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The Key Challenge

Key objective: causal conclusions from observational data

• Experimental studies:
• Treatment assigned by the researcher, independent of con-

founding factors;
• Causal statements possible.

• Observational studies:
• Treatment assignment dependent on confounding factors;
• Causal statements not possible ?
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Module Content

1. The need for adjustment: confounding in observational studies.
2. Manufacturing balance: the propensity score.
3. Statistical tools utilizing the propensity score.
4. Examples and extensions.
5. New directions.
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Part 1

Introduction
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The central causal question

In many research domains, the objective of an investigation is to quantify
the effect on a measurable outcome of changing one of the conditions
under which the outcome is measured.
• in a health research setting, we may wish to discover the benefits

of a new therapy compared to standard care;
• in economics, we may wish to study the impact of a training pro-

gramme on the wages of unskilled workers;
• in transportation, we may attempt to understand the effect of em-

barking upon road building schemes on traffic flow or density in a
metropolitan area.

The central statistical challenge is that, unless the condition of interest
is changed independently, the inferred effect may be subject to the influ-
ence of other variables.

1.1: The central causal question 10



The central causal question

Example: The effect of nutrition on health

In a large cohort, the relationship between diet and health status is to be
investigated. Study participants are queried on the nutritional quality of
their diets, and their health status in relation to key indicators is assessed
via questionnaires.

For a specific outcome condition of interest, incidence of cardiovascular
disease (CVD), the relation to a specific dietary component, vitamin E
intake, is to be assessed.

In the study, both incidence of disease and vitamin E intake were di-
chotomized
• Exposure: Normal/Low intake of vitamin E.
• Outcome: No incidence/Incidence of CVD in five years from study

initiation.

1.1: The central causal question 11



The central causal question

Example: The effect of nutrition on health

Outcome
CVD No CVD

Exposure
Normal 27 8020
Low 86 1879

Question: does a diet lower in vitamin E lead to higher chance of devel-
oping CVD ? More specifically, is this a causal link ?
• that is, if we were to intervene to change an individual’s exposure

status, by how much would their risk of CVD change ?

1.1: The central causal question 12



The language of causal inference

We seek to quantify the effect on an outcome of changes in the value of
an exposure or treatment.
• Outcome: could be

• binary;
• integer-valued;
• continuous-valued.

• Exposure: could be
• binary;
• integer-valued;
• continuous-valued.

• Study: could be
• cross-sectional (single time point);
• longitudinal (multiple time points).

We consider an intervention to change exposure status.

1.1: The central causal question 13



Notation

We adopt the following notation: let
• i index individuals included in the study;
• Yi denote the outcome for individual i;
• Zi denote the exposure for individual i;
• Xi denote the values of other predictors (or covariates).

For a cross-sectional study, Yi and Zi will be scalar-valued; for the longi-
tudinal case, Yi and Zi may be vector valued. Xi is typically vector-valued
at each measurement time point.

1.2: Notation 14



Graphical representation

X Y

Z

Directed Acyclic Graph (DAG) for basic confounding set up in observational
studies.

DAGs are commonly used to clarify causal thinking and assumptions.
Probability & Causal DAGs recap

1.2: Notation 15



Graphical representation

• an inbound arrow indicates a causal relationship
• X is a direct cause of Y and Z;
• Z is a direct cause of Y, but also a mediator of the indirect

cause of X on Y;

• a variable (node) that has no inbound arrows can be considered a
‘founder’ variable;

• wemust consider paths from the exposure Z to the outcome Y; there
are two
• the direct path Z → Y,
• the indirect path Z → X → Y

1.2: Notation 16



Structural modelling

We can think of the DAG as encapsulating the following equations:

Z = gZ(X, εZ)

Y = gY(X, Z, εY)

where εZ and εY are independent random perturbations, and gZ and gY
are mapping functions.

That is,

• we take X and εZ and combine them through gZ to obtain Z;

• we combine Z with X and εY through gY to obtain Y.

1.2: Notation 17



Structural modelling

For example

Z = X + εZ

Y = 2X + 5Z + 3XZ + εY

1.2: Notation 18



Causal goal

Our goal is to understand the unconfounded effect of Z on Y, that is,
where X is not treated as a cause of Z.

X Y

Z

DAG with no confounding.

1.2: Notation 19



Causal goal

In the structural model, we imagine Z being fixed to some value, z say,
not generated by its structural model.

Y = 2X + 5z + 3Xz + εY

1.2: Notation 20



Counterfactual or Potential Outcomes

We denote by
Yi(z)

the hypothetical outcome for individual i if we were to intervene to set
exposure to z.

Yi(z) is termed a counterfactual or potential outcome.

1.2: Notation 21



Counterfactual or Potential Outcomes

If exposure is binary, the pair of potential outcomes

{Yi(0), Yi(1)}

represent the outcomes that would result for individual i if that subject
was not exposed, or exposed, respectively.

The observed outcome, Yi, may be written in terms of the potential out-
comes and the observed exposure, Zi, as

Yi = (1− Zi)Yi(0) + ZiYi(1).

1.2: Notation 22



Counterfactual or Potential Outcomes

That is, Y(0) and Y(1) are (potentially) caused by X, but not Z.

X

Y

{Y(0), Y(1)}

Z

DAG with potential outcomes

If we know the value of X, then we know the distribution of both Y(0) and
Y(1) without needing to know anything about the actual treatment Z.

1.2: Notation 23



Counterfactual or Potential Outcomes

If exposure is multi-valued, the potential outcomes

{Yi(z1), Yi(z2), . . . , Yi(zd)}

represent the outcomes that would result for individual i if that subject
exposed to exposure level z1, z2, . . . , zd respectively.

Then for the observed Yi,

Yi = Yi(zj) ⇐⇒ Zi = zj.

1.2: Notation 24



Counterfactual or Potential Outcomes

If exposure is continuous-valued, the potential outcomes

{Yi(z), z ∈ Z}

represent the outcomes that would result for individual i if that subject
exposed to exposure level z which varies in the set Z .

1.2: Notation 25



Counterfactual or Potential Outcomes

Note 1.
It is rare that we can ever observe more than one of the potential out-
comes for a given subject in a given study, that is, for binary exposures
it is rare that we will be able to observe both

Yi(0) and Yi(1)

in the same study.

In the previous example, we cannot observe the CVD outcome under both
the assumption that the subject did and simultaneously did not have a low
vitamin E diet.

This is the first fundamental challenge of causal inference.

1.2: Notation 26



Causal Estimands

The central question of causal inference relates to comparing the (ex-
pected) values of different potential outcomes.

We consider the causal effect of exposure to be defined by differences in
potential outcomes corresponding to different exposure levels.

Note 2.
This is a statistical, rather than necessarily mechanistic, definition of
causality.

1.3: Causal estimands 27



Binary Exposures

For a binary exposure, we define the causal effect of exposure by consid-
ering contrasts between Yi(0) and Yi(1); for example, we might consider
• Additive contrasts

Yi(1)− Yi(0)

• Multiplicative contrasts

Yi(1)/Yi(0)

1.3: Causal estimands 28



Continuous Exposures

For a continuous exposure, we might consider the path tracing how Yi(z)
changes as z changes across some relevant set of values.

This leads to a causal dose-response function.

Example: Occlusion Therapy for Amblyopia

Wemight seek to study the effect of occlusion therapy (patching) on vision
improvement of amblyopic children. Patching ‘doses’ are measured in
terms of time for which the fellow (normal functioning) eye is patched.

As time is measured continuously, we may consider how vision improve-
ment changes for any relevant dose of occlusion.

1.3: Causal estimands 29



Expected counterfactuals

In general, we are interested in population causal effects based on ex-
pected potential outcomes

E[Yi(z)]

or contrasts of these quantities.

We might also consider subgroup-specific expected quantities

E[Yi(z)|i ∈ S]

where S is some stratum of interest in the general population.

1.3: Causal estimands 30



Expected counterfactuals: binary exposure

For a binary exposure, we might consider the average effect of exposure
(or average treatment effect, ATE) defined as

E[Yi(1)− Yi(0)] = E[Yi(1)]−E[Yi(0)]

If the outcome is also binary, we note that

E[Yi(z)] ≡ Pr[Yi(z) = 1]

so may also consider odds or odds ratios quantities

Pr[Yi(z) = 1]
Pr[Yi(z) = 0]

Pr[Yi(1) = 1]/Pr[Yi(1) = 0]
Pr[Yi(0) = 1]/Pr[Yi(0) = 0]

.

1.3: Causal estimands 31



Expected counterfactuals: binary exposure

We may also consider quantities such as the

average treatment effect on the treated, ATT

defined as
E[Yi(1)− Yi(0)|Zi = 1]

although such quantities can be harder to interpret.

1.3: Causal estimands 32



Example: antidepressants and autism

. 2016 Feb;170(2):117-24. doi: 10.1001/jamapediatrics.2015.3356.

Antidepressant Use During Pregnancy and the Risk of
Autism Spectrum Disorder in Children

Takoua Boukhris , Odile Sheehy , Laurent Mottron , Anick Bérard

Affiliations

JAMA Pediatr

  1   2   3   1
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Québec, Canada5Centre de Recherche de l'Institut Universitaire de Psych.
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Example: antidepressants and autism

Example:

Antidepressants are quite widely prescribed for a variety of mental health
concerns. However, pregnant women may be reluctant to embark on a
course of antidepressants during pregnancy.

We might wish to investigate, in a population of users (and potential
users) of antidepressants, the incidence of autism-spectrum disorder in
early childhood and to assess the possibility of causal influence of antide-
pressant use on this incidence.

1.3: Causal estimands 34



Example: antidepressants and autism

Example:

• Outcome: binary, recording the a diagnosis of autism-spectrum dis-
order in the child by age 5;

• Exposure: antidepressant use during 2nd or 3rd trimester of preg-
nancy.

Then we may wish to quantity

E[Yi(antidepressant)− Yi(no antidepressant)|Antidep. actually used].

1.3: Causal estimands 35



Estimation of average potential outcomes

We wish to obtain estimates of causal quantities of interest based on the
available data, which typically constitute a random sample from the tar-
get population.

Typically, we will use sample mean type quantities: for a random sample
of size n, the sample mean

1
n

n∑
i=1

Yi

is an estimator of the population mean and so on.

1.4: Basics of estimation 36



Estimation of average potential outcomes

In a typical causal setting, we wish to perform estimation of

average potential outcome

(APO) values.

Consider first the situation where all subjects in a random sample receive
a given exposure z; we wish to estimate

µ(z) = E[Y(z)].

1.4: Basics of estimation 37



Estimation of average potential outcomes

The intervention to set Z = z is done independently of X, so the arrow
X → Z is removed.

X

Y(z)

{Y(0), Y(1)}

Z = z

DAG with exposure intervention Z = z

1.4: Basics of estimation 38



Estimation of average potential outcomes

As a mathematical calculation, we write the expected outcome as

E[Y(z)] =
∫

y fY(z)(y) dy

where fY(z)(y) is the distribution of the potential outcome Y(z).

We read this calculation as

“average the collection of possible y values weighted by their
probability of being observed".

1.4: Basics of estimation 39



Estimation of average potential outcomes

We may also write this as

E[Y(z)] =
∫

y fY(z),X(y, x) dy dx

which recognizes that in the population, the values of the predictors X
also vary randomly according to some joint probability distribution.

We know from the DAG on p. 38 that

fY(z),X(y, x) = fY(z)|X(y|x)fX(x)

1.4: Basics of estimation 40



Estimation of average potential outcomes

Note that we may also write

E[Y(z)] =
∫

y1{z}(z) fY(z),X(y, x) dy dz dx

assuming an exposure distribution that sets z = z with probability one.

• the data are considered to be sampled from the distribution

1{z}(z) fY(z),X(y, x) = 1{z}(z) fY(z)|X(y|x)fX(x).

Thus, for the APO we have

E[Y(z)] =
∫

y 1{z}(z) fY(z),X(y|x)fX(x) dy dz dx.

1.4: Basics of estimation 41



Estimation of average potential outcomes

Now, in our hypothetical sample, we have observed n data points

{(xi, yi, zi), i = 1, . . . , n}

from the joint distribution

1{z}(z) fY(z),X(y|x)fX(x)

so that zi = z for all i. We may estimate the relevant APO E[Y(z)] by

Ê[Y(z)] =
1
n

n∑
i=1

yi = y.

1.4: Basics of estimation 42



Estimation of average potential outcomes

Note 3.
To estimate functions of the sample mean, wemay use simple transforma-
tions of the estimator; for example, if the outcome is binary, we estimate
the odds

Pr[Yi(z) = 1]
Pr[Yi(z) = 0]

by
y

1− y
.

1.4: Basics of estimation 43



Side Note: Monte Carlo methods

Causal quantities are typically average measures across a given popula-
tion which we write as integrals with respect to probability distributions.

For any function g(.), we have mathematically that

E[g(Y)] =
∫

g(y) fY(y) dy

Rather than performing this calculation using integration, we approxi-
mate it numerically using Monte Carlo.

1.5: The Monte Carlo paradigm 44



Side Note: Monte Carlo methods

Monte Carlo calculations proceed as follows:

• generate a sample of size n from the density

fY(y)

to yield y1, . . . , yn; there are standard techniques to achieve this.

• approximate E[g(Y)] by

Ê[g(Y)] =
1
n

n∑
i=1

g(yi).

• For large n, Ê[g(Y)] provides a good approximation to E[g(Y)].

1.5: The Monte Carlo paradigm 45



Side Note: Monte Carlo methods

Note 4.
This calculation is at the heart of frequentist methods in statistics:
• we collect a sample of data of size n,
• form and estimates based on this sample (eg sample averages),
• if our sample is large enough, the estimate will be close to the true

expected value.

1.5: The Monte Carlo paradigm 46



Side Note: Monte Carlo methods

Importance sampling is based on forming weighted averages

• we re-weight obtained samples from another distribution f∗Y so that
we can estimate quantities relating to fY

• this is like ‘standardization’ (eg standardized mortality rate) in epi-
demiology.

Monte Carlo recap

1.5: The Monte Carlo paradigm 47



Side Note: Marginal and conditional measures of effect

Many of the causal measures described above are marginal measures.

That is, they involve averaging over the distribution of X: as we have seen

E[Y(z)] =
∫

y fY|Z,X(y|z, x)fX(x) dy dx.

This is sometimes known as aG-computation formula. It essentially arises
by assuming X and Z are independent, and then studying the marginal
(over X) distribution

fY|Z(y|z) =
∫

fY|Z,X(y|z, x)fX(x) dx.

1.6: Collapsibility 48



Side Note: Marginal and conditional measures of effect

Marginal measures are not typically the same as the equivalent measure
defined for the conditional model

fY|Z,X(y|z, x).

Marginal measures that do not have the same interpretation in the con-
ditional model are termed non-collapsible.

1.6: Collapsibility 49



The randomized study

The approach that intervenes to set exposure equal to z for all subjects,
however, does not facilitate comparison of APOs for different values of z.

Therefore consider a study design based on randomization; consider from
simplicity the binary exposure case. Suppose that a random sample of
size 2n is obtained, and split into two equal parts.

• the first group of n are assigned the exposure and form the ‘exposed’
or ‘treated’ sample,

• the second group are left ‘untreated’.

1.7: The randomized study 50



The randomized study

For both the treated and untreated groups we may use the previous logic,
and estimate the ATE

E[Yi(1)− Yi(0)] = E[Yi(1)]−E[Yi(0)]

by the difference in means in the two groups, that is

1
n

n∑
i=1

yi −
1
n

2n∑
i=n+1

yi.

The key idea here is that the two halves of the original sample are ex-
changeable with respect to their properties:

• they only differ due to exposure assignment.

1.7: The randomized study 51



The randomized study

In a slightly modified design, suppose that we obtain a random sample of
size n from the study population, but then assign exposure randomly to
subjects in the sample: subject i receives treatment with probability p.

In the final sample, the number actually treated, n1, is a realization of a
random variable N1 where

N1 ∼ Binomial(n, p).

We may write

Nz =
n∑

i=1

1{z}(Zi).

as the count of the number of individuals receiving Z = z.

1.7: The randomized study 52



The randomized study

This suggests the estimators[1]

Ê[Y(z)] =

n∑
i=1

1{z}(Zi)Yi

Nz

z = 0, 1 (1)

that is

Ê[Y(0)] =
1
N0

n∑
i=1

(1− Zi)Yi Ê[Y(1)] =
1
N1

n∑
i=1

ZiYi.

[1] Formula (1) just says to take the mean in each treatment group !

1.7: The randomized study 53



The randomized study

Note that for the denominators,

N0 ∼ Binomial(n, 1− p) N1 ∼ Binomial(n, p)

so we may consider replacing the denominators by their expected values

np and n(1− p)

respectively for z = 0, 1. This yields the estimators

Ê[Y(0)] =
1

n(1− p)

n∑
i=1

(1− Zi)Yi Ê[Y(1)] =
1
np

n∑
i=1

ZiYi. (2)

1.7: The randomized study 54



The challenge of confounding

The second main challenge of causal inference is that for observational
(or non-experimental) studies, exposure is not necessarily assigned inde-
pendently of other variables.

• it may be that exposure is assigned dependent on one or more of
the measured predictors;

• if these predictors also predict outcome, then there is the possibil-
ity of confounding of the causal effect of exposure by those other
variables;

• this is the set up in the DAG on p. 15.

1.8: Confounding 55



The challenge of confounding

X Y

Z

X is a confounder

• X predicts outcome Y in the presence of Z:

fY|Z,X(y|z, x) ̸= fY|Z(y|z)

• X predicts exposure Z:

fZ|X(z|x) ̸= fZ(z)

1.8: Confounding 56



Confounding: example

Example: The effect of nutrition on health: revisited

The relationship between low vitamin E diet and CVD incidence may be
confounded by socio-economic status (SES); poorer individuals may have
worse diets, and also may have higher risk of cardiovascular incidents via
mechanisms other than those determined by diet:
• smoking;
• pollution;
• access to preventive measures/health advice.

1.8: Confounding 57



Confounding

Confounding is a central challenge as it renders the observed sample
unsuitable for causal comparisons unless adjustments are made:

• in the binary case, if confounding is present, the treated and un-
treated groups are not directly comparable;

• the effect of confounder X on outcome is potentially different in the
treated and untreated groups.

• direct comparison of sample means does not yield valid insight into
average treatment effects;

1.8: Confounding 58



Confounding

Causal inference is fundamentally about comparing exposure subgroups
on an equal footing, where there is no residual influence of the other
predictors. This is possible in the randomized study as randomization
breaks the association between Z and X.

It is not directly possible in the presence of confounding.

1.8: Confounding 59



Confounding and collapsibility

Note 5.
Confounding is not the same as non-collapsibility.
• Non-collapsibility concerns the measures of effect being reported,

and the parameters being estimated; parameters in a marginal
model do not in general correspond to parameters in a conditional
model.

Non-collapsibility is a property of the model, not the study design.
It may be present even for a randomized study.

• Confounding concerns the inter-relationship between outcome, ex-
posure and confounder. It is not model-dependent, and does depend
on the study design.

1.8: Confounding 60



Simple confounding example

Suppose that Y, Z and X are all binary variables. Suppose that the true
(structural) relationship between Y and (Z, X) is given by

E[Y|Z = z, X = x] = Pr[Y = 1|Z = z, X = x] = 0.2+ 0.2z− 0.1x

with Pr[X = 1] = q. Then, by iterated expectation

E[Y(z)] = 0.2+ 0.2 z − 0.1q

and
E[Y(1)− Y(0)] = 0.2.

1.8: Confounding 61



Simple confounding example

Suppose also that in the population from which the data are drawn

Pr[Z = 1|X = x] =

{
p0 x = 0

p1 x = 1

= (1− x)p0 + xp1

so that
Pr[Z = 1] = (1− q)p0 + qp1.

1.8: Confounding 62



Simple confounding example

It can be shown that ATE estimator

Ê[Y(1)]− Ê[Y(0)] =

n∑
i=1

ZiYi
n∑

i=1
Zi

−

n∑
i=1

(1− Zi)Yi
n∑

i=1
(1− Zi)

has expectation

0.2− 0.1q
{
p1
p

− 1− p1
1− p

}
and therefore the unadjusted estimator based on (2) is biased.
Example

1.8: Confounding 63



Simple confounding example

The bias is caused by the fact that the two observed subsamples with

Z = 0 and Z = 1

are not directly comparable - they have a different profile in terms of X.

1.8: Confounding 64



Simple confounding example

By Bayes theorem

Pr[X = 1|Z = 1] =
p1q
p

Pr[X = 1|Z = 0] =
(1− p1)q
1− p

so, here, conditioning on Z = 1 and Z = 0 in turn in the computation of
(2), leads to a different composition of X values in the two subsamples.

As X influences Y, the resulting Y values not directly comparable.

1.8: Confounding 65



Instruments

If predictor XI predicts Z, but does not predict Y in the presence of Z,
then XI is termed an instrument.

X Y

ZXI

DAG with instrument XI: XI predicts Z, but is not associated with outcome Y if
we know Z.

1.8: Confounding 66



Instruments

Example: Non-compliance

In a randomized study of a binary treatment, if Z records the treatment
actually received, suppose that there is non-compliance with respect to
the treatment; that is, if XI records the treatment assigned by the exper-
imenter, then possibly

xI ̸= z.

1.8: Confounding 67



Instruments

Instruments are not confounders as they do not predict outcome once the
influence of the exposure has been accounted for.

Suppose in the previous confounding example, we had

E[Y|Z = z, X = 0] = Pr[Y = 1|Z = z, X = 1] = 0.2+ 0.2z

for the structural model, but

Pr[Z = 1|X] = (1− X)p0 + Xp1.

Then X influences Z, and there is still an imbalance in the two subgroups
indexed by Z with respect to the X values, but as X does not influence Y,
there is no bias if the ATE estimator based on (2) is used.

1.8: Confounding 68



Critical Assumption

An important assumption that is commonly made is that of

No unmeasured confounding

that is, the measured predictors X include (possibly as a subset) all vari-
ables that confound the effect of Z on Y.

1.8: Confounding 69



Critical Assumption

X

U

Y

Z

DAG with unmeasured confounder U.

1.8: Confounding 70



Critical Assumption

Wemust assume that all variables that simultaneously influence exposure
and outcome have been measured in the study.

• This is a strong (and possibly unrealistic) assumption in practical
applications;

• It is the assumption made in standard regression analysis !

• It may be relaxed, and the influence of unmeasured confounders
studied in sensitivity analyses.

1.8: Confounding 71



Model-based analysis

So far, estimation based on the data via (1) and (2) has proceeded in a
non-parametric or model-free fashion.
• models such as

fY(z),X(y, x)

have been considered, but not modelled parametrically.
We now consider semiparametric specifications, where parametric mod-
els for example for

E[Y(z)|X]

are considered but no distributional assumptions are made.

1.9: Statistical modelling 72



Correct model specification

Suppose that the true outcome mean is given by

E[Y|X, Z] = µ(X, Z)

which may be parametric in nature, say

E[Y|X, Z; θ] = µ(X, Z; θ)

1.9: Statistical modelling 73



The importance of ‘no unmeasured confounders’

An important consequence of the no unmeasured confounders assump-
tion is that we have the equivalence of the conditional mean structural
and observed-data outcome models, that is

E[Y(z)|X] and E[Y|X, Z = z]

when this model is correctly specified.

1.9: Statistical modelling 74



Inference under correct specification

We might (optimistically) assume that the model E[Y|Z, X] is correctly
specified, and captures the true relationship.

If this is, in fact, the case, then

No special techniques are needed to estimate the causal effect.

Wemay simply use regression of Y on (X, Z) usingmeanmodelE[Y|X, Z].

1.9: Statistical modelling 75



Inference under correct specification

To estimate the APO, we simply set

Ê[Y(z)] =
1
n

n∑
i=1

µ(Xi, z) (3)

and derive other estimates from this: if µ(x, z) correctly captures the
relationship of the outcome to the exposure and confounders, then the
estimator of the APO in (3) is consistent (gives the correct answer as the
sample size increase to infinity).

1.9: Statistical modelling 76



Inference under correct specification

By conditioning on X in the regression model, we block the indirect (con-
founding) path between Z and Y:

X Y

Z

DAG with confounding path Z → X → Y blocked by conditioning on X
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Inference under correct specification

The third challenge of causal inference is that

correct specification cannot be guaranteed;

• we may not capture the relationship between Y and (Z, X) correctly,
• we may mistakenly use a model m(x, z) instead of µ(x, z).

We seek statistical methods that can overcome this.
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Part 2

The Propensity Score

79



Constructing a balanced sample

Recall the randomized trial setting in the case of a binary exposure.
• we obtain a random sample of size n of individuals from the target

population, and measure their X values;
• according to some random assignment procedure, we intervene to

assign treatment Z to individuals, and measure their outcome Y;
• the link between X and Z is broken by the random allocation.

Recall that this procedure led to the valid use of the estimators of the
ATE based on (1) and (2).
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Constructing a balanced sample

The important feature of the randomized study is that we have, for con-
founders X (indeed all predictors)

fX|Z(x|1) ≡ fX|Z(x|0) for all x,

or equivalently, in the case of a binary confounder,

Pr[X = 1|Z = 1] = Pr[X = 1|Z = 0].

The distribution of X is balanced across the two exposure groups; this
renders direct comparison of the outcomes possible.

Probabilistically, X and Z are independent.
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Constructing a balanced sample

In an observational study, there is a possibility that the two exposure
groups are systematically not balanced

fX|Z(x|1) ̸= fX|Z(x|0) for some x,

or in the binary case

Pr[X = 1|Z = 1] ̸= Pr[X = 1|Z = 0].

If X influences Y also, then this imbalance renders direct comparison of
outcomes in the two groups impossible.
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Constructing a balanced sample

Whilst global balance may not be present, it may be that ‘local’ balance,
within certain strata of the sample, may be present.

• Let S be some identified stratum in the sample space for X;

• suppose for x ∈ S , we have balance; that is, within S , X is indepen-
dent of Z;

fX|Z:S(x|1 : x ∈ S) = fX|Z(x|0 : x ∈ S);

• for individuals who have X values in S , there is the possibility of
direct comparison of the treated and untreated groups.

We might then restrict attention to causal statements within stratum S .
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Constructing a balanced sample

Note 6.
In an extreme yet trivial case, consider a confounder X that takes only a
single value, x0 say, for all individuals.

Then it is clear that any systematic differences in outcomes must be due
to exposure.

2.1: Manufacturing balance 84



Constructing a balanced sample

For discrete confounders, we can

• define strata where the X values are precisely matched, then

• compare the outcomes for treated and untreated individuals within
those strata, then

• perform this comparison to multiple strata, and combine.

2.1: Manufacturing balance 85



Constructing a balanced sample

Consider matching strata S1, . . . ,SK. We would then be able to compute
the ATE by noting that

E[Y(1)− Y(0)] =
K∑

k=1

E[Y(1)− Y(0)|X ∈ Sk]Pr[X ∈ Sk]

• E[Y(1)− Y(0)|X ∈ Sk] may be estimated non-parametrically from
the data by using (1) or (2) for data restricted to have x ∈ Sk.

• Pr[X ∈ Sk] may be estimated using the empirical proportion of x
that lie in Sk.
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Constructing a balanced sample

For continuous confounders, we again considermatching strataS1, . . . ,SK.
The formula for combining strata still holds, but
• we must assume a model for how E[Y(1) − Y(0)|X ∈ Sk] varies

with x for x ∈ Sk.

In both cases, inference is restricted to the set of X space covered by the
strata.
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Constructing a balanced sample

In the continuous case, the above calculations depend on the assumption
that the treatment effect is similar for x values that lie ‘close together’ in
predictor (confounder) space. However

I. Unless we can achieve exact matching, then the term ‘close to-
gether’ needs careful consideration.

II. If X ismoderate or high-dimensional, there may be insufficient data
to achieve adequate matching to facilitate the estimation of

E[Y(1)− Y(0)|X ∈ Sk];

recall that we need a large enough sample of treated and untreated
subjects in stratum Sk.

Nevertheless, matching in this fashion is an important tool in causal com-
parison.
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Balance via the propensity score

We now introduce the important concept of the propensity score that
facilitates causal comparison via a balancing approach.

Recall that our goal is to mimic the construction of the randomized study
that facilitates direct comparison between treated and untreated groups.
We may not be able to achieve this globally, but possibly can achieve it
locally in strata of X space.

The question is how to define these strata.
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Balance via the propensity score

Recall that in the binary exposure case, balance corresponds to being
able to state that within S , X is independent of Z:

fX|Z:S(x|1 : x ∈ S) = fX|Z(x|0 : x ∈ S)

This can be achieved if S is defined in terms of a statistic, e(X)[2] say.
That is, we consider the conditional distribution

fX|Z,e(X)(x|z, e)

so that, given e(X) = e, Z is independent of X, so that within strata of
e(X), the treated and untreated groups are directly comparable.

[2] note the sans serif font e(.), distinct from e which indicates a numerical value.
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Balance via the propensity score

For the conditional independence X ⊥⊥ Z|e, we require that

fX|Z,e(X)(x|z, e) = fX|e(X)(x|e) for all x, z, e

fZ|X,e(X)(z|x, e) = fZ|e(X)(z|e) for all x, z, e. (4)

Now, as Z is binary, we must be able to write

fZ|e(X)(z|e) = p(e)z(1− p(e))1−z z ∈ 0, 1

where p(e) is a probability, and a function of the fixed value e.

2.2: The propensity score for binary exposures 91



Balance via the propensity score

But e(X) is a function of X, so automatically we have that

fZ|X,e(X)(z|x, e) ≡ fZ|X(z|x) provided e = e(x).

Therefore, we require that

fZ|X(z|x) = fZ|X,e(X)(z|x, e) = p(e)z(1− p(e))1−z

for all relevant z, x, with e = e(x).
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Balance via the propensity score

This can be achieved by choosing the statistic[3]

e(x) = fZ|X(1|x) = PrZ|X[Z = 1|X = x]

and setting p(.) to be the identity function, so that

fZ|X(z|x) = ez(1− e)1−z z = 0, 1, e = e(x).

The random variable e(X) defines the strata via which the causal calcu-
lation can be considered.

[3] Choosing e(x) to be some monotone transform of fZ|X(1|x) would also achieve the
same balance.
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Balance via the propensity score

The function e(x) defined in this way is the propensity score[4]. It has the
following important properties:
(i) it is a balancing score; conditional on e(X), X and Z are independent;
(ii) it is a scalar quantity, irrespective of the dimension of X;
(iii) in noting that for balance we require that

fZ|X(z|x) ≡ fZ|e(X)(z|e),

the above construction demonstrates that if ẽ(X) is another balanc-
ing score, then e(X) is a function of ẽ(X);
• that is, e(X) is the ‘coarsest’ balancing score.

[4] see Rosenbaum & Rubin (1983), Biometrika
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Balance via the propensity score

X

e(X)

Y

Z

DAG with confounding path Z → X → Y blocked by conditioning on e(X).
Double arrow X ⇒ e(X) indicates a deterministic relationship.

2.2: The propensity score for binary exposures 95



Evaluating the propensity score

To achieve balance we must ensure that

e(X) = Pr[Z = 1|X]

is correctly specified.

• If X comprises entirely discrete components, then we may be able to
estimate Pr[Z = 1|X] entirely non-parametrically, and satisfactorily
if the sample size is large enough.

• If X has continuous components, it is common to use parametric
modelling, with

e(X;α) = Pr[Z = 1|X;α].

Balance then depends on correct specification of this model.
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Unconfoundedness given the propensity score

The assumption of ‘no unmeasured confounders’ amounts to assuming
that the potential outcomes are jointly independent of exposure assign-
ment given the confounders, that is

{Y(0), Y(1)} ⊥ Z | X

that is, in terms of densities

fY(z),Z|X(y, z|x) = fY(z)|X(y|x)fZ|X(z|x)

= fY|Z,X(y|z, x)fZ|X(z|x).
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Unconfoundedness given the propensity score

X

e(X)

Y

{Y(0), Y(1)}

Z

Directed Acyclic Graph (DAG) with potential outcomes and e(X)

It is clear from the DAG that

Y(z) ⊥ Z | e(X) for all z.
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Estimation using the propensity score

We now consider the same stratified estimation strategy as before, but
using e(X) instead X to stratify.

Consider strata S1, . . . ,SK defined via e(X). In this case, recall that

0 < e(X) < 1

so we might consider an equal quantile partition, say using quintiles.

Then we have

E[Y(1)− Y(0)] =
K∑

k=1

E[Y(1)− Y(0)|e(X) ∈ Sk]Pr[e(X) ∈ Sk]

still holds approximately if the Sk are small enough.
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Estimation using the propensity score

This still requires us to be able to estimate

E[Y(1)− Y(0)|e(X) ∈ Sk]

so we need a sufficient number of treated and untreated individuals with
e(X) ∈ Sk to facilitate direct comparison within this stratum.

If the expected responses are constant across the stratum, the formulae
(1) and (2) may be used.
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Matching

The derivation of the propensity score indicates that it may be used to
construct matched individuals or groups that can be compared directly.
• if two individuals have precisely the same value of e(x), then they

are exactly matched;
• if one of the pair is treated and the other untreated, then their out-

comes can be compared directly, as any imbalance between their
measured confounder values has been removed by the fact that they
are matched on e(x);

• this is conceptually identical to the standard procedure of matching
in two-group comparison.

2.3: Matching via the propensity score 101



Matching

For an exactly matched pair (i1, i0), treated and untreated respectively,

yi1 − yi0

is an unbiased estimate of the ATE

E[Y(1)− Y(0)];

more typically we might choose m such matched pairs, usually with dif-
ferent e(x) values across pairs, and use the estimate

1
m

m∑
i=1

(yi1 − yi0)
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Matching

Exact matching is difficult to achieve, therefore we more commonly at-
tempt to achieve approximate matching
• May match one treated to M untreated (1 : M matching)
• caliper matching;
• nearest neighbour/kernel matching;
• matching with replacement.

Most standard software packages have functions that provide automatic
matching using a variety of methods.
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Beyond binary exposures

The theory developed above extends beyond the case of binary exposures.

Recall that we require balance to proceed with causal comparisons; es-
sentially, with strata defined using X or e(X), the distribution of X should
not depend on Z.

We seek a scalar statistic such that, conditional on the value of that statis-
tic, X and Z are independent. In the case of general exposures, we must
consider balancing scores that are functions of both Z and X.
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Beyond binary exposures

For a balancing score b(Z, X)[5], we require that

X ⊥ Z | b(Z, X).

We denote B = b(Z, X) for convenience.

Consider the conditional distribution fZ|X,B(z|x, b): we wish to demon-
strate that

fZ|X,B(z|x, b) = fZ|B(z|b) for all z, x, b.

That is, we require that B completely characterizes the conditional dis-
tribution of Z given X.

[5] note the sans serif font b(.), distinct from b which indicates a numerical value.
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Beyond binary exposures

This can be achieved by choosing the statistic

b(z, x) = fZ|X(z|x)

in line with the choice in the binary case.

The balancing score defined in this way is termed the

Generalized Propensity Score

which is a balancing score for general exposures.
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Beyond binary exposures

Note, however, that this choice that mimics the binary exposure case is
not the only one that we might make. The requirement

fZ|X,B(z|x, b) = fZ|B(z|b)

for all relevant z, x is met if we define b(Z, X) to be any sufficient statistic
that characterizes the conditional distribution of Z given X.

It may be possible, for example, to choose functions purely of X.
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Beyond binary exposures

Example: Normally distributed exposures

Suppose that continuous valued exposure Z is distributed as

Z|X = x ∼ Normal(xα, σ2)

for row-vector confounder X. We have that

fZ|X(z|x) =
1√
2πσ2

exp

{
− 1
2σ2 (z− xα)2

}
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Beyond binary exposures

Example: Normally distributed exposures

We might therefore choose

b(Z, X) =
1√
2πσ2

exp

{
− 1
2σ2 (Z − Xα)2

}
.

However, the linear predictor

b(X;α) = Xα

also characterizes the conditional distribution of Z given X; if we know
that xα = b, then

Z|X = x ≡ Z|B = b ∼ Normal(b, σ2).

In both cases, parameters α are to be estimated.
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Beyond binary exposures

The generalized propensity score inherits all the properties of the stan-
dard propensity score;
• it induces balance;
• if the potential outcomes and exposure are independent given X

under the unconfoundeness assumption, they are also independent
given b(Z, X).

However, how exactly to use the generalized propensity score in causal
adjustment for continuous exposures is not clear.
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Propensity Score Regression

Up to this point we have considered using the propensity score for strat-
ification, that is, to produce directly comparable groups of treated and
untreated individuals.

Causal comparison can also be carried out using regression techniques:
that is, we consider building an estimator of the APO by regressing the
outcome on a function of the exposure and the propensity score.

Regressing on the propensity score is a means of controlling the con-
founding.
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Propensity Score Regression

X

e(X)

Y

Z

Conditioning on e(X) achieved using regression
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Propensity Score Regression

We may build a regression model

EY|X,Z[Y|X, e(X), Z]

which, as
X ⊥⊥ Z | e(X)

has the advantage that it will be more robust to possible mis-specification
when a parametric model is proposed.
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Propensity Score Regression

For example, we may specify

E[Y|X, e(X), Z] = β0 + ψ0Z + ϕ0e(X)

and carry out OLS estimation to estimate ψ0 as the ATE parameter.
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Propensity Score Regression

If we have the true conditional mean[6] is

E[Y|X = x, Z = z, b(Z, X) = b] = µ(x, z, b)

then by the unconfoundedness result that

E[Y(z)] = EX[E[Y|X, Z = z, b(z, X)] = EX[µ(X, z, b(z, X))].

[6] this is very particular assumption!
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Propensity Score Regression

That is, to estimate the APO, we might
• fit the balancing model b(Z, X) by regressing Z on X;

• fit the model µ(x, z, b) incorporating the fitted values b̂(zi, xi);
• for each z of interest, estimate the APO by

1
n

n∑
i=1

µ(xi, z, b̂(z, xi)).
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Propensity Score Regression

Example: Binary exposure

• e(x;α) = Pr[Z = 1|X = x;α] then regress Z on X to obtain α̂ and
fitted values ê(x) ≡ e(x; α̂).

• For µ(x, z, e; θ), estimate θ by regressing yi on zi and ei = ê(xi).

For example, if θ = (β0, ψ0, ϕ0)

E[Y|Xi = xi, Z = zi, e(Xi) = ei; θ] = β0 + ψ0zi + ϕ0ei.

We then average the model predictions to obtain the APO estimate

Ê[Y(z)] =
1
n

n∑
i=1

µ(xi, z, ê(xi); θ̂).
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Propensity Score Regression

Example: Continuous exposure

We propose a parametric probability density for the exposure

b(z, x;α) = fZ|X(z|x;α)

for which we estimateα by regressing Z on X to obtain α̂ and fitted values
b̂(z, x) ≡ b(z, x; α̂). Then we specify

E[Y|X = x, Z = z, b(Z, X) = b; θ] = µ(x, z, b; θ)

and estimate this model by regressing y on z and b̂(z, x).
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Propensity Score Regression

Example: Continuous exposure

We then compute the predictions under this model, and average them to
obtain the APO estimate

Ê[Y(z)] =
1
n

n∑
i=1

µ(xi, z, b̂(z, xi); θ̂).

Note that here the propensity terms that enter into µ are computed at
the target z values

not the observed exposure values.
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Propensity Score Regression

These procedures require us to make two modelling choices:
• the propensity model, b(z, x) or b(x);
• the outcome mean model µ(x, z, b).

For consistent inference for the ATE, we need
• the propensity model, and
• the dependence of the outcome mean model on z

to be correctly specified.
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Propensity Score Regression

Example: Binary exposure

Suppose that the true (data generating) conditional mean can be written

E[Y|X = x, Z = z] = µ(x, z) = µ0(x) + zµ1(x)

but that the propensity score regression model

E[Y|X = x, Z = z, e(X) = e] = m0(x) + zµ1(x) + eµ1(x)

is used.
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Propensity Score Regression

Example: Binary exposure

This is sufficient to give consistent estimation of the ATE

E[Y(1)− Y(0)] = EX[µ1(X)].

That is, we may mis-specify the ‘treatment-free’ component

µ0(x)

provided we correctly specify the propensity model e(x).
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Propensity Score Regression

If we believe there is a treatment/predictor interaction, say

E[Y|X, Z] = β0 + Z(ψ0 + ψ1X1)

we should fit the propensity score regression model

E[Y|X, e(X), Z] = β0 + Z(ψ0 + ψ1X1) + e(X)(ϕ0 + ϕ1X1)

• for every term in Z, we include a corresponding term in e(X);

• we use predictions from this model in order to estimate the ATE.
PSR Example
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Justification: G-estimation

In the binary treatment case, if the data generating model is

E[Y|X = x, Z = z] = x0βTRUE + z x2ψ = µ(x, z;βTRUE, ψ)

for row vectors x0 and x2, then the propensity score regression model

m(x, z;β, ψ, ϕ) = x1β + zx2ψ + e(x)x2ϕ

for row vector x1 will return a consistent estimator of ψ even if the
treatment-free mean model x1β is mis-specified.
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Justification: G-estimation

Consider the OLS estimation of (β, ψ, ϕ): we solve

n∑
i=1


x⊤i1
zix⊤i2

e(xi)x⊤i2

 (yi − xi1β − zi xi2ψ − e(xi)xi2ϕ) = 0

analytically using the usual approaches.
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Justification: G-estimation

If x1 = x0 then the treatment-free model is correctly specified, and we
still recover the correct ATE.

If the mean model is mis-specified, but
(i) the propensity score model e(x) is correctly specified;
(ii) the random quantity

εi = (Yi − Xi1β − Zi Xi2ψ − e(Xi)Xi2ϕ)

is independent of Zi, so that the effect of Zi is correctly captured via

Zi Xi2ψ.

the solutions to the resulting estimating equation are still consistent for
the true values.
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Justification: G-estimation

We simply rearrange the OLS estimating equations to

n∑
i=1


x⊤i1
zix⊤i2

(zi − e(xi))x⊤i2

 (yi − xi1β − zi xi2ψ − e(xi)xi2ϕ) = 0

to see this.
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Justification: G-estimation

Inference for ψ is correct if at least one of

• the mean model, or

• the propensity score model

is correctly specified, provided the treatment effect model is correctly
specified.

This is known as double robustness.
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Justification: G-estimation

We may consider the reduced form

n∑
i=1

 x⊤i1
(zi − e(xi))x⊤i2

 (yi − xi1β − zi xi2ψ) = 0.

This form still leads to double robustness.

Estimation based on this system is known as G-estimation.
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Justification: G-estimation

The most basic form of the G-estimating equation arises from the model
that omits the treatment-free component:

n∑
i=1

(zi − e(xi))x⊤i2 (yi − zi xi2ψ) = 0

and in the simplest case with ψ one-dimensional

n∑
i=1

(zi − e(xi))(yi − ziψ0) = 0

say.
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Justification: G-estimation

In this case we can solve explicitly to obtain

ψ̂0 =

n∑
i=1

(zi − e(xi))yi

n∑
i=1

zi(zi − e(xi))

with corresponding estimator

n∑
i=1

(Zi − e(Xi))Yi

n∑
i=1

Zi(Zi − e(Xi))

.
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Justification: G-estimation

These results extend to more complicated settings: for example, the dou-
bly robust G-estimator takes the form

n∑
i=1

(Zi − e(Xi))(Yi − Xi1β̂)

n∑
i=1

Zi(Zi − e(Xi))

.
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Weighting approaches

We focus on the APO

µ(z) = E[Y(z)] =
∫

y fY(z),X(y, x) dy dx

and utilize the propensity model in a different fashion;

Instead of accounting for confounding by balancing through matching or
regression, we aim to achieve balance via weighting.
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Average potential outcome

Recall that intervening to set Z = z leads to the calculation

E[Y(z)] =
∫

y1{z}(z) fY(z),X(y, x) dy dz dx.

We take a random sample from the population with density

1{z}(z) fY(z),X(y, x) ≡ 1{z}(z) fY|Z,X(y|z, x)fX(x).

and construct the usual estimator

Ê[Y(z)] =
1
n

n∑
i=1

Yi

as Zi = z for all i.
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Average potential outcome: Experimental study

In a randomized (experimental) study, suppose that exposure Z = z is
assigned with probability determined by fZ(z).

Then we have the estimators

Ê[Y(z)] =

n∑
i=1

1{z}(Zi)Yi
n∑

i=1
1{z}(Zi)

or Ê[Y(z)] =
1

nfZ(z)

n∑
i=1

1{z}(Zi)Yi.
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Average potential outcome: Experimental study

Let E indicate the experimental design density

fEX,Y,Z(x, y, z) = fEY|Z,X(y|z, x)f
E
Z (z)f

E
X (x).

We have that

E[Y(z)] ≡ EE
Y|Z[Y|Z = z] =

E
E
X,Y,Z[1{z}(Z)Y]
E

E
X,Y,Z[1{z}(Z)]
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Average potential outcome: Observational study

However, the data arise from the observational (non-experimental) dis-
tribution O with density

fOX,Y,Z(x, y, z) = fOY|Z,X(y|z, x)f
O
Z|X(z|x)f

O
X (x).

and in order to perform estimation, we must re-write the expectations in
terms of this density.
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Average potential outcome: Observational study

X Y

Z

X Y

Z

E O

DAGs for Experimental (E) and Observational (O) distributions

E : fEX,Y,Z(x, y, z) = fEY|Z,X(y|z, x) f
E
Z (z) f

E
X (x)

O : fOX,Y,Z(x, y, z) = fOY|Z,X(y|z, x) f
O
Z|X(z|x) f

O
X (x)
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Reweighting

We may use re-weighting (importance sampling logic) to re-write

E[Y(z)] =
E

O
X,Y,Z[1{z}(Z)Y w(X, Y, Z)]
E

O
X,Y,Z[1{z}(Z) w(X, Y, Z)]

where

w(x, y, z) =
fEY|Z,X(y|z, x)f

E
Z (z)fEX (x)

fOY|Z,X(y|z, x)f
O
Z|X(z|x)f

O
X (x)

.
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Reweighting

The function w(x, y, z) can be re-written

fEY|Z,X(y|z, x)f
E
Z (z)fEX (x)

fOY|Z,X(y|z, x)f
O
Z|X(z|x)f

O
X (x)

=
fEY|Z,X(y|z, x)
fOY|Z,X(y|z, x)

× fEZ (z)
fOZ|X(z|x)

× fEX (x)
fOX (x)

• for the first term, we have that

fEY|Z,X(y|z, x)
fOY|Z,X(y|z, x)

= 1 for all y, z, x;

under the no unmeasured confounders assumption.

• the third term equals 1 by assumption.
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Experimental vs observational sampling

The second term
fEZ (z)

fOZ|X(z|x)

constitutes a weight that appears in the integral that yields the desired
APO; the term

1
fOZ|X(z|x)

accounts for the imbalance that influences the confounding andmeasures
the difference between the observed sample and a hypothetical idealized
randomized sample.
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Estimation

This suggests the (non-parametric) estimators

Ê[Y(z)] =
1
n

n∑
i=1

1{z}(Zi)Yi
fOZ|X(Zi|Xi)

(IPW0)

which is unbiased, or

Ê[Y(z)] =

n∑
i=1

1{z}(Zi)Yi
fOZ|X(Zi|Xi)

n∑
i=1

1{z}(Zi)
fOZ|X(Zi|Xi)

(IPW)

which is consistent, each provided fOZ|X(.|.) correctly specifies the condi-
tional density of Z given X for all (z, x).
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Inverse weighting and the propensity score

Note 7.
Inverse weighting constructs a pseudo-population in which there are no
imbalances on confounders between the exposure groups. The pseudo-
population is balanced, as required for direct comparison of treated and
untreated groups.

Note 8.
The term in the denominator, fOZ|X(zi|xi), is the exposure model. If Zi is
binary, this essentially reduces to

e(xi)zi(1− e(xi))1−zi

where e(.) is the propensity score as defined previously.
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Positivity

Note 9.
We must have

fOZ|X(z|x) > 0

for all x, z.

This is termed the positivity assumption or

experimental treatment assignment

assumption.

2.7: Adjustment by weighting 144



Estimation via augmentation

We may write

E[Y(z)] = E[Y(z)− µ(X, z)] +E[µ(X, z)]

where µ(x, z) = E[Y|X = x, Z = z] is the data generating conditional
outcome mean.

We then have the alternate estimator

Ê[Y(z)] =
1
n

n∑
i=1

1{z}(Zi)(Yi − µ(Xi, Zi))
fOZ|X(Zi|Xi)

+
1
n

n∑
i=1

µ(Xi, z) (AIPW)

This is termed the augmented IPW (AIPW) estimator.

2.8: Augmentation and double robustness 145



Estimation via augmentation

Then, if both
fOZ|X(z|x) and µ(x, z)

are correctly specified, we have

VarAIPW ≤ VarIPW.

Furthermore, (AIPW) is doubly robust

• consistent even if one of fOZ|X(z|x) and µ(x, z) is mis-specified.
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Properties under mis-specification

Suppose that (possibly mis-specified) models

f(z|x) m(x, z).

are used to form the estimator

Ê[Y(z)] =
1
n

n∑
i=1

1{z}(Zi)(Yi − m(Xi, Zi))
f(Zi|Xi)

+
1
n

n∑
i=1

m(Xi, z) (5)

=

n∑
i=1

Wiz(Yi − m(Xi, Zi)) +
1
n

n∑
i=1

m(Xi, z)
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Properties under mis-specification

Then the bias of the estimator is is

E

[
(f(z|X)− fOZ|X(z|X))(m(X, z)− µ(X, z))

f(z|X)

]
(6)

which is zero if

fOZ|X ≡ f or µ(x, z) ≡ m(x, z).
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Properties under mis-specification

Asymptotically, for estimators that are sample averages, the variance of
the estimator converges to zero under standard conditions.

Therefore in large samples it is the magnitude of the bias as given by (6)
that determines the quality of the estimator.
• equation (6) demonstrates how mis-specification in the functions
µ(x, z) and fOZ|X contributes to the bias.

We proceed by assuming that µ(x, z) is represented by model m(x, z),
but that the propensity model fOZ|X(z|x) is correctly specified.
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Parametric modelling: two-stage approach

In the formulation, parametric models for

fOZ|X(z|x;α) m(x, z;β)

are typically used.

Parameters (α, β) are estimated from the observed data by regressing
• Stage I: Z on X using (zi, xi), i = 1, . . . , n,
• Stage II: Y on (Z, X) using (yi, zi, xi), i = 1, . . . , n

and using plug-in version of (IPW) and (AIPW).
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The estimated propensity score

Note 10.
It is possible to conceive of situations where the propensity-type model

fOZ|X(z|x) or fOZ|X(z|x;α)

is known precisely and does not need to be estimated.

It can be shown that using estimated quantities

f̂OZ|X(z|x) or fOZ|X(z|x; α̂)

yields lower variances for the resulting estimators than if the known
quantities are used.
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Alternative view of augmentation

We may write the estimating equation yielding (5) as

n∑
i=1

1{z}(Zi)
fOZ|X(Zi|Xi)

(Yi − m(Xi, Zi)) +
n∑

i=1

{m(Xi, z)− µ(z)} = 0
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Alternative view of augmentation

The first summation is a component of the score obtained when perform-
ing OLS regression for Y with mean function

m(x, z) = m0(x, z) + ϕ
1{z}(z)
fOZ|X(z|x)

andm0(x, z) is a conditional meanmodel, andϕ is a regression coefficient
associated with the derived predictor[7]

1{z}(z)
fOZ|X(z|x)

.

[7] This predictor is sometimes called the ‘clever covariate’
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Alternative view of augmentation

Therefore, an estimator equivalent to (5) can be obtained by regressing
Y on (X, Z) for fixed z using m(x, z), and forming the estimator

1
n

n∑
i=1

{
m0(Xi, Zi) + ϕ̂

1{z}(Zi)
fOZ|X(Zi|Xi)

}
.

In a parametric model setting, this becomes

1
n

n∑
i=1

{
m0(Xi, Zi; β̂) + ϕ̂

1{z}(Zi)
fOZ|X(Zi|Xi; α̂)

}

where α is estimated from Stage (I), and β is estimated along with ϕ in
the secondary regression.
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Augmentation and contrasts

The equivalent to (AIPW) for estimating the ATE for binary treatment

E[Y(1)]−E[Y(0)]

is merely Ê[Y(1)]− Ê[Y(0)] or

1
n

n∑
i=1

[
11(Zi)

fOZ|X(1|Xi)
− 10(Zi)

fOZ|X(0|Xi)

]
(Yi − m(Xi, Zi)) +

1
n

n∑
i=1

δ(Xi)

where
δ(x) = m(x, 1)− m(x, 0).
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Augmentation and contrasts

Therefore we can repeat the above argument and base the contrast esti-
mator on the regression of Y on (X, Z) using the mean specification

m(x, z) = m0(x, z) + ϕ

[
11(z)

fOZ|X(1|x)
− 10(z)

fOZ|X(0|x)

]
or

m(x, z) = m0(x, z) +

[
ϕ1

11(z)
fOZ|X(1|x)

− ϕ0
10(z)

fOZ|X(0|x)

]
.
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Continuous treatments

For continuous treatments, if necessary we may carry out adjustment via
the conditional expectation

b(X) = EO
Z|X[Z|X]

rather than (for example) the propensity score which is based on the
conditional probability model

fOZ|X(Z|X).
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Propensity score regression & G-estimation

The data generating model

Y = Zψ + µ0(X;β) + ε

which forms the basis of the G-estimation procedure can be utilized if Z
is continuous.

This relies on the construction of a model for EO
Z|X[Z|X] which can be

achieved using a linear model.
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Propensity score regression & G-estimation

In the continuous setting we can consider other functions of Z in the
treatment effect model, for example

x0β + ψ0Z + ψ1Z2

or, in an interaction model

x0β + ψ0Z + ψ1Z2 + ψ2ZX1 + ψ3Z2X1
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Propensity score regression & G-estimation

In general, we need to construct models for all the terms in Z: for example

b1(X) = EZ|X[Z|X] model for Z

b2(X) = EZ|X[Z2|X] model for Z2

etc.
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Propensity score regression & G-estimation

In propensity score regression, we again use the balancing scores to
block the backdoor paths. For the model

x0β + ψ0Z + ψ1Z2

it is sufficient to use the PSR model

β0 + ψ0Z + ψ1Z2 + ϕ0b1(X)

as there is only one backdoor path.
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Propensity score regression & G-estimation

X Y

Z Z2

Confounding DAG
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Propensity score regression & G-estimation

X

b1(X)

Y

Z Z2

Confounding DAG with balancing score b1(X)
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Propensity score regression & G-estimation

X

b1(X)

Y

Z Z2

Inclusion of quadratic term: confounding path still blocked by b1(X)
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Propensity score regression & G-estimation

However, for the model

x0β + ψ0Z + ψ1Z2 + ψ2ZX1 + ψ3Z2X1

we must block both paths through the interactions using

ϕ0b1(X) + ϕ1b1(X)X1 + ϕ2b2(X) + ϕ3b2(X)X1

that includes both b1(X) and b2(X).
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Inverse Probability Weighting

For IPW estimation, in principle the construction in equation (IPW0)

µ̂IPW(z) =
1
n

n∑
i=1

1{z}(Zi)Yi
fOZ|X(Zi|Xi)

works in the continuous case, as again

E
O
X,Y,Z

[
1{z}(Z)Y
fOZ|X(Z|X)

]
= µ(z).

We may also use the standardized weight estimator in equation (IPW).
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Inverse Probability Weighting

We have as usual

E
O
X,Z

[
1{z}(Z)
fOZ|X(Z|X)

]
= 1.

In the continuous setting, for any fixed z, the estimator includes those
data for which

1{z}(zi) = 1

that is, when zi = z. When Z is treated as continuous, we will get at most
one data point meeting the criterion for each z.
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Inverse Probability Weighting

Therefore in practice we typically need to use an estimator based on

1{Az}(Z)
fOZ|X(z|X)

where, for some small d > 0,

Az = (z− d, z+ d)

is a d-neighbourhood of z.
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Inverse Probability Weighting

It is sometimes recommended to use the stabilized weight based on the
(estimated) marginal distribution fZ(z), that is

fOZ (z)
fOZ|X(z|x)

.

That is, say
1
n

n∑
i=1

1{Az}(Zi)f
O
Z (Zi)

fOZ|X(Zi|Xi)
Yi
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Inverse Probability Weighting

These estimators do not rely on a mean model, but as before can be aug-
mented with a proposed mean model

m(x, z)

such as

µ̂AIPW(z) =

n∑
i=1

Wiz(Yi − m(Xi, Zi)) +
1
n

n∑
i=1

m(Xi, z).
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Inverse Probability Weighting

This can also be fitted using the augmented outcome regression (AOR)
approach based on augmented model

m(Xi, Zi) + ϕ0
1{Az}(Zi)
fOZ|X(Zi|Xi)

fitted using least squares.
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Inverse Probability Weighting

In weighted least squares (WLS), estimation is carried out according to
a proposed mean model, with minimization of a weighted least square
objective function.

For example, the mean modelm(x, z) ≡ m(z) = β0+ψ0zmight be fitted
according to the WLS objective function

n∑
i=1

w(xi, zi)(yi − β0 − ψ0zi)2

This model assumes a linear dependence on Z.
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Inverse Probability Weighting

Note: need to take care with positivity violations

• cannot have that X predicts Z too precisely

• can check by inspecting the weights: should have average near 1.
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Part 3

Implementation and Computation
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Statistical modelling tools

Causal inference typically relies on reasonably standard statistical tools:

1. Standard distributions:
• Normal;
• Binomial;
• Time-to-event distributions (Exponential, Weibull etc.)

2. Regression tools:
• linear model/ordinary least squares;
• generalized linear model, typically linear regression;
• survival models.
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Advanced modelling

Could also consider advanced modelling methods for

• the outcome mean model

µ(x, z) = EY|X,Z[Y|X = x, Z = z]

• the propensity or balancing score

e(x) = Pr[Z = 1|X = x] b(x) = EZ|X[Z|X = z]
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Advanced modelling

In either case we can utilize

• linear/generalized linear models

• flexible models (eg splines)

• prediction approaches (eg machine learning methods, regression
trees, neural networks)

• ensemble methods (eg model averaging, boosting)

to construct fitted versions of each model.
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Advanced modelling

Potential pitfalls:

1. The quantification of uncertainty;
• no ready analytic answers,
• typically relies on bootstrap;
• large computational burden

2. Positivity violations.
• prediction (of treatment mechanism) is not the fundamental

goal;
• can be overcome using methods that target balance or overlap

explicitly.
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Advanced modelling

Variance estimation can be carried out using the so-called ‘robust’ ‘sand-
wich’ estimation procedure.

• based on large-sample (semiparametric) theory;

• sandwich package in R for standard R classes;

• some causal packages have built-in robust variance estimation; see
for example drgee.

• need to account for estimation of nuisance parameters;

• for propensity score regression or G-estimation, estimation of nui-
sance parameters has a minimal effect on the variance estimate.

Bootstrap methods can also be used for regression or IPW approaches.
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Pooled logistic regression

For a survival outcome, pooled logistic regression is often used.

The usual continuous survival time outcome is replaced by a discrete,
binary outcome;
• this is achieved by partitioning the outcome space into intervals,

(0, t1], (t1, t2], . . .

and assuming that the failure density is approximately constant in
each interval.

• using a hazard parameterization, we have that

Pr[Failure in (tj−1, tj]|No failure before tj−1] = qj

which converts each single failure time outcome into a series of bi-
nary responses, with 0 and 1 recording ‘no failure’ and ‘failure’.
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Semiparametric estimation

Semiparametricmodels based on estimating equations are typically used:
• such models make no parametric assumptions about the distribu-

tions of the various quantities, but instead make moment restric-
tions;

• resulting estimators inherit good asymptotic properties;
• variance of estimators typically estimated in a ‘robust’ fashion using

the sandwich estimator of the asymptotic variance.
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Key considerations

In light of the previous discussions, in order to facilitate causal compar-
isons, there are several key considerations that practitioners must take
into account.

1. The importance of no unmeasured confounding.

When considering the study design, it is essential for valid conclu-
sions to have measured and recorded all confounders.
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Key considerations

2. Model construction for the outcome regression.
• ideally, the model for the expected value of Y given Z and X,
µ(x, z), should be correctly specified, that is, correctly capture
the relationship between outcome and the other variables.

• if this can be done, then no causal adjustments are necessary.
• conventional variable selection techniques can be used; this

will prioritize predictors of outcome and therefore will select
all confounders;

• however, in finite sample, this method may omit weak con-
founders that may lead to bias.
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Key considerations

3. Model construction for the propensity score.
The model for the balancing score should correctly capture the re-
lationship between the exposure and the confounders. We focus on
• identifying the confounders;
• ignoring the instruments: instruments do not predict the out-

come, therefore cannot be a source of bias (unless there is un-
measured confounding) - however they can increase the vari-
ability of the resulting propensity score estimators.

• the need for the propensity model to induce balance;
• positivity (or overlap): propensity score strata must contain

sufficient data to facilitate comparison;
• effective model selection.
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Key considerations

X Y

ZXI XO

DAG with predictors classified by their effects: X are confounders; XI are
instruments; XO are pure predictors of outcome.

3.2: Key considerations 185



Key considerations

Note 11.
Conventional model selection techniques (stepwise selection, selection
via information criteria, sparse selection) should not be used when con-
structing the propensity score.

This is because such techniques prioritize the accurate prediction of ex-
posure conditional on the other predictors; however, this is not the goal
of the analysis.

These techniques may merely select strong instruments and omit strong
predictors of outcome that are only weakly associated with exposure.
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Key considerations

Note 12.
An apparently conservative approach is to build rich (highly parameter-
ized) models for both µ(x, z) and e(x).

This approach prioritizes

bias elimination

at the cost of
variance inflation.
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Key considerations

4. The required measure of effect.
Is the causal measure required
• a risk difference ?
• a risk ratio ?
• an odds ratio ?
• an ATT, ATE or APO ?
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Numerical examples

Example: NHANES Analysis

See knitr sheet.

Example: Simulation study

Comparison of different adjustment methods.
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Part 4

Extensions

190



Longitudinal studies

It is common for studies to involve multiple longitudinal measurements
of exposure, confounders and outcomes.

In this case, the possible effect of confounding of the exposure effect by
the confounders is more complicated.

Furthermore, we may be interested in different types of effect:
• the direct effect: the effect of exposure in any given interval on the

outcome in that interval, or the final observed outcome;
• the total effect: the effect of exposure aggregated across intervals

final observed outcome;
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Illustration

Possible structure across five intervals:

X1 //

��

��

X2 //

��

��

X3 //

��

��

X4 //

��

��

X5

��

��

Z1 //

((

Z2 //

((

Z3 //

((

Z4 //

((

Z5

((Y1 //

AA

Y2 //

AA

Y3 //

AA

Y4 //

AA

Y5
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Mediation and time-varying confounding

• The effect of exposure on later outcomes may be mediated through
variables measured at intermediate time points
• for example, the effect of exposure Z1 may have a direct effect

on Y1 that is confounded by X1; however, the effect of Z1 on Y2
may also be non-negligible. This effect is mediated via X2.

• There may be time-varying confounding;
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Multivariate versions of the propensity score

The propensity score may be generalized to the multivariate setting. We
consider for j = 1, . . . ,m,
• exposure: Z̃ij = (Zi1, . . . , Zij);
• outcome: Ỹij = (Yi1, . . . , Yij);
• confounders: X̃ij = (Xi1, . . . , Xij).

Sometimes the notation

Z1:m = (Z1, . . . , Zm)

will be useful.
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Multivariate versions of the propensity score

We consider vectors of potential outcomes corresponding to these ob-
served quantities, that is, we consider a potential sequence of interven-
tions up to time j

z̃ij = (zi1, . . . , zij)

and then the corresponding sequence of potential outcomes

Ỹ (̃zij) = (Y(zi1), . . . , Y(zij)).
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Multivariate versions of the propensity score

We define the multivariate (generalized) propensity score by

bj(z, x) = fZj|Xj,Z̃j−1,X̃j−1
(z|x, z̃j−1, x̃j−1)

that is, using the conditional distribution of exposure at interval j, given
the confounder at interval j, and the historical values of exposures and
confounders.

Under the sequential generalizations of the no unmeasured confounders
and positivity assumptions, this multivariate extension of the propensity
score provides the required balance, and provides a means of estimating
the direct effect of exposure.
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The use of mixed models

The multivariate generalization above essentially builds a joint model for
the sequence of exposures, and embeds this in a full joint distribution for
all measured variables.

An alternative approach usesmixed (or random effect) models to capture
the joint structure.
• such an approach is common in longitudinal data analysis;
• here we consider building a model for the longitudinal exposure

data that encompasses a random effect.
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The use of mixed models

Suppose first we have a continuous exposure: we consider the mixed
effect model where for time point j

Zij = X̃ijα+ Z̃i,j−1ϑ+ ξi + ϵij

where
• X̃ijα captures the fixed effect contribution of past and current con-

founders;
• Z̃i,j−1ϑ captures the fixed effect contribution of past exposures;
• ξi is a subject specific random effect;
• ϵij is a residual error.
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The use of mixed models

The random effect ξi helps to capture unmeasured time-invariant con-
founding.

The distributional assumption made about ϵij determine the precise form
of a generalized propensity score that can again be used to estimate the
direct effect of exposure.
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The use of mixed models

For binary or other discrete exposures, the random effect model is built
on the linear predictor scale, with say

ηij = X̃ijα+ Z̃i,j−1ϑ+ ξi

determining the required conditional mean for the exposure at interval j.

Full-likelihood based inference may be used, but also generalized esti-
mating approaches may be developed.
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Estimation of Total Effects

The estimation of the total effect of exposure is more complicated as the
need to acknowledge mediation and time-varying confounding renders
standard likelihood-based approaches inappropriate.

The Marginal Structural Model is a semiparametric inverse weighting
methodology designed to estimate total effects of functions of aggregate
exposures that generalizes conventional inverse weighting.
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The Marginal Structural Model

We observe for each individual i a sequence of exposures

Zi1, Zi2, . . . , Zim

and confounders
Xi1, Xi2, . . . , Xim

along with outcome Yi ≡ Yim measured at the end of the study.

Intermediate outcomes Yi1, Yi2, . . . , Yi,m−1 also possibly available.
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The Marginal Structural Model

For example, with m = 5:

X1 //

��

��

X2 //

��

��

X3 //

��

��

X4 //

��

��

X5

��

��

Z1 //

((

Z2 //

((

Z3 //

((

Z4 //

((

Z5

((Y1 //

AA

Y2 //

AA

Y3 //

AA

Y4 //

AA

Y5

Common example: pooled logistic regression
• discrete time survival outcome
• outcome is binary, intermediate outcomes monotonic
• length of follow-up is random, or event time is censored.
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The Marginal Structural Model

We seek to quantify the causal effect of exposure pattern

z̃ = (z1, z2, · · · , zm)

on the outcome. If the outcome is binary, we might consider[8]

log

(
Pr(Yim = 1|̃z;β0, ψ)
Pr(Yim = 0|̃z;β0, ψ)

)
= β0 + ψ

m∑
j=1

zj

as the (structural) marginal model.

[8] We might also consider structural models in which the influence of covariates/con-
founders is recognized.
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The Marginal Structural Model

However, this model is expressed for data presumed to be collected under
an experimental design, E .

In reality, it is necessary to adjust for the influence of
• time-varying confounding due to the observational nature of expo-

sure assignment
• mediation as past exposures may influence future values of the con-

founders, exposures and outcome.

The adjustment can be achieved using inverse weighting via a marginal
structural model.
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The Marginal Structural Model: The logic

• Inference is required under hypothetical population E ;

• in population E , the conditional independence zij ⊥ x̃ij | z̃i(j−1)
holds true.

• Samples from observational population O are available.

• The weights wi convey information on how much O resembles E :
this information is contained in the parameters γ.

• E has the same marginal exposure assignment distribution as O.
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Two time points

For a two time point setting:

X1

Z1

X2

Z2

Y

In this formulation, the time ordering

X1 −→ Z1 −→ X2 −→ Z2 −→ Y

delimits the possible causal pathways.
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Two time points

We can consider the expected counterfactual outcomes associated with
treatment patterns

E[Y(z1, z2)]

or equivalently
E

E
Y|Z1,Z2 [Y|Z1 = z1, Z2 = z2]

where the experimental distribution E assumes randomized treatments.
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Two time points

To learn about the APOs for different treatment patterns from observa-
tional data is not straightforward.

• Z1 has a direct effect on Y, and a mediated effect via X2 and Z2;

• Z2 has a direct effect on Y, but it is confounded by X2; to remove
this confounding we need to condition on X2;

• However, conditioning on X2 blocks the directed path from Z1 to Y
and hence affects the causal effect.

We cannot break the confounding by blocking paths by conditioning to
get at the aggregate effect.
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Marginal structural models

We may use inverse weighting to break the confounding as in the single
interval case. For example, for APO

µ(z1, z2) = E
E
Y|Z1,Z2 [Y|Z1 = z1, Z2 = z2]

we may use the estimator

µ̃(z1, z2) =
1
n

n∑
i=1

1{z1}(Z1i)1{z2}(Z2i)
fOZ1,Z2|X1,X2(Z1i, Z2i|X1i, X2i)

Yi

Each outcome data point is re-weighted by the IPW weight across the
whole treatment sequence.
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Marginal structural models

In the re-weighted data, model-based analysis can also be used: for ex-
ample, we could propose a marginal model

E
E
Y|Z1,Z2 [Y|Z1 = z1, Z2 = z2] = β0 + ψ1z1 + ψ2z2

or, using the total treatment

E
E
Y|Z1,Z2 [Y|Z1 = z1, Z2 = z2] = β0 + ψ0(z1 + z2)

and then perform a weighted least squares analysis (WLS) to estimate
(ψ1, ψ2) or ψ0.

Such a model is termed a marginal structural model (MSM).
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Marginal structural models

That is for example

(β̂0, ψ̂1, ψ̂2) = arg min
(β0,ψ1,ψ2)

n∑
i=1

wi(yi − β0 − ψ1z1i − ψ2z2i)2

where
wi =

1
fOZ1,Z2|X1,X2(z1i, z2i|x1i, x2i)

where

fOZ1,Z2|X1,X2(z1, z2|x1, x2) = fOZ1|X1(z1|x1)f
O
Z2|X1,X2,Z1(z2|x1, x2, z1).
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Marginal structural models

An alternative weight

wi =
fOZ1,Z2(z1i, z2i)

fOZ1,Z2|X1,X2(z1i, z2i|x1i, x2i)

could be used, where

fOZ1,Z2(z1i, z2i) = fOZ1(z1)f
O
Z2|Z1(z2|z1).

This generalizes the earlier form of IPW estimator.

If a non-parametric model for fOZ1,Z2(z1i, z2i) is adopted, then the new
weight essentially reduces to the original weight.
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Marginal structural models

Using a parametric model,

wi =
fOZ1,Z2(z1i, z2i; α̂)

fOZ1,Z2|X1,X2(z1i, z2i|x1i, x2i; γ̂)

where
• α = (α1, α2) is estimated from the model

fOZ1,Z2(z1, z2;α) = fOZ1(z1;α1)fOZ2|Z1(z2|z1;α2)

• γ = (γ1, γ2) is estimated from the model

fOZ1,Z2|X1,X2(z1, z2|x1, x2; γ) = fOZ1|X1(z1|x1; γ1)

× fOZ2|X1,X2,Z1(z2|x1, x2, z1; γ2)
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Marginal structural models

It is also possible to carry out a conditional analysis given baseline pre-
dictors X1 which are not subject to the influence of any treatment: for
example

E
E
Y|Z1,Z2,X1 [Y|Z1 = z1, Z2 = z2, X1 = x1] = β0 + x1β1 + ψ1z1 + ψ2z2

for which the so-called stabilized weights

wi =
fOZ1,Z2|X1(z1i, z2i|x1i)

fOZ1,Z2|X1,X2(z1i, z2i|x1i, x2i)

should be used.
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Marginal structural models

Separate models are needed for numerator and denominator

• Denominator:

fOZ1,Z2|X1,X2(z1, z2|x1, x2) = fOZ1|X1(z1|x1)f
O
Z2|X1,X2,Z1(z2|x1, x2, z1)

• Numerator:

fOZ1,Z2|X1,X2(z1, z2|x1) = fOZ1|X1(z1|x1)f
O
Z2|X1,Z1(z2|x1, z1)

parameterized by α and γ respectively, say.

4.2: The Marginal Structural Model (MSM) 216



Marginal structural models

That is, after cancelling terms,

wi =
fOZ2|X1,Z1(z2|x1, z1; α̂)

fOZ2|X1,X2,Z1(z2|x1, x2, z1; γ̂)

This weight may be less extreme than the unstabilized counterpart.

Note that conditioning on X1 in the outcome model is necessary to ac-
count for possible confounding.
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Marginal structural models

Note
The term ‘stabilized’ is slightly misleading; the introduction of the numer-
ator term changes the estimand, so the original and stabilized versions
of the MSM estimate different quantities.

In many cases the stabilized weights will be more uniform, and this has
the effect of reducing estimator variance, but the estimation target is
changed.

MSM Example

4.2: The Marginal Structural Model (MSM) 218



Part 5

New Challenges and Approaches
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New challenges

The main challenge for causal adjustments using the propensity score is
the nature of the observational data being recorded.

The data sets and databases being collected are increasingly complex
and typically originate from different sources. The benefits of ‘Big Data’
come with the costs of more involved computation and modelling.

There is always an important trade off between the sample size n and the
dimension of the confounder (and predictor) set.
Examples
• pharmacoepidemiology;
• electronic health records and primary care decision making;
• real-time health monitoring;
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Data synthesis and combination

For observational databases, the choice of inclusion/exclusion criteria for
analysis can have profound influence on the ultimate results:
• different databases can lead to different conclusions for the same

effect of interest purely because of the methodology used to con-
struct the raw data, irrespective of modelling choices.

• the key task of the statistician is to report uncertainty in a coherent
fashion, ensuring that all sources of uncertainty are reflected. This
should include uncertainty introduced due to lack of compatibility
of data sources.
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Classic challenges

Modern quantitative health research also has conventional challenges:
• missing data: many causal procedures are adapted forms of proce-

dures developed for handling informative missingness (especially
inverse weighting);

• length-bias and left truncation in prevalent case studies: selection
of prevalent cases is also a form of ‘selection bias’ that causes bias
in estimation if unadjusted;

• non-compliance: in randomized and observational studies there is
the possibility of non- or partial compliance which is again a poten-
tial source of selection bias.
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The Bayesian version

The Bayesian paradigm also provides a framework for decision-making
under uncertainty.

Much of the reasoning on causal inference, and many of the modelling
choices we must make for causal comparison and adjustment, are iden-
tical under Bayesian and classical (frequentist, semiparametric) reason-
ing.
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The advantages of Bayesian thinking

With increasingly complex data sets in high dimensions, Bayesian meth-
ods can be useful as they
• provide a means of informed and coherent decision making in the

presence of uncertainty;
• yield interpretable variability estimates in finite sample at the cost

of interpretable modelling assumptions;
• allow the statistician to impose structure onto the inference problem

that is helpful when information is sparse;
• naturally handle prediction, hierarchical modelling, data synthesis,

and missing data problems.
Typically, these advantages come at the cost of more involved computa-
tion.
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Bayesian causal inference: recent history

• D.B. Rubin formulated the modern foundations for causal inference
from a largely Bayesian (missing data) perspective:
• revived potential outcome concept to define causal estimand
• inference through Bayesian predictive formulation
• focus on matching

• Semiparametric frequentist formulation dominant from mid 80s
• Bayesian approaches can adopt a semiparametric approach
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Bayesian inference for two-stage models

• Full Bayes: full likelihood in two parametric models
• needs correct specification;
• two component models are treated independently.

• Quasi-Bayes: use semiparametric estimating equation approach for
Stage II, with Stage I parameters treated in a fully Bayesian fashion.
• possibly good frequentist performance;
• difficult to understand frequentist properties.

• Pseudo-Bayes: use amended likelihood to avoid feedback between
Stage I and Stage II
• not fully Bayesian, no proper probability model
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Five Considerations

1. The causal contrast
2. Do we really need potential outcomes ?
3. ‘Observables’ implies ‘Prediction’
4. The Fundamental Theory of Bayesian Inference.
5. The Bayesian Causal Specification

A rapidly developing field . . .
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Conclusions
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Conclusions

• Causal inference methods provide answers to important questions
concerning the impact of hypothetical exposures;

• Causal graphs are useful in formulating inference;

• Standard statistical methods are used;

• Balance is the key to accounting for confounding;

• The propensity score is a tool for achieving balance;

• The propensity score can be used for
• matching,
• weighting, and
• as part of regression modelling.
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Key remaining challenges

• Flexible representations of model components;

• Model selection;

• Scale and complexity of observational data;
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Monte Carlo & Importance sampling

For any function g(.), we have

E[g(Y)] =
∫

g(y) fY(y) dy

=

∫
g(y) fY,X(y, x) dy dx

Rather than performing this calculation using integration, we approxi-
mate it numerically using Monte Carlo.
Back
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Monte Carlo & Importance sampling

Monte Carlo calculations proceed as follows:

• generate a sample of size n from the density

fY(y)

to yield y1, . . . , yn; there are standard techniques to achieve this.

• approximate E[g(Y)] by

Ê[g(Y)] =
1
n

n∑
i=1

g(yi).

• For large n, Ê[g(Y)] provides a good approximation to E[g(Y)].
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Monte Carlo & Importance sampling

We have that

E[g(Y)] =
∫

g(y) fY(y) dy =
∫

g(y)
fY(y)
f∗Y (y)

f∗Y (y) dy

where f∗Y (y) is some other density. Thus

EfY [g(Y)] ≡ Ef∗Y

[
g(Y)

fY(Y)
f∗Y (Y)

]
.
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Monte Carlo & Importance sampling

This is known as importance sampling: we

• generate a sample of size n from the density

f∗Y (y)

to yield y1, . . . , yn;

• approximate E[g(Y)] by

Ê[g(Y)] =
1
n

n∑
i=1

g(yi)
fY(yi)
f∗Y (yi)

.
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Monte Carlo & Importance sampling

This means that even if we do not have a sample from the distribution of
interest, fY , we can still compute averages with respect to fY if we have
access to a sample from a related distribution, f∗Y .

Clearly, for the importance sampling computation to work, we need that

fY(yi)
f∗Y (yi)

is finite for the required range of Y, which means that we must have

f∗Y (y) > 0 whenever fY(y) > 0.
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Monte Carlo & Importance sampling

Importance sampling is based on forming weighted averages

• we re-weight samples from f∗Y so that we can estimate quantities
relating to fY

• this is like ‘standardization’ (eg standardized mortality rate) in epi-
demiology.

243



Appendix: Confounding Bias Example
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Simple confounding example

Suppose that Y, Z and X are all binary variables. Suppose that the true
(structural) relationship between Y and (Z, X) is given by

E[Y|Z = z, X = x] = Pr[Y = 1|Z = z, X = x] = 0.2+ 0.2z− 0.1x

with Pr[X = 1] = q. Then, by iterated expectation

E[Y(z)] = 0.2+ 0.2 z − 0.1q

and
E[Y(1)− Y(0)] = 0.2.

Back
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Simple confounding example

Suppose also that in the population from which the data are drawn

Pr[Z = 1|X = x] =

{
p0 x = 0

p1 x = 1
= (1− x)p0 + xp1.

in which case
Pr[Z = 1] = (1− q)p0 + qp1.

246



Simple confounding example

If we consider the estimators in (2)

Ê[Y(1)] =
1
np

n∑
i=1

1{1}(Zi)Yi Ê[Y(0)] =
1

n(1− p)

n∑
i=1

1{0}(Zi)Yi

and set p = (1− q)p0 + qp1, we see that for the first term

EY,Z,X[1{1}(Z)Y] = EZ,X[1{1}(Z)EY|Z,X[Y|Z, X]]

= EZ,X[1{1}(Z)(0.2+ 0.2Z − 0.1X)]

= 0.2EX[EZ|X[1{1}(Z)|X]]
+ 0.2EX[EZ|X[1{1}(Z)Z|X]]
− 0.1EX[XEZ|X[1{1}(Z)|X])]
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Simple confounding example

Now

EZ|X[1{1}(Z)|X] = EZ|X[1{1}(Z)Z|X]
≡ Pr[Z = 1|X] = (1− X)p0 + Xp1

and

EX[EZ|X[1{1}(Z)|X]] = (1− q)p0 + qp1 = p

EX[EZ|X[1{1}(Z)Z|X]] = (1− q)p0 + qp1 = p

EX[XEZ|X[1{1}(Z)|X])] = qp1

and therefore
EY,Z,X[1{1}(Z)Y] = 0.4p− 0.1qp1.
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Simple confounding example

∴ E

[
1
np

n∑
i=1

1{1}(Zi)Yi

]
=

0.4p− 0.1p1
p

By a similar calculation, as 1{0}(Z) = 1− 1{1}(Z),

EX[EZ|X[1{0}(Z)|X]] = 1− p

EX[EZ|X[1{0}(Z)Z|X]] = 0

EX[XEZ|X[1{0}(Z)|X])] = q(1− p1)

so

E

[
1

n(1− p)

n∑
i=1

1{0}(Zi)Yi

]
=

0.2(1− p)− 0.1q(1− p1)
1− p
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Simple confounding example

Finally, therefore ATE estimator

Ê[Y(1)]− Ê[Y(0)]

has expectation

0.4p− 0.1qp1
p

− 0.2(1− p)− 0.1q(1− p1)
1− p

which equals

0.2− 0.1q
{
p1
p

− 1− p1
1− p

}
and therefore the unadjusted estimator based on (2) is biased.
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Simple confounding example

The bias is caused by the fact that the two subsamples with

Z = 0 and Z = 1

are not directly comparable - they have a different profile in terms of X.
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Simple confounding example

By Bayes theorem

Pr[X = 1|Z = 1] =
p1q
p

Pr[X = 1|Z = 0] =
(1− p1)q
1− p

so, here, conditioning on Z = 1 and Z = 0 in turn in the computation of
(2), leads to a different composition of X values in the two subsamples.

As X influences Y, the resulting Y values not directly comparable.
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Appendix: Probability & Causal Graphs
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Probabilistic models

A probabilistic model for the data is a joint probability distribution

fX,Y,Z(x, y, z)

which represents how the data are generated.
Back
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Probabilistic models

This joint model automatically specifies

• the marginal distributions, fX(x), fY(y) and fZ(z);

• the conditional distributions

fX|Y(x|y) fX|Z(x|z) fY|X(y|x) · · ·

and
fY|X,Z(y|x, z) fY,Z|X(y, z|x)

etc.

that describe how the variables behave individually, or when one variable
is fixed etc.
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Probabilistic models

We have the chain rule decomposition

fX,Y,Z(x, y, z) = fX(x)fZ|X(z|x)fY|X,Z(y|x, z)

but also
fX,Y,Z(x, y, z) = fZ(z)fY|Z(y|z)fX|Y,Z(x|y, z)

and so on, for any ordering of the variables.
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Independence

Two random variables X, Z are independent

X ⊥⊥ Z

if and only if, for all values (x, z),

fX,Z(x, z) = fX(x)fZ(z)
fZ|X(z|x) = fZ(z)

fX|Z(x|z) = fX(x)

Knowledge about X does not influence our assessment of Z, and vice
versa.
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Independence

We can consider conditional independence: say

Y ⊥⊥ Z | X

if and only if, for all (x, z, y)

fY,Z|X(y, z|x) = fZ|X(z|x)fY|X(y|x)

At every fixed value of X, knowledge concerning the value of Y does not
influence our assessment of Z, and vice versa.
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Example
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Example
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Example
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Expectations

We can compute the expectation or expected value

EY [Y]

as a summary of the distribution. The conditional expectation

EY|X,Z[Y|X = x, Z = z]

is a function of the two values (x, z).
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Expectations

The iterated expectation result is a very useful tool: we have

EY [Y] = EX
[
EY|X[Y|X]

]
and

EY|Z[Y|Z] = EX|Z
[
EY|X,Z[Y|X, Z]

]
etc.

• Y|X is the conditional model for Y given X;

• Y|Z is the conditional model for Y given Z;

• Y|X, Z is the conditional model for Y given X and Z.
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Expectations

If X and Z are independent, we can simplify

EY|Z[Y|Z] = EX|Z
[
EY|X,Z[Y|X, Z]

]
to

EY|Z[Y|Z] = EX
[
EY|X,Z[Y|X, Z]

]
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Expectations

In the causal problem, we can compute EY|Z[Y|Z = z] by

(i) fixing Z = z independently of X,

(ii) computing for each fixed x

EY|X,Z[Y|X = x, Z = z] = µ(x, z)

say,

(iii) averaging the result over the distribution fX(x)

EX[µ(X, z)].

This works provided X and Z are independent.
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Causal Graphs

Recall the factorization from slide 256

fX,Y.Z(x, y, z) = fX(x)fY|X(y|x)fZ|X,Y(z|x, y).

We might assume that
Z ⊥⊥ Y|X

so that fZ|X,Y(z|x, y) = fZ|X(z|x) and

fX,Y,Z(x, y, z) = fX(x)fY|X(y|x)fZ|X(z|x)
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Causal Graphs

We can depict the conditional independence using a graph:

Z

X

Y

Z X Y

This type of graph is sometimes called a fork.
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Causal Graphs

• Nodes X , Y , Z denote the variables;

• Edges with arrows indicate the nature of dependence in the chain
rule factorization;

• Directed arrows specify the conditional independence assumptions;
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Causal Graphs

• Nodes without incoming edges are founders;

X Y

corresponds to
fX(x)fY|X(y|x)
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Causal Graphs

• Nodes with only outgoing edges act to block dependence.

For example, in

Z X Y

so that
fX,Y,Z(x, y, z) = fX(x)fY|X(y|x)fZ|X(z|x)

it follows that
Y ⊥⊥ Z|X.

However, note that
Y /⊥⊥Z.
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Causal Graphs

A (causal) graph G is described using the following elements:

• A set of nodes or vertices, V1, V2, . . ., representing variables.

• A set of edges, E1,E2, . . ., representing dependencies.

• Two nodes are adjacent if there is an edge between them.

• Edges can be directed, denoted using arrows, or undirected; if all
edges are directed, the graph is directed.

• The graphwith the arrow directions removed is termed the skeleton.
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Causal Graphs

• A path between to nodes V1 and V2 is a sequence of edges connect-
ing those nodes;
• a directed path is a path where the directions of arrows on

edges are obeyed.
• two nodes are connected if a path exists between them, and

disconnected otherwise.
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Causal Graphs

• In general, a graph may contain cycles, that is, directed paths that
start and end at the same node.

V3

V1

V2

V3 V1 V2

A directed graph that has no cycles is termed a directed acyclic
graph (DAG).
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Causal Graphs

X Y

Z

PARENTS

CHILD

fX,Y,Z(x, y, z) = fX(x)fY(y)fZ|X,Y(z|x, y)

In this DAG, we have X ⊥⊥ Y:

fX,Y(x, y) = fX(x)fY(y).
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Causal Graphs

However, conditioning on Z = z

fX,Y|Z(x, y|z) ̸= fX(x|z)fY(y|z)

in general. That is,
X ⊥⊥ Y

but
X /⊥⊥Y | Z

Conditioning on Z induces dependence; the node Z is sometimes termed
a collider.
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Causal Graphs

The probability distribution P is compatible with graph G if P admits the
factorization implied by G.

• note that G does not define P, merely the chain rule factorization
that P admits;

• we may deduce from G that

fX,Y,Z(x, y, z) = fX(x)fY(y)fZ|X,Y(z|x, y)

say, but we do not know the forms or values of the individual terms.
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Causal Graphs

Example:

X1

X2

X3

X4 X5

fX1(x1)fX2|X1(x2|x1)fX3|X1(x3|x1)fX4|X2,X3(x4|x2, x3)fX5|X4(x5|x4)
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Structural models

When we write

X

Y

Z

what precisely does the symbol mean ?
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Structural models

A structural interpretation states that we

• generate X independently,

• generate Y and Z independently as functions of the realized X, for
example

Y = 3X
Z = 4X + 9
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Structural models

UY

X

UZ

Y

Z

X,UZ,UY
independent

Y = g1(X,UY)

Z = g2(X,UZ)

For example

Y = X + UY

Z = X + UZ
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Structural models

X

Y

Z

Y = g(X, Z)

If we fixed X = x and Z = z, we would know Y = g(x, z) precisely.
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Structural models

X

Y

Z

UX

UZ

so that X = g1(UX), Z = g2(UZ), and

Y = g(X, Z).
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Structural models

If we know X = x and Z = z, then we do not need to know the values of
UX and UZ to determine Y. That is

Y ⊥⊥ (UX,UZ) | (X, Z)

We can interpret causation in terms of these functions.
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Structural models

• X causes Y if it appears in the function, g, that assigns Ys value;

• X causes Y if, in the graph representing the joint distribution, there
is a directed path from X to Y;

• X is a direct cause of Y if there is an arrow from X to Y.
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d-separation

To assess whether
X ⊥⊥ Y | Z

for any distribution compatible with the DAG, we must assess whether Z
‘blocks’ paths from X to Y.
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d-separation

Consider the collider (‘inverted fork’) graph

X YZ

Z is a collider on this path.

A directed path from one node to another cannot contain a collider; all
parts must be

X YZforks

X YZchains
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d-separation

The notion of being a collider is path-specific: for example

X

YZ

U

• Z is a collider on path X → Z → U

• Z is not a collider on path X → Z → Y.
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Unconditional d-separation

A path is unconditionally open (or unblocked) if there is no collider on
the path;

• if there is a collider, the path is closed (blocked).

Two variables X and Y are d-separated if there is no open path between
them;

• if there is an open path, X and Y are d-connected.
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Unconditional d-separation

Example: Diabetes example (Lash et al.)

• Z1 family income
• Z2 genetic risk
• W parental diabetes
• X low educational attainment
• Y diabetes of subject

Z1 Z2

X

W

Y
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Unconditional d-separation

Example: Diabetes example (Lash et al.)

X and Y are d-separated; there is one path between X and Y, but it is
blocked by the collider W.

fZ1(z1)fZ2(z2)fW|Z1,Z2(w|z1, z2)fX|Z1(x|z1)fY|Z2(y|z2)

and X and Y are independent:

Modern Epidemiology, TL Lash, TJ Vanderweele, S. Haneuse, Kenneth J
Rothman
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Conditional d-separation

For a non-collider Z: consider conditioning on Z

X YZ X ⊥⊥ Y | Z

X YZ X ⊥⊥ Y | Z

For a collider Z: consider conditioning on Z

X YZ X /⊥⊥Y | Z
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Conditional d-separation

Consider

X YZ

W

fX(x)fY(y)fZ|X,Y(z|x, y)fW|Z(w|z)

We have that X and Y are independent.
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Conditional d-separation

But

fX,Y,W(x, y,w) = fX(x)fY(y)
∫

fZ|X,Y(z|x, y)fW|Z(w|z) dz

= fX(x)fY(y)fW|X,Y(w|x, y)

Therefore we have that

X YW X /⊥⊥Y | W

and so W is a collider in the reduced graph.
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Conditional d-separation

Therefore

(i) conditioning on a non-collider Z blocks the path at Z;

(ii) conditioning on a collider Z or a descendant W of Z opens the path
at Z;
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Conditional d-separation

Suppose S is a set of variables.

• S blocks a path from X to Y if, after conditioning on S, the path is
closed;

• S unblocks a path if after conditioning the path is open;

• If S blocks every path from X to Y, then X and Y are d-separated by
S.
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Conditional d-separation

• If S d-separates X and Y, it renders them conditionally independent

X ⊥⊥ Y | S,

so that
fX|Y,S(x|y, s) ≡ fX|S(x|s) ∀(x, y, s).

• If S does not d-separate X and Y, then X and Y may be dependent,
and

fX|Y,S(x|y, s)

cannot be made independent of y in general.
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Conditional d-separation

Example:

X1

X2

X3

X4 X5

{X2} and {X3} are d-separated by {X1}, and X2 ⊥⊥ X3 | X1.
• there are two paths between X2 and X3;

• X2X1X3: blocked by conditioning on X1.
• X2X4X3: blocked by the collider at X4, and X4 /∈ {X1}.
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Conditional d-separation

Example:

X1

X2

X3

X4 X5

{X2} and {X3} are not d-separated by {X1, X5}:
• X2 /⊥⊥X3 | (X1, X5).
• X5 is a descendant of collider X4;

299



Conditional d-separation

If X and Y are d-separated by S then

X ⊥⊥ Y | S

for all distributions compatible with G; conversely, if they are not d-
separated, then X and Y are dependent given S for at least one distri-
bution compatible with G.
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Interventions

Intervening set the level of Z to z has the effect of

• removing all incoming arrows to Z

• switching the marginal for Z to the degenerate distribution f∗Z (.)

f∗Z (z) = 1{z}(z) z ∈ R.
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Interventions

In the earlier example

X

Y

Z

fX(x)fZ|X(z|x)fY|X,Z(y|x, z)

X

Y

Z z

fX(x)f∗Z (z)fY|X,Z(y|x, z)
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Interventions

Consider the DAG

X1

X2

X3

X4 X5

fX1(x1)fX2|X1(x2|x1)fX3|X1(x3|x1)fX4|X2,X3(x4|x2, x3)fX5|X4(x5|x4)

303



Interventions

Suppose we intervene to set X3 = x3. The relevant DAG is

X1

X2

X3

X4 X5

x3

fX1(x1)fX2|X1(x2|x1)f
∗
X3(x3)fX4|X2,X3(x4|x2, x3)fX5|X4(x5|x4)

where f∗X3(.) is a degenerate distribution at x3. X1 is no longer a cause of
X3.
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Interventions

Note
We note the distinction between the distributions

fX1,X2,X4,X5|X3(x1, x2, x4, x5|x3) =
fX1,X2,X3,X4,X5(x1, x2, x3, x4, x5)

fX3(x3)

which arises from the original DAG, and

f∗X1,X2,X4,X5|X3(x1, x2, x4, x5|x3) =
f∗X1,X2,X3,X4,X5(x1, x2, x3, x4, x5)

f∗X3(x3)

which arises from the intervention DAG.
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Interventions

Note
In the causal literature, the distinction is sometimes acknowledged using
the ‘do’ operator

fX1,X2,X4,X5(x1, x2, x4, x5 | do(X3) = x3)

is the same as
f∗X1,X2,X4,X5|X3(x1, x2, x4, x5 | x3)

This notation was introduced by J. Pearl.
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Graphical representation of bias

We aim to understand the effect of Z on Y.

• An open undirected path between Z and Y allows for the association
between Z and Y to be modified by the presence of other variables.

This is known as a biasing path.

• By ‘association’, we typically mean some form of correlation.
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Graphical representation of bias

• the association between Z and Y is unconditionally unbiased (or
marginally unbiased) for the effect of Z on Y if the only open paths
between them are directed paths.

Z Y

Z X Y

Z

X1

X2

Y
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Graphical representation of bias

A set of nodes S is sufficient to control bias in the association between Z
and Y if

• conditional on S, the open paths between Z and Y are precisely the
directed paths between Z and Y.

S is minimally sufficient if it is the smallest sufficient set.
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Graphical representation of bias

Conditioning on descendants of Z

(i) blocks directed paths

Z X Y

Z ⊥⊥ Y | X but Z /⊥⊥Y

(ii) can unblock or create paths that lead to biasing of the effect of Z on
Y.
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Graphical representation of bias

(iii) may be unnecessary in statistical terms: for example

Z

X

Y

Conditioning on X will not affect bias.
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Graphical representation of bias

Undirected paths from Z to Y are termed ‘backdoor’ paths (relative to Z)
if they start with an arrow pointing into Z.

X1 X2

Z

W

Y

The only path from Z to Y is a backdoor path; however, it is not open
because of the collider W.
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Graphical representation of bias

Before conditioning

• all biasing paths in a DAG are backdoor paths, and

• all open backdoor paths are biasing paths.

To obtain an unbiased estimate of the effect of Z on Y, all backdoor paths
between Z and Y must be blocked.
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Graphical representation of bias

Consider a set of variables S. This set satisfies the backdoor criterion
with respect to Z and Y if

(i) S contains no descendant of Z, and

(ii) there is no open backdoor path from Z to Y after conditioning on S.

Conditioning on S allows identification of the causal effect of Z on Y.
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Confounding

A confounding path between Z and Y is

(i) a biasing path (that is, an undirected open path) that

(ii) ends with an arrow into Y.
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Confounding

Variables on a confounding path are termed confounders.

Z

X

Y

Z

X

Y

X is a confounder in both cases.
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Confounding

X1 X2

Z

W

Y

W is a collider on the undirected path from Z to Y

Path 1: Z → X1 → W → X2 → Y

and hence this path is blocked.
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Confounding

However unconditional on W, the effect of Z on Y is confounded by the
backdoor path

Path 2: Z → X1 → W → Y.

Conditioning onW alone opens Path 1, therefore to block both paths need
to condition on

S ≡ {W, X2}.
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Confounding

X1 X2

Z

W

Y

Conditioning on W opens the confounding path. Therefore Z ⊥⊥ Y (as
there is no open path between them), but

Z /⊥⊥Y | W

Further conditioning on either {X1} or {X2} blocks the path.
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Confounding

X1 X2

Z

W

Y

Conditioning on W blocks the confounding path. Therefore conditioning
on any one of

{X1}, {W}, {X2}

will block the path.
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Direct and indirect effects

• Direct effect: A direct effect of Z on Y (relative to X) is the effect
captured by a directed path from Z to Y that does not pass through
X.

• Indirect effect: An indirect effect of X on Y that is captured by di-
rected paths that pass through X.

In this formulation, X is termed an intermediate or mediator variable.

Note that X may be ignored as a mediator, and merely treated as a third
variable.
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Direct and indirect effects

Z X Y

Indirect effect

Z

X

Y
(D)

Direct (D) & Indirect effect

Direct effect is confounded
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Direct and indirect effects

Z

X Y

U

(D)

No indirect effect

Direct effect is not confounded

X is a collider, so there is no other open path from Z to Y.
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Unmeasured confounding

Suppose that in reality there is a further variable U that is a confounder,
but is unmeasured in the observed data.

Z Y

X

U

There is a hidden confounding path Z → U → Y. Conditioning on U is
not possible, as we are unaware of its existence.
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Unmeasured confounding

With two unmeasured confounders:

U1 U2

Z

X

Y

We have that X, Y and Z are independent; the (true but hidden) path
between Z and Y is blocked at collider X.
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Unmeasured confounding

However with the same unmeasured confounders:

U1 U2

Z

X

Y

In the modelled DAG, Y ⊥⊥ Z | X; however, conditioning on X opens the
hidden path.
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Summary

In a statistical formulation of a causal inference problem

1. We identity treatment Z and outcome Y

2. We form the DAG representing the relationships between Z and Y
which contains other measured variables X.

3. The causal effect of Z on Y flows down open and directed paths from
Z to Y;
• there may be a direct effect if there is an arrow from Z into Y;
• there may be indirect effects if a directed path passes through

mediating variables.
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Summary

4. If there are undirected paths from Z to Y that are open, then these
paths may induce bias in estimation of the effect of Z on Y.

5. In order to obtain unbiased estimation, the open undirected (bias-
ing) paths must be blocked; typically this is done by conditioning on
variables on those paths.

6. A collider node blocks a path; however, conditioning on the collider
opens the path at that node.
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Appendix: Propensity Score Regression
Example
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Example

Example:

In this example we have
• two confounders X1 and X2

• binary treatment Z
where the treatment effect model depends on Z only, or on both Z and
X1.

Back
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Example

Example:

Suppose that we have the following data generating model:
• Confounders: (X1, X2)

⊤ ∼ Normal2((1, 1)⊤,Σ) with

Σ =

[
0.1 0.0
0.0 0.5

] [
1.0 0.8
0.8 1.0

] [
0.1 0.0
0.0 0.5

]
• Treatment: Z|X1, X2 ∼ Bernoulli(e(X1, X2)), where

e(x1, x2) =
exp{1+ x1 − 2x2}

1+ exp{1+ x1 − 2x2}

• Outcome: Y|X, Z ∼ Normal(µ(X, Z), 1), where

µ(x, z) = (2+ 3x1 + x2 + x1x2) + z
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Example

Example:

We consider fitting the parametric model

m(x, z;β, ψ) = (β0 + β1x1) + zψ0

which is mis-specified due to the ‘treatment-free’ model specification.
The true values is ψ0 = 1.
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Example

#n=1000
#Correct specification
> round(coef(summary(lm(Y~X1+X2+X1:X2+Z))),4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.7134 0.6222 4.3608 0.0000
X1 2.2156 0.6869 3.2254 0.0013
X2 0.2882 0.4807 0.5996 0.5489
Z 1.0150 0.0674 15.0572 0.0000
X1:X2 1.7421 0.4721 3.6905 0.0002

#Incorrect specification
> round(coef(summary(lm(Y~X1+Z))),4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.2613 0.4034 -10.5631 0
X1 11.4990 0.3888 29.5760 0
Z 0.6366 0.0762 8.3523 0
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Example

Example:

In the correctly specified model, we have

ψ̂0 : 1.0150 (0.0674)

however in the incorrectly specified model we have

ψ̂0 : 0.6366 (0.0762)

This effect persists at even larger sample sizes.
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Example

Example:

Now consider fitting the parametric model

m(x, z;β, ψ, ϕ) = (β0 + β1x1) + zψ0 + e(x1, x2)ϕ0

which considers the additional propensity score term.

Initially, we will set

e(x1, x2) =
exp{1+ x1 − 2x2}

1+ exp{1+ x1 − 2x2}

that is, using the true value.
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Example

#Propensity score regression
> round(coef(summary(lm(Y~X1+Z+eX))),4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.1718 0.5609 7.4377 0
X1 5.1662 0.4701 10.9907 0
Z 1.0172 0.0682 14.9069 0
eX -4.6374 0.2430 -19.0815 0
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Example

Example:

We now have
ψ̂0 : 1.0172 (0.0682)

and so correct estimation of ψ0 has been recovered.
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Example

Example:

Now suppose

µ(x, z) = (2+ 3x1 + x2 + x1x2) + z(1+ x1 + x2)

and using the propensity score regression model

m(x, z;β, ψ, ϕ) = (β0 + β1x1) + z(ψ0 + ψ1x1 + ψ2x2) + e(x1, x2)ϕ0
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Example

#n=1000
#Correct specification
> round(coef(summary(lm(Y~X1+X2+X1:X2+Z+Z:X1+Z:X2))),4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.5674 0.9486 3.7609 0.0002
X1 1.2812 1.0109 1.2675 0.2053
X2 0.1155 0.6004 0.1923 0.8475
Z -0.2023 0.9313 -0.2173 0.8281
X1:X2 1.9903 0.5672 3.5090 0.0005
X1:Z 2.3744 1.0558 2.2488 0.0247
X2:Z 0.8420 0.2091 4.0272 0.0001
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Example

#Incorrect specification
> round(coef(summary(lm(Y~X1+Z+Z:X1+Z:X2))),4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.4874 0.5541 -8.0981 0
X1 11.7187 0.5363 21.8503 0
Z 6.4906 0.8778 7.3941 0
X1:Z -6.5766 0.9644 -6.8196 0
Z:X2 2.8785 0.1642 17.5344 0
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Example

#Propensity score regression
> round(coef(summary(lm(Y~X1+Z+Z:X1+Z:X2+eX))),4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.9848 0.7752 5.1403 0.0000
X1 5.4002 0.6565 8.2252 0.0000
Z 1.4774 0.8716 1.6951 0.0904
eX -4.7679 0.3313 -14.3913 0.0000
X1:Z 0.6533 1.0113 0.6460 0.5184
Z:X2 0.8889 0.2036 4.3664 0.0000
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Example

Example:

Hard to conclude anything due to the inherent variability, but it seems
that including the propensity score does improve the estimation of
(ψ0, ψ1, ψ2).

Need to do a larger simulation study: we perform 5000 replications, and
inspect the boxplots of the estimates for the three parameters.
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Example

Correct Incorrect PS Regression

−
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0
2

4
6

8
10

ψ0
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Example

Correct Incorrect PS Regression

−
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−
5

0
5

ψ1
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Example

Correct Incorrect PS Regression

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

ψ2
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Example

Example:

This confirms that including the propensity score does improve the es-
timation of (ψ0, ψ1, ψ2), even if the treatment-free model component is
incorrectly specified.

However, it seems that there is still a small amount of bias.
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Example

Example:

Here is a version of the DAG for the data generating model

Z Y

X2

X1
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Example

Example:

However, a more accurate DAG includes the interactions.

Z Y

X2

X1

X1X2

X1Z

X2Z
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Example

Example:

We need to block the open paths via the interactions. This can be
achieved by using the model

m(x, z;β, ψ, ϕ) = (β0 + β1x1) + z(ψ0 + ψ1x1 + ψ2x2)

+ e(x1, x2)(ϕ0 + ϕ1x1 + ϕ2x2)

Conditioning on e(X), e(X)X1 and e(X)X2 blocks the paths.
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Example

Example:

Z Y

X2

X1

X1X2

X1Z

X2Z

e

eX1

eX2
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Example

Correct Incorrect PS Regression PS 2
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4
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8
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ψ0
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Example

Correct Incorrect PS Regression PS 2
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−
5

0
5

ψ1
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Example

Correct Incorrect PS Regression PS 2
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0
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3.
0

3.
5

ψ2
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Example

Example:

The augmented propensity score regression model (PS 2) improves the
performance.

Note, however, that the variances of the estimators from propensity score
regression model are slightly larger than those arising from the correctly
specified model.
• 10% to 20% larger in this simulation.
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Example

Example:

In this analysis, we may estimate the ATE by taking the average differ-
ence of the two fitted values under the proposed model, that is

δ̂ =
1
n

n∑
i=1

(ψ̂0 + ψ̂1xi1 + ψ̂2xi2).
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Example

Example:

We need to take care in estimating the APO. In the data generatingmodel,
with

µ(x, z) = (2+ 3x1 + x2 + x1x2) + z(1+ x1 + x2)

we have that

µ(z) = 2+ 3E[X1] +E[X2] +E[X1X2] + z(1+E[X1] +E[X2]).

This cannot in general be estimated correctly using

µ̂(z) =
1
n

n∑
i=1

m(xi, z; β̂, ψ̂, ϕ̂).
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Example

Note
This type of adjustment works for a linear outcome model; however, for
other types of model such as
• log-linear
• logistic

more care needs to be taken.
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Appendix: Marginal Structural Model
Example

358



MSM Real Data Example

Example: ART interruption in HIV/HCV co-infected individuals

See Saarela et al. 2015, Biometrics.

Antiretroviral therapy (ART) has reduced morbidity and mortality due
to nearly all HIV-related illnesses, apart from mortality due to end-
stage liver disease, which has increased since ART treatment became
widespread.

In part, this increase may be due to improved overall survival com-
bined with Hepatitis C virus (HCV) associated hepatic liver fibrosis, the
progress of which is accelerated by immune dysfunction related to HIV-
infection.

Back
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MSM Real Data Example

Example: ART interruption in HIV/HCV co-infected individuals

The Canadian Co-infection Cohort Study is one of the largest projects set
up to study the role of ART on the development of end-stage liver disease
in HIV-HCV co-infected individuals.

Given the importance of ART in improving HIV-related immunosuppres-
sion, it is hypothesized that liver fibrosis progression in co-infected indi-
viduals may be partly related to adverse consequences of ART interrup-
tions.
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MSM Real Data Example

Example: ART interruption in HIV/HCV co-infected individuals

Study comprised
• N = 474 individuals with at least one follow-up visit (scheduled at

every six months) after the baseline visit,
• 2066 follow-up visits in total (1592 excluding the baseline visits).
• The number of follow-up visits mi ranged from 2 to 16 (median 4).
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MSM Real Data Example

Example: ART interruption in HIV/HCV co-infected individuals

We adopt a pooled logistic regression approach:
• a single binary outcome (death at study termination)
• longitudinal binary exposure (adherence to ART)
• possible confounders

• baseline covariates: female gender, hepatitis B surface antigen
(HBsAg) test and baseline APRI, as well as

• time-varying covariates: age, current intravenous drug use (bi-
nary), current alcohol use (binary), duration of HCV infection,
HIV viral load, CD4 cell count, as well as ART interruption sta-
tus at the previous visit.

• need also a model for informative censoring.
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MSM Real Data Example

Example: ART interruption in HIV/HCV co-infected individuals

• Analysis includes co-infected adults whowere not on HCV treatment
and did not have liver fibrosis at baseline.

• The outcome event was defined as aminotransferase-to-platelet ra-
tio index (APRI), a surrogate marker for liver fibrosis, being at least
1.5 in any subsequent visit.

• Included visits where the individuals were either on ART or had in-
terrupted therapy (Zij = 1), based on self-reported medication in-
formation, during the 6 months before each follow-up visit.
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MSM Real Data Example

Example: ART interruption in HIV/HCV co-infected individuals

• Individuals suspected of having spontaneously cleared their HCV
infection (based on two consecutive negative HCV viral load mea-
surements) were excluded as they are not considered at risk for
fibrosis progression.

• In the treatment assignment model all time-varying covariates (xij),
including the laboratory measurements (HIV viral load and CD4 cell
count), were lagged one visit.

• Individuals starting HCV medication during the follow-up were cen-
sored.
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MSM Real Data Example

Example: ART interruption in HIV/HCV co-infected individuals

We considered the structural model

log

(
f(Yij = 1|̃zij; θ)
f(Yij = 0|̃zij; θ)

)
= θ0 + θ1zj

θ1 measures the total effect of exposure in the most recent interval, al-
lowing for mediation.
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MSM Real Data Example

Example: ART interruption in HIV/HCV co-infected individuals

Results:

Estimator θ̂1 SE z
Unadjusted 4.616 0.333 13.853

MSM 0.354 0.377 0.937
Bootstrap 0.308 0.395 0.780

After adjustment for confounding and effects of mediation, we can con-
clude that the marginal effect of exposure is non-significant.
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