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What To Expect From This Module

• Brief review of some key features of longitudinal studies

• Exploratory analysis and graphical displays for longitudinal data

• Learn about two key families of longitudinal models in some depth:
▶ Generalized estimating equations
▶ (Generalized) linear mixed models

• General approach:
▶ The focus will be on practical application of these methods, with

illustrative examples in R
▶ Some theoretical background and technical details will be provided

• At the conclusion of this module, you should be able to apply
appropriate exploratory and regression techniques to summarize and
generate inference from longitudinal data
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Resources

• Module website: slides, R code, schedule, etc.

• Slack: ask us questions, interact with other module participants,
access recordings

• Office hours:
▶ Anna: 1-2pm PT on Monday, July 10
▶ Katie: 3:30-4:30 PT on Wednesday, July 12

• We’ll recommend textbooks and articles for further reading
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A Bit About You

Please type in the chat:

• Briefly introduce yourself - what’s your name, and what state or
country are you currently located in?

• What’s your primary role in most of the studies in which you
participate?
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Today, July 10, 8:30-12:
8:30-9:30 Introduction to longitudinal studies + some key terminology
9:30-9:45 Break

9:45-10:45 Data activity: Exploring longitudinal data
10:45-11:00 Break
11:00-12:00 Generalized least squares, generalized estimating equations

Tuesday, July 11, 8:30-12:
8:30-9:45 Linear mixed models + discussion

9:45-10:00 Break
10:00-11:00 Data activity: Longitudinal analyses with continuous outcomes
11:00-11:15 Break
11:15-12:00 Marginal models for binary/count data (GEE)

Wednesday, July 12, 8:30-12:
8:30-9:30 Conditional models for binary/count data (GLMM) + discussion
9:30-9:45 Break

9:45-10:45 Data activity: Longitudinal analyses with binary/count outcomes
10:45-11:00 Break
11:15-12:00 Special topics + wrap-up
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Resources

Introductory

• Fitzmaurice GM, Laird NM, Ware JH. Applied Longitudinal Analysis.
Wiley, 2011.

• Gelman A, Hill J. Data Analysis Using Regression and Multilevel/
Hierarchical Models. Cambridge University Press, 2007.

• Hedeker D, Gibbons RD. Longitudinal Data Analysis. Wiley, 2006.

Advanced

• Diggle PJ, Heagerty P, Liang K-Y, Zeger SL. Analysis of Longitudinal
Data, 2nd Edition. Oxford University Press, 2002.

• Molenbergs G, Verbeke G. Models for Discrete Longitudinal Data.
Springer Series in Statistics, 2006.

• Verbeke G, Molenbergs G. Linear Mixed Models for Longitudinal
Data. Springer Series in Statistics, 2000.
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Overview

Day 1: Monday, July 10
Introduction
Activity
General Linear Model

Day 2: Tuesday, July 11

Day 3: Wednesday, July 12
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Longitudinal Studies

Repeatedly collect information on the same individuals over time
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Longitudinal Studies

Repeatedly collect information on the same individuals over time

Benefits

• Separate cohort and age effects
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Cohort vs. Age Effects
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Cohort vs. Age Effects
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Cohort vs. Age Effects
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Cohort vs. Age Effects

• On average, older individuals have lower computer literacy
▶ Visible from both cross-sectional and longitudinal data

• Longitudinal data shows that:
▶ Older individuals began at a lower level (cohort effect)

▶ Everyone’s computer literacy improved as they get older (age effect)

• Note: period effects (calendar date) are also sometimes important
▶ Any two of age, cohort, period determine the third
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Cohort vs. Age Effects
Cohort and age effects can also be similar:
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Two-Stage Model

• Formally, cohort and age effects may be represented as a two-stage
model (subjects i = 1, ...,N; time points j = 1, ..., ni ):

1. Cross-sectional comparison at baseline,

E[Yi1] = β0 + βCxi1

2. Longitudinal comparison,

E[Yij − Yi1] = βL(xij − xi1)

• Overall association:

E[Yij ] = βCxi1 + βL(xij − xi1) + ϵij

• To estimate change over time, cross-sectional studies assume βC = βL
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Longitudinal Studies

Repeatedly collect information on the same individuals over time

Benefits

• Separate cohort and age effects

• Demonstrate time ordering of exposure and outcome
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Timing of Exposure and Outcome

• Cross-sectional study:

Less lonely → Healthier

Healthier → Less lonely

• Longitudinal study (e.g., Harvard Study of Adult Development):

Close relationships at age 50 → Physical health at age 80

• Provides some evidence towards causality
▶ One of Hill’s Criteria for Causality
▶ ⋆ There are several other challenges to generating causal inference

⋆ from longitudinal data, particularly observational longitudinal data
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Longitudinal Studies

Repeatedly collect information on the same individuals over time

Benefits

• Separate cohort and age effects

• Demonstrate time ordering of exposure and outcome

• Statistically:
▶ Gains in efficiency: fewer subjects needed to detect the same effect
▶ Partition within-subject and between-subject variability
▶ “Each subject acts as their own control”
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Longitudinal Studies

Repeatedly collect information on the same individuals over time

Challenges

• Analysis must account for longitudinal correlation
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Accounting for Correlation

• Individuals are assumed to be independent

• Longitudinal dependence may be a “nuisance” feature
(not the primary scientific interest)

• Ignoring dependence may lead to incorrect inference
▶ Longitudinal correlation usually positive

▶ Estimated standard errors may be too small

▶ Confidence intervals are too narrow; too often exclude true value
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Longitudinal Studies

Repeatedly collect information on the same individuals over time

Challenges

• Analysis must account for longitudinal correlation

• Account for incomplete participant follow-up
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Missing Data in Longitudinal Studies

• Balanced design: all participants measured at the same time points

• Unbalanced design: measurement times not intended to match

• Incomplete data: observations not available at all intended times
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Longitudinal Studies

Repeatedly collect information on the same individuals over time

Challenges

• Analysis must account for longitudinal correlation

• Account for incomplete participant follow-up

• Time-varying covariates
▶ Complicates causal argument
▶ Requires choosing exposure lag
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Longitudinal Studies: Disambiguation

• Time to clinical outcome: survival analysis
▶ Longitudinal observations and time-to-event outcomes: see Module 14

• Time series: many time points, one or a few “individuals”
▶ Stock market, climate, etc.
▶ Different statistical methods apply

• Panel studies: social scientists’ name for longitudinal studies
▶ Many of the same methods apply

• Clustered data: Larger class that includes longitudinal studies
▶ Correlation may be due to other shared characteristics (e.g., school,

family, neighborhood)
▶ Many of the same methods apply
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Exploratory Data Analysis

• Summary statistics over time (by group)

• Plots of individual trajectories and/or mean values

• Empirical covariance structure

Goal: Summarize mean and covariance structure

(Easier for quantitative outcomes than other types!)
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Exploratory Data Analysis: Best Practices

1. Show as much of the data as possible

2. Highlight aggregate patterns of potential scientific interest

3. Identify both cross-sectional (cohort) and longitudinal (age) patterns

4. Facilitate identification of unusual individuals or observations
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Three Case Studies

1. Dental Growth

2. Air Pollution and Health

3. Amenorrhea with Birth Control
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Case Study 1: Dental Growth

• Study: Dental growth in preteens
▶ Measured distance between the pituitary gland and the

pterygomaxillary fissure at ages 8, 10, 12, and 14
▶ Easy to identify on x-rays of the side of the head
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Case Study 1: Dental Growth

• Study: Dental growth in preteens
▶ 11 girls and 16 boys
▶ A measure of growth (see below) taken at ages 8, 10, 12, and 14
▶ Balanced and complete data

• Outcome of interest
▶ Distance (mm) from center of the pituitary gland to the

pteryomaxillary fissure

• Research questions
▶ What is the trajectory of growth in preteens?
▶ Does the growth rate differ between boys and girls?
▶ How much heterogeneity is there in children’s growth rates?
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Case Study 1: Dental Growth
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Case Study 1: Dental Growth
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Case Study 1: Dental Growth
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Case Study 1: Dental Growth
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Case Study 2: Air Pollution and Health

• Six Cities Study of Air Pollution and Health
▶ 300 school-age female children in Topeka, Kansas, most enrolled in 1st

or 2nd grade (age 6-7)
▶ Height, age, FEV1 (lung function) measured annually until high school

graduation or loss to follow-up
▶ Incomplete data (severity depends on what is considered “time 0”)

• Outcome of interest
▶ FEV1 (lung function)

• Research questions
▶ How does lung function change as children age?
▶ (Original study also compared more-polluted to less-polluted cities)
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Case Study 2: Air Pollution and Health
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Case Study 2: Air Pollution and Health
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Case Study 2: Air Pollution and Health
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Case Study 3: Amenorrhea with Birth Control

• Clinical Trial of Contracepting Women
▶ 1151 women randomized to either 100mg or 150mg of DMPA
▶ Four injections given at 90-day intervals; final follow-up 90 days after

last injection
▶ Menstrual diary to record vaginal bleeding pattern disturbances
▶ Substantial dropout: over 1/3 of participants dropped out before the

study ended

• Outcome of interest
▶ Amenorrhea (absence of menstrual bleeding) during each 3-month

interval after an injection (note: this is binary!)

• Research questions
▶ How do subject-specific risks of amenorrhea change over the course of

the study?
▶ What is the influence of dosage on amenorrhea risk?
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Case Study 3: Amenorrhea with Birth Control

Visit 1 Visit 2 Visit 3 Visit 4 % among 100mg % among 150mg

0 0 0 0 24.7 20.7

0 0 0 1 8.5 6.3

0 0 1 1 7.1 7.7
...

...
...

...
...

...

0 0 0 2 3.5 1.9

0 0 1 2 2.3 1.7
...

...
...

...
...

...

0 2 2 2 13.2 11.8

1 2 2 2 4.0 5.4
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Case Study 3: Amenorrhea with Birth Control
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Review of Key Stats/Regression Concepts

1. Big Picture of Statistics

2. Linear regression - interpretation and inference

3. Linear regression - effect modification
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Big Picture of Statistics

Description &
Estimation (Ȳ )

Sample

µ
(parameter)

Population

InferenceDesign
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Linear Regression - Estimation and Inference

X Y
β

E[Y | X = x ] = β0 + β1x

Estimation

• Coefficient estimates β̂

• Standard errors for β̂

Inference

• Confidence intervals for β

• Hypothesis tests for β = 0
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Linear Regression - Interpretation (Dental Growth)

We estimate that, comparing two children one year apart in age, the
average orthodontic distance is 0.7 mm longer for the older child.
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Multiple Linear Regression

• Another variable affects the level of the outcome

• Mechanistically: ”adjust” for additional variables

E[Y | x , t] = β0 + β1x + β2t

• Results in parallel lines for groups based on x .

• E.g., if x is sex (0 = female, 1 = male):

Female: E[Y | x = 0, t] = β0 + β2t

Male: E[Y | x = 1, t] = β0 + β1 + β2t

= (β0 + β1) + β2t
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Multiple Linear Regression - Interpretation (Dental
Growth)

We estimate that, comparing two children of the same sex, but one year
apart in age, the average distance is 0.7 mm longer for the older child.
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Linear Regression - Effect Modification

• Association of interest depends on value of another variable

• Mechanistically: interaction terms

E[Y | x , t] = β0 + β1x + β2t + β3x × t

• Results in separate models for groups based on x .

• E.g., if x is sex (0 = female, 1 = male):

Female: E[Y | x = 0, t] = β0 + β2t

Male: E[Y | x = 1, t] = β0 + β1 + β2t + β3t

= (β0 + β1) + (β2 + β3)t

• Does association differ between females and males? H0 : β3 = 0
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Linear Regression - Effect Modification (Dental Growth)
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Effect Modification

Full equation:

Distance = 17.4 + 0.5× Age− 1.0×Male + 0.3× Age×Male

Can be broken down into sex-specific equations:

• If child i is female,

E[Distij |Malei = 0,Ageij ] = 17.4 + 0.5× Ageij

• If child i is male,

E[Distij |Malei = 1,Ageij ] = (17.4− 1.0) + (0.5 + 0.3)× Ageij

= 16.4 + 0.8× Ageij
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Effect Modification: Why Do We Care?

• Many longitudinal studies are interested in whether associations differ
over time

• E.g., do placebo and treatment group have different disease
progression trajectories?

• Interaction term (between treatment and time) tests this hypothesis
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A Note About Notation

• ni = number of observations for subject i = 1, ...,N

• Yi = (Yi1,Yi2, ...,Yini )
⊤ = outcome for subject i at times j = 1, ..., ni

• Xi =


Xi11 · · · Xi1p

Xi21
. . . Xi2p

...
. . .

...

Xini1 · · · Xinip

 = exposure/covariate matrix for subject i
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A Note About Notation

• Mean of Yij is µij = E[Yij ]

• Variance of Yij is σ
2
j = E[(Yij − µij)

2]

• Covariance between responses at time j and time k is
σjk = E[(Yij − µij)(Yik − µik)]

• So for subject i (and n observations), the full variance-covariance
matrix is

Σi = Cov


Yi1

Yi2

...

Yini

 =


σ2
1 σ12 · · · σ1n

σ21 σ2
2 · · · σ2n

...
...

. . .
...

σn1 σn2 · · · σ2
n
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First half of course: Methods for continuous outcomes

• General linear models

• Linear mixed models

• Data analysis: Multicenter AIDS Cohort Study (MACS)
▶ Model CD4+ data over time; various levels of R scaffolding
▶ Individual or group
▶ Stay on Zoom (breakout rooms) if you want to ask questions in person
▶ We’ll also be monitoring Slack as time permits
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Overview

Day 1: Monday, July 10
Introduction
Activity
General Linear Model

Day 2: Tuesday, July 11

Day 3: Wednesday, July 12
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Activity: MACS Data Exploration

• Multicenter Aids Cohort Study

• Goal: Characterize time course of CD4+ T-cell depletion
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Activity Guidelines

• Prefer to work alone? Feel free to stay here (in case you have
questions) or ask on Slack

• Prefer to work with others? Join a breakout room and call us in if
your group has questions
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Overview

Day 1: Monday, July 10
Introduction
Activity
General Linear Model

Day 2: Tuesday, July 11

Day 3: Wednesday, July 12
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Case Study: Dental Growth

Goals:

1. Estimate average growth curve
for all children

2. Estimate growth curves for
individual children

3. Characterize heterogeneity in
children’s growth rates

4. Assess whether the growth rate
differs between boys and girls
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●
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Case Study: Dental Growth

Goals:

1. Estimate average growth curve for all children

✓ We will focus on this

2. Estimate growth curves for individual children

X We will look into this when we talk about linear mixed models

3. Characterize heterogeneity in children’s growth rates

X We will look into this when we talk about linear mixed models

4. Assess whether the growth rate differs between boys and girls

✓ We will focus on this
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Case Study: Dental Growth

Mean model:

E [Distij |Malei ,Ageij ] = β0 + β1(Ageij − 8) + β2Malei + β3(Ageij − 8)×Malei

So the sex-specific mean models are:

• If child i is a girl:

E [Distij |Malei = 0,Ageij ] = β0 + β1(Ageij − 8)

• If child i is a boy:

E [Distij |Malei = 1,Ageij ] = (β0 + β2) + (β1 + β3)(Ageij − 8)
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Case Study: Dental Growth

Mean model:

E [Distij |Malei ,Ageij ] = β0 + β1(Ageij − 8) + β2Malei + β3(Ageij − 8)×Malei

Covariance: Cov[Disti | Malei , Agei ] = Σi

Working covariance model:

Cov[Disti | Malei , Agei ] = Vi = σ2Ri

where Ri is the working correlation model
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Correlation Models
Independence: Corr[Yij ,Yij ′ | Xi ] = 0

1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


Exchangeable: Corr[Yij ,Yij ′ | Xi ] = α

1 α α · · · α

α 1 α · · · α

α α 1 · · · α
...

...
...

. . .
...

α α α · · · 1
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Correlation Models
Auto-regressive: Corr[Yij ,Yij ′ | Xi ] = α|j−j ′|

1 α α2 · · · αn−1

α 1 α · · · αn−2

α2 α 1 · · · αn−3

...
...

...
. . .

...

αn−1 αn−2 αn−3 · · · 1


Unstructured: Corr[Yij ,Yij ′ | Xi ] = αjj ′

1 α21 α31 · · · αn1

α12 1 α32 · · · αn2

α13 α23 1 · · · αn3
...

...
...

. . .
...

α1n α2n α3n · · · 1
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Correlation models

Correlation between any two observations on the same subject. . .
• Independence: . . . is assumed to be zero

▶ Appropriate with use of robust variance estimator (large N)

• Exchangeable: . . . is assumed to be constant
▶ More appropriate for clustered data

• Auto-regressive: . . . is assumed to depend on time or distance
▶ More appropriate for equally-spaced longitudinal data

• Unstructured: . . . is assumed to be distinct for each pair
▶ Only appropriate for short series (small n) on many subjects (large N)
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General Linear Model

Goal: How can we estimate and make inference on parameters, β, in a
linear model in the presence of correlation?

For individual i , i = 1, . . . ,N:

E [Yi |Xi ] = Xiβ

Cov[Yi |Xi ] = Σi

• Review the setting of independent responses
▶ Approach: ordinary least squares
▶ Considerations: robust standard errors

• Extend to the setting of correlated responses
▶ Approach: multivariate weighted least squares
▶ Considerations: robust standard errors
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Notation Reminder
N
o
ta
ti
o
n

Independent responses:

E [Yi |Xi ] = Xiβ

Var[Yi |Xi ] = σ2

• Suppose we have one
measurement on subject i ,
i = 1, . . . ,N

• Yi = outcome for subject i

• Xi = (Xi1, . . . ,Xip)=
exposure/covariate vector for
subject i

Correlated responses:

E [Yi |Xi ] = Xiβ

Cov[Yi |Xi ] = Σi

• Suppose we have ni
measurements on subject i ,
i = 1, . . . ,N

• Yi = (Yi1,Yi2, ...,Yini )
⊤ =

outcome for subject i at times
j = 1, ..., ni

• Xi =


Xi11 · · · Xi1p

Xi21
. . . Xi2p

...
. . .

...

Xini1 · · · Xinip

 =

exposure/covariate matrix for
subject i
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Estimation and Inference
S
et
u
p

E
st
im

a
ti
o
n
P
ro
ce

d
u
re

Independent responses:

E [Yi |Xi ] = Xiβ

Var[Yi |Xi ] = σ2

We can use the method of
ordinary least squares to find
estimates for β, which involves
minimizing:

N∑
i=1

(Yi − Xiβ)
2

Correlated responses:

E [Yi |Xi ] = Xiβ

Cov[Yi |Xi ] = Σi

We can use the method of
multivariate weighted least
squares to find estimates for β,
which involves minimizing:

N∑
i=1

(Yi − Xiβ)
⊤Wi (Yi − Xiβ)

where Wi is a weight matrix
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Estimation and Inference
E
st
im

a
ti
n
g
E
q
u
a
ti
o
n
s

β̂

To find β̂ we take the derivatives (with respect to β0, β1, . . . , βp), set
the functions equal to 0 to give the following estimating equations
for β:

Independent responses:

0 =
N∑
i=1

X⊤
i (Yi − Xi β̂)

Therefore,

β̂ =

(
N∑
i=1

X⊤
i Xi

)−1 N∑
i=1

X⊤
i Yi

Correlated responses:

0 =
N∑
i=1

X⊤
i Wi (Yi − Xi β̂)

Therefore,

β̂ =

(
N∑
i=1

X⊤
i WiXi

)−1 N∑
i=1

X⊤
i WiYi
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Estimation and Inference
V
ar
ia
n
ce

o
f
β̂

Independent responses:

Cov(β̂) =

(
N∑
i=1

X⊤
i Xi

)−1

︸ ︷︷ ︸
bread

×

(
N∑
i=1

X⊤
i Var(Yi )Xi

)
︸ ︷︷ ︸

cheese

×

(
N∑
i=1

X⊤
i X

)−1

︸ ︷︷ ︸
bread

Correlated responses:

Cov(β̂) =

(
N∑
i=1

X⊤
i WiXi

)−1

︸ ︷︷ ︸
bread

×

(
N∑
i=1

X⊤
i WiCov(Yi )WiXi

)
︸ ︷︷ ︸

cheese

×

(
N∑
i=1

X⊤
i WiX

)−1

︸ ︷︷ ︸
bread
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Estimation and Inference
S
u
m
m
ar
y

Independent responses:

• Assumes that observations are
independent

• Do not need to have an
assumption that the errors
have a normal distribution

• We can use a robust
variance estimate if we do
not want to assume constant
σ2 (does require large enough
sample size to work)

Correlated responses:

• Assumes that observations are
independent across
individuals but there may be
correlation between
observations on the same
individual

• Do not need to have an
assumption that the errors
have a (multivariate) normal
distribution

• We can use a robust
variance estimate if we do
not want to assume correctly
specified Σ (more on this...)
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Properties of β̂

• Unbiased given X1,X2, . . . ,XN and W1,W2, . . . ,WN

E [β̂] =

(
N∑
i=1

X⊤
i WiXi

)−1( N∑
i=1

X⊤
i WiE [Yi ]

)

=

(
N∑
i=1

X⊤
i WiXi

)−1( N∑
i=1

X⊤
i WiXiβ

)
= β

• The variance of β̂ depends on the weights:

Cov(β̂) =

(
N∑
i=1

X⊤
i WiXi

)−1( N∑
i=1

X⊤
i WiCov(Yi )WiXi

)(
N∑
i=1

X⊤
i WiX

)−1
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Summary

• Any set of reasonable (‘positive definite’) weights provides a valid
estimator

• β̂ is consistent for β, which loosely means it ‘hones’ in on the truth
as the sample size N gets larger no matter what the weights are!

• When Wi = Σ−1
i , we get an estimator for β that is most efficient

(among linear estimators)

• In the GEE approach, we will specify a form for the weights which
may depend on unknown parameters (α) that need to be estimated
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GEE approach
Setting: For linear regression of Yij on covariates Xij1, . . . ,Xijp, i.e. with
mean model:

E [Yij |Xij ] = β0 + β1Xij1 + β2Xij2 + · · ·+ βpXijp

= Xijβ j = 1, . . . , ni ; i = 1, . . . ,N

and a working covariance matrix V.

Algorithm:

1. Fit the weighted linear regression where the weights of each cluster
are the inverse of their current working covariances (Wi = V̂−1

i )

β̂ =

(
N∑
i=1

X⊤
i V̂

−1
i Xi

)−1 N∑
i=1

X⊤
i V̂

−1
i Yi

2. Update the working covariances using the residuals obtained from
fitting the model in (1), Yij − Xij β̂

3. Iterate steps (1) and (2) until the result converges
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GEE approach

The resulting estimator β̂, the solution to the generalized estimating
equations, is robust:

• The regression coefficient estimates will be correct (in large samples)
even if the working covariance model does not match the true
covariance model

• However, to obtain valid standard errors, we must capture the
correlation in the data, either through choosing the correct covariance
model, or using an alternative variance estimate

• Correctly specified (or close to the truth) covariance model will yield
regression estimate β̂ that is most (or more) efficient (smaller
variance)
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Robust Variance Estimate

• GEE computes a sandwich variance estimator
▶ Aka empirical variance, robust variance, Huber-White correction
▶ This is the default standard error output when using geeglm()

• Empirical variance gives valid standard errors for the estimated
regression coefficients even if the working covariance model was
wrong

▶ Valid in large samples (this means it can be used with data sets that
contain at least 40 subjects)

Ĉov(β̂) =

(
N∑
i=1

X⊤
i V̂

−1
i Xi

)−1

︸ ︷︷ ︸
bread

(
N∑
i=1

X⊤
i V̂

−1
i C̃ov(Yi )V̂

−1
i Xi

)
︸ ︷︷ ︸

cheese

(
N∑
i=1

X⊤
i V̂

−1
i X

)−1

︸ ︷︷ ︸
bread

where we can use the residuals, i.e., C̃ov(Yi ) has the entries eijeik where

eij = Yij − β̂0 − β̂1Xij1 − β̂2Xij2 − · · · − β̂pXijp

A Plantinga and K Wilson (Module 2) GEE and MM for LDA SISCER 2023 75 / 227



GEE: Inference

With the GEE approach, we can perform Wald tests and construct Wald
confidence intervals:

• β̂k/s.e. - valid test

• β̂k ± 1.96× s.e. - valid 95% confidence interval

Cannot perform a likelihood ratio test (no fully specified probability
model) so no AIC or BIC either.
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Case Study: Dental Growth

Mean model:

E [Distij |Malei ,Ageij ] = β0 + β1(Ageij − 8) + β2Malei + β3(Ageij − 8)×Malei

Working covariance model:

Cov[Disti | Malei , Agei ] = σ2Ri

where we will show results for Ri :

• Independent: [corstr = "independence"]

• Exchangeable: [corstr = "exchangeable"]

• Auto-regressive: [corstr = "ar1"]

• Unstructured: [corstr = "unstructured"]
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Case Study: Dental Growth

R Code:

library(geepack)

m_ind <- geeglm(distance ~ I(age-8)*Sex, id = Subject,

data = Orthodont, corstr = "independence")

m_exc <- geeglm(distance ~ I(age-8)*Sex, id = Subject,

data = Orthodont, corstr = "exchangeable")

m_ar1 <- geeglm(distance ~ I(age-8)*Sex, id = Subject,

data = Orthodont, corstr = "ar1")

m_uns <- geeglm(distance ~ I(age-8)*Sex, id = Subject,

data = Orthodont, corstr = "unstructured")

m_ols <- lm(distance ~ I(age-8)*Sex, data=Orthodont)
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Case Study: Dental Growth

geeglm(formula = distance ~ I(age - 8) * Sex, data = Orthodont,

id = Subject, corstr = "independence")

Coefficients:

Estimate Std.err Wald Pr(>|W|)

(Intercept) 21.2091 0.5604 1432.2 < 2e-16 ***

I(age - 8) 0.4795 0.0631 57.7 3.1e-14 ***

SexMale 1.4065 0.7738 3.3 0.0691 .

I(age - 8):SexMale 0.3048 0.1169 6.8 0.0091 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation structure = independence

Estimated Scale Parameters:

Estimate Std.err

(Intercept) 4.91 1.01

Number of clusters: 27 Maximum cluster size: 4
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Case Study: Dental Growth

geeglm(formula = distance ~ I(age - 8) * Sex, data = Orthodont,

id = Subject, corstr = "exchangeable")

Coefficients:

Estimate Std.err Wald Pr(>|W|)

(Intercept) 21.2091 0.5604 1432.2 < 2e-16 ***

I(age - 8) 0.4795 0.0631 57.7 3.1e-14 ***

SexMale 1.4065 0.7738 3.3 0.0691 .

I(age - 8):SexMale 0.3048 0.1169 6.8 0.0091 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation structure = exchangeable

Estimated Scale Parameters:

Estimate Std.err

(Intercept) 4.91 1.01

Link = identity

Estimated Correlation Parameters:

Estimate Std.err

alpha 0.618 0.131

Number of clusters: 27 Maximum cluster size: 4
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Case Study: Dental Growth
β̂0 (SE) β̂1 (SE) β̂2 (SE) β̂3 (SE)

Ind 21.2 (0.56) 0.5 (0.06) 1.4 (0.77) 0.3 (0.12)

Exch 21.2 (0.56) 0.5 (0.06) 1.4 (0.77) 0.3 (0.12)

AR1 21.2 (0.59) 0.5 (0.06) 1.6 (0.83) 0.3 (0.12)

Unst 21.2 (0.55) 0.5 (0.06) 1.4 (0.76) 0.3 (0.12)

OLS 21.2 (0.57) 0.5 (0.15) 1.4 (0.74) 0.3 (0.20)

• Working independence and OLS give exactly the same point estimates

▶ The estimating equations and thus estimator are exactly the same

• OLS standard errors too large for β̂1 and β̂3

▶ This is because age varies within-subject
▶ Inference using OLS would be wrong

• Working independence and exchangeable provide exactly the same results

▶ Data are balanced and complete

• Unstructured results are similar

• Autoregressive results are slightly (but not importantly) different
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Case Study: Dental Growth

Results from working independence:

• β̂1: The estimated rate of
change in mean dental length
per year for female children is
0.48 mm/year (95% CI: 0.36,
0.60 mm/year)

• β̂1 + β̂3: The estimated rate of
change in mean dental length
per year for male children is 0.78
mm/year (95% CI: 0.59, 0.98
mm/year)
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Dental Growth: Did We Answer Our Questions?

1. Estimate average growth curve for all children
▶ Coefficients β̂ from our mean model

2. Estimate growth curves for individual children
▶ See next section

3. Characterize heterogeneity in children’s growth rates
▶ See next section

4. Assess whether the growth rate differs between boys and girls
▶ It does! Interaction term is significantly nonzero (p-value < 0.01)
▶ (and scientifically interesting - growth rate 0.8 mm/yr for boys, 0.5

mm/yr for girls)
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Modeling the Mean Response over Time

Linear Quadratic Linear Splines

(Images from Fitzmaurice, Garrett M., Nan M. Laird, and James H. Ware. Applied longitudinal analysis.)
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Case Study: Six Cities

• 300 school-age female children,
most enrolled around ages 6-7

• Height, age, FEV1 (lung
function) measured
approximately annually until
high school graduation or loss to
follow-up

• Goal: Explore various ways to
model mean FEV1 as children
age
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Linear Trend

Notation:

• logFEV1ij : log FEV1 for subject
i at measurement occasion j

• ageij : age of subject i at
measurement occasion j

Mean Model:

E [logFEV1ij |ageij ] = β0 + β1ageij

In this model, the rate of change is
constant (β1)

R Code:

geeglm(logFEV1 ~ age,

id = id, data = dat)
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Quadratic Trend

Mean Model:

E [logFEV1ij |ageij ] = β0 + β1ageij +

β2age
2
ij

In this model, the rate of change is
non-constant (β1 + 2β2ageij)

R Code:

geeglm(logFEV1 ~ age + I(age^2),

id = id, data = dat)
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Linear Splines

Notation:

• (ageij − agek)+ =
max(ageij − agek , 0): linear
spline based on knot agek

Mean Model:

E [logFEV1ij |ageij ] = β0 + β1ageij +

β2(ageij − 10)+ +

β3(ageij − 14)+

In this model, the rate of change is:

• β1: for ageij < 10

• β1 + β2: for 10 ≤ ageij < 14

• β1 + β2 + β3: for ageij ≥ 14

R Code:
dat$ageSpline10 <- pmax(dat$age - 10, 0)

dat$ageSpline14 <- pmax(dat$age - 14, 0)

geeglm(logFEV1 ~ age + ageSpline10 +

ageSpline14,

id = id, data = dat)
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Modeling the Mean Response over Time

• Mean models as regression with time, and perhaps additional
functions of time

• Polynomial models:
▶ Quadratic: β1tij + β2t

2
ij

▶ Others: higher order polynomials
▶ Allow for non-linear mean curve
▶ Allow for non-constant rate of change

• Regression splines:
▶ Linear splines: β1tij + β2(tij − 14)+
▶ Others: cubic splines
▶ Allow for non-linear mean curve
▶ Allow for non-constant rate of change
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Assumptions

Valid inference from a general linear model relies on

• Mean model: As with any regression model for an average outcome,
need to correctly specify the functional form of Xijβ

▶ Included important covariates in the model
▶ Correctly specified any transformations or interactions

• Covariance model: Correct covariance model is required for correct
standard error estimates for β̂ if using model-based variance
estimate otherwise we can use robust/empirical variance estimate

• N sufficiently large
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Summary

• Primary focus is on the mean model

• Longitudinal correlation is secondary to mean model of interest and is
treated as a nuisance

• Requires selection of a ‘working‘ correlation model

• Semi-parametric model: mean + correlation

• Working correlation model does not need to be correctly specified to
obtain consistent estimator for β or valid standard errors for β̂ but
efficiency gains possible if correlation model is correct

• Wald testing

Issues:

• Accommodates only one source of correlation: longitudinal or cluster

• Requires that any missing data are missing completely at random

• Issues arise with time-dependent exposures and covariance weighting
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End of Day 1
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Overview

Day 1: Monday, July 10

Day 2: Tuesday, July 11
Recap
Linear Mixed Model
Wrap-Up: Methods for Continuous Outcomes
Activity
Review of Generalized Linear Models
Generalized Estimating Equations

Day 3: Wednesday, July 12
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Recap: Notation

• ni = number of observations for subject i = 1, ...,N

• Yi = (Yi1,Yi2, ...,Yini )
⊤ = outcome for subject i at times j = 1, ..., ni

• Xi =


Xi11 · · · Xi1p

Xi21
. . . Xi2p

...
. . .

...

Xini1 · · · Xinip

 = exposure/covariate matrix for subject i
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Recap: Dental Growth

• N = 27 children (11 girls and 16
boys)

• Each was measured ni = 4 times
(ages 8, 10, 12, and 14)

• Dental distance was measured
at each age

• Questions of interest we have so
far focused on:

▶ What is the growth trajectory
in girls and boys?

▶ Does the growth rate differ
between boys and girls?

●

●

●

●

●

●

●

●

16

20

24

28

32

8 10 12 14
Age (years)

D
is

ta
nc

e 
(m

m
)

● ●Female Male

A Plantinga and K Wilson (Module 2) GEE and MM for LDA SISCER 2023 95 / 227



Recap: Linear regression using the GEE approach

• Primary focus of the analysis is a marginal mean regression model (so
far we have focused on linear models, we’ll see later today how to
extend this to generalized linear models)

E [Yij |Xij ] = β0 + β1Xij1 + β2Xij2 + · · ·+ βpXijp

= Xijβ j = 1, . . . , ni ; i = 1, . . . ,N

▶ Dental growth case study:

E [Distij |Malei ,Ageij ] = β0+β1(Ageij−8)+β2Malei+β3(Ageij−8)×Malei

• Longitudinal correlation is secondary to the mean model of interest
and is treated as a nuisance feature of the data

• Requires selection of a ‘working’ correlation model
▶ E.g. working independence, working unstructured
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Recap: Linear regression using the GEE approach

• In the GEE approach there is no likelihood (e.g., do not assume
normality), so how do we obtain estimates for β?

▶ By constructing an unbiased estimating function (we’ll see this more
today)

• Properties of our estimator, β̂?
▶ Consistent estimator for β even if working correlation model incorrect
▶ Can obtain valid standard errors for β̂ using the sandwich variance

estimator
▶ Efficiency gains possible if correlation model is correct

• Note: Wald statistics for hypothesis testing
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Recap: Dental Growth

Results from working independence:

• β̂1: The estimated rate of
change in mean dental length
per year for female children is
0.48 mm/year (95% CI: 0.36,
0.60 mm/year)

• β̂1 + β̂3: The estimated rate of
change in mean dental length
per year for male children is 0.78
mm/year (95% CI: 0.59, 0.98
mm/year)
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Overview

Day 1: Monday, July 10

Day 2: Tuesday, July 11
Recap
Linear Mixed Model
Wrap-Up: Methods for Continuous Outcomes
Activity
Review of Generalized Linear Models
Generalized Estimating Equations

Day 3: Wednesday, July 12
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Case Study: Dental Growth

Goals:

1. Estimate average growth curve
for all children

2. Estimate growth curves for
individual children

3. Characterize heterogeneity in
children’s growth rates

4. Assess whether the growth rate
differs between boys and girls
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Case Study: Dental Growth

Goals:

1. Estimate average growth curve for all children

✓ GEE and LMM can do this

2. Estimate growth curves for individual children

X GEE isn’t meant to do this - will address with LMM

3. Characterize heterogeneity in children’s growth rates

X GEE is not great at this - will address with LMM

4. Assess whether the growth rate differs between boys and girls

✓ GEE and LMM can do this
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Population-Averaged vs. Individual-Specific Models

• GEE coefficients have population-averaged interpretations
▶ E.g., average dental length for male children increases by 0.3mm more

per year than average dental length for female children

• What if we want individual-specific trajectories?
▶ Not enough data to estimate separate regression lines for everyone
▶ Instead, assume that each subject has a regression model that includes

fixed effect parameters common to everyone, and subject-specific
parameters (random effects) that follow some distribution

• Subject-specific random effects also induce a correlation structure
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Linear Mixed Effects Model (Simplest Case)

The simplest format for a mixed effects model is:

Yij = µj Shared mean model

+ bi Random intercept for subject i

+ ϵij Measurement error

where

Var(bi ) = τ2 Between-person variation

Var(ϵij) = σ2 Within-person variation

bi ⊥ ϵij
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Induced Correlation Structure

Random effects implicitly specify covariance structure:

Cov(Yij ,Yik) = Cov(µj + bi + ϵij , µk + bi + ϵik)

= Cov(bi + ϵij , bi + ϵik)

= Cov(bi , bi ) + Cov(bi , ϵik) + Cov(ϵij , bi ) + Cov(ϵij , ϵik)

= Var(bi ) + 0 + 0 + 0 = τ2

and similarly

Var(Yij) = Var(µj + bi + ϵij)

= Var(bi + ϵij)

= Var(bi ) + Var(ϵij) + Cov(bi , ϵij)

= σ2 + τ2 + 0
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Induced Correlation Structure

From last slide, we have:

Cov(Yij ,Yik) = Var(bi ) + 0 + 0 + 0 = τ2

Var(Yij) = σ2 + τ2 + 0

And since subjects are independent, each subject’s covariance matrix is:

Σi =


σ2 + τ2 τ2 · · · τ2

τ2 σ2 + τ2 · · · τ2

...
...

. . .
...

τ2 · · · τ2 σ2 + τ2
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Induced Correlation Structure

This looks awfully similar to exchangeable correlation – and in fact, it is:

Σi = (σ2 + τ2)


1 ρ · · · ρ

ρ 1
. . .

...
...

. . .
. . . ρ

ρ · · · ρ 1


ρ =

τ2

σ2 + τ2

• ρ is called the ”intraclass correlation coefficient”

• Ratio of between-person variation to total variation
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Example: Dental Growth
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Example: Dental Growth

A Plantinga and K Wilson (Module 2) GEE and MM for LDA SISCER 2023 108 / 227



Example: Dental Growth

Random intercept model with interaction between sex and age:

Distij = β0 + β1 × (Ageij − 8) + β2 ×Malei

+ β3 × (Ageij − 8)×Malei + bi

So the sex- and subject-specific models are:

• If child i is a girl:

E[Distij |Ageij ,Malei = 0] = (β0 + bi ) + β1 × (Ageij − 8)

• If child i is a boy:

E[Distij |Ageij ,Malei = 1] = (β0 + β2 + bi ) + (β1 + β3)× (Ageij − 8)
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Example: Dental Growth
Visualization of results:
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Example: Dental Growth

Zooming in on just two subjects:
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Example: Dental Growth

Observations:

• The two lines are parallel (slope can’t vary by subject)

• M11 has a shorter length at every time than M10

• Variability within subject (around their line) looks smaller than
variability between subjects

▶ Intraclass correlation coefficient will help quantify this
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Example: Dental Growth

R output:
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Example: Dental Growth

Systematic part of model:

D̂istij = 21.2 + 0.5× (Ageij − 8) + 1.4×Mi + 0.3× (Ageij − 8)×Mi

Interpretations can be the same as before:

• β̂1: The estimated rate of change in dental length per year for female
children is 0.48 mm/year (95% CI: 0.29, 0.67 mm/year)

• β̂1 + β̂3: The estimated rate of change in dental length per year for
male children is 0.78 mm/year (95% CI: 0.63, 0.94 mm/year)

Note: May be interpreted marginally or conditionally (mathematical
property for linear models; more tomorrow about this)
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Example: Dental Growth

R output:
Partitioning variability:

V̂ar(ϵ) = σ̂2 = 1.392 = 1.93

V̂ar(bi ) = τ̂2 = 1.822 = 3.31

ÎCC =
τ̂2

σ̂2 + τ̂2

=
3.31

1.93 + 3.31

= 0.632

Between-subject variability is 63% of
total variability
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Example: Dental Growth

Observations:

• The two lines are parallel (slope can’t vary by subject)
▶ What if we don’t want them to be parallel?

• M11 has a shorter length at every time than M10

• Variability within subject (around their line) looks smaller than
variability between subjects

▶ Intraclass correlation coefficient will help quantify this
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Choices For Random Effects
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Choices For Random Effects
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Linear Mixed Effects Model (General Framework)
(Laird and Ware, 1982)

The model includes the following components (i = 1, ...,N; j = 1, ..., ni ):

Yi = (Yi1, ...,Yini )
⊤ Outcomes

β = (β1, ..., βp) Fixed effects

X ij = (Xij1, ...,Xijp)
⊤

X i = (X i1, ...,X ini ) Covariate matrix for fixed effects

bi = (bi1, ..., biq) Random effects

Z ij = (Zij1, ...,Zijq)
⊤

Z i = (Z i1, ...,Z ini ) Covariate matrix for random effects

(typically a subset of X)
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Linear Mixed Effects Model (General Framework)

1. Model for response given random effects:

Yij = X ijβ + Z ijbi + ϵij

2. Model for random effects

bi ∼ N(0,D)

ϵij ∼ N(0, σ2)

with bi and ϵij assumed to be independent
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Choices for Random Effects

Common linear mixed effects models include:

• Random intercepts

Yij = β0 + β1tij + bi0 + ϵij

= (β0 + bi0) + β1tij + ϵij

• Random intercepts and slopes

Yij = β0 + β1tij + bi0 + bi1tij + ϵij

= (β0 + bi0) + (β1 + bi1)tij + ϵij
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Choices for Random Effects: D

D quantifies random variation in trajectories across subjects

D =

[
D11 D12

D21 D22

]
• √

D11 is the typical deviation in the level of the response

• √
D22 is the typical deviation in the change in the response

• D12 is the covariance between subject-specific intercepts and slopes
▶ D12 = 0 indicates subject-specific intercepts and slopes are uncorrelated
▶ D12 > 0 indicates subjects with high level have high rate of change
▶ D12 < 0 indicates subjects with high level have low rate of change

(D12 = D21)
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Induced Correlation Structure

Correlation induced by a random intercepts and slopes model:
(derivation is similar to before)

Cov(Yij ,Yik) = D11 + (tij + tik)D12 + tij tikD22

Var(Yij) = D11 + t2ijD22 + 2tijD12 + σ2

Observations:

1. Allows heteroskedasticity across time as a function of t2

2. Variance can possibly decrease over time if Cov(b0i , b1i ) < 0, but will
otherwise increase over time.

3. This is a special case of the general form:

Σi = Cov(Yi ) = ZiDZ⊤
i + R i

where R i is the covariance for the errors ϵi
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Example: Dental Growth

Random intercept and slope model with interaction between sex and age:

E[Distij |Ageij ,Malei , bi ] = β0 + β1 × (Ageij − 8) + β2 ×Malei

+β3 × (Ageij − 8)×Malei + bi0 + bi1 × (Ageij − 8)

Now the sex- and subject-specific models are:

• If child i is a girl:

E[Distij |Ageij ,Malei = 0, bi ] = (β0 + bi0) + (β1 + bi1)× (Ageij − 8)

• If child i is a boy:

E[Distij |Ageij ,Malei = 1, bi ] = (β0+β2+bi0)+(β1+β3+bi1)×(Ageij −8)
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Example: Dental Growth
Taking a look at the results:
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Example: Dental Growth

Zooming in on just two subjects again:
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Example: Dental Growth

Observations:

• The two lines are not parallel (subject-specific slopes)
▶ M10 has a slightly steeper slope, M11 has a less steep slope

• The differences are not large! (Do we really need random slopes?)

• Think: what do you expect to see in the covariance of the random
effects?
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Example: Dental Growth

R output:

Systematic part of model:
D̂istij = 21.2+0.5× (Ageij −8)+
1.4×Mi +0.3× (Ageij − 8)×Mi

(identical estimates!)

Random Effects Covariance:

D̂ =

[
1.802 −0.09

−0.09 0.182

]
σ̂2 = 1.312

Observations:

• D̂22 << D̂11

• D̂12 = −0.09: kids who start
with larger distances may
grow more slowly
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What’s Beneath the Hood?

Maximum Likelihood:

Y i |bi ∼ MVN(X iβ + Z ibi , ϵi )

bi ∼ MVN(0,D)

So the likelihood function is a product of normal densities,

P(Y i ,bi ) = P(Y i |bi )P(bi ),

which is easy to integrate and maximize (continuous outcomes only!).

Restricted Maximum Likelihood:

• ML estimation of Σ is biased (e.g., n vs. n− p in denominator for σ2)
• REML (default) provides less-biased estimation of Σ

▶ Details are beyond the scope of this module
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Likelihood-based inference for β

• Consider testing fixed effects in nested linear mixed-effects models,
e.g.,

Dist = β0 + β1 × (Ageij − 8) + β2 ×M vs.

Dist = β0 + β1 × (Ageij − 8) + β2 ×M+ β3 × (Ageij − 8)×M

(equivalent to H0 : β3 = 0)

• Likelihood ratio test is valid with maximum likelihood estimation
▶ Requires computation under the null and alternative hypotheses

• Likelihood ratio test may not be valid with other estimation methods
(e.g., REML - R will warn you)

• Wald test (based on coefficient and standard error) is generally valid
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Example: Dental Growth

Both tests agree: the association between age and distance differs by sex!
(LR p=0.013, Wald p=0.014)
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Choosing a Random Effects Structure

• Covariance model choice determines the standard error estimates
for β̂; correct model is required for correct standard error estimates

• Suppose we want to decide between two candidate random effect
structures:

H0 : D =

[
D11 0

0 0

]
versus H1 : D =

[
D11 D21

D12 D22

]
,

• Could we formally test whether random intercepts are adequate, e.g.,
with LRT?
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Likelihood-based inference for D

• Consider testing H0 : D12 = D22 = 0
▶ Fit both models with REML, compare with LRT

• This is possible in R

• Seems to suggest random intercept is sufficient
(AIC is lower for RI than RS, p-value is big)

▶ Consistent with our prior exploratory analysis
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Choosing a Random Effects Structure

Problem: testing D22 = 0 is a nonstandard problem

• P-values tend to be conservative, could lead to over-simplifying
correlation structure

• (Ad hoc fix proposed by Fitzmaurice, Laird, Ware: use α = 0.1)

Alternatives:
• If only interested in inference on β:

▶ Choose based on a priori scientific knowledge and exploratory analysis
▶ Use robust standard errors (see module code; R package clubSandwich)

• If this is an exploratory analysis and you’re interested in correlation
structure, ok to test structures

▶ Can cause type 1 error problems if your focus is inference on β
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Dental Growth: Robust SE, Random Intercepts

Variable β̂ Estimation P-value CI

Intercept 21.2 Model-based 1.28× 10−47 (19.9, 22.5)

Robust 6.35× 10−12 (19.9, 22.5)

(Age-8) 0.48 Model-based 2.02× 10−6 (0.29, 0.67)

Robust 2.78× 10−5 (0.33, 0.63)

Male 1.41 Model-based p=0.108 (-0.33, 3.14)

Robust p=0.095 (-0.27, 3.08)

(Age-8)*Male 0.30 Model-based p=0.014 (0.06, 0.55)

Robust p=0.020 (0.05, 0.56)
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Choosing a Random Effects Structure

A priori considerations:

• Random intercepts only:
▶ Simpler (+/-) and easy to interpret (e.g., ICC)
▶ Induces exchangeable correlation (+/-)

• Random intercepts and slopes:
▶ More information about individual trajectories and covariance (+)
▶ More complex (+/-)

⋆ Over-parameterization of covariance =⇒ inefficient estimation of
fixed-effects parameters β
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Dental Growth: Did We Answer Our Questions?

1. Estimate average growth curve for all children
▶ Fixed effects coefficients

2. Estimate growth curves for individual children
▶ Random intercept and slope model gives estimate for each child

3. Characterize heterogeneity in children’s growth rates
▶ Variability in random intercepts is quite high (distance at age 8)
▶ Variability in random slopes is quite small (growth rates are fairly

homogeneous)

4. Assess whether the growth rate differs between boys and girls
▶ It does! Fixed effect interaction term is significantly nonzero
▶ (and scientifically interesting - growth rate 0.8 mm/yr for boys, 0.5

mm/yr for girls)
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Assumptions

Valid inference from a linear mixed-effects model relies on

• Mean model: As with any regression model for an average outcome,
need to correctly specify the functional form of X ijβ (here also Z ijbi )

▶ Included important covariates in the model
▶ Correctly specified any transformations or interactions

• Covariance model: Correct covariance model (random-effects

specification) is required for correct standard error estimates for β̂
▶ Or robust SE

• Normality: Normality of ϵij and bi is required for normal likelihood
function to be the correct likelihood function for Yij

▶ Especially important for small samples & trusting individual trajectories

• N sufficiently large for asymptotic inference to be valid
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Summary

• Mixed-effects models combine population-average (systematic) model
components with subject-specific (random effects) components

• Estimation and inference for:
▶ Average level or trajectory
▶ Between-subject heterogeneity in level or trajectory

• Subject-specific random effects induce a correlation structure
(conceptually nice, easy even for unbalanced data)

• Parametric approach; ML estimation is valid (but... assumptions)

• Could have multiple levels of random effects (e.g., clustering and
longitudinal)

Issues

• Requires that any missing data are missing at random
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Overview

Day 1: Monday, July 10

Day 2: Tuesday, July 11
Recap
Linear Mixed Model
Wrap-Up: Methods for Continuous Outcomes
Activity
Review of Generalized Linear Models
Generalized Estimating Equations

Day 3: Wednesday, July 12
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Assumptions: GEE

Valid inference from a general linear model relies on

• Mean model: As with any regression model for an average outcome,
need to correctly specify the functional form of Xijβ

▶ Included important covariates in the model
▶ Correctly specified any transformations or interactions

• Covariance model: Correct covariance model is required for correct
standard error estimates for β̂ if using model-based variance
estimate otherwise we can use robust/empirical variance estimate

• N sufficiently large
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Summary: GEE

• Primary focus is on the mean model

• Longitudinal correlation is secondary to mean model of interest and is
treated as a nuisance

• Requires selection of a ‘working‘ correlation model

• Semi-parametric model: mean + correlation

• Working correlation model does not need to be correctly specified to
obtain consistent estimator for β or valid standard errors for β̂ but
efficiency gains possible if correlation model is correct

• Wald testing

Issues:

• Accommodates only one source of correlation: longitudinal or cluster

• Requires that any missing data are missing completely at random

• Issues arise with time-dependent exposures and covariance weighting
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Assumptions: LMM

Valid inference from a linear mixed-effects model relies on

• Mean model: As with any regression model for an average outcome,
need to correctly specify the functional form of X ijβ (here also Z ijbi )

▶ Included important covariates in the model
▶ Correctly specified any transformations or interactions

• Covariance model: Correct covariance model (random-effects

specification) is required for correct standard error estimates for β̂
▶ Or robust SE

• Normality: Normality of ϵij and bi is required for normal likelihood
function to be the correct likelihood function for Yij

▶ Especially important for small samples & trusting individual trajectories

• N sufficiently large for asymptotic inference to be valid
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Summary: LMM

• Mixed-effects models combine population-average (systematic) model
components with subject-specific (random effects) components

• Estimation and inference for:
▶ Average level or trajectory
▶ Between-subject heterogeneity in level or trajectory

• Subject-specific random effects induce a correlation structure
(conceptually nice, easy even for unbalanced data)

• Parametric approach; ML estimation is valid (but... assumptions)

• Could have multiple levels of random effects (e.g., clustering and
longitudinal)

Issues

• Requires that any missing data are missing at random
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Overview

Day 1: Monday, July 10

Day 2: Tuesday, July 11
Recap
Linear Mixed Model
Wrap-Up: Methods for Continuous Outcomes
Activity
Review of Generalized Linear Models
Generalized Estimating Equations

Day 3: Wednesday, July 12
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Review of Generalized Linear Models

Generalized linear models (GLMs): class of models for regression
analysis of observations that includes linear regression models for
continuous responses, but also others:

• Logistic regression for binary response (e.g. yes/no or 0/1)

• Log-linear or Poisson regression for counts

• Others. For example ordinal models
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Review of Generalized Linear Models

• Assume the outcomes are independent of each other

• Suppose we have N independent observations of a response variable Y

• Let Yi denote the response variable for the ith subject

• Xi = (Xi1, . . . ,Xip) where Xik denotes the kth covariate for the ith
subject

Two part specification:

1. Random component (usually a distributional assumption)

2. Systematic component (how the mean relates to covariates)
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Review of GLMs: Random Component

Assume we know the distribution of the outcome,

Yi |µi ∼ exponential family distribution

• Linear regression: Yi ∼ N(µi , σ
2)

• Logistic regression: Yi ∼ Bernoulli(µi )

• Poisson regression: Yi ∼ Poisson(µi )

Distribution Mean Variance Function

Normal µi σ2

Bernoulli µi µi (1− µi )

Poisson µi µi
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Review of GLMs: Systematic Component

Assume the transformed mean of Yi given Xi (µi = E [Yi |Xi ]) are related
to the covariates in the following manner:

g(µi ) = β0 + β1Xi1 + · · ·+ βpXip = Xiβ

The link function g(·) describes the relationship between the linear
predictor (Xiβ) and the expected value of Yi (i.e., µi )

Distribution Typical link function g(·)
Normal Identity: g(µi ) = µi

Bernoulli Logit: g(µi ) = logit(µi ) = log
(

µi
1−µi

)
Poisson Log: g(µi ) = log(µi )
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Binary Outcome: Example

Clinical Trial of Contracepting Women:

• 1151 women randomized to either 100mg or 150mg of DMPA
• Outcome of interest: Amenorrhea during each 3-month interval
after an injection

▶ Since participants were measured multiple times we would want to use
correlated data techniques to analyze all responses

▶ We will focus on the response at the 4th (last scheduled) visit

• Is there a difference in the odds of amenorrhea after 1 year of
injections by dose?

Data:

• 100mg: 50.1% (181 out of 361) experienced amenorrhea at 1 year

• 150mg: 53.5% (189 out of 353) experienced amenorrhea at 1 year
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Binary Outcome: Example

We will use logistic regression:

• Random component: Yi ∼ Bernoulli(µi ) → Var(Yi ) = µi (1− µi )

• Systematic component:

logit(µi ) = log

(
µi

1− µi

)
= β0 + β1Dosei

where µi = Pr(Yi = 1) where Yi is an indicator for whether person i
experienced amenorrhea at 1 year (1 = yes; 0 = no)

In R:

glm(amenorrhea ~ dose, family = binomial(link = "logit"),

data = amenorrhea[amenorrhea$visit==4,])
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Binary Outcome: Example

glm(formula = amenorrhea ~ dose, family = binomial(link = "logit"),

data = amenorrhea[amenorrhea$visit == 4, ])

Deviance Residuals:

Min 1Q Median 3Q Max

-1.24 -1.18 1.12 1.18 1.18

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.00554 0.10526 0.05 0.96

dose 0.13634 0.14990 0.91 0.36

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 988.87 on 713 degrees of freedom

Residual deviance: 988.04 on 712 degrees of freedom

(437 observations deleted due to missingness)

AIC: 992

Number of Fisher Scoring iterations: 3

A Plantinga and K Wilson (Module 2) GEE and MM for LDA SISCER 2023 153 / 227



Binary Outcome: Example

• Estimate for (Intercept) = estimate of the log odds of amenorrhea
for 100mg dose

• Estimate for dose = estimate of the log odds ratio of amenorrhea
comparing 150mg dose to 100mg dose

Interpretation: the odds of amenorrhea is estimated to be 15%
(= exp(0.136)− 1) higher for those on the 150mg dose as compared to
those on the 100mg dose. We do not have evidence that amenorrhea after
1 year differs by dose (p = 0.36).
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Overview

Day 1: Monday, July 10

Day 2: Tuesday, July 11
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Wrap-Up: Methods for Continuous Outcomes
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Generalized Estimating Equations

Day 3: Wednesday, July 12
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GEE

⋆ Contrast average outcome values across populations of individuals
⋆ defined by covariate values, while accounting for correlation

• Focus on a generalized linear model with regression parameters β,
which characterize the systemic variation in Y across covariates X

Yi = {Yi1,Yi2, . . . ,Yini}T Outcomes

Xij = {1,Xij1,Xij2, . . . ,Xijp} Covariates

Xi = {Xi1,Xi2, . . . ,Xini}T Design matrix

β = {β0, β1, β2, . . . , βp}T Regression parameters

for i = 1, . . . ,N and j = 1, . . . , ni
• Longitudinal correlation structure is a nuisance feature of the data

(Liang and Zeger, 1986)
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Mean model

Assumptions

• Observations are independent across subjects

• Observations may be correlated within subjects

Mean model: Primary focus of the analysis

E[Yij | Xij ] = µij

g(µij) = Xijβ

• May correspond to any generalized linear model with link g(·)

Continuous outcome Count outcome Binary outcome

E[Yij | Xij ] = µij E[Yij | Xij ] = µij P[Yij = 1 | Xij ] = µij

µij = Xijβ log(µij) = Xijβ logit(µij) = Xijβ

• Characterizes a marginal mean regression model
▶ µij does not condition on anything other than Xij
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Covariance model

Longitudinal correlation is a nuisance; secondary to mean model of interest

1. Assume a form for variance that may depend on µij

Continuous outcome: Var[Yij | Xij ] = σ2

Count outcome: Var[Yij | Xij ] = µij

Binary outcome: Var[Yij | Xij ] = µij(1− µij)

which may also include a scale or dispersion parameter ϕ > 0

2. Select a model for longitudinal correlation with parameters α

Independence: Corr[Yij ,Yij ′ | Xi ] = 0

Exchangeable: Corr[Yij ,Yij ′ | Xi ] = α

Auto-regressive: Corr[Yij ,Yij ′ | Xi ] = α|j−j ′|

Unstructured: Corr[Yij ,Yij ′ | Xi ] = αjj ′
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Covariance model

Longitudinal correlation is a nuisance; secondary to mean model of interest

• Assume a form for variance that depends on µ

• Select a model for longitudinal correlation with parameters α

Var[Yij | Xij ] = V (µij) → Si (µi ) = diag V (µij)

Corr[Yij , Yij ′ | Xi ] = ρijj ′(α) → Ri (α) = matrix ρ(α)

Cov[Yi | Xi ] = Vi (β, α) = S
1/2
i RiS

1/2
i
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Correlation models
Independence: Corr[Yij ,Yij ′ | Xi ] = 0

1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


Exchangeable: Corr[Yij ,Yij ′ | Xi ] = α

1 α α · · · α

α 1 α · · · α

α α 1 · · · α
...

...
...

. . .
...

α α α · · · 1
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Correlation models
Auto-regressive: Corr[Yij ,Yij ′ | Xi ] = α|j−j ′|

1 α α2 · · · αm−1

α 1 α · · · αm−2

α2 α 1 · · · αm−3

...
...

...
. . .

...

αm−1 αm−2 αm−3 · · · 1


Unstructured: Corr[Yij ,Yij ′ | Xi ] = αjj ′

1 α21 α31 · · · αm1

α12 1 α32 · · · αm2

α13 α23 1 · · · αm3
...

...
...

. . .
...

α1m α2m α3m · · · 1
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Correlation models

Correlation between any two observations on the same subject. . .
• Independence: . . . is assumed to be zero

▶ Appropriate with use of robust variance estimator (large N)

• Exchangeable: . . . is assumed to be constant
▶ More appropriate for clustered data

• Auto-regressive: . . . is assumed to depend on time or distance
▶ More appropriate for equally-spaced longitudinal data

• Unstructured: . . . is assumed to be distinct for each pair
▶ Only appropriate for short series (small n) on many subjects (large N)
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Semi-parametric

• Specification of a mean model and correlation model does not identify
a complete probability model for the outcomes

• The [mean, correlation] model is semi-parametric because it only
specifies the first two moments of the outcomes

Question: Without a likelihood function, how do we estimate β and
generate valid statistical inference, while accounting for correlation?

Answer: Construct an unbiased estimating function
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Estimating functions

The estimating function for estimation of β is given by

U(β) =
N∑
i=1

D⊤
i (β)V

−1
i (β,α)[Yi − µi (β)]

g(µi ) = Xiβ

Di (β) =
∂µi

∂β

Di (j , k) =
∂µij

∂βk
• Vi is the ‘working’ variance-covariance matrix: Cov[Yi | Xi ]

▶ Depends on the assumed form for the variance: Var[Yij | Xij ]
▶ Depends on the specified correlation model: Corr[Yij ,Yij′ | Xi ]

• U(β) depends on the model or value for α
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Generalized estimating equations

Setting an estimating function equal to 0 defines an estimating
equation

0 = U(β̂)

=
N∑
i=1

DT
i (β̂)V

−1
i (β̂,α)[Yi − µi (β̂)]

• ‘Generalized’ because it corresponds to a GLM with link function g(·)
• Solution to the estimation equation defines an estimator β̂

• Note U(β̂) depends on the model or value for α
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Generalized estimating equations: Intuition

0 =
N∑
i=1

D⊤
i (β̂)︸ ︷︷ ︸
3

V−1
i (β̂,α)︸ ︷︷ ︸

2

[Yi − µi (β̂)]︸ ︷︷ ︸
1

1 The model for the mean µi (β), is compared to the observed data Yi .
Setting the functions equal to 0 tries to minimize the difference between the
observed and expected

2 Estimation uses the inverse of the variance (covariance) to weight the data
from subject i ; more weight is given to differences between observed and
expected for those subjects who contribute more information

3 This is simply a ‘change of scale’ from the scale of the mean, µi (β), to the
scale of the regression coefficients (covariates)

Because the GEE depends on both β and α, an iterative procedure is used
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GEE: Properties of β̂

Question: What are the properties of β̂, the regression estimate?

Answer:

• The regression coefficient estimate will be correct (in large samples)
even if you choose the wrong dependence model

• However, the variance of the regression estimate must capture the
correlation in the data, either through choosing the correct covariance
model, or using an alternative variance estimate

• Correctly specified (or close) covariance model will yield regression
estimate that is most (or more) efficient (smaller variance)
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GEE: Sandwich variance estimator

The empirical estimator is:

Ĉov(β̂) =

(
N∑
i=1

D̂⊤
i V̂

−1
i D̂i

)−1

︸ ︷︷ ︸
bread

(
N∑
i=1

D̂⊤
i V̂

−1
i C̃ov(Yi )V̂

−1
i D̂i

)
︸ ︷︷ ︸

cheese

(
N∑
i=1

D̂⊤
i V̂

−1
i D̂

)−1

︸ ︷︷ ︸
bread

where we can use the residuals for C̃ov(Yi), i.e., has the entries eijeik
where eij = Yij − µ̂ij .

Note that with linear regression (Gaussian family with identity link),
Di = Xi and Vi = ϕRi where Ri is our working correlation matrix and
ϕ = σ2
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GEE: Sandwich variance estimator

Ĉov(β̂) =

(
N∑
i=1

D̂⊤
i V̂

−1
i D̂i

)−1

︸ ︷︷ ︸
bread

(
N∑
i=1

D̂⊤
i V̂

−1
i C̃ov(Yi )V̂

−1
i D̂i

)
︸ ︷︷ ︸

cheese

(
N∑
i=1

D̂⊤
i V̂

−1
i D̂

)−1

︸ ︷︷ ︸
bread

• Also known as sandwich, robust, or Huber-White variance estimator

• Requires large enough sample size (N ≥ 40)

• Requires large enough sample size relative to cluster size (N ≫ n )

• Gives valid standard errors for the estimated regression
coefficients even if the correlation model is wrong!

A Plantinga and K Wilson (Module 2) GEE and MM for LDA SISCER 2023 169 / 227



GEE: Inference

Can perform Wald test and construct a Wald confidence interval:

• β̂k/s.e. - valid test

• β̂k ± 1.96× s.e. - valid 95% confidence interval

Cannot perform a likelihood ratio test (no fully specified probability
model) so no AIC or BIC either.
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Case Study: Clinical Trial of Contracepting Women

Longitudinal clinical trial where people who menstruate received an
injection of either 100 mg or 150 mg of DMPA at randomization and then
every 90 days. Final follow-up visit after the 4th injection, 1 year after the
randomization.

• N = 1151 people completed
menstrual diaries

• Response: whether the person
experienced amenorrhea in the
previous 3 months

• Substantial dropout: more than
1/3 dropped out before
completing the trial
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Case Study: Clinical Trial of Contracepting Women

log

(
µij

1− µij

)
= β0 + β1tij + β2t

2
ij + β3Dosei × tij + β4Dosei × t2ij

where µij = Pr(Yij = 1)

• Yij : indicator for whether person i experienced amenorrhea in the jth
injection interval (1 = yes; 0 = no)

• tij : measurement occasion (corresponds to the four consecutive
90-day injection intervals)

• Dosei : indicator for whether the person i was randomized to 150 mg
of DMPA or 100 mg (1 = 150 mg; 0 = 100 mg)
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Case Study: Clinical Trial of Contracepting Women

m_ind <- geeglm(amenorrhea ~ visit + visit:dose + I(visit^2) + I(visit^2):dose,

id = id, data = amenorrhea, family = binomial, waves = visit,

corstr = "independence")

m_exc <- geeglm(amenorrhea ~ visit + visit:dose + I(visit^2) + I(visit^2):dose,

id = id, data = amenorrhea, family = binomial, waves = visit,

corstr = "exchangeable")

m_ar1 <- geeglm(amenorrhea ~ visit + visit:dose + visit2 + visit2:dose,

id = id, data = amenorrhea, family = binomial, waves = visit,

corstr = "ar1")

m_uns <- geeglm(amenorrhea ~ visit + visit:dose + I(visit^2) + I(visit^2):dose,

id = id, data = amenorrhea, family = binomial, waves = visit,

corstr = "unstructured")

m_glm <- glm(amenorrhea ~ visit + visit:dose + I(visit^2) + I(visit^2):dose,

data = amenorrhea, family = binomial)
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Case Study: Clinical Trial of Contracepting Women

geeglm(formula = amenorrhea ~ visit + visit:dose + I(visit^2) +

I(visit^2):dose, family = binomial, data = amenorrhea, id = id,

waves = visit, corstr = "independence")

Coefficients:

Estimate Std.err Wald Pr(>|W|)

(Intercept) -2.1955 0.1784 151.37 < 2e-16 ***

visit 0.6698 0.1622 17.04 3.7e-05 ***

I(visit^2) -0.0303 0.0328 0.86 0.3549

visit:dose 0.2973 0.1135 6.87 0.0088 **

dose:I(visit^2) -0.0624 0.0296 4.44 0.0351 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation structure = independence

Estimated Scale Parameters:

Estimate Std.err

(Intercept) 1 0.0289

Number of clusters: 1151 Maximum cluster size: 4
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Case Study: Clinical Trial of Contracepting Women
geeglm(formula = amenorrhea ~ visit + visit:dose + I(visit^2) +

I(visit^2):dose, family = binomial, data = amenorrhea, id = id,

waves = visit, corstr = "exchangeable")

Coefficients:

Estimate Std.err Wald Pr(>|W|)

(Intercept) -2.2370 0.1765 160.64 < 2e-16 ***

visit 0.6967 0.1586 19.31 1.1e-05 ***

I(visit^2) -0.0328 0.0320 1.05 0.3055

visit:dose 0.3284 0.1100 8.91 0.0028 **

dose:I(visit^2) -0.0637 0.0286 4.97 0.0259 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation structure = exchangeable

Estimated Scale Parameters:

Estimate Std.err

(Intercept) 1 0.0287

Link = identity

Estimated Correlation Parameters:

Estimate Std.err

alpha 0.363 0.0243

Number of clusters: 1151 Maximum cluster size: 4
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Case Study: Clinical Trial of Contracepting Women

β̂0 (SE) β̂1 (SE) β̂2 (SE) β̂3 (SE) β̂4 (SE)

Ind -2.2 (0.18) 0.67 (0.16) -0.03 (0.03) 0.30 (0.11) -0.06 (0.03)

Exch -2.2 (0.18) 0.70 (0.16) -0.03 (0.03) 0.33 (0.11) -0.06 (0.03)

AR1 -2.2 (0.18) 0.71 (0.16) -0.03 (0.03) 0.36 (0.11) -0.08 (0.03)

Unst -2.2 (0.18) 0.70 (0.16) -0.03 (0.03) 0.34 (0.11) -0.07 (0.03)

GLM -2.2 (0.21) 0.67 (0.19) -0.03 (0.04) 0.30 (0.11) -0.06 (0.03)

• Working independence and using glm() give exactly the same point
estimates

• glm() standard errors are not correct (here, too large)

• Working independence, exchangeable, AR1, and unstructured provide
similar results
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Case Study: Clinical Trial of Contracepting Women

Using working exchangeable:

• The ratio of the population odds
of amenorrhea at 12 months
comparing high dose to low dose
is estimated to be 1.34 (95% CI:
1.01 - 1.78)

• Conducting a multivariate Wald
test (H0 : β3 = β4 = 0) we find
a statistically significant effect
of dose, p-value = 0.002
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GEE: Which Correlation Model to Choose?

Question: Which correlation model should I choose?

Answer: Ideally, to preserve CI statements, Type I error, the choice of
working correlation should be based on external information or substantive
grounds rather than exploratory analysis

Question: If the correlation model does not need to be correctly specified
to obtain a consistent estimator for β or valid standard errors for β̂, why
not always use an independence working correlation model?

Answer: Selecting a non-independence or weighted correlation model

• Permits use of the model-based variance estimator

• May provide improved efficiency for β̂
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GEE: Summary

• Primary focus of the analysis is a marginal mean regression model
that corresponds to any GLM

• Longitudinal correlation is secondary to the mean model of interest
and is treated as a nuisance feature of the data

• Requires selection of a ‘working’ correlation model

• Lack of a likelihood function implies that likelihood ratio test statistics
are unavailable; hypothesis testing with GEE uses Wald statistics

• Working correlation model does not need to be correctly specified
to obtain a consistent estimator for β or valid standard errors for β̂,
but efficiency gains are possible if the correlation model is correct

Issues

• Accommodates only one source of correlation: Longitudinal or cluster

• GEE requires that any missing data are missing completely at random

• Issues arise with time-dependent exposures and covariance weighting

A Plantinga and K Wilson (Module 2) GEE and MM for LDA SISCER 2023 179 / 227



End of Day 2

A Plantinga and K Wilson (Module 2) GEE and MM for LDA SISCER 2023 180 / 227



Overview

Day 1: Monday, July 10

Day 2: Tuesday, July 11

Day 3: Wednesday, July 12
Recap
Generalized Linear Mixed Models
Wrap-Up: Methods for Binary and Count Outcomes
Activity
Advanced topics
Summary

A Plantinga and K Wilson (Module 2) GEE and MM for LDA SISCER 2023 181 / 227



Recap: GLMs for Independent Responses

• Suppose we have N independent observations of a response variable Y

• Let Yi denote the response variable for the ith subject

• Xi = (Xi1, . . . ,Xip) where Xik denotes the kth covariate for the ith
subject

Assume the transformed mean of Yi given Xi (µi = E [Yi |Xi ]) are related
to the covariates in the following manner:

g(µi ) = β0 + β1Xi1 + · · ·+ βpXip = Xiβ

Distribution Mean Variance Typical link function g(·)
Normal µi σ2 Identity: g(µi ) = µi

Bernoulli µi µi (1− µi ) Logit: g(µi ) = logit(µi ) = log
(

µi

1−µi

)
Poisson µi µi Log: g(µi ) = log(µi )
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Recap: GLMs Interpretations

• Linear regression: βk : difference in means between groups differing in
Xk by 1 unit (holding everything else constant)

µi = β0 + β1X1 + · · ·+ βkXk + · · ·+ βpXp

• Logistic regression: eβk : odds ratio between groups differing in Xk by
1 unit (holding everything else constant)

log

(
µi

1− µi

)
= β0 + β1X1 + · · ·+ βkXk + · · ·+ βpXp
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Recap: GEE Approach

⋆ Contrast average outcome values across populations of individuals
⋆ defined by covariate values, while accounting for correlation

• Specify the marginal mean model, the primary focus of the analysis

E[Yij | Xij ] = µij

g(µij) = Xijβ

• Choose a working covariance model (form for variance could depend
on mean)

▶ Longitudinal correlation is a nuisance feature
▶ Provides a way to weight the data

• Estimation proceeds via estimating equations (no likelihood)

• Even if wrong covariance model assumed, regression coefficient
estimate valid, valid SEs can be obtained via the sandwich (large
samples)
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Recap: Linear Mixed Model (LMM)

• In contrast to GEE, the source of correlation is of interest in LMMs
▶ Assume it is due to between-subject heterogeneity

• Model specification:

1. Model for response given random effects:

Yij = X ijβ + Z ijbi + ϵij

2. Model for random effects:

bi ∼ N(0,D)

ϵij ∼ N(0, σ2)

with bi and ϵij assumed to be independent
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Common LMM Specifications

Common linear mixed effects models include:

• Random intercepts

Yij = β0 + β1tij + bi0 + ϵij

= (β0 + bi0) + β1tij + ϵij

• Random intercepts and slopes

Yij = β0 + β1tij + bi0 + bi1tij + ϵij

= (β0 + bi0) + (β1 + bi1)tij + ϵij
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Non-Continuous Outcomes: What Changes?

• We’ve seen specification of GLMs:

Y i |µi ∼ exponential family distribution

g(µi ) = X iβ

• We’ll focus on binary outcomes, but distribution and link function
may be swapped out for other outcome types

Y i |µi ∼ Bernoulli(µi )

logit(µi ) = ηi = X iβ

• Can’t we just add Z ibi to ηi , and update our likelihood function?
▶ ... yes and no.
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Generalized Linear Mixed Effects Models

LMM:

Yi |µi ,bi ∼ Normal(µi , σ
2I )

µi |bi = X iβ + Z ibi

bi ∼ Normal(0,D)

GLMM:

Yi |µi ,bi ∼ Bernoulli(µi )

logit(µi |bi ) = X iβ + Z ibi

bi ∼ Normal(0,D)
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Generalized Linear Mixed Effects Models

• Conceptually very similar!

• Computationally, GLMM is much more complicated
▶ Likelihood: product of non-Normal exponential density (for Y i |bi ) and

Normal density (for bi )
▶ Typically fit using approximation or numerical techniques
▶ (NB: centering and scaling predictors can help with convergence issues)

• Interpretation is (importantly) different
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Conditional and Marginal Effects

• Parameter estimates obtained from a marginal model (as obtained
via GEE) estimate population-averaged contrasts

• Parameter estimates obtained from a conditional model (as obtained
via GLMM) estimate subject-specific contrasts

• In a linear model for a Gaussian outcome with an identity link, these
are equivalent; not the case with non-linear models

▶ Depends on the outcome distribution

▶ Depends on the specified random effects
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Conditional = Marginal for LMM, Not GLMM. Why?

For an LMM, we use the identity link function. Then:

• Taking the expected value over bi :

Eb {E(Yij |Xij ,bi )} = Eb

{
X⊤
ij β + Z⊤

ij bi

}
= Z⊤

ij β = E(Yij |Xij)

• So the average conditional mean Eb {E(Yij |Xij ,bi )}
is the same as the marginal mean E(Yij |Xij)

For a GLMM, we use a non-identity link function. Then:

• Taking the expected value over bi :

Eb {g(E(Yij |Xij ,bi ))} = Eb

{
g(X⊤

ij β + Z⊤
ij bi )

}
̸= g(E(Yij |Xij))

• So average conditional mean is not the same as marginal mean, in
general
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Conditional ̸= Marginal for GLMM

Note: marginal is ”attenuated” (smaller estimate) compared to conditional
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Interpretation of GLMM

Fitted model

Outcome Coefficient Random intercept Random intercept/slope

Continuous Intercept Marginal Marginal

Slope Marginal Marginal

Binary Intercept Conditional Conditional

Slope Conditional Conditional

Count Intercept Conditional Conditional

Slope Marginal Conditional

⋆ Marginal = population-averaged; conditional = subject-specific
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Example: Amenorrhea in Contracepting Women
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Scientific Questions

• How do subject-specific risks of amenorrhea change over the course of
the study?

• What is the influence of dosage on amenorrhea risk?
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GLMM for Amenorrhea (random intercepts)

Same fixed effects component of model as GEE, plus random intercepts:

log

(
µij

1− µij

)
= β0 + β1tij + β2t

2
ij + β3Dosei × tij + β4Dosei × t2ij + bi

where µij = Pr(Yij = 1)

In R:

library(lme4)

glmm.ri <- glmer(amenorrhea ~ visit + visit:dose +

I(visit^2) + I(visit^2):dose + (1 | id),

data = ctcw, nAGQ = 10,

family = "binomial")
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Case Study: Clinical Trial of Contracepting Women

Generalized linear mixed model fit by maximum likelihood

(Adaptive Gauss-Hermite Quadrature, nAGQ = 10) [’glmerMod’]

Family: binomial ( logit )

Formula: amenorrhea ~ visit + visit:dose + I(visit^2) + I(visit^2):dose + (1 | id)

Data: ctcw

Random effects:

Groups Name Variance Std.Dev.

id (Intercept) 5.054 2.248

Number of obs: 3616, groups: id, 1151

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.80348 0.30470 -12.483 < 2e-16 ***

visit 1.13259 0.26811 4.224 2.4e-05 ***

I(visit^2) -0.04187 0.05479 -0.764 0.44475

visit:dose 0.56417 0.19214 2.936 0.00332 **

dose:I(visit^2) -0.10952 0.04959 -2.209 0.02721 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Case Study: Clinical Trial of Contracepting Women
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GLMM for Amenorrhea (random intercepts)

logit(P(Amenorrheai |Dosei ,Visitij ,bi )) = −3.80 + 1.13× Visitij

−0.04× Visit2ij + 0.56× Dosei × Visitij − 0.11× Dosei × Visit2ij + bi

• On average, the odds of amenorrhea at 12 months (Visit 4) for a
woman who took the high dose is 1.66 times higher than a woman
with the same baseline risk who took the low dose (95% CI:
1.03-2.65).

• Conducting a likelihood ratio test (H0 : β3 = β4 = 0), we find a
statistically significant effect of dose (p=0.002)

(NB: conditional interpretations for all parameters in logistic GLMM)
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GLMM vs. GEE for Amenorrhea

• GEE: marginal estimates (population-averaged odds ratios)

• GLMM: conditional estimates (within-subject odds ratios)

• Marginal is attenuated relative to conditional
• Note: unlike LMM, random intercept in GLMM does not induce
exchangeable correlation

▶ So these models do not assume the same correlation structure

Model GEE (Exch) GLMM (RI)

β̂0 (SE) -2.2 (0.18) -3.8 (0.30)

β̂1 (SE) 0.70 (0.16) 1.13 (0.27)

β̂2 (SE) -0.03 (0.03) -0.04 (0.05)

β̂3 (SE) 0.33 (0.11) 0.56 (0.19)

β̂4 (SE) -0.06 (0.03) -0.11 (0.05)
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Assumptions and Notes

• Same set of assumptions as LMM:
▶ Correct mean model (fixed effects + random effects)
▶ Correct covariance specification (random effects)
▶ Correct distributional assumptions for Y i |bi and bi

• Interpretations:
▶ Conditional = marginal for LMM, so can interpret either way
▶ Conditional ̸= marginal for GLMM; interpret appropriately (usually

conditional/subject-specific interpretation)
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Summary and Comparison of Methods I

GEE GLMM

Mean model Marginal Conditional

Correlation Model for correlation Model for population
heterogeneity; correlation
induced by random effects

Corr. sources One source (+ or -) Multiple sources (+ only)

Model type Semi-parametric (mean & corr.) Parametric (exponential family)

Target
quantities

Mean model Mean model and within vs.
between-subject heterogeneity
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Summary and Comparison of Methods II

GEE GLMM

Estimation Unbiased estimating equations Maximum likelihood

Testing Wald tests Likelihood ratio or Wald tests

Inference Marginal (population-averaged) Conditional (subject-specific)

Missing data
assumptions

Missing completely at random
(MCAR)

Missing at random (MAR)

Robustness Robust to correlation model
mis-specification

Requires correct parametric
model specification

Other notes Large sample (N ≥ 40) Induced marginal mean
structure and ‘attenuation’

Model-based or sandwich
variance estimator

Typically model-based variance,
but can use sandwich (robust)
estimator

Efficiency of non-independence
correlation models
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Toenail Infection Analysis
• RCT comparing two oral treatments for a toenail infection

• n=294, most observed at 7 visits (0, 4, 8, 12, 24, 36, 48 weeks)

• Goal: Compare percentage of severe infections over time and between
treatment groups
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Missing data

• Missing values arise in longitudinal studies whenever the intended
measurements are not obtained

▶ Collect fewer data than planned ⇒ decreased efficiency (power)
▶ Missingness can depend on outcome values ⇒ potential bias

• Important to distinguish between missing data and unbalanced data,
although missing data necessarily result in unbalanced data

• Missing data require consideration of the factors that influence the
missingness of intended observations

• Also important to distinguish between intermittent missing values
(non-monotone) and dropouts in which all observations are missing
after subjects are lost to follow-up (monotone)

Pattern t1 t2 t3 t4 t5

Monotone 3.8 3.1 2.0 2 2

Non-monotone 4.1 2 3.8 2 2
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Mechanisms

In order to obtain valid inference from incomplete data, the mechanism
producing the missingness must be considered

• Missing completely at random (MCAR)
Missingness does not depend on either the observed or missing
responses

• Missing at random (MAR)
Missingness depends only on the observed responses

• Missing not at random (MNAR)
Missingness depends on the missing responses

MNAR also referred to as informative or non-ignorable missingness;
thus MAR and MCAR as non-informative or ignorable missingness
(Rubin, 1976)
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Examples and implications

• MCAR: Administrative censoring at a fixed calendar time
▶ Generalized estimating equations are valid
▶ Mixed-effects models are valid
▶ Note: If missingness depends on covariates, the covariates need to be

incorporated into the analysis (missingness would be a problem if you
do not condition on them)

• MAR: Study protocol that a subject be removed once the value of an
outcome variable is below a certain threshold

▶ Generalized estimating equations are not valid
▶ Mixed-effects models are valid (as long as model is correctly specified)

• MNAR: Outcome is a measure of ‘quality-of-life’ and subjects fail to
complete the questionnaire when their quality-of-life is compromises

▶ Generalized estimating equations are not valid
▶ Mixed-effects models are not valid

⋆ Without knowing the reasons for missingness or having the missing data
cannot know which mechanism for sure.
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Missing Data: Analytic Approaches

1. Complete-case analysis: use observations from only those that have
complete data

▶ Valid if data are MCAR

2. Available data analysis: use all available observations
▶ Valid if data are MCAR
▶ Tends to be more efficient than complete case
▶ Likelihood-based methods valid if data are MAR and correctly specified

3. Imputation: fill in missing values
▶ Multiple imputation helps to account for uncertainty

4. Weighting methods: accounts for under-representation of certain
responses in the observed data by weighting the observed data
according to probability of remaining in the study

5. Others...
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WGEE
• Extend marginal GEE approach to longitudinal studies with MAR
dropout

• Define Rij = 1 if jth observation from subject i is observed.

• Observations in the estimating equation are weighted inversely
proportional to the probability of being observed

N∑
i=1

Di (β̂)
⊤V−1

i (β̂,α)∆i (θ)[Yi − µi (β̂)] = 0

where

∆i (θ) =


Ri1wi1 0 · · · 0

0 Ri2wi2 · · · 0
...

. . .
. . .

...

0 0 · · · Rinwin


(Robins et al., 1995)
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WGEE

• Valid under MAR provided the model for probability of dropout is
correct

▶ Requires either a priori knowledge of the weights wij or
▶ Correctly specified dropout model (the probability of remaining in the

study at the current time point, given dropout not occurring at
previous time points):

πij = Pr(Rij = 1|,Ri,j−1 = 1,Xi ,Yi1, . . . ,Yi,j−1) → wij =

[
j∏

k=1

πik

]−1

• Usual comments regarding GEE apply:
▶ Correct specification for the mean µ and sufficiently large N
▶ Use of robust variance estimator provides robustness to misspecification

of the correlation structure
▶ Choice of working correlation matrix affects efficiency
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Example

log

(
µij

1− µij

)
= β0 + β1tij + β2t

2
ij + β3Dosei × tij + β4Dosei × t2ij

β̂0 (SE) β̂1 (SE) β̂2 (SE) β̂3 (SE) β̂4 (SE)

CC -2.4 (0.22) 0.77 (0.19) -0.04 (0.04) 0.25 (0.13) -0.04 (0.03)

AD -2.2 (0.18) 0.70 (0.16) -0.03 (0.03) 0.33 (0.11) -0.06 (0.03)

WGEE -2.3 (0.18) 0.71 (0.16) -0.03 (0.03) 0.34 (0.11) -0.07 (0.03)

• Complete case (CC) and available data (AD) analyses valid if data are
MCAR

• For WGEE, assumed the probability of remaining in the study
depends on measurement occasion, dose group, and previous response

log

(
πij

1− πij

)
= θ0 + θ1Dosei + θ2tij + θ3Yi ,j−1 + θ4Dosei × Yi ,j−1
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Last observation carried forward

• Extrapolate the last observed measurement to the remainder of the
intended serial observations for subjects with any missing data

ID t1 t2 t3 t4 t5

1 3.8 3.1 2.0 2.0 2.0

2 4.1 3.5 3.8 2.4 2.8

3 2.7 2.4 2.9 3.5 3.5

• May result in serious bias in either direction (even when missingness is
MCAR)

• May result in anti-conservative p-values; variance is understated

• Has been thoroughly repudiated, but still a standard method used by
the pharmaceutical industry and appears in published articles

• A refinement would extrapolate based on a regression model for the
average trend, which may reduce bias, but still understates variance
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Last observation carried forward
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Last observation carried forward
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Time-dependent exposures

Important analytical issues arise with time-dependent exposures

1. May be necessary to correctly specify the lag relationship over time
between outcome Yi (t) and exposure Xi (t), Xi (t − 1), Xi (t − 2), . . .
to characterize the underlying biological latency in the relationship

▶ Example: Air pollution studies may examine the association between
mortality on day t and pollutant levels on days t, t − 1, t − 2, . . .

2. May exist exposure endogeneity in which the outcome at time t
predicts the exposure at times t ′ > t; motivates consideration of
alternative targets of inference and corresponding estimation methods

▶ Example: If Yi (t) is a symptom measure and Xi (t) is an indicator of
drug treatment, then past symptoms may influence current treatment
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Definitions

Factors that influence Xi (t) require consideration when selecting analysis
methods to relate a time-dependent exposure to longitudinal outcomes

• Exogenous: An exposure is exogenous w.r.t. the outcome process
if the exposure at time t is conditionally independent of the history
of the outcome process Yi (t) = {Yi (s) | s ≤ t} given the history
of the exposure process Xi (t) = {Xi (s) | s ≤ t}

[Xi (t) | Yi (t), Xi (t)] = [Xi (t) | Xi (t)]

• Endogenous: Not exogenous

[Xi (t) | Yi (t), Xi (t)] ̸= [Xi (t) | Xi (t)]

A Plantinga and K Wilson (Module 2) GEE and MM for LDA SISCER 2023 219 / 227



Examples

Exogeneity may be assumed based on the design or evaluated empirically

• Observation time: Any analysis that uses scheduled observation time
as a time-dependent exposure can safely assume exogeneity because
time is ‘external’ to the system under study and thus not stochastic

• Cross-over trials: Although treatment assignment over time is
random, in a randomized study treatment assignment and treatment
order are independent of outcomes by design and therefore exogenous

• Empirical evaluation: Endogeneity may be empirically evaluated
using the observed data by regressing current exposure Xi (t) on
previous outcomes Yi (t − 1), adjusting for previous exposure Xi (t − 1)

g(E[Xi (t)]) = θ0 + θ1Yi (t − 1) + θ2Xi (t − 1)

and using a model-based test to evaluate the null hypothesis: θ1 = 0
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Implications

The presence of endogeneity determines specific analysis strategies

• If exposure is exogenous, then the analysis can focus on specifying the
lag dependence of Yi (t) on Xi (t), Xi (t − 1), Xi (t − 2), . . .

• If exposure is endogenous, then analysts must focus on selecting a
meaningful target of inference and valid estimation methods
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Targets of inference

With longitudinal outcomes and a time-dependent exposure there are
several possible conditional expectations that may be of scientific interest

• Fully conditional model: Include the entire exposure process

E[Yi (t) | Xi (1),Xi (2), . . . ,Xi (Ti )]

• Partly conditional models: Include a subset of exposure process

E[Yi (t) | Xi (t)]

E[Yi (t) | Xi (t − k)] for k ≤ t

E[Yi (t) | Xi (t) = {Xi (1),Xi (2), . . . ,Xi (t)}]

⋆ An appropriate target of inference that reflects the scientific question
⋆ of interest must be identified prior to selection of an estimation method
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Key assumption

Suppose that primary scientific interest lies in a cross-sectional mean model

E[Yi (t) | Xi (t)] = β0 + β1Xi (t)

To ensure consistency of a generalized estimating equation or likelihood-
based mixed-model estimator for β, it is sufficient to assume that

E[Yi (t) | Xi (t)] = E[Yi (t) | Xi (1),Xi (2), . . . ,Xi (Ti )]

Otherwise an independence estimating equation should be used

• Known as the full covariate conditional mean assumption

• Implies that with time-dependent exposures must assume exogeneity
when using a covariance-weighting estimation method

• The full covariate conditional mean assumption is often overlooked
and should be verified as a crucial element of model verification

(Pepe and Anderson, 1994)
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Overview

Day 1: Monday, July 10

Day 2: Tuesday, July 11

Day 3: Wednesday, July 12
Recap
Generalized Linear Mixed Models
Wrap-Up: Methods for Binary and Count Outcomes
Activity
Advanced topics
Summary
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Summary and Comparison of Methods: Big Picture

GEE GLMM

Robustness Provide valid estimates and
standard errors for regression
parameters of interest even if
the correlation model is
incorrectly specified (+)

Empirical variance estimator
requires large sample size (−)

Provide valid estimates and
standard errors for regression
parameters only under stringent
model assumptions (−)

Inference Always provide population-
averaged inference regardless of
the outcome distribution;
ignores subject-level
heterogeneity (+/−)

Provide population-averaged or
subject-specific inference
depending on the outcome
distribution and specified
random effects (+/−)

Correlation Accommodate only one source
of correlation (−/+)

Accommodate multiple sources
of correlation (+/−)

Missing Data Require that any missing data
are missing completely at
random (−)

Require that any missing data
are missing at random (−/+)
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Advice

• Analysis of longitudinal data is often complex and difficult

• You now have versatile methods of analysis at your disposal

• Each of the methods you have learned has strengths and weaknesses

• Do not be afraid to apply different methods as appropriate

• Always be mindful of the scientific question(s) of interest

• Sensitivity analyses are helpful
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Resources

Introductory

• Fitzmaurice GM, Laird NM, Ware JH. Applied Longitudinal Analysis.
Wiley, 2011.

• Gelman A, Hill J. Data Analysis Using Regression and Multilevel/
Hierarchical Models. Cambridge University Press, 2007.

• Hedeker D, Gibbons RD. Longitudinal Data Analysis. Wiley, 2006.

Advanced

• Diggle PJ, Heagerty P, Liang K-Y, Zeger SL. Analysis of Longitudinal
Data, 2nd Edition. Oxford University Press, 2002.

• Molenbergs G, Verbeke G. Models for Discrete Longitudinal Data.
Springer Series in Statistics, 2006.

• Verbeke G, Molenbergs G. Linear Mixed Models for Longitudinal
Data. Springer Series in Statistics, 2000.
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