogenous: Not exogenous

[Xi (t) | Yi (t), Xi (t)] ̸= [Xi (t) | Xi (t)]
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Examples

Exogeneity may be assumed based on the design or evaluated empirically

• Observation time: Any analysis that uses scheduled observation time
as a time-dependent exposure can safely assume exogeneity because
time is ‘external’ to the system under study and thus not stochastic

• Cross-over trials: Although treatment assignment over time is
random, in a randomized study treatment assignment and treatment
order are independent of outcomes by design and therefore exogenous

• Empirical evaluation: Endogeneity may be empirically evaluated
using the observed data by regressing current exposure Xi (t) on
previous outcomes Yi (t − 1), adjusting for previous exposure Xi (t − 1)

g(E[Xi (t)]) = θ0 + θ1Yi (t − 1) + θ2Xi (t − 1)

and using a model-based test to evaluate the null hypothesis: θ1 = 0
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Implications

The presence of endogeneity determines specific analysis strategies

• If exposure is exogenous, then the analysis can focus on specifying the
lag dependence of Yi (t) on Xi (t), Xi (t − 1), Xi (t − 2), . . .

• If exposure is endogenous, then analysts must focus on selecting a
meaningful target of inference and valid estimation methods
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Targets of inference

With longitudinal outcomes and a time-dependent exposure there are
several possible conditional expectations that may be of scientific interest

• Fully conditional model: Include the entire exposure process

E[Yi (t) | Xi (1),Xi (2), . . . ,Xi (Ti )]

• Partly conditional models: Include a subset of exposure process

E[Yi (t) | Xi (t)]

E[Yi (t) | Xi (t − k)] for k ≤ t

E[Yi (t) | Xi (t) = {Xi (1),Xi (2), . . . ,Xi (t)}]

⋆ An appropriate target of inference that reflects the scientific question
⋆ of interest must be identified prior to selection of an estimation method
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Key assumption

Suppose that primary scientific interest lies in a cross-sectional mean model

E[Yi (t) | Xi (t)] = β0 + β1Xi (t)

To ensure consistency of a generalized estimating equation or likelihood-
based mixed-model estimator for β, it is sufficient to assume that

E[Yi (t) | Xi (t)] = E[Yi (t) | Xi (1),Xi (2), . . . ,Xi (Ti )]

Otherwise an independence estimating equation should be used

• Known as the full covariate conditional mean assumption

• Implies that with time-dependent exposures must assume exogeneity
when using a covariance-weighting estimation method

• The full covariate conditional mean assumption is often overlooked
and should be verified as a crucial element of model verification

(Pepe and Anderson, 1994)
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Toenail Infection Analysis
• RCT comparing two oral treatments for a toenail infection

• n=294, most observed at 7 visits (0, 4, 8, 12, 24, 36, 48 weeks)

• Goal: Compare percentage of severe infections over time and between
treatment groups
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Summary and Comparison of Methods I

GEE GLMM

Mean model Marginal Conditional

Correlation Model for correlation Model for population
heterogeneity; correlation
induced by random effects

Corr. sources One source (+ or -) Multiple sources (+ only)

Model type Semi-parametric (mean & corr.) Parametric (exponential family)

Target
quantities

Mean model Mean model and within vs.
between-subject heterogeneity
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Summary and Comparison of Methods II

GEE GLMM

Estimation Unbiased estimating equations Maximum likelihood

Testing Wald tests Likelihood ratio or Wald tests

Inference Marginal (population-averaged) Conditional (subject-specific)

Missing data
assumptions

Missing completely at random
(MCAR)

Missing at random (MAR)

Robustness Robust to correlation model
mis-specification

Requires correct parametric
model specification

Other notes Large sample (N ≥ 40) Induced marginal mean
structure and ‘attenuation’

Model-based or sandwich
variance estimator

Typically model-based variance,
but can use sandwich (robust)
estimator

Efficiency of non-independence
correlation models
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Summary and Comparison of Methods III: Big Picture

GEE GLMM

Robustness Provide valid estimates and
standard errors for regression
parameters of interest even if
the correlation model is
incorrectly specified (+)

Empirical variance estimator
requires large sample size (−)

Provide valid estimates and
standard errors for regression
parameters only under stringent
model assumptions (−)

Inference Always provide population-
averaged inference regardless of
the outcome distribution;
ignores subject-level
heterogeneity (+/−)

Provide population-averaged or
subject-specific inference
depending on the outcome
distribution and specified
random effects (+/−)

Correlation Accommodate only one source
of correlation (−/+)

Accommodate multiple sources
of correlation (+/−)

Missing Data Require that any missing data
are missing completely at
random (−)

Require that any missing data
are missing at random (−/+)
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Advice

• Analysis of longitudinal data is often complex and difficult

• You now have versatile methods of analysis at your disposal

• Each of the methods you have learned has strengths and weaknesses

• Do not be afraid to apply different methods as appropriate

• Always be mindful of the scientific question(s) of interest

• Sensitivity analyses are helpful
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Resources

Introductory

• Fitzmaurice GM, Laird NM, Ware JH. Applied Longitudinal Analysis.
Wiley, 2011.

• Gelman A, Hill J. Data Analysis Using Regression and Multilevel/
Hierarchical Models. Cambridge University Press, 2007.

• Hedeker D, Gibbons RD. Longitudinal Data Analysis. Wiley, 2006.

Advanced

• Diggle PJ, Heagerty P, Liang K-Y, Zeger SL. Analysis of Longitudinal
Data, 2nd Edition. Oxford University Press, 2002.

• Molenbergs G, Verbeke G. Models for Discrete Longitudinal Data.
Springer Series in Statistics, 2006.

• Verbeke G, Molenbergs G. Linear Mixed Models for Longitudinal
Data. Springer Series in Statistics, 2000.
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