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Resources

• Module website: slides, R code, schedule

• Slack: ask us questions, interact with other module participants,
access recordings

• Office hours:
▶ Anna: 1-2pm PT on Monday, July 17
▶ Katie: 1-2pm PT on Tuesday, July 18

• We’ll recommend textbooks and articles for further reading at the
end of the module
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Goals of this module

• Overview of missing data challenges

• Study design considerations

• Definitions for key terms

• Main focus: introduce statistical approaches for analyzing data
with missingness

• How to use R to run these analyses
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Today, July 17, 8:30-12:00
8:30-9:30 Introduction to missing data + some key terminology
9:30-9:45 Break

9:45-10:45 Conventional methods
10:45-11:00 Break
11:00-12:00 Maximum likelihood

Tuesday, July 18, 8:30-12:00
8:30-9:30 Multiple imputation
9:30-9:45 Break

9:45-10:45 Inverse probability weighting
10:45-11:00 Break
11:00-11:30 Sensitivity analyses
11:30-12:00 Wrap-up
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A Bit About You

Please type in the chat:

• Briefly introduce yourself - what’s your name, and what state or
country are you currently located in?

• What’s your primary role in most of the studies in which you
participate?
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Overview

Introduction

Conventional and Naive Methods

Maximum Likelihood

Multiple Imputation

Semi-Parametric (Weighting-Based) Methods
Inverse Probability Weighting
Doubly Robust Estimators

Sensitivity Analysis

Wrap-up

Appendix
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What Do We Mean by “Missing” Data??

Missing data are unobserved values that would be meaningful for
analysis if observed; in other words, a missing value hides a mean-
ingful value

(Little & Rubin)

• Example 1: participant in a survey does not report income

• Example 2: heart rate monitor is not working

• Example 3: dropout (where participants stop showing up for visits
after a certain point) in a longitudinal study

• Example 4(??): participant in a political poll not able to express
preference for a particular candidate

▶ Suppose question is “who will you vote for?”
▶ People who are “missing” may be (1) not going to vote or (2) refusing

to provide a response
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What Do We Mean by “Missing” Data??

Item non-response Latent variable Unit non-response

We will be focusing on item non-response (data missing for some, not all
cases); however, methods can be adapted for latent variable and unit
non-response
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Why Is Missing Data a Problem?

Income example:

• L: probability density of outcome of interest

• ML: histogram of ideal data from all 1000 people in the sample

• MR: histogram showing what fraction is missing

• R: histogram of observed data from 823 people who responded
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Why Is Missing Data a Problem?

GOAL: make inference about some aspect of an underlying population of
interest using data that would have been observed had there been no
missingness

• Standard statistical methods assume relevant variables are all
observed

• Loss of precision
• Potential for bias

▶ Can we view the 823 responses as a random sample from the
population?

▶ Or are those with higher incomes less likely to respond?

⋆ Major challenge: the process by which observations become missing
⋆ is not usually known and any assumptions are not possible to verify from
⋆ the data available
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So... What Can We Do About It?

Start at study design! By planning, we can reduce bias, increase
efficiency, and improve whole study process (clarity of scientific question,
study design, data collection, analysis)

1. Minimize amount of missing data

▶ Clearly define scientific question, focus on obtaining the data necessary
to address

▶ For studies with follow-up, consider reducing follow-up time, increase
schedule flexibility

▶ Improve communication with study participants (e.g., multiple modes
of contact)

2. Reduce impact of missing data

▶ Collect reasons for missing data

▶ Collect auxiliary data that is predictive of the variable with missingness

▶ Collect secondary outcomes that are easier to obtain
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Cross-Sectional Designs and Longitudinal Designs

Cross-Sectional:

ID X1 X2 Y

1 4.67 0 5.16

2 3.35 2 4.73

3 1.63 1 2

4 3.96 0 4.96

5 2 0 -0.6

6 1.21 1 4.26

Longitudinal:

ID X1 X2 Y1 Y2 Y3

1 5.20 1 1.23 2.31 1.87

2 4.62 0 0.73 0.81 0.82

3 6.45 1 0.52 2 2

4 2.88 1 1.02 1.45 1.68

5 3.56 0 0.92 0.86 2

6 4.21 0 1.45 1.21 2

In this module, our focus will be on cross-sectional studies, but will point
out how to use missing data approaches in the context of longitudinal
designs
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Definitions I: Patterns of Missigness

Monotone Non-monotone

• Monotone patterns can be easier to work with in analyses

• Monotone patterns arise in longitudinal studies with dropout
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Notation

Helpful notation we will use:

• X ,Z ,Y ,U,R all represent variables
▶ Usually, X s will be thought of as

predictors/covariates
▶ Usually, Y will be thought of as the

outcome/response
▶ Z represents a variable that has missingness

(could be an outcome or predictor)
▶ U will denote unmeasured variables
▶ R is an indicator for missingness

• R = 1 if Z is missing

• ϕ: parameters that govern the missing data process

• θ: parameters that are of scientific interest (e.g., regression
coefficients from the “analysis” model)
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Definitions II: Missing Data Mechanisms; Rubin (1976)

In order to obtain valid inference from incomplete data need to consider
the mechanism (probability model) producing the missing data.

What are assumptions we could make about the missing data?
Informally,

1. Missing Completely at Random (MCAR): missingness does not
depend on other observed variables nor the value of the missing
variable itself

2. Missing at Random (MAR): missingness depends only on other
observed variables but not the missing variable itself

3. Missing Not at Random (MNAR): missingness depends on missing
values
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Missing Data Mechanisms: MCAR

Pr(R = 1|Z ,X,ϕ) = Pr(R = 1|ϕ)

• The probability that Z is missing does not depend on observed
variables X or missing value of Z

• Safe to assume MCAR when missing by design: e.g., by design only
obtain measurements for Z on random subsample of the data

• Example: study of physical activity involving activity trackers and the
activity tracker does not record one day

• While it is possible to test whether missingness depends on X, it is
not possible to test whether missingness depends on Z
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Missing Data Mechanisms: MAR

Pr(R = 1|Z ,X,ϕ) = Pr(R = 1|X,ϕ)

• The probability that Z is missing may depend on X, but does not
depend on Z (after adjusting for X)

• Example: missing income depends on occupation, but within
occupation groups probability of missing income does not depend on
income

• Not testable
▶ Make more plausible by including more variables in X
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Missing Data Mechanisms: MNAR

Pr(R = 1|Z ,X,ϕ)

• The probability that Z is missing depends on value of Z

• Example: longitudinal study where the outcome is a measure of
quality of life and participants do not show up when their quality of
life is compromised

• Note: this association can occur for two reasons

1. The probability of missing data is directly related to Z
2. An unmeasured variable induces correlation between Z and missingness
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Example

• X is fully observed

• Z is observed for the lighter green points, missing for the darker blue
points

MCAR MAR MNAR
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Definitions III: Ignorable and Non-ignorable

• Ideally, we would like to ignore the parameters ϕ that govern the
missing data process

• When can we get valid inference for the parameters of scientific
interest, θ, without knowing ϕ?

▶ If missing data mechanism is ignorable then possible to get valid
inference without directly modeling the missing data mechanism

▶ Note: this does not necessarily imply that we can just remove anyone
with missing data from the analysis

• Ignorable: data MAR and a technical condition that is unlikely to be
violated in practice is met (that is, parameters in analysis model are
separate from those that govern the missingness mechanism)

• Non-ignorable: MNAR
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Plausibility of MAR

• Sometimes, MAR known to hold, such as in cases with planned
missingness

▶ Viewing randomized experiment as a missing data problem (unobserved
response to other treatment assignment is MCAR)

▶ Having only some participants fill out some questionnaire items
▶ Participants included in a follow-up visit if an earlier measurement

exceeded a certain threshold

• Otherwise, MAR is an assumption
▶ Should generally anticipate that this may not hold
▶ We’ll discuss sensitivity analyses that can be done later!

In this module, we’ll usually be assuming MAR.
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Using DAGs to Assess Missingness

• When multiple variables have missingness, MAR is challenging to
assess

• A directed acyclic graph (DAG) with additional nodes for
missingness in variables can be very helpful

▶ Use to determine whether the parameter of interest is possible to
estimate from the available data (“recoverable”)

▶ Help decide what approach to handling missing data is appropriate

• References and resources:
▶ Lee, K. J. et al. (2023). Assumptions and analysis planning in studies

with missing data in multiple variables: moving beyond the
MCAR/MAR/MNAR classification. International Journal of
Epidemiology. https://doi.org/10.1093/ije/dyad008

▶ Moreno-Betancur, et al. (2018). Canonical causal diagrams to guide
the treatment of missing data in epidemiologic studies. American
Journal of Epidemiology. https://doi.org/10.1093/aje/kwy173
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Example DAG

Exposure Outcome

Complete
confounders

Incomplete
confounders

Missingness in
exposure

Missingness in
any confounders

Missingness in
outcome
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Case Study I: NHANES

• Survey data collected from the American National Health and
Nutrition Examination surveys (NHANES)

• Dataset we will use is a resampled version of the original data and for
our purposes can be treated as a simple random sample from the US
population

• Restrict to ≈ 1,500 non-pregnant female individuals ages 20-44,
surveyed 2009 - 2012

• Outcome of interest: total cholesterol

• Covariates of interest: age, pulse, and systolic blood pressure

▶ Pulse and systolic blood pressure missing for 5% of participants
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Case Study I: NHANES

The VIM package in R contains the aggr() function:
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Case Study I: NHANES

The VIM package in R contains the marginplot() function:
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Case Study II: NACC Uniform Data Set

• National Alzheimer’s Coordinating Center (NACC) Uniform Data Set
available here: https://naccdata.org/

• Longitudinal study started in 2005, participants were recruited or
referred for evaluation of dementia

• In our analysis, we included the initial visit of ≈ 24,000 individuals
who were 65+
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Case Study II: NACC Uniform Data Set

• Outcome of interest: mini-mental state examination (MMSE) score

▶ The MMSE is a test used to check for cognitive impairment (lower
scores indicate more severe impairment)

• Goal: investigate risk factors that impact MMSE score and whether
the patient’s apolipoprotein E e4 (APOE4) allele status modifies
these relationships

▶ APOE4 allele increases the risk for Alzheimer’s; missing for ≈ 20%;
assume missingness may depend on demographics, but not status itself

▶ Risk factors: age at MMSE, sex, clinical diagnosis of AD, history of
stroke, Parkinson’s disease, depression

• Similar analysis to Zhou, X. H. et al (2014). Applied missing data
analysis in the health sciences.
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Case Study II: NACC Uniform Data Set

Table of risk factors stratified by participant’s e4 allele status (number of
copies):

No At least one Missing

(N = 11, 377) (N = 7, 876) (N = 4, 809)

Sex (% Female) 57% 55% 58%

Age 76.6 (7.3) 75.3 (6.6) 77.2 (7.0)

MMSE 26.3 (5.0) 24.1 (6.4) 23.6 (6.7)

Clinical AD (% Yes) 29% 53% 48%

Stroke history (% Yes) 5% 5% 8%

Parkinson’s disease (% Yes) 2% 1% 4%

Depression (% Yes) 15% 17% 22%
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Case Study II: NACC Uniform Data Set
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Overview of Approaches Discussed

• Naive/conventional approaches: listwise deletion, pairwise deletion,
dummy variable adjustment, last observation carried forward, single
imputation

• Modern approaches: maximum likelihood, multiple imputation,
inverse probability weighting

As we discuss, we’ll consider the following criteria in evaluating the
approach’s performance:

• Minimizing bias

• Maximizing use of available data

• Obtaining valid estimates of uncertainty
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Overview

Introduction

Conventional and Naive Methods

Maximum Likelihood

Multiple Imputation

Semi-Parametric (Weighting-Based) Methods
Inverse Probability Weighting
Doubly Robust Estimators

Sensitivity Analysis

Wrap-up

Appendix
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Conventional and Naive Methods for Missing Data

• (A selection of) conventional/naive missing data methods:
▶ Listwise deletion (complete case analysis)
▶ Pairwise deletion (available data analysis)
▶ Dummy variable adjustment (missing-indicator method)
▶ Last observation carried forward
▶ Single imputation methods

• We’ll outline each approach and describe when it does (and doesn’t!)
work
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Assessing Missing Data Approaches

• What are we looking for in an approach to missing data?

• Requirements for a valid approach:

▶ Consistent: Estimates are approximately unbiased in large samples
• We will look at bias, E(θ̂ − θ), in simulated datasets with n = 500

▶ Valid standard error estimation: Estimate of SE should yield
expected inferential properties

• We will look at confidence interval coverage (nominally 95%)

• Among valid approaches, maximize efficiency
▶ An estimator is more efficient if it can achieve the same standard error

with fewer data points
▶ Two possible measures for this:

• The standard deviation of estimates across simulated datasets
• The width of the 95% confidence interval
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Simulation Set-Up: Full Data

• Complete data:[
X1

X2

]
∼ N

([
5

5

]
, 3 ·

[
1 ρ

ρ 1

])

Y ∼ N(0.5× X1 + 0.5× X2, σ
2)

• Goal: estimate β1 in

E (Y |X ) = β0 + β1X1 + β2X2
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Simulation Scenario 1: MCAR

• Missingness only in Y

• Missing Completely at Random
▶ Constant P(R = 1) = 0.4
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Simulation Scenario 2: Missingness Depends on X2

• Missingness only in Y

• Missing at Random depending
on value of X2

▶ P(R = 1|X2 ≥ 5) = 0.8
▶ P(R = 1|X2 < 5) = 0

• Total proportion of observations
with missing data is 40%
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Simulation Scenario 3: Missingness Depends on Y

• Missingness only in X2

• Missing at Random depending
on value of Y (observed!)

▶ P(R = 1|Y > 5) = 0.8
▶ P(R = 1|Y ≤ 5) = 0

• Total proportion of observations
with missing data is 40%
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Conventional Approaches

• Listwise deletion (complete case analysis)

• Pairwise deletion (available data analysis)

• Dummy variable adjustment (missing-indicator method)

• Last observation carried forward

• Single imputation methods
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Listwise Deletion (Complete Case Analysis)

• Cross-sectional: Remove subjects with missing data on any variable
used for an analysis in this paper

ID X1 X2 Y

1 4.67 0 5.16

2 3.35 2 4.73

3 1.63 1 2

4 3.96 0 4.96

5 2 0 -0.6

6 1.21 1 4.26

→

ID X1 X2 Y

1 4.67 0 5.16

4 3.96 0 4.96

6 1.21 1 4.26
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Listwise Deletion (Complete Case Analysis)

• Longitudinal: Remove all time points for subjects with missing data

ID Time X1 X2 Y

1 1 4.25 1 8.53

1 2 3.61 1 2

1 3 2.98 1 2

2 1 4.93 0 5.58

2 2 4.62 0 7.21

2 3 5.84 0 11.64

3 1 4.28 0 6.42

3 2 5.63 0 10.22

3 3 4.64 0 2

→

ID Time X1 X2 Y

2 1 4.93 0 5.58

2 2 4.62 0 7.21

2 3 5.84 0 11.64
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Listwise Deletion (Complete Case Analysis)

• MCAR: unbiased
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Listwise Deletion (Complete Case Analysis)

• MCAR: unbiased

• MAR where missingness
depends on X -variable
included in model: unbiased
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Listwise Deletion (Complete Case Analysis)

• MCAR: unbiased

• MAR where missingness
depends on X -variable
included in model: unbiased

• MAR where missingness
depends on excluded
X -variable: (potentially)
biased
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Listwise Deletion (Complete Case Analysis)

• MCAR: unbiased

• MAR where missingness
depends on X -variable
included in model: unbiased

• MAR where missingness
depends on excluded
X -variable: (potentially)
biased

• MAR where missingness in
X depends on (observed and
included) Y -variable: biased
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Listwise Deletion

Based on 1,000 simulated datasets of size n = 500 with 40% missingness:

Setting Coef. Bias SD(β̂) 95% CI Coverage

Complete Data β1 0 0.044 94.7%

MCAR β1 0 0.058 93.9%

Missing Y |X2 (in model) β1 0 0.056 95.5%

Missing Y |X2 (not in model) β1 -0.06 0.057 83.3%

Missing X2|Y β1 -0.08 0.056 66.9%

Complete Data β2 0 0.041 97.2%

MCAR β2 0 0.054 96.5%

Missing Y |X2 β2 0 0.064 95.3%

Missing X2|Y β2 -0.08 0.054 65.9%
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Listwise Deletion (Complete Case Analysis)

• Effectively assumes those with complete data can be treated as a
representative subsample

▶ Valid if missingness is MCAR
▶ Valid if missingness in Y depends only on (modeled) X

• Invalid if missingness (in X or Y) depends on value of Y
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Listwise Deletion (Complete Case Analysis)

• Default in most statistical software (e.g., lm())

• Advantages
▶ Can be used for any downstream statistical analysis
▶ No special computational methods required
▶ If MCAR, then observed data are a random subsample of full data

=⇒ all estimates are just as valid in subsample

• Disadvantages
▶ Inefficient: SEs are larger than both full data analysis and more

sophisticated missing data methods
▶ If MAR: estimates may be biased if probability of missing data in X

depends on Y
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Conventional Approaches

• Listwise deletion (complete case analysis)

• Pairwise deletion (available data analysis)

• Dummy variable adjustment (missing-indicator method)

• Last observation carried forward

• Single imputation methods
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Pairwise Deletion (Available Data Analysis)

• Cross-sectional study: Remove subjects with missing data on
variables used for particular statistics

▶ E.g., for Corr(X1,X2), use all cases with both X1 and X2
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Pairwise Deletion (Available Data Analysis)

• Cross-sectional study: Remove subjects with missing data on
variables used for particular statistics

▶ E.g., for Corr(X1,X2), use all cases with both X1 and X2

(use="pairwise.complete.obs" in R)
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Pairwise Deletion (Available Data Analysis)

• Longitudinal study: Remove only the time points with missing data
(on variables used in analysis)

ID Time X1 X2 Y

1 1 4.25 1 8.53

1 2 3.61 1 2

1 3 2.98 1 2

2 1 4.93 0 5.58

2 2 4.62 0 7.21

2 3 5.84 0 11.64

3 1 4.28 0 6.42

3 2 5.63 0 10.22

3 3 4.64 0 2

→

ID Time X1 X2 Y

1 1 4.25 1 8.53

2 1 4.93 0 5.58

2 2 4.62 0 7.21

2 3 5.84 0 11.64

3 1 4.28 0 6.42

3 2 5.63 0 10.22
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Pairwise Deletion - Inference for β1

Based on 1,000 simulated datasets of size n = 500 with 40% missingness:

Setting ρ(X1,X2) Method Bias SD(β̂) 95% CI Coverage

Complete Data 0.8 Listwise 0 0.063 95.1%

0.8 Pairwise 0 0.063 94.7%

MCAR 0.8 Listwise 0.01 0.082 95.0%

0.8 Pairwise 0 0.105 93.9%

Missing Y |X2 0.8 Listwise 0 0.080 96.0%

0.8 Pairwise 0 0.103 95.3%

Missing X2|Y 0.8 Listwise -0.07 0.077 84.6%

0.8 Pairwise 0.32 0.080 4.7%
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Pairwise Deletion - Inference for β2

Based on 1,000 simulated datasets of size n = 500 with 40% missingness:

Setting ρ(X1,X2) Method Bias SD(β̂) 95% CI Coverage

Complete Data 0.8 Listwise 0 0.060 96.9%

0.8 Pairwise 0 0.060 96.7%

MCAR 0.8 Listwise 0 0.079 96.4%

0.8 Pairwise 0 0.099 95.2%

Missing Y |X2 0.8 Listwise 0 0.084 96.7%

0.8 Pairwise -0.25 0.102 33.7%

Missing X2|Y 0.8 Listwise -0.08 0.076 83.8%

0.8 Pairwise -0.38 0.098 3.6%
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Pairwise Deletion (Available Data Analysis)

• Advantages
▶ Can be used for any downstream statistical analysis
▶ If MCAR, then estimates are still consistent
▶ More efficient than complete case analysis if correlation among

x-variables is low (and typically for longitudinal settings)

• Disadvantages
▶ Estimated standard errors are typically not unbiased, even with MCAR

• It’s hard to determine the effective sample size/df
• Some R packages (e.g., regtools) use bootstrap standard errors

instead - valid SE estimation

▶ If MAR, then estimates may be biased

• Takeaway: not clearly better than complete case analysis
(at least as used in cross-sectional studies)
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Conventional Approaches

• Listwise deletion (complete case analysis)

• Pairwise deletion (available data analysis)

• Dummy variable adjustment (missing-indicator method)

• Last observation carried forward

• Single imputation methods
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Dummy Variable Adjustment

For covariates X with missing data:

• Define missingness indicator Ri = I (Xi missing)

• Use Ri and Xi (1− Ri ) as predictors in model

• E.g., if our desired model is E (Y |X ) = β0 + β1X1 + β2X2:

ID X1 X2 Y

1 4.67 0 5.16

2 3.35 0 4.73

3 1.63 1 0

4 3.96 0 4.96

5 0 0 -0.6

6 1.21 1 4.26

→

ID X1(1− R1) R1 X2(1− R2) R2 Y

1 4.67 0 0 0 5.16

2 3.35 0 0 1 4.73

4 3.96 0 0 0 4.96

5 0 1 0 0 -0.6

6 1.21 0 1 0 4.26

• Then fit model
E (Y |X ,R) = β0 + β1X1(1− R1) + β2R1 + β3X2(1− R2) + β4R2
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Dummy Variable Adjustment

Based on 1,000 simulated datasets of size n = 500, ρ(X1,X2) = 0.5:

Setting Coef. Bias SD(β̂) 95% CI Coverage

Complete Data β1 0 0.044 95%

MCAR β1 0.13 0.044 15%

Missing X2|X2 β1 0.05 0.044 83%

Missing X2|Y β1 -0.11 0.039 22%

Complete Data β2 0 0.041 97%

MCAR β2 -0.07 0.054 84%

Missing X2|X2 β2 -0.02 0.062 94%

Missing X2|Y β2 -0.07 0.052 67%
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Dummy Variable Adjustment

• Advantages
▶ Uses all available information (except cases with missing outcomes)

• Disadvantages
▶ Usually produces biased coefficient estimates (even under MCAR)

• Takeaway: Not recommended.
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Conventional Approaches

• Listwise deletion (complete case analysis)

• Pairwise deletion (available data analysis)

• Dummy variable adjustment (missing-indicator method)

• Last observation carried forward

• Single imputation methods

A Plantinga and K Wilson (Module 6) Missing Data SISCER 2023 58 / 232



Last Observation Carried Forward

Only for longitudinal studies: replace missing values with subject’s last
observed value

ID Time X1 X2 Y

1 1 4.25 1 8.53

1 2 3.61 1 0

1 3 2.98 1 0

2 1 4.93 0 5.58

2 2 4.62 0 7.21

2 3 5.84 0 11.64

3 1 4.28 0 6.42

3 2 5.63 0 10.22

3 3 4.64 0 0

→

ID Time X1 X2 Y

1 1 4.25 1 8.53

1 2 3.61 1 8.53

1 3 2.98 1 8.53

2 1 4.93 0 5.58

2 2 4.62 0 7.21

2 3 5.84 0 11.64

3 1 4.28 0 6.42

3 2 5.63 0 10.22

3 3 4.64 0 10.22
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Last Observation Carried Forward
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Last Observation Carried Forward

• Advantages
▶ Might be justifiable under a “last observation analysis” framework –

answers a different question

• Disadvantages
▶ May result in serious bias in either direction (even under MCAR)
▶ May result in anti-conservative p-values; variance is understated
▶ Has been thoroughly repudiated, but still a standard method used by

the pharmaceutical industry and appears in published articles

• Takeaway: Not recommended.
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Conventional Approaches

• Listwise deletion (complete case analysis)

• Pairwise deletion (available data analysis)

• Dummy variable adjustment (missing-indicator method)

• Last observation carried forward

• Single imputation methods
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Single Imputation

• Imputation = “filling in” missing data

• Single imputation: create just one completed dataset
▶ Later, we’ll talk about multiple imputation

• There are a variety of ways to do this
▶ Mean imputation
▶ Regression imputation
▶ Stochastic regression imputation
▶ Hot deck imputation
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Single Imputation: (Unconditional) Mean Imputation

Mean imputation: Replace missing values with the mean of that variable
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Single Imputation: (Unconditional) Mean Imputation

Based on 1,000 simulated datasets of size n = 500, ρ(X1,X2) = 0.5:

Setting Coef. Bias SD(β̂) 95% CI Coverage

Complete Data β1 0 0.044 94.7%

MCAR β1 -0.20 0.045 0.6%

Missing Y |X2 β1 -0.20 0.044 0.8%

Missing X2|Y β1 0.18 0.044 2.1%

Complete Data β2 0 0.041 97.2%

MCAR β2 -0.20 0.042 0.3%

Missing Y |X2 β2 -0.328 0.041 0%

Missing X2|Y β2 -0.020 0.054 6.7%
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Single Imputation: (Unconditional) Mean Imputation

• Advantages
▶ Easy/quick to implement

• Disadvantages
▶ Biases estimate of mean when data are not MCAR
▶ Underestimates variance
▶ Distorts relationships between variables (i.e., regression coefficients

may be biased even under MCAR)

• Takeaway: Not recommended.
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Single Imputation: Regression Imputation

Regression imputation: Replace missing values with the predictions from
a regression model
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Single Imputation: Regression Imputation

Based on 1,000 simulated datasets of size n = 500, ρ(X1,X2) = 0.5:

Setting Coef. Bias SD(β̂) 95% CI Coverage

Complete Data β1 0 0.044 94.7%

MCAR β1 0 0.058 77.4%

Missing Y |X2 β1 0 0.056 78.7%

Missing X2|Y β1 -0.12 0.061 29.9%

Complete Data β2 0 0.041 97.2%

MCAR β2 0 0.054 79.6%

Missing Y |X2 β2 0 0.064 71.6%

Missing X2|Y β2 0.23 0.067 4.5%
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Single Imputation: Regression Imputation

• Advantages
▶ Easy/quick to implement

• Disadvantages
▶ Underestimates variance
▶ Correlations biased upwards
▶ Deceptive! Imputations too good to be true

• Takeaway: Not recommended.
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Single Imputation: Stochastic Regression Imputation

Stochastic regression imputation: Replace missing values with the
predictions from a regression model plus random noise
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Single Imputation: Stochastic Regression Imputation

Based on 1,000 simulated datasets of size n = 500, ρ(X1,X2) = 0.5:

Setting Coef. Bias SD(β̂) 95% CI Coverage

Complete Data β1 0 0.044 94.7%

MCAR β1 0 0.065 82.6%

Missing Y |X2 β1 0 0.062 84.2%

Missing X2|Y β1 0 0.055 89.1%

Complete Data β2 0 0.041 97.2%

MCAR β2 0 0.061 85.4%

Missing Y |X2 β2 0 0.069 79.6%

Missing X2|Y β2 0 0.060 85.6%

A Plantinga and K Wilson (Module 6) Missing Data SISCER 2023 71 / 232



Single Imputation: Stochastic Regression Imputation

• Advantages
▶ Quick to implement
▶ Unbiased for mean, regression coefficients, correlation under MAR

• Disadvantages
▶ Standard error still underestimated

• Takeaway: Not recommended for inference
▶ If sharing one imputed dataset, this is (arguably) the best approach

A Plantinga and K Wilson (Module 6) Missing Data SISCER 2023 72 / 232



Single Imputation: Hot Deck

Hot deck imputation: Replace missing values with observed values from
“similar” respondents (example: predictive mean matching)
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Single Imputation: Hot Deck Imputation

Based on 1,000 simulated datasets of size n = 500, ρ(X1,X2) = 0.5:

Setting Coef. Bias SD(β̂) 95% CI Coverage

Complete Data β1 0 0.044 94.7%

MCAR β1 0 0.068 81.9%

Missing Y |X2 β1 -0.01 0.070 78.6%

Missing X2|Y β1 0.01 0.062 83.7%

Complete Data β2 0 0.041 97.2%

MCAR β2 -0.01 0.064 83.5%

Missing Y |X2 β2 -0.02 0.080 73.2%

Missing X2|Y β2 -0.01 0.071 77.8%
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Single Imputation: Hot Deck

• Advantages
▶ Imputations are based on observed values, so are realistic
▶ Less sensitive to imputation model misspecification

• Disadvantages
▶ Results can be sensitive to number of candidate donors
▶ May not perform well in small datasets
▶ Standard error still underestimated
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Conventional Approaches: Takeaways

All the common methods for salvaging information from cases with
missing data typically make things worse: They introduce substantial bias,

make the analysis more sensitive to departures from MCAR, or yield
standard error estimates that are incorrect (usually too low). –Paul Allison

The takeaway message [. . . ] is that ad hoc approaches to accounting for
missing data that are not based on a formal, principled statistical

framework are likely to lead to erroneous inference. –Marie Davidian
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Conventional Approaches: Takeaways

• Software default of listwise deletion is the least dangerous of the
conventional methods

▶ Valid (inefficient) if data are MCAR
▶ Valid (inefficient) if data are MAR and missingness depends only on

modeled X

• Most of the conventional and naive methods can lead to biased
estimates (in either direction) and/or invalid inference

• We can do better!
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Overview

Introduction

Conventional and Naive Methods

Maximum Likelihood

Multiple Imputation

Semi-Parametric (Weighting-Based) Methods
Inverse Probability Weighting
Doubly Robust Estimators

Sensitivity Analysis

Wrap-up

Appendix
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Maximum Likelihood Overview

Begin with an assumed model for the data. For example, Y ∼ N(µ, σ2).

Maximum likelihood (ML) is a general approach for estimating the
parameters in our assumed model (e.g. estimating µ and σ2)

⋆ General idea: choose values that make the data observed most likely
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Maximum Likelihood Overview

Suppose we have data y and are interested in estimating a parameter θ

• Data assumed to be generated by a model described by a probability
density function f (y|θ)

▶ Describes the relative probability of obtaining a sample y for given θ

• The likelihood function L(θ|y) = f (y|θ) is function of the parameter
θ for given data y

• A maximum likelihood (ML) estimate of θ is a value that
maximizes the likelihood L(θ|y) (or equivalently log-likelihood
l(θ|y) = log L(θ|y))
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An Example

• Assume Y ∼ N(µ, 1)
▶ Eventually, our goal will be to

estimate the mean µ

• The probability density
function for a single
observation is:

f (y |µ) = 1√
2π

e−
1
2
(y−µ)2

• Let’s start by supposing that
µ = 10

• For a sample of size 100, we
observe (Y1,Y2, . . . ,Y100). The
joint probability density is:

f (y|µ = 10) =
100∏
i=1

f (yi |µ = 10)

yi f (yi |µ = 10)

9.5 0.35

10.5 0.35

8.5 0.13
...

...

11.5 0.13

f (y|µ = 10) 5.6×10−58
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An Example

Goal: estimate µ

• Idea: find value of µ that makes
our observed data most probable

• The likelihood function is:

L(µ|y) = f (y|µ)

• It’s easier to work with logs →
log-likelihood:

l(µ|y) = log L(µ|y)

• How to find value of µ that
maximizes the likelihood
(equivalently log-likelihood)?

yi µ = 9 µ = 10 µ = 11

9.5 -1.04 -1.04 -2.04

10.5 -2.04 -1.04 -1.04

8.5 -1.04 -2.04 -4.04
...

...
...

...

11.5 -4.04 -2.04 -1.04

l(µ|y) -182 -132 -182

A Plantinga and K Wilson (Module 6) Missing Data SISCER 2023 82 / 232



An Example

Goal: estimate µ

• Idea: find value of µ that makes
our observed data most probable

• The likelihood function is:

L(µ|y) = f (y|µ)

• It’s easier to work with logs →
log-likelihood:

l(µ|y) = log L(µ|y)

• How to find value of µ that
maximizes the likelihood
(equivalently log-likelihood)?

yi µ = 9 µ = 10 µ = 11

9.5 -1.04 -1.04 -2.04

10.5 -2.04 -1.04 -1.04

8.5 -1.04 -2.04 -4.04
...

...
...

...

11.5 -4.04 -2.04 -1.04

l(µ|y) -182 -132 -182

A Plantinga and K Wilson (Module 6) Missing Data SISCER 2023 82 / 232



An Example

• Here, we can find the value of µ that maximizes the log-likelihood by
finding the derivative and seeing where that equals 0

• In this particular example, there is a closed form solution for µ̂ (the
sample mean!)
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Another Example: Linear Regression

Ordinary least squares approach equivalent to ML
when error term normally distributed:

Yi = β0 + β1Xi + ϵi ; ϵi ∼ N(0, σ2)

L(θ|y) =
n∏

i=1

f (yi |θ) =
n∏

i=1

N(yi ;µi = β0 + β1xi , σ
2)

Maximizing likelihood L is equivalent to minimizing
negative log-likelihood l :

l(y|θ) =
n∑

i=1

log
(
N(yi ;µi = β0 + β1xi , σ

2)
)

β̂0, β̂1 = values that minimize
n∑

i=1

(yi − (β0 + β1xi ))
2
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Another Example: Linear Regression

To find the minimum, we take the derivative, set equal to 0 and solve.
This leads us to the following equations for our MLEs:

β̂1 = corr(x , y)× SD(y)

SD(x)

β̂0 = mean(y)− β̂1 ×mean(x)

While this works nicely in this setting, this is not always the case. When
no closed form solution can be found, iterative techniques such as the
Newton-Raphson algorithm or Fisher Scoring method can be used to
obtain the MLEs.
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Properties of ML estimators

In general (under certain conditions), ML estimators are:

• Consistent: approximately unbiased in large samples (hone in on the
right thing)

• Asymptotically efficient: smallest variance among all consistent
estimators in large samples

• Asymptotically normal: estimator has approximately a normal
distribution

▶ Approximation improves as sample size increases
▶ Can use normal distribution to construct confidence intervals (e.g.

1.96) or obtain p-values
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Now With Missingness

• Same idea: find value(s) of parameter(s) with largest log-likelihood

• Some adjustments:

1. Likelihood contributions from individuals with missing values

2. Standard error computations tend to be trickier

3. Usually requires iterative optimization algorithms
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From Complete To Missing

Now suppose that we are missing several Z
values. That is, our observed data are x,
z(obs), and r.

The full likelihood is

L(θ, ϕ|x, z(obs), r) =
∫

f (x, z(obs), z(mis)|θ) f (r|z(obs), z(mis), x, ϕ)︸ ︷︷ ︸
If MAR = f (r|z(obs), x, ϕ)

dz(mis)

Assuming the missing data mechanism is ignorable (slide 21), the
likelihoood simplifies to

L(θ|x, z(obs)) =
∫

f (x, z(obs), z(mis)|θ)dz(mis)
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Linear Regression with Missing Response

Goal: estimate β0 and β1

Yi = β0 + β1Xi + ϵi ; ϵi ∼ N(0, σ2)

where Y is missing for m observations. Define
θ = (β0, β1, σ

2). Assume missingness depends
on X (i.e., MAR).

The observed-data likelihood ignoring the missing data mechanism is:

L(θ|x, y(obs)) =
m∏
i=1

f (xi |θ)
n∏

i=m+1

f (xi , yi |θ)

∝
n∏

i=m+1

f (yi |xi , θ)︸ ︷︷ ︸
N(β0+β1xi ,σ2)

Conclusion: reduces to listwise deletion here
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Multiple Linear Regression with Missing Covariate

Suppose we are interested in estimating β0, β1, and β2:

Yi = β0 + β1X1i + β2X2i + ϵi ; ϵi ∼ N(0, σ2)

where X2i is missing for m observations. We’ll also
assume X2|X1 ∼ N(α0 + α1X1, τ

2). Define
θ = (β0, β1, β2, σ

2, α0, α1, τ
2).

The observed-data likelihood assuming ignorability is:

L(θ|x1, x2, y(obs)) =
m∏
i=1

f (x1i , yi |θ)
n∏

i=m+1

f (x1i , x2i , yi |θ)

∝
m∏
i=1

f (yi |x1i , θ)
n∏

i=m+1

f (yi |x1i , x2i , θ)︸ ︷︷ ︸
N(β0+β1x1i+β2x2i ,σ2)

f (x2i |x1i , θ)︸ ︷︷ ︸
N(α0+α1x1i ,τ2)
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The EM Algorithm

The Expectation-Maximization (EM) algorithm is a popular technique
for general problems involving missing data1. Motivation for the EM
algorithm:

• Complete-data likelihood (slide 88) is often easier to work with than
the observed-data likelihood

• Do not need to compute second derivatives of the log-likelihood
(required for other iterative methods)

1Aside: in this special case, we could directly derive f (yi |x1i , θ) and then maximize
the observed-data likelihood
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The EM Algorithm

0. Begin with initial estimate of parameters, θ(0)

For iteration t:

1. E-step: compute expectation of complete data log-likelihood given
observed data and current parameter estimates

E
[
l(θ|x, z(obs), z(mis))|x, z(obs), θ = θ(t−1)

]
2. M-step: maximize this expected log-likelihood to find θ(t)

Repeat until estimates converge

Dempster et al. (1977)
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Multiple Linear Regression with Missing Covariate
Interested in estimating β0, β1, and β2:

Yi = β0 + β1X1i + β2X2i + ϵi ; ϵi ∼ N(0, σ2)

where X2i is missing for m observations, and missingness depends on Y .
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Applying the EM Algorithm⋆

To implement the E-step of the algorithm, it turns out that we need

E [X2i |y, x1, x
(obs)
2 , θ = θ(t−1)] and E [X 2

2i |y, x1, x
(obs)
2 , θ = θ(t−1)]

Observed data:

ID y x1 x2

1 0.29 0 NA

2 -0.95 0 NA
...

...
...

...

110 3.29 1 NA

111 -2.49 0 -1.52
...

...
...

...

500 -2.93 0 -0.51

θ
(0
)
=

   0 ︸︷︷
︸

β
(0
)

0

,
0 ︸︷︷︸ β
(0
)

1

,
0 ︸︷︷︸ β
(0
)

2

,
1 ︸︷︷︸ σ
2
(0
)

,
0 ︸︷︷︸ α
(0
)

0

,
0 ︸︷︷︸ α
(0
)

1

,
1 ︸︷︷︸ τ
2
(0
)

    First iteration:

ID y x1 E [X2] E [X 2
2 ]

1 0.29 0 0 1

2 -0.95 0 0 1
...

...
...

...
...

110 3.29 1 0 1

111 -2.49 0 -1.52 2.30
...

...
...

...
...

500 -2.93 0 -0.51 0.261
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Applying the EM Algorithm⋆

In the M-step, we obtain new estimates of the parameters by maximizing
the expected log likelihood and obtain θ(1). We continue to iterate
between these steps until convergence:

Second iteration:

ID y x1 E [X2] E [X 2
2 ]

1 0.29 0 0.11 1.58

2 -0.95 0 -0.53 1.86
...

...
...

...
...

110 3.29 1 1.14 2.88

111 -2.49 0 -1.52 2.30
...

...
...

...
...

500 -2.93 0 -0.51 0.261

Twentieth iteration:

ID y x1 E [X2] E [X 2
2 ]

1 0.29 0 0.92 1.65

2 -0.95 0 -0.12 0.82
...

...
...

...
...

110 3.29 1 2.84 8.87

111 -2.49 0 -1.52 2.30
...

...
...

...
...

500 -2.93 0 -0.51 0.261
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Results: multiple linear regression with missing covariate

Parameter estimates at each iteration for a single dataset:
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Standard Errors from EM

• No standard errors provided by default when using the EM algorithm

• One approach is to use the observed information (the negative of the
second derivative of the log-likelihood) evaluated at the MLE

▶ A more “peaked” log-likelihood → smaller standard errors

▶ This can be a bit complicated to calculate

• Other approaches: supplemented expectation-maximization or
bootstrapping
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Results: multiple linear regression with missing covariate

1,000 simulated datasets of size n = 500, 30% missingness in X2:

Y |X1,X2 ∼ N(−1 + X1 + X2, 1) (β1 = 1, β2 = 1)

X2|X1 ∼ N(−1 + 2X1, 2
2)

95% CI

Method Coef. Bias Width Coverage

Complete Data β1 0.00 0.25 94%

Listwise Deletion β1 -0.06 0.29 85%

EM Algorithm β1 0.00 0.32 95%

Complete Data β2 0.00 0.09 95%

Listwise Deletion β2 -0.06 0.11 48%

EM Algorithm β2 0.00 0.11 96%
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Software Implementation in R: lavaan package

• The lavaan package in R was developed for latent variable modeling

• Default behavior is listwise deletion; however, we can apply “full
information” ML estimation using the missing = ‘fiml’ argument
(https://lavaan.ugent.be/tutorial/est.html)

• Uses a multivariate normal likelihood

Example:

> library(lavaan)

> sem(‘TotChol ~ Age + Pulse + BPSysAve’, data = nha2,

+ missing = ‘fiml’, fixed.x = F)
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Case Study: NHANES Results

Parameter estimates and standard errors:

E [Total Cholesterol|Covariates] = β0 + β1Age + β2Pulse + β3Syst BP

Listwise Deletion ML

Intercept 2.73 (0.26) 2.68 (0.26)

Age (per 10 yrs) 0.30 (0.03) 0.31 (0.03)

Pulse (per 10 counts) 0.035 (0.022) 0.035 (0.022)

Syst BP (per 10 mmHg) 0.076 (0.020) 0.076 (0.020)
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Case Study: NACC Results

Goal: investigate whether patient’s APOE4 status modifies the
relationship between risk factor and MMSE score

Listwise Deletion Results

No copies At least one P-value

Age (per 10 yrs) -0.36 (0.06) -1.02 (0.08) <0.0001

Sex (Female) 0.19 (0.09) 0.08 (0.11) 0.45

Parkinson’s -0.94 (0.31) -2.58 (0.46) 0.003

Depression -0.62 (0.13) 0.25 (0.15) <0.0001

Stroke -1.46 (0.20) -1.72 (0.26) 0.43

Clinical AD -5.07 (0.10) -5.94 (0.11) <0.0001
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Case Study: NACC Results

ML Results

No copies At least one P-value

Age (per 10 yrs) -0.37 (0.06) -1.20 (0.08) <0.0001

Sex (Female) 0.22 (0.09) -0.02 (0.11) 0.11

Parkinson’s -0.89 (0.28) -2.87 (0.45) 0.0005

Depression -0.70 (0.12) 0.25 (0.15) <0.0001

Stroke -1.51 (0.20) -1.90 (0.26) 0.28

Clinical AD -5.02 (0.10) -6.41 (0.11) <0.0001
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Auxiliary Variables

• Auxiliary variables: variables thought to be associated with
missingness or with a variable that has missingness

• Not usually of scientific interest and thus would not want to be
included in the analysis model (doing this would change
interpretations)

• By including them in the procedure, can improve efficiency and
reduce bias (if needed for validity of MAR assumption)

• One approach is the saturated correlates model (Graham 2003)

▶ See sem.auxiliary() in the semTools package
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Longitudinal Data

In longitudinal studies, missing responses can be common (e.g., due to
dropout)

• An assumption (MAR)
commonly made is that the
probability of dropout
depends on prior response
(and covariates)

• Can obtain valid inference
under MAR using maximum
likelihood estimation of
mixed models

ID X1 X2 Y1 Y2 Y3

1 5.20 1 1.23 2.31 1.87

2 4.62 0 0.73 0.81 0.82

3 6.45 1 0.52 2 2

4 2.88 1 1.02 1.45 1.68

5 3.56 0 0.92 0.86 2

6 4.21 0 1.45 1.21 2
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Summary

• Define a model for the variable(s) with missing values to obtain the
complete-data likelihood

• This involves integrating over the distribution of the missing values
and then maximizing this observed-data likelihood

• This can be challenging, a common approach used is the EM
algorithm:

▶ E-step: compute the expectation of the complete-data log-likelihood
conditional on the observed data and current parameter estimates

▶ M-step: update the parameter estimates by maximizing this
conditional expected log-likelihood

• Assumes sample size is large enough for consistency and approximate
normality

• Assumes a parametric model for the data
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End of Day 1

A Plantinga and K Wilson (Module 6) Missing Data SISCER 2023 106 / 232



Overview

Introduction

Conventional and Naive Methods

Maximum Likelihood

Multiple Imputation

Semi-Parametric (Weighting-Based) Methods
Inverse Probability Weighting
Doubly Robust Estimators

Sensitivity Analysis

Wrap-up

Appendix

A Plantinga and K Wilson (Module 6) Missing Data SISCER 2023 107 / 232



The Big Picture

• Maximum likelihood is a natural way to handle missing data under
the assumption of MAR, but can be challenging to implement in
some situations

• Multiple imputation (MI) has similar properties as that of ML, but
can be easier to operationalize

▶ Imputing or “filling in” missing values
▶ Information about the values can be obtained from other observed

variables
▶ In multiple imputation we create many imputed datasets
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Single vs Multiple Imputation

Single imputation: Multiple imputation:
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Single Imputation: Reminder

Method Coefficient Estimates Standard Error

Mean Biased Too small

Regression Valid under MAR Too small

Stochastic Valid under MAR Too small

MI can help deal with too small standard errors by helping us account for
the uncertainty of the imputations
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Multiple Imputation

Adapted from https://stefvanbuuren.name/fimd/sec-nutshell.html
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Multiple Imputation: Step-by-Step

Step 0 Start with incomplete
data set

Step 1 Plausible values drawn
from distribution
modeled for missing
variables – do this m
times to create m
imputed datasets
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Multiple Imputation: Step 1 Detail

• In this step, we need to specify an imputation model

• We want one that produces proper imputations

• The goal is to draw values of the missing variable from
f (z(mis)|z(obs), x) (called the posterior predictive distribution)

▶ We are assuming that missingness is MAR so
f (z(mis)|z(obs), x, r) = f (z(mis)|z(obs), x)

• Proper imputation should account for uncertainty about the
parameters in the model

▶ For example, in the stochastic regression imputation approach
(slide 70), the coefficient values in the regression used for generating
imputations were fixed at their estimates; however, these are sample
estimates themselves

▶ Should base imputations on random draws from the Bayesian posterior
distribution of the parameters
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Multiple Imputation: Step 1 Detail

Y = β0 + β1X + ϵ; ϵ ∼ N(0, σ2)

• Approximately 30% missingness in Y , depends on X

• n = 50

• m = 10

• 1,000 replications

β0 β1

Approach Bias Width Coverage Bias Width Coverage

SI - stochastic reg 0.00 0.44 84% 0.00 0.45 82%

MI - stochastic reg 0.00 0.51 92% 0.00 0.51 91%

MI - proper 0.00 0.58 94% 0.00 0.58 94%

Listwise deletion 0.00 0.56 94% 0.00 0.56 94%
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Multiple Imputation: Step 1 Detail

Practical considerations: what variables to include in the imputation
model?

• Variables intended to be used in analysis model (including the
outcome variable)

• Auxiliary variables: variables highly correlated with those that have
missingness or with probability of missingness

▶ Including these in the ML approach not as straightforward as with MI

▶ MI can generally handle a larger number of auxiliary variables so the
typical advice is to include many

Other notes:

• Differences by group? Can divide dataset and run procedure
separately
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Multiple Imputation: Step 1 Example

Suppose we are interested in estimating β0, β1, and β2:

Yi = β0 + β1X1i + β2X2i + ϵi ; ϵi ∼ N(0, σ2)

where X2i is missing for m observations.

How to create imputations under a normal linear model?

1. Fit the linear model to the n −m rows with full data:

X2i = γ0 + γ1X1i + γ2Yi + δi ; δi ∼ N(0, τ2)

2. Randomly draw γ̇0, γ̇1, γ̇2, τ̇
2 from their posterior distribution

3. For the m rows with missingness create imputations:

Ẋ2i = γ̇0 + γ̇1X1i + γ̇2Yi + δ̇i ; δ̇i ∼ N(0, τ̇2)
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Multiple Imputation: Step 1 Example
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Multiple Imputation: Step 1 Example

Suppose we didn’t include the response when creating the imputations:
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Multiple Imputation: Step 1 Detail

Some common imputation models (and the method argument to use in
the R package mice):

• Normal linear model: method = ‘norm’ and method =

‘norm.boot’

• Non-normal distributions:
▶ Predictive mean matching: method = ‘pmm’
▶ Others...
▶ Work has shown that for inference of regression coefficients, normal

imputations can be robust
▶ Could transform, but sometimes that can make things worse

• Logistic regression model: method = ‘logreg’
▶ Multinomial logit model: method = ‘polyreg’
▶ Orderd logit model: method = ‘polr’
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Multiple Imputation: Step 1 Detail

What happens when we have missingness in more than one variable?

• Monotone missingness: imputations drawn from sequence of
univariate regressions

▶ No need for more than 1 iteration

• Joint modeling: imputations drawn from multivariate model

• Fully conditional specification (aka chained equations):
imputations drawn from sequence of univariate regressions and
iterated
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Case Study: NHANES

Regression models used:

• E [Pulse|TotChol,Age] = γ0 + γ1TotChol + γ2Age

• E [BPSysAve|TotChol,Age,Pulse] = γ⋆0 + γ⋆1TotChol + γ⋆2Age + γ⋆3Pulse

> step1 <- mice(nha2 %>% select(TotChol, Age, Pulse, BPSysAve),

+ maxit = 1, m = 10, visitSequence = "monotone",

+ method = "pmm", seed = 6, print = F)
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Joint Modeling

• Specify a multivariate distribution for the data

▶ A common choice is a multivariate normal distribution

▶ Note: it can be challenging to specify a joint distribution when in the
setting of a mixture of categorical and continuous data

• An approach known as data augmentation can be used to obtain
imputed values using an iterative approach:

▶ (I step) Randomly sample missing data from it’s distribution conditional
on observed data and current values of imputation model parameters

▶ (P step) Randomly sample imputation model parameters given current
random draw of missing data
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Fully Conditional Specification

• Basic idea: apply procedure used for monotone missingness (impute
one by one), but iterate

• Lacks theoretical underpinnings; however, appears to do well in
simulation

• Flexible since not constrained to certain multivariate distributions
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Example

• Subsample of 424 boys between
ages 8-21; available from the
boys dataset in mice

• Interest was is in development
of secondary pubertal
characteristics

▶ gen: five ordered stages of
genital development

▶ phb: six ordered stages of
pubic hair development

▶ tv: testicular volume

• Missingness related to age

Proportion missing gen by age:

8–11 11–14 14–17 17–21

24% 33% 46% 58%
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Example

> fcs <- mice(boys_subset, seed = 6, m = 10, maxit = 20,

print = FALSE)

> fcs$predictorMatrix

age hgt wgt gen phb tv reg

age 0 1 1 1 1 1 1

hgt 1 0 1 1 1 1 1

wgt 1 1 0 1 1 1 1

gen 1 1 1 0 1 1 1

phb 1 1 1 1 0 1 1

tv 1 1 1 1 1 0 1

reg 1 1 1 1 1 1 0

> fcs$method

age hgt wgt gen phb tv reg

"" "pmm" "pmm" "polr" "polr" "pmm" ""
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Example

Plots of parameters vs iteration numbers can be useful for diagnosing
convergence issues:
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Multiple Imputation
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Multiple Imputation: Step-by-Step

Step 2 Analyze each of the
m datasets separately

Step 3 Pool results of m
analyses
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Case Study: NHANES

> step2 <- with(step1, lm(TotChol ~ Age + Pulse + BPSysAve))

Dataset β0 β1 β2 β3

1 2.83 (0.25) 0.032 (0.0031) 0.0028 (0.0021) 0.0066 (0.0019)

2 2.72 (0.27) 0.031 (0.0031) 0.0032 (0.0021) 0.0074 (0.0019)

3 2.70 (0.26) 0.031 (0.0031) 0.0027 (0.0021) 0.0080 (0.0019)
...

...
...

...
...

10 2.64 (0.26) 0.031 (0.0031) 0.0039 (0.0021) 0.0077 (0.0019)

A Plantinga and K Wilson (Module 6) Missing Data SISCER 2023 129 / 232



Multiple Imputation: Step 3 Detail

• In the final step, we pool the results using Rubin’s rules

• Pooled parameter estimate = average of the estimates from the m
analyses

θ̂ =
1

m

m∑
d=1

θ̂d

• Standard errors follows same logic, but more complicated
▶ Two sources of sampling variability: (1) “usual” variability (what would

have resulted if data were complete) and (2) variability due to missing
data

▶ The total sampling variance is:

1

m

m∑
d=1

SE2
d︸ ︷︷ ︸

Within-imputation

+

(
1 +

1

m

)
1

m − 1

m∑
d=1

(θ̂d − θ̂)2︸ ︷︷ ︸
Between-imputation
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Case Study: NHANES

> step3 <- pool(step2)

> step3

Class: mipo m = 10

term m estimate ubar b t dfcom df riv lambda fmi

(Intercept) 10 2.7284 6.6e-02 6.4e-03 7.3e-02 1499 566 0.106 0.096 0.0993

Age 10 0.0315 9.9e-06 4.5e-08 9.9e-06 1499 1483 0.005 0.005 0.0064

Pulse 10 0.0033 4.4e-06 3.4e-07 4.8e-06 1499 707 0.085 0.079 0.0813

BPSysAve 10 0.0073 3.5e-06 2.7e-07 3.8e-06 1499 722 0.084 0.077 0.0796

• estimate: θ̂

• ubar, b, and t: components of the variance

• df corrected degrees of freedom

• riv: relative increase in variance due to nonresponse

• lambda: proportion of variance due to nonresponse
• fmi: fraction of missing information due to nonresponse

▶ 0.2: “modest”
▶ 0.3: “moderately large”
▶ 0.5: “high” – inference strongly depends on how missingness was

addressed
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Case Study: NHANES Results

E [Total Cholesterol|Covariates] = β0 + β1Age + β2Pulse + β3Syst BP

LD ML MI

Intercept 2.73 (0.26) 2.68 (0.26) 2.73 (0.27)

Age (per 10 yrs) 0.30 (0.03) 0.31 (0.03) 0.32 (0.03)

Pulse (per 10 counts) 0.035 (0.022) 0.035 (0.022) 0.033 (0.022)

Syst BP (per 10 mmHg) 0.076 (0.020) 0.076 (0.020) 0.073 (0.020)
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How Large Should m Be?

• It turns out that MI can work pretty well with small m; in many
practical applications, m = 20 is reasonable

• Use larger m if the missing information rate is high

• Do not need large m for precise estimates of regression coefficients,
larger m needed for other measures (e.g. p-values)

• Nice summary:
https://stefvanbuuren.name/fimd/sec-howmany.html
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Case Study: NACC Results

MI Results (m = 20 imputations)

No copies At least one P-value

Age (per 10 yrs) -0.38 (0.06) -1.20 (0.08) <0.0001

Sex (Female) 0.22 (0.09) -0.02 (0.11) 0.11

Parkinson’s -0.89 (0.28) -2.87 (0.44) 0.0003

Depression -0.71 (0.13) 0.25 (0.15) <0.0001

Stroke -1.57 (0.20) -1.80 (0.26) 0.51

Clinical AD -5.03 (0.11) -6.42 (0.11) <0.0001
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Case Study: NACC Dataset
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Longitudinal Data

• With dropout, the
missingness pattern is
monotone. Thus, in “wide”
format can proceed by using
a series of regression models
where “current” response is
regressed on previous
responses plus covariates

• MI can also be done in
“long” format using
multilevel imputation (to
account for correlation)

ID X1 X2 Y1 Y2 Y3

1 5.20 1 1.23 2.31 1.87

2 4.62 0 0.73 0.81 0.82

3 6.45 1 0.52 2 2

4 2.88 1 1.02 1.45 1.68

5 3.56 0 0.92 0.86 2

6 4.21 0 1.45 1.21 2
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Summary

• Can think of MI as extending likelihood methods where an extra step
is introduced (drawing imputed values)

• MI performance similar to likelihood method that makes similar
assumptions

• Can be easier to calculate standard errors; can inspect the
imputations to help evaluate modeling assumptions

• Also relies on large sample approximations

▶ Some work has shown that approximations may work better for MI
than ML with small to moderate sample sizes
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Summary

• Validity of imputation model?
▶ It can be fairly robust to misspecification because the imputation

model is only applied to the observations with missingness (and not the
entire data set)

▶ Trouble can arise if imputation model is too simple (e.g., analysis model
includes interactions or polynomials and imputation model does not)

▶ “Superefficiency” if imputer has additional knowledge that can inform
the imputation model

• Difference with ML

▶ ML: missing values dealt with during model-fitting procedure
▶ MI: dealt with prior to analysis
▶ Same model for imputation and analysis – similar results to ML under

same model
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Imputation vs. Weighting

There are two key differences between weighting and imputation:

1. Weighting is semiparametric: doesn’t require specifying full
likelihood

2. Weighting approaches model the missing data mechanism rather than
integrating over the missing data distribution
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Reminder: Notation

• Variables:
▶ X : predictors/covariates of interest
▶ V : auxiliary variables that may affect P(R = 1), but are not interesting

for analysis
▶ Y : outcome/response, which may have missingness

(i.e., Z = Y in this case)
▶ R: indicator for missingness (R = 1 if Y is missing)
▶ For simplicity, define C = 1− R (so C = 1 if Y is observed)

• Parameters:
▶ ϕ: parameters that govern the missing data process
▶ θ: parameters of scientific interest
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Intuition

• Suppose we know P(C = 1|Y ,V , ϕ) = P(C = 1|V , ϕ)
▶ i.e., probability of observing Y is known and depends only on observed

variables V

• Call P(Y observed) = P(C = 1|V , ϕ) = π(V )

• If one of our observed cases (Y such that C = 1) was particularly
unlikely to be observed (low π(V )), we’ll upweight it to represent all
the similar cases we didn’t observe

▶ In fact, we’ll weight it by 1
π(V )

▶ This is called inverse probability weighting
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Intuition
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Set-Up: Estimation of Mean from Full Data

• Simplest case: consider estimating a mean, µ = E (Y )

• With no missing data, we’d use the sample mean,

µ̂full =
1

N

N∑
i=1

Yi

• Note that µ̂full is the solution to the estimating equation

N∑
i=1

(Yi − µ) = 0
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Set-Up: Complete Case Analysis

• Because π(V ) depends on observed V , missingness is MAR

• We’ve already seen that the complete case estimator,

µ̂CC =

∑N
i=1 CiYi∑N
i=1 Ci

,

which solves the estimating equation

N∑
i=1

Ci (Yi − µ) = 0,

is typically not consistent under MAR (with auxiliary variables V )
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Inconsistency of CC Estimator

A sketch of the proof that µ̂CC is generally not consistent:

µ̂CC =

∑N
i=1 CiYi∑N
i=1 Ci

p→ E (CY )

E (Y )
by LLN

=
E{Y π(V )}
E{π(V )}

using iterated expectations

̸= E (Y ) = µ if Y , V not independent

(See Appendix for details.)
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Inverse Probability Weighting (IPW)
• We can derive a consistent estimator (in fact, an unbiased one!) by
weighting the complete case estimating equation:

N∑
i=1

Ci

π(Vi )
(Yi − µ) = 0

▶ Intuition: E (Ci |Yi ,Vi ) = π(Vi ), so these terms now cancel out in the
expectation (see Appendix for details)

• Estimator that solves this estimating equation is

µ̂ipw =

{
N∑
i=1

Ci

π(Vi )

}−1 N∑
i=1

CiYi

π(Vi )

• Huber-White “robust” sandwich estimator is often used for standard
error estimation, but is typically conservative

▶ Recommended alternative: bootstrap or jackknife
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What if Missingness Mechanism is Unknown?

• So far, we have treated π(Vi ) as known
▶ E.g., missingness by design (rotating panel, subset of participants

chosen for expensive measure, etc.)

• In practice, this is often not true

• We instead model π(Vi ) = P(Ci |Vi ;ϕ) parametrically using, e.g.,
logistic regression

▶ If missingness model is correctly specified, using estimated weights still
yields consistent estimator:

µ̂ipw =

{
N∑
i=1

Ci

π(Vi ; ϕ̂)

}−1 N∑
i=1

CiYi

π(Vi ; ϕ̂)

▶ If missingness model is misspecified, IPW estimator may be inconsistent
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Example: Estimating Average Income

Suppose the complete income distribution for n=1000 households with a
householder age 25+ is:
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Example: Estimating Average Income

Unfortunately, only n=668 of the households replied to the survey:
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Example: Estimating Average Income

It was also a seemingly-nonrandom 668 households:
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Example: Estimating Average Income

> mean(sim.census$incomeTot)

[1] 87.15229

> mean(sim.census$obsIncome, na.rm=T)

[1] 85.41959

• True mean: $87,152

• Using observed data (listwise deletion): $85,420

• Question: Can we better estimate the mean if we weight the
observations?
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Example: Estimating Average Income

• Missingness model: logit {P(C = 1|Educ,Age,Metro)} = Xβ
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Example: Estimating Average Income

• Weighted analysis model (just estimating a mean):

• IPW estimate is $91,500 – over-estimated in this case
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Example: Estimating Average Income

We can bootstrap (resample our incomple census dataset) to get an
estimate of the standard error:

With bootstrapping, we estimate mean income is $91,380 with SE $3,970.
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Estimating Average Income

Let’s check long-term behavior with repeated simulations (in thousand $):

Method Mean Bootstrap SD(x̄) 95% CI Coverage

Full-data 84.9 1.27 95.2%

Listwise deletion 82.7 1.55 69.3%

IPW 85.1 1.73 95.6%
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From Means to Regression

• So far, we have only estimated an unconditional mean, µ = E (Y ),
with auxiliary variables V

• Now suppose we have an outcome Y , covariates of interest X , and
auxiliary variables V

• We are interested in a linear regression model, E (Y |X = x) = Xβ
▶ Note: semiparametric, as we haven’t specified joint distribution of X ,Y

• We assume the variables in V are needed for MAR
▶ P(C = 1|Y ,X ,V ) = P(C = 1|X ,V ) = π(X ,V )
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IPW for Regression

• Proceeds almost exactly as before

• Complete-case OLS estimator solves the estimating equation

N∑
i=1

CiX
⊤
i {Yi − X⊤

i β} = 0

▶ Not an unbiased estimating equation (proof similar to above)

• IPW estimating equation,

N∑
i=1

Ci

π(Xi ,Vi ; ϕ̂)
X⊤
i (Yi − X⊤

i β) = 0,

yields consistent estimates

A Plantinga and K Wilson (Module 6) Missing Data SISCER 2023 158 / 232



IPW for Regression: Simulations

• (MCAR: every observation gets equal weight)

• MAR where missingness depends on X -variable included in model:
already unbiased for (unweighted) complete-case analysis
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IPW for Regression: Simulations

• MAR where missingness in depends on auxiliary Z in missingness
model but not analysis model: listwise is biased, IPW unbiased
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IPW for Regression: Simulations

• MAR in X depending on Y : listwise is biased, IPW unbiased
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IPW for Regression: Simulations
Based on 1,000 simulated datasets of size n = 500 with 40% missingness:

Setting Method Bias SD(β̂) 95% CI Coverage

MCAR CC 0.003 0.058 93.9%

IPW (model SE)
0.003 0.058

93.9%

IPW (robust SE) 94.3%

Missing Y |modeled X2 CC 0.003 0.056 95.5%

IPW (model SE)
0.006 0.078

85.1%

IPW (robust SE) 94.7%

Missing Y |auxiliary X2 CC -0.055 0.057 83.3%

IPW (model SE)
0.003 0.076

83.4%

IPW (robust SE) 93.7%

Missing X |Y CC -0.081 0.056 66.9%

IPW (model SE)
0.003 0.076

86.1%

IPW (robust SE) 94.9%
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What About Missing Covariates?

• Most common use case for IPW is missing outcome data (with fully
observed covariates)

• IPW can also be used to weight cases with a missing key predictor X1

▶ Then the missingness model is for missingness in X1 rather than Y
▶ May depend on fully observed X2, ...,Xp,Y (but not X1)

• With monotone missingness in covariates, can iteratively condition on
each covariate to estimate P(C )

• With non-monotone missing covariates, options include:
▶ Combine MI (for missing covariates) and IPW (to weight cases)
▶ More complex models – e.g., Markov randomized monotone missing

model (Robins and Gill, 1997)
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What Could Go Wrong?

• The results above rely on correct specification of the missingness
model, which requires:

▶ Class of model is correct, e.g., logistic regression
▶ Necessary predictors are included and treated correctly

(e.g., transformations and interactions)

• Very large weights are often a red flag
▶ Larger weights = smaller effective sample size
▶ More often due to model misspecification than to genuinely low

P(complete case)

• Approaches to handling very large weights:
▶ Truncation

• Try a few cut-off values as a sensitivity analysis

▶ Try semi-parametric models – e.g., kernel smoothers
• Requires few predictors

▶ Try other models (e.g., robit regression, penalized logistic regression)
• Less readily available in software
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Case Study: NHANES

• Desired model:

TotChol = β0 + β1 × Age + β2 × Pulse + β3 × BPSysAve

• Monotone missingness: BPSysAve has about 5% missing data (Pulse
is missing for all but 2 of these subjects)
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Case Study: NHANES
Step 1a: fit missingness model (possibly using auxiliary variables)

Step 1b: check weight distribution
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Case Study: NHANES

Step 2a: fit analysis model using weights

Step 2b: Robust or bootstrap standard errors
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Case Study: NHANES

Results:
• Bootstrap SEs are (slightly) smaller than robust SEs

▶ Robust SE tends to be conservative

• Both are noticeably larger than model-based SEs
▶ Model-based SEs after IPW are generally not valid (too small)

Coefficient Estimate Model SE Robust SE Bootstrap SE

Intercept 2.729 0.265 0.304 0.304

Age (per 10 years) 0.301 0.032 0.032 0.032

Pulse (beats/6 sec) 0.035 0.022 0.024 0.023

Systolic BP (per 10 mmHg) 0.075 0.019 0.024 0.023
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Case Study: NHANES

E [Total Cholesterol|Covariates] = β0 + β1Age + β2Pulse + β3Syst BP

LD ML MI IPW

Intercept 2.73 (0.26) 2.68 (0.26) 2.73 (0.27) 2.73 (0.30)

Age (per 10 yrs) 0.30 (0.03) 0.31 (0.03) 0.32 (0.03) 0.30 (0.03)

Pulse (per 6 sec) 0.035 (0.022) 0.035 (0.022) 0.033 (0.022) 0.035 (0.023)

Syst BP (per 10 mmHg) 0.076 (0.020) 0.076 (0.020) 0.073 (0.020) 0.075 (0.023)
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Case Study: NACC

• Goal: investigate whether patient’s APOE4 status modifies the
relationship between risk factor and MMSE score

• Step 1: Decide on a missingness model
▶ Logistic regression with outcome = APOE observation status
▶ Predictors: risk factors and MMSE, with/without (1) all pairwise

interactions, (2) flexible age and MMSE associations (GAM)
• Seems like allowing nonlinear age and MMSE associations helps
• (Calibration plots and Hosmer-Lemeshow test as evidence – don’t treat

as infallible)
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Case Study: NACC

• Check weight distribution for extreme weights (further indicator of
missingness model misspecification)

• Looks okay in this case
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Case Study: NACC

IPW Results (robust SE)

No copies At least one P-value

Age (per 10 yrs) -0.38 (0.06) -1.09 (0.09) <0.0001

Sex (Female) 0.13 (0.09) -0.02 (0.12) 0.45

Parkinson’s -1.21 (0.37) -3.01 (0.43) 0.0005

Depression -0.70 (0.14) 0.26 (0.15) <0.0001

Stroke -1.65 (0.27) -1.89 (0.26) 0.48

Clinical AD -5.28 (0.12) -6.15 (0.12) <0.0001
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Case Study: NACC

Among those with no copies of APOE4 allele:

LD ML MI IPW

Age (per 10 yrs) -0.36 (0.06) -0.37 (0.06) -0.38 (0.06) -0.38 (0.06)

Sex (Female) 0.19 (0.09) 0.22 (0.09) 0.22 (0.09) 0.13 (0.09)

Parkinson’s -0.94 (0.31) -0.89 (0.28) -0.89 (0.28) -1.21 (0.37)

Depression -0.62 (0.13) -0.70 (0.12) -0.71 (0.13) -0.70 (0.14)

Stroke -1.46 (0.20) -1.51 (0.20) -1.57 (0.20) -1.65 (0.27)

Clinical AD -5.07 (0.10) -5.02 (0.10) -5.03 (0.11) -5.28 (0.12)
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Case Study: NACC

Among those with at least one copy of APOE4 allele:

LD ML MI IPW

Age (per 10 yrs) -1.02 (0.08) -1.20 (0.08) -1.20 (0.08) -1.09 (0.09)

Sex (Female) 0.08 (0.11) -0.02 (0.11) -0.02 (0.11) -0.02 (0.12)

Parkinson’s -2.58 (0.46) -2.87 (0.45) -2.87 (0.44) -3.01 (0.43)

Depression 0.25 (0.15) 0.25 (0.15) 0.25 (0.15) 0.26 (0.15)

Stroke -1.72 (0.26) -1.90 (0.26) -1.80 (0.26) -1.89 (0.26)

Clinical AD -5.94 (0.11) -6.41 (0.11) -6.42 (0.11) -6.15 (0.12)
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Case Study: NACC

Significance of Effect Modification (p-values):

LD ML MI IPW

Age (per 10 yrs) <0.0001 <0.0001 <0.0001 <0.0001

Sex (Female) 0.45 0.11 0.11 0.45

Parkinson’s 0.003 0.0005 0.0003 0.0005

Depression <0.0001 <0.0001 <0.0001 <0.0001

Stroke 0.43 0.28 0.51 0.48

Clinical AD <0.0001 <0.0001 <0.0001 <0.0001
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Improving on IPW Complete Case Analysis

• IPW is still a complete case method (valid, but inefficient)

• We can do better by augmenting the estimating equation with
information about partially observed cases
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Augmented Inverse Probability Weighting (aIPW)

• The original IPW estimating equation for µ = E (Y ) was

N∑
i=1

Ci

π(Vi ; ϕ̂)
(Yi − µ) = 0

• Consider augmenting with the expected residuals:

N∑
i=1

[
Ci

π(Vi ; ϕ̂)
(Yi − µ) +

(
1− Ci

π(Vi ; ϕ̂)

)
E{(Yi − µ)|Vi}

]
= 0

▶ For observed Y (Ci = 1): 1
π(Vi ;ϕ̂)

(Yi − µ) + π(Vi ;ϕ̂)−1

π(Vi ;ϕ̂)
E{(Yi − µ)|Vi},

i.e., weighted combination of observed and expected residual

▶ For missing Y (Ci = 0): E{(Yi − µ)|Vi}
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Augmented Inverse Probability Weighting (aIPW)

• This leads to the estimator

µ̂ =
1

N

N∑
i=1

{
CiYi

π(Vi ; ϕ̂)
− Ci − π(Vi ; ϕ̂)

π(Vi ; ϕ̂)
E (Yi |Vi )

}

• Assuming MAR, we can estimate E (Y |V ) using observed data only,
i.e., E (Y |V ) = E (Y |V ,C = 1)

• If we fit a regression model to estimate E (Y |V ,C = 1) = m(v ; ξ),
then the final aIPW estimator is

µ̂aipw =
1

N

N∑
i=1

{
CiYi

π(Vi ; ϕ̂)
− Ci − π(Vi ; ϕ̂)

π(Vi ; ϕ̂)
m(Vi ; ξ̂)

}
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Properties of aIPW Estimator

• aIPW estimator is doubly robust: consistent if either
▶ The missingness model π(v ;ϕ) is correctly specified, or
▶ The model m(v ; ξ) for E (Y |V ) is correctly specified

• Also more efficient than IPW estimator

• (Practical challenge: most implementations apply in limited settings –
e.g., for particular causal inference estimands, allowing missingness
only in outcome, requiring key predictor to be binary)
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Example: Estimating Average Income

• R package iWeigReg can perform DR estimation for a mean

• Missingness model: logit {P(C = 1|Educ,Age,Metro)} = Xβ

• Outcome regression model: E (Income|Educ,Age,Metro) = Xβ
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Example: Estimating Average Income

• Complete-data mean: $87,150
• Listwise deletion mean: $85,420
• IPW estimate: $91,370 (SE = $3,970)
• DR estimate is $89,700 (SE = $3,020)
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Example: Estimating Average Income

Let’s check long-term behavior with repeated simulations (in thousand $):

95% CI

Method Mean SD(x̄) Coverage

Full-data 84.9 1.27 95.2%

Listwise deletion (CC) 82.7 1.55 69.3%

IPW 85.1 1.73 95.6%

DR 84.9 1.67 95.0%
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aIPW for Regression

• Augmenting the IPW estimating equations for regression follows a
similar procedure:

▶ Define analysis model, µ(x ; θ) = E (Y |X ; θ)
▶ Define augmented model, m(x , v ; ξ) = E (Y |X ,V ; ξ)
▶ Math proceeds as before

• Complication: m(x , v ; ξ) and µ(x ; θ) must be compatible, i.e.,

µ(X ; θ) = E (Y |X ) = E{E (Y |X ,V )|X} = E{m(X ,V ; ξ)|X}

▶ One solution is to assume centered residual and centered V are
multivariate normal (conditional on X)
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Weighting in Longitudinal Studies

Weighted generalized estimating equations (WGEE) can account for
dropout under MAR. Briefly:

• Model the probability of remaining in the study at time j given
presence at time j − 1 (e.g., using logistic regression),

πij = P(Cij = 1|Ci ,j−1 = 1)

• Then these conditional probabilities can be chained to get the
unconditional P(observed at time j),

P(complete until j) = πij × πi ,j−1 × · · · × πi1

• So, for a case with dropout at time k + 1, the inverse probability of
observation until k is:

wik = [πij × πi ,j−1 × · · · × πi1]
−1
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Weighting in Longitudinal Studies

• These weights are combined with weights related to the “working
covariance” in the GEE framework for estimation

▶ Beyond the scope of this module – see, e.g., Applied Longitudinal
Analysis by Fitzmaurice, Laird, and Ware

▶ R package wgeesel includes wgee for regular IPW (weighted GEE) and
drgee for doubly-robust GEE estimation

• Assumptions: typical GEE assumptions, plus model for P(dropout)
must be correct
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Summary: IPW

• Characteristics
▶ Semi-parametric: solution to unbiased estimating equations
▶ Weights complete cases by the probability of being a complete case
▶ Missingness model is based on fully observed characteristics

• Advantages
▶ Consistent, assuming (1) MAR, (2) correctly specified mean model,

and (3) correctly specified missingness model
▶ May be easier to specify missingness model than full joint likelihood

• Disadvantages
▶ Inefficient: only uses complete cases
▶ Variance estimation can be conservative (especially if there are very

large weights) – consider alternatives such as bootstrapping

• Practical notes
▶ Model misspecification may cause very large weights; check for this
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Summary: aIPW

• Characteristics
▶ Adds a second term to the estimating equation

(weighted combination of observed and expected residual)
▶ Allows some information from incomplete cases to be used

• Advantages
▶ More efficient than IPW (uses more information)
▶ Doubly robust: consistent if either missingness model or model for

E (Y |V ) is correctly specified

• Disadvantages
▶ May be difficult to specify the two key pieces; unclear, for example,

whether to aim for relatively minimalist or maximal models
▶ May still be less efficient than maximum likelihood methods
▶ Convenient, reliable, general-case software implementations are hard to

find
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MI vs. IPW

• MI is typically more efficient and allows more missing data patterns

• There are a few special cases where IPW might still be preferred:
▶ Specification of the imputation model can be difficult (e.g., including

all appropriate nonlinear terms and interactions)
▶ If most cases with missing data have many missing variables, it may

make sense to exclude those cases rather than make assumptions about
the joint distribution of all missing variables

• Combining MI and IPW:
▶ Define a rule for including an individual (e.g., based on % data

observed)
▶ Impute missing values for included individuals
▶ Use IPW to account for exclusion of individuals who did not meet

criteria

(See Seaman et al (2012), Little, Carpenter, and Lee (2022), and others for more)
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The Difficult Case: Non-Ignorable Missingness

“All happy families are alike; each unhappy family
is unhappy in its own way.” –Leo Tolstoy, Anna Karenina

All of the analyses we have seen so far require researchers to make
assumptions that cannot be verified based on the observed data.

• Are the data MAR? Would need to know P(R|Z full) = P(R|Z obs)

• What is the MNAR mechanism? Would need to know P(R|Z full)

So, we will assess robustness to departures from our assumptions
(i.e., sensitivity of conclusions to different forms of dependence on Z full).
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Problem of Identifiability

• The ideal full data would be (R,Z )

• The observed data, (R,Z obs), are a many-to-one transformation
▶ There are many joint distributions pR,Z that will lead to the same

distribution for (R,RZ )
▶ We cannot determine which of these actually generated the data

• Idea of sensitivity analysis:
▶ Specify distribution of R|Z (or Z |R) =⇒ full joint distribution

becomes identifiable
▶ See how much estimates and inference change
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Approach 1: Pattern-Mixture Models (P(Z |R))

• Sensitivity parameter (δ) specifies how distribution of Z differs
between missing and non-missing observations

▶ Natural connection to MI and likelihood-based methods

• Joint (R,Z ) likelihood is factored as follows:

f (zi , ri |ϕ, γ) = f (zi |ri , ϕ)× f (ri |γ)
= model for y within pattern ri × probability of pattern ri
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Approach 1: Pattern-Mixture Models (P(Z |R))

• E.g., in the case of simple mean estimation, assume

E (Z |R = 0) = E (Z |R = 1) + δ

and plug in a plausible range of δ

• In the case of more complex models, may use mean shift,

E (Z |V ,R = 1) = E (Z |V ,R = 0) + δ

or a functional that depends on V ,

E (Z |V ,R = 1) = E (Z |V ,R = 0) + s(V ; δ)
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Example: NHANES Average Systolic Blood Pressure

Mean estimation:

• Suppose we are interested in estimating average systolic blood
pressure (5% missingness)

• Observed average: x̄CC = 110.9

• We’ll consider a range of mean shifts for subjects with missing data:

E (Z |R = 0) = E (Z |R = 1) + δ

δ ∈ {−3,−2,−1,+1,+2,+3SD}
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Example: NHANES Average Systolic Blood Pressure
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Example: NHANES Average Systolic Blood Pressure

• We can visualize this as either absolute or percent change in the
estimated mean depending on severity of MNAR:
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Example: NHANES Regression for Cholesterol

Mean estimation:

• Now let’s return to the example from earlier: we want to fit the model

TotChol = β0 + β1 × Age + β2 × Pulse + β3 × BPSysAve

• The mice package used for multiple imputation can also perform
sensitivity analyses using pattern mixture models (argument post)

• We’ll consider the same MNAR patterns: observations missing SBP
have a linear shift of δ ∈ {−3,−2,−1,+1,+2,+3SD} from the value
we would have predicted
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Example: NHANES Regression for Cholesterol

For Step 1, we need to specify the function to apply to imputed missing
values (for each variable for which we want to do a sensitivity analysis):
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Example: NHANES Regression for Cholesterol

Steps 2 and 3 look the same as before:
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Example: NHANES Regression for Cholesterol

The pooled results for β3, the coefficient for systolic BP, are:

Delta Estimate d SE P-value

-3 SD 0.0053 -0.0024 0.0016 0.0011

-2 SD 0.0064 -0.0013 0.0018 0.0002

-1 SD 0.0074 -0.0003 0.0019 0.0001

0 SD (MAR) 0.0077 0 0.0019 0.0001

1 SD 0.0074 -0.0003 0.0019 0.0002

2 SD 0.0067 -0.0010 0.0018 0.0002

3 SD 0.0052 -0.0025 0.0016 0.0013

where d = β̂(δ)− β̂(δ = 0)
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Approach 2: Selection Models (P(R |Z ))

• Sensitivity parameter (δ) specifies how probability of R = 1 differs
depending on value of Z

• Joint (R,Z ) likelihood is factored as follows:

f (zi , ri |θ, ψ) = f (zi |θ)× f (ri |zi , ψ)
= complete-data model×model for md mechanism
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Approach 2: Selection Models (P(C |Z ))

• E.g., assume logit{P(C = 1|Z )} = α+ δZ
▶ eδ is the odds ratio for missingness associated with a unit change in Y :

eδ =
Odds(C = 1|Y = y + 1)

Odds(C = 1|Y = y)

▶ Larger (positive or negative) values for δ indicate larger departures
from MCAR

▶ (Economists often use probit instead for this)

• Goal: find the range of µ(δ) induced from the distribution of the
observed data for a plausible range of δ
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Approach 2: Selection Models (P(C |Z ))

• We can’t estimate α and δ from the observed data (Z is missing
whenever C = 0)

• Instead, we’ll fix δ and estimate α
▶ Let π(Z ;α, δ) = P(C = 1|Z ) = expit(α+ δZ )
▶ This may be rewritten as

1

π(Z ;α, δ)
= 1 + exp{−(α+ δZ )}

=⇒ 1 = π(δ) [1 + exp{−(α+ δZ )}]

so α̂(δ) may be estimated by solving the estimating equations

N∑
i=1

(Ci [1 + exp{−(α+ δZi )}]) = 0
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Approach 2: Selection Models (P(C |Z ))

• For estimating the mean µ, with the assumed δ and estimated α, is:

µ̂(δ) =
1

N

N∑
i=1

CiZi [1 + exp{−(α̂(δ) + δZi )}]

(note the second term is effectively an IPW weight: 1
π(Z ;α,δ))

• In the case of more complex models, assume

logit{P(C = 1|Z ,V )} = α(V ) + δ(Z ,V )

for sensitivity function δ(Z ,V )
▶ From there, analagous to the procedure above
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Pattern-Mixture Models vs. Selection Models

• Pattern-mixture models:
▶ Conceptually natural if population strata are defined by missing-data

pattern
▶ May be easier to implement – closer to current form of data
▶ Avoids specifying form of missing-data mechanism
▶ Conceptually more similar to imputation (fill in missing data,

assumptions about MNAR)

• Selection models:
▶ Conceptually natural if interested in entire population
▶ (Used to be) more common in the literature
▶ Sensitive to the selected form of missing-data mechanism
▶ May pair naturally with IPW (weight observed data, assumptions about

MNAR)
▶ Out-of-the-box software (in R) is much harder to find and less

well-documented for selection models than for pattern-mixture models
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Case Studies: Missing Data in the Literature

• Missing data has existed for as long as data has existed, and people
have been doing something about it

• We have discussed some effective methods, and some less effective
methods, for handling missing data

• What are people choosing to do in practice?
▶ Case studies from recent literature in epidemiological and medical

journals
▶ For each, think about:

1. What assumptions are they making with that choice?
2. What would you want to know in order to evaluate whether those

assumptions are reasonable?
3. Do you expect this approach to yield valid inference?
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Ex: Occupational Sitting and Standing (AJE)

A Plantinga and K Wilson (Module 6) Missing Data SISCER 2023 205 / 232



Ex: Occupational Sitting and Standing (AJE)

Outline of study:

• Objective: to compare the association of occupational sitting vs.
occupational standing with incident heart disease

• Data: administrative medical records for 7,320 respondents to the
Canadian Community Health Survey (50% male)

▶ Complete cases only (86% of eligible sample)

• Conclusions: occupational standing is associated with 50% higher risk
of incident heart disease than occupational sitting
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Ex: Occupational Sitting and Standing (AJE)

• Complete case analysis

• Checked MAR vs MCAR
(association of missing
indicator with covariates)
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Ex: Cardiovascular Risk Score (BMJ)
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Ex: Cardiovascular Risk Score (BMJ)

Outline of study:

• Objective: to derive and validate a new UK cardiovascular disease risk
score (QRISK)

• Data: 1.28 million patients (318 practices) to develop score, 0.61
million patients (160 practices) to validate

• Conclusions: New score does not overestimate cardiovascular disease
risk nearly as much as Framingham or a Scottish score
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Ex: Cardiovascular Risk Score (BMJ)
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Ex: Cardiovascular Risk Score (BMJ)

The authors revised their imputation procedure shortly after publication
(in response to letters from readers):

• “We have improved our implementation of multiple imputation for
missing data. Our revised model for imputation includes more
variables in addition to those originally included. [...] the estimated
hazard ratios for the cholesterol ratio term in males and females
increased to more biologically plausible values given our combined
outcome of cardiovascular disease.”
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Ex: Cardiovascular Risk Score (BMJ)

Their original analysis was later included in an overview of potential pitfalls
of MI (and revised analysis highlighted as an appropriate correction):
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Ex: Cardiovascular Risk Score (BMJ)

• “The researchers correctly identified a difficulty with missing data in
their database and used multiple imputation to handle the missing
data in their analysis. In their published prediction model, however,
cardiovascular risk was found to be unrelated to cholesterol (coded as
the ratio of total to high density lipoprotein cholesterol), which was
surprising.”

• “The main reasons for the unexpected finding of a null association
between cholesterol level and cardiovascular risk were omission of the
cardiovascular disease outcome when imputing missing cholesterol
values and calculation of the ratio of cholesterol to HDL based on
imputed cholesterol and HDL values, which led to extreme values of
the ratio being included in estimations. The impact of these pitfalls
was increased by the high proportion of missing data (70% of HDL
cholesterol values were missing).”
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Ex: Telehealth in Psychiatric Care (JAMA Psychiatry)
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Ex: Telehealth in Psychiatric Care (JAMA Psychiatry)

Outline of study:

• Objective: to compare “two clinic-to-clinic interactive video
approaches” to delivering care for PTSD or bipolar disorder

▶ Treatment 1 (TCC): Telepsychiatry = remote delivery of direct
psychiatric care

▶ Treatment 2 (TER): Collaborative care = psychiatrist consults
remotely with primary care team

• Participants and approach:
▶ 1004 patients from 24 primary care clinics
▶ Randomized to TCC or TER, followed for 12 months
▶ Primary outcome: patient-reported outcome, Veterans RAND 12-item

Health Survey Mental Component Summary score

• Conclusions: significant improvement in both groups, no significant
difference between the groups
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Ex: Telehealth in Psychiatric Care (JAMA Psychiatry)

• 71-72% of each group
were still in the study at
6 month follow-up

• 63-64% were still in the
study at 12 months
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Ex: Telehealth in Psychiatric Care (JAMA Psychiatry)

(Supplementary Table)
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Ex: Telehealth in Psychiatric Care (JAMA Psychiatry)

“Even under the most extreme

assumptions, where 50% of

missing data were MNAR and

the observed treatment effect

was biased downward because

participants missing in TER had

trajectories 2 standard

deviations better than those

missing in TCC, bias would

remain very small (d = 0.11).”

(Supplementary Figure 2)
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Reporting
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Template - Multiple Imputation

Template suggestion from Stef van Buuren:

The percentage of missing values across the nine variables varied between 0 and
34%. In total 1601 out of 3801 records (42%) were incomplete. Many girls had
no score because the nurse felt that the measurement was “unnecessary,” or
because the girl did not give permission. Older girls had many more missing data.
We used multiple imputation to create and analyze 40 multiply imputed datasets.
Methodologists currently regard multiple imputation as a state-of-the-art
technique because it improves accuracy and statistical power relative to other
missing data techniques. Incomplete variables were imputed under fully
conditional specification, using the default settings of the mice 3.0 package (Van
Buuren and Groothuis-Oudshoorn 2011). The parameters of substantive interest
were estimated in each imputed dataset separately, and combined using Rubin’s
rules. For comparison, we also performed the analysis on the subset of complete
cases.
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Advice I

• No free lunch! We have to make assumptions about the missingness
mechanism (unless missingness was by design)

▶ It is worthwhile to spend effort in the study design stages to limit
missingess and plan to collect variables that can be used to predict
missing values

▶ An assumption of MCAR is usually not appropriate

▶ Use background knowledge, scientific literature, etc. to defend
assumptions

• Carefully plan ahead of time and describe in detail the procedure(s)
taken to handling missing data in analysis plans and manuscripts
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Advice II

• Complete case analysis can sometimes be valid and optimal(!)

▶ Example: regression of Y on X → complete case is valid if missingness
(in Y or X ) depends on X only and not Y (not always efficient,
however)

• Approaches that exist for handling missing data assuming MAR (that
we discussed here) include maximum likelihood, multiple imputation,
and inverse probability weighting

▶ Efficiency

▶ Ease of implementation

• Use sensitivity analyses to assess robustness of inference
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Appendix: EM Algorithm Example

Preliminaries:

f (yi |x1i , x2i ) =
1√
2πσ2

exp

(
− 1

2σ2
(yi − (β0 + β1x1i + β2x2i ))

2

)
f (x2i |x1i ) =

1√
2πτ 2

exp

(
− 1

2τ 2
(x2i − (α0 + α1x1i ))

2

)
l(θ|x1i , x2i , yi ) = −1/2 log(2πσ2)− 1

2σ2
(yi − (β0 + β1x1i + β2x2i ))

2

− 1/2 log(2πτ 2)− 1

2τ 2
(x2i − (α0 + α1x1i ))

2

= −1/2 log(2πσ2)− 1/2 log(2πτ 2)

− 1

2σ2

[
(yi − (β0 + β1x1i ))

2 − 2β2(yi − (β0 + β1x1i ))x2i + β2
2x

2
2i

]
− 1

2τ 2
[
x22i − 2(α0 + α1x1i )x2i + (α0 + α1x1i )

2
]
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Appendix: EM Algorithm Example
Thus, l(θ|x1, x2, y) =

∑n
i=1 l(θ|x1i , x2i , yi )

E [l(θ|x1, x2, y)|x(obs)2 , θ = θ(t−1)] =
n∑

i=1

E [l(θ|x1i , x2i , yi )|x (obs)
2 , θ = θ(t−1)]

= −n/2 log(2πσ2)− n/2 log(2πτ 2)

− 1

2σ2

n∑
i=1

(yi − (β0 + β1x1i ))
2 − 1

2τ 2

n∑
i=1

(α0 + α1x1i )
2

+
1

σ2

n∑
i=1

β2(yi − (β0 + β1x1i ))E [X2i |x(obs)2 , θ = θ(t−1)]

− 1

2σ2

n∑
i=1

β2
2E [X

2
2i |x

(obs)
2 , θ = θ(t−1)]

− 1

2τ 2
E [X 2

2i |x
(obs)
2 , θ = θ(t−1)]

+
1

τ 2

n∑
i=1

(α0 + α1x1i )E [X2i |x(obs)2 , θ = θ(t−1)]
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Appendix: EM Algorithm Example

Note that (conditional on x1)(
Yi

X2i

)
∼ N

((
β0 + β1x1i + β2(α0 + α1x1i )

α0 + α1x1i

)
,

(
σ2 + β22τ

2 β2τ
2

β2τ
2 τ2

))

Thus, for i = 1, . . . ,m (where x2i is missing)

E [X2i |x(obs)2 , θ = θ(t−1)] = α
(t)
0 + α

(t)
1 x1i

+
β
(t)
2 τ 2(t)

β
2(t)
2 τ 2(t) + σ2(t)

(yi − (β
(t)
0 + β

(t)
1 x1i + β

(t)
2 (α

(t)
0 + α

(t)
1 x1i ))

E [X 2
2i |x

(obs)
2 , θ = θ(t−1)] =

σ2(t)

β
2(t)
2 τ 2(t) + σ2(t)

+
(
E [X2i |x(obs)2 , θ = θ(t−1)]

)2

otherwise, E [X2i |x
(obs)
2 , θ = θ(t−1)] = x2i and

E [X 2
2i |x

(obs)
2 , θ = θ(t−1)] = x22i
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Appendix: Inconsistency of CC Estimator

We can show that µ̂CC does not generally converge in probability to
E (Y ) = µ:

µ̂CC =

∑N
i=1 CiYi∑N
i=1 Ci

p→ E (CY )

E (Y )
by LLN

=
E{E (CY |Y ,V )}
E{E (C |Y ,V )}

by iterated expectations

=
E{YE (C |Y ,V )}
E{E (C |Y ,V )}

=
E{Y π(V )}
E{π(V )}

̸= E (Y ) = µ if Y , V not indep.
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Appendix: Consistency of IPW Estimator

To prove consistency, we will show that the estimating function is
unbiased, i.e.,

Eµ

{
C

π(V )
(Y − µ)

}
= 0

The proof uses the law of iterated conditional expectations:

Eµ

{
C

π(V )
(Y − µ)

}
= Eµ

[
E

{
C

π(V )
(Y − µ)|Y ,V

}]
= Eµ

{
E (C |Y ,V )

π(V )
(Y − µ)

}
= Eµ

{
π(V )

π(V )
(Y − µ)

}
by definition of π(V )

= Eµ(Y − µ) = 0 because π(V ) > 0 a.s.
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