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Course Goals/Summary

Learn what absolute risk (or crude risk or cumulative incidence) is

Learn how to estimate it from data from various designs

Learn how to assess the validity and usefulness of an absolute risk
model

Learn what it can be used for
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Some Books on Absolute Risk/Competing Risks

Kalbfleisch & Prentice. The Statistical Analysis of Failure Time Data,
2002

Andersen, Borgan, Gill & Keiding. Statistical Models Based on
Counting Processes, 1993

Van Houwelingen & Putter. Dynamic prediction in clinical survival
analysis. 2012

Beyersmann, Schumacher & Allignol. Competing risks and multistate
models with R. 2012

Geskus. Data analysis with competing risks and intermediate states.
2016

Pfeiffer & Gail. Absolute risk: methods and applications in clinical
management and public health. 2018
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https://www.routledge.com/

Absolute-Risk-Methods-and-Applications-in-Clinical-Management-and-Public/

Pfeiffer-Gail/p/book/9780367657819
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Outline Day 1

1 Definitions of “risk”

2 Brief review of survival analysis

3 Competing risks
4 Estimation of absolute risk

Without covariates from cohorts
With covariates from cohort data
By combining observational studies with registry data

5 Assessment of risk model performance
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Outline Day 2

1 Assessment of risk model performance

Assessing calibration with missing predictors
Comparing two models

2 Applications of absolute risk
3 Miscellaneous topics:

Updating risk models
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Definitions of “Risk”: Relative Risk

Ratio of probability of event in exposed versus a non-exposed group;
epidemiologic/etiologic research
35 year-old woman with

- two sisters with breast cancer

- no children

- age 12 years at first period

- other risk factors at lowest risk level

Relative risk RR =5.39 compared to woman at lowest level of risk
for ALL risk factors

7 / 101



Definitions of “Risk”: Probability of Outcome

Clinical and public health applications

Prevalence: P(condition present in patient)

Probability of future event of cause 1 (e.g. cancer)
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Probability of outcome: prevalence models

Prevalence: P(condition present in patient)

Y = 1, 0 condition or disease present (1)/absent (0)

modeled by e.g. logistic regression as function of factors
X = (X1, . . . ,Xp)

P(Y = 1|X1, . . . ,Xp) =
exp(β0 + β1X1 + . . .+ βpXp)

1 + exp(β0 + β1X1 + . . .+ βpXp)

β1X1 + . . .+ βpXp: “ risk score”

β0 captures disease prevalence for person with all X = 0
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Example: Prevalence Model for Prostate Cancer

https://riskcalc.org/PCPTRC(Thompson et al, JNCI, 2006)
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Definitions of “Risk”: Probability of Outcome

Clinical and public health applications

Prevalence: P(condition present in patient)

Probability of future event of cause 1 (e.g. cancer) :
T : time to event

- “Pure risk”:
P(a < T ≤ a + τ, cause=cancer|T > a, there are no competing risks)

- Absolute risk: (or “crude risk”, or “cumulative incidence”)
P(a < T ≤ a + τ, cause=cancer|T > a, there are competing risks)
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“Risk” Definitions: Probability of future event of cause 1:

Clinical and public health applications
T : time to event (e.g. breast cancer diagnosis)

- “Pure risk”:
P(a < T ≤ a + τ, cause=1|T > a, there are no competing risks)
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Survival Concepts and Definitions

T ≥ 0 survival or event time

S(t) = P(T > t) survival function

f (t) = limε↓0
P(t≤T<t+ε)

ε density function

h̃(t) = limε↓0
P(t≤T<t+ε |T≥t)

ε hazard function

h̃ is infinitesimal probability that if person survives to t he/she will have
event in next instant
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Hazard h̃(u) can be interpreted as transition rate between
states

Healthy Dead
h̃(t)
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Survival Concepts and Definitions

T ≥ 0 survival or event time

S(t) = P(T > t) survival function

f (t) = limε↓0
P(t≤T<t+ε)

ε density function

h̃(t) = limε↓0
P(t≤T<t+ε |T≥t)

ε hazard function

h̃ is infinitesimal probability that if person survives to t he/she will have
event in next instant
Key relationship:

h̃(t) =
f (t)

S(t)
= −S ′(t)

S(t)
= −d log{S(t)}

dt
and as S(0) = 1

S(t) = exp

{
−
∫ t

0
h̃(u)du

}
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Why Special Methods for Estimating S(t) are Needed:
Incomplete Data (Censoring, Truncation )

(Right) Censoring: event times are not observed exactly, only known
to fall in certain time interval

Reasons for censoring:
- individual drops out of study (lost to follow up)
- study ends before person have event
- individual has event that precludes having event of interest (e.g. dies

from heart attack before cancer is diagnosed)

Ignoring censoring leads to biased estimates of distribution of
survival time and related quantities

(Left) Truncation: person had to survive past certain time to get
into study

16 / 101



Estimation of S

Survival function can be determined directly from hazard function

S(t) = exp

{
−
∫ t

0
h̃(u)du

}
Methods for estimating hazard function from sample of event times

Nonparametric
Parametric
Semiparametric
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Non-parametric Estimate of S(t): Kaplan-Meier Estimate

t1 < t2 < . . . < td are ordered times when events occur

nj number of subjects still under follow-up at tj

dj number of events at tj

Probability of being alive at the t calculated iteratively from conditional
survival to ti :

P(T > tj |T > tj−1) =
nj − dj

nj

as

SKM(t) =
∏
j :tj≤t

P(T > tj |T > tj−1) =
∏
j :tj≤t

nj − dj
nj

=
∏
j :tj≤t

{
1−

dj
nj

}
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Non-parametric Estimate of S(t): Kaplan-Meier Estimate

t1 < t2 < . . . < td are ordered times when events occur

nj number of subjects still under follow-up at tj

dj number of events at tj

Kaplan-Meier survival function estimate: SKM(t) =
∏

j :tj≤t

{
1− dj

nj

}
Notice, estimate of hazard is ĥ(tj) = P(event at tj |T > tj−1) =

dj
nj

Use exp(−x) ≈ 1− x to get

SKM(t) =
∏
j :tj≤t

{
1−

dj
nj

}
≈ exp(−

∑
j :tj≤t

dj
nj

) = exp

−∑
j :tj≤t

ĥ(tj)
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Non-parametric Estimate of S(t): Kaplan-Meier Estimate

If last  observation corresponds to death, the 
curve drops to 0% survival. If last observation 
is for censored time, curve end above 0%.

1
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Incorporating Covariates into Hazard Function

- Covariates X = (X1, . . . ,Xp)

- Model hazard function as

h̃(t|X) = h0(t)rr(X)

- h0(t) baseline hazard function (when all Xi = 0)

- h0(t) unspecified or assume parametric form (e.g. exponential)

- rr(X) relative risk term, e.g. rr(X) = exp(β1X1 + . . .+ βpXp) Cox
proportional hazards model (Cox 1972)

- h(t|Xi )
h(t|Xi=0) = h0(t) exp(βiXi )

h0(t) = exp(βi ) is hazard ratio for Xi :
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“Risk” Definitions: Pure risk for Prognosis or Predicting
Incidence

P(a < T ≤ a + τ, cause=1|T > a,X, there are no competing risks)

= S(a + τ |X)/S(a|X) = exp

{
−
∫ a+τ

a
h̃(u|X)du

}
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Choice of Time Scale

Age

- Important predictor of incidence
- Need to account for left-truncation and right censoring

Time on study

- Requires careful modeling of age as covariate for predicting incidence
- Better than age for predicting e.g. death from cancer following

diagnosis
- Only right censoring

Calendar time

- Requires careful modeling of age as covariate for predicting incidence
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Choice of Time Scale: Age

age

+

+

0 85

person

1

2

3

4

Bullet indicates start of follow up, i.e. age at entry into study. End of
follow up: age at event or censoring subject to left truncation and right
censoring
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Choice of Time Scale: Time on Study

Time on study 

+

+

0 20

Person

4

3

2

1
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Multiple Types of Events

- Pure risk: one type of event, censoring

- Absolute risk: different (competing) types of events: e.g. breast
cancer diagnosis, death from other causes
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“Risk” Definitions: Probability of future event of cause 1:

Clinical and public health applications
T : time to event

- “Pure risk”:
P(a < T ≤ a + τ, cause=1|T > a, there are no competing risks )

- Absolute risk: (or “crude risk”, or “cumulative incidence”)
P(a < T ≤ a + τ, cause=1|T > a, there are competing risks)
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Absolute Risk

T : time to event
R(a, a + τ,X) = P(a < T ≤ a + τ, cause=1|T > a, there are competing
risks)

Age
Risk factors X

Die before cancer

Diagnosed with cancer

a τ+
a

1
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Cause Specific Hazard (! Math)

Have M event types, observe T = min(T1, . . . ,TM)
Ti have joint survival function S(t1, . . . , tM) = P(T1 > t1, . . . ,TM > tM)
Pure (net) hazard function for cause m,

h̃m(t) = lim
ε↓

P (t ≤ T < t + ε|T ≥ t, no other causes acting)

ε

h̃m(t) = − ∂

∂tm
log{S(t1, . . . , tM)}|t1=0,...,tm=t,=tM=0

Cause-specific hazard function

hm(t) = lim
ε↓0

P (t ≤ T < t + ε, cause = m|T ≥ t)

ε

hm(t) = − ∂

∂tm
log{S(t1, . . . , tM)}|t1=...=tM=t
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Cause Specific Hazard, cont. (! Math)

- S(t, . . . , t) = P(T1 > t, . . . ,TM > t) =

exp
{
−
∫ t

0

∑M
m=1 hm(u)du

}
= S(t) estimable from observed data

- Cause-specific hazard hm(t) estimable because can observe
instantaneous risk of event m among those at risk at t

- Any function that depends only on hm is estimable

- Joint survival function S(t1, . . . , tM) only identifiable under
parametric models or under assumption that Tm independent

- If all Tm independent, hm = h̃m

30 / 101



Cause Specific Hazard, cont. (! Math)

- S(t, . . . , t) = P(T1 > t, . . . ,TM > t) =

exp
{
−
∫ t

0

∑M
m=1 hm(u)du

}
= S(t) estimable from observed data

- Cause-specific hazard hm(t) estimable because can observe
instantaneous risk of event m among those at risk at t

- Any function that depends only on hm is estimable

- Joint survival function S(t1, . . . , tM) only identifiable under
parametric models or under assumption that Tm independent

- If all Tm independent, hm = h̃m

30 / 101



Cause Specific Hazard, cont. (! Math)

- S(t, . . . , t) = P(T1 > t, . . . ,TM > t) =

exp
{
−
∫ t

0

∑M
m=1 hm(u)du

}
= S(t) estimable from observed data

- Cause-specific hazard hm(t) estimable because can observe
instantaneous risk of event m among those at risk at t

- Any function that depends only on hm is estimable

- Joint survival function S(t1, . . . , tM) only identifiable under
parametric models or under assumption that Tm independent

- If all Tm independent, hm = h̃m

30 / 101



Cause Specific Hazard, cont. (! Math)

- S(t, . . . , t) = P(T1 > t, . . . ,TM > t) =

exp
{
−
∫ t

0

∑M
m=1 hm(u)du

}
= S(t) estimable from observed data

- Cause-specific hazard hm(t) estimable because can observe
instantaneous risk of event m among those at risk at t

- Any function that depends only on hm is estimable

- Joint survival function S(t1, . . . , tM) only identifiable under
parametric models or under assumption that Tm independent

- If all Tm independent, hm = h̃m

30 / 101



Cause Specific Hazard, cont. (! Math)

- S(t, . . . , t) = P(T1 > t, . . . ,TM > t) =

exp
{
−
∫ t

0

∑M
m=1 hm(u)du

}
= S(t) estimable from observed data

- Cause-specific hazard hm(t) estimable because can observe
instantaneous risk of event m among those at risk at t

- Any function that depends only on hm is estimable

- Joint survival function S(t1, . . . , tM) only identifiable under
parametric models or under assumption that Tm independent

- If all Tm independent, hm = h̃m

30 / 101



Related Survival Functions

Joint survival function

S(t1, . . . , tM) = P(T1 > t1, . . . ,TM > tM) = only identifiable under
parametric models or assuming that Tm independent

Overall survival function:

recall T = min(T1, . . . ,TM)

P(T > t) = S(t, . . . , t) = P(T1 > t, . . . ,TM > t) =

exp
{
−
∫ t

0

∑M
m=1 hm(u)du

}
estimable

absolute risk for cause 1:
P(T < t, cause=1) =

∫ t
0 h1(s,X) exp

[
−
∫ s

0

∑M
m=1 hm(u)du

]
ds
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Absolute versus Relative Risk

Woman with two sisters with breast cancer, no children, age 12 years at
first period: RR=5.39

5-Year absolute breast
Current age cancer risk

35 1.1 %

75 6.7 %
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Examples of 5-year Absolute Risk of Breast Cancer

75 year old women35 year old women
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Absolute versus Pure Risk

Absolute (“Crude”) and “Pure” Risk in 1000 60-Year Old Women

Age at start # at risk # incident # Deaths from
of interval breast cancers # other causes

60 1000 17 44
65 939 20 63
70 856 22 89
75 745 . . . . . .

Absolute risk of breast cancer to age 75 is 17+20+22
1000 = 5.9%

Pure risk of breast cancer to age 75 is
1− (1− 17/1000)(1− 20/939)(1− 22/856) = 6.3%
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Absolute versus Pure Risk

Absolute risk: no competing risk assumptions like “independence”

Absolute risk clinically relevant because eliminating other deaths is
not realistic (absolute risk < pure risk as competing causes reduce
risk of getting cancer)

Absolute risk nearly equals pure risk if competing causes are rare (e.g.
short prediction intervals)

Pure risk has etiologic interest as a description related to cumulative
cause-specific hazard
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Some Cancer Risk Models

Cancer incidence

https://bcrisktool.cancer.gov/(breast BCRAT)
https://ccge.medschl.cam.ac.uk/boadicea/ (breast BOADICEA)
https://ibis.ikonopedia.com/ (breast IBIS)
https://ccrisktool.cancer.gov/ (colorectal cancer)
https://mrisktool.cancer.gov/ (melanoma)
Other models: Bladder, Endometrial cancer, Lung, Ovary, Pancreas,
Prostate

Absolute risk of death from prostate cancer after diagnosis
(Albertson, Hanley, Fine, JAMA 2005)
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Some Choices in Risk Modeling

Genetic model versus empirical model

Choice of risk factors

Detailed family history
Reproductive history (e.g. age at first live birth)
Medical/lab history (e.g. biopsies, mammographic density, SNPs)

Data sources and “piecing together”the model

Target population: e.g. general population in UK or in US; or
high-risk clinic
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Genetically-based Models

Autosomal dominant

Use extensive family history and BRCA1/2 data
BRCAPRO (Berry et al, JNCI 1997)
Claus Model (Claus et al, Cancer,1994)

Autosomal dominant & residual familial effects

BOADICEA, Antoniou et al, BJC 2008
IBIS, Tyrer, Duffy and Cuzick, Stat Med 2005; This model includes
other factors such as LCIS, age at first live birth.
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Estimating Absolute Risk
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Estimating Absolute Risk from Cohort Data, no Covariates
Gaynor et al, JASA 1993

t1 < t2 < . . . < td are ordered times when events occur

dij number of events due to cause i = 1, 2 at tj

dj = d1j + d2j

nj number of subjects still under follow-up at tj

Maximum likelihood estimate of cause specific failure probability is

R̂(t) = P̂(T ≤ t, cause = 1) =
∑
j :tj≤t

d1j

nj
ŜKM(tj−1) =

∑
j :tj≤t

ĥ1j Ŝ
KM(tj−1)
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Absolute versus Pure Risk

Absolute (“Crude”) and “Pure” Risk in 1000 60-Year Old Women

Age at start # at risk # incident # Deaths from
of interval breast cancers # other causes

60 1000 17 44
65 939 20 63
70 856 22 89
75 745 . . . . . .

Absolute risk of breast cancer to age 75 is
17/1000 + 20/939 ∗ (939/1000) + 22/856 ∗ (856/1000) 17+20+22

1000 = 5.9%
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Modeling Absolute Risk as Function of X
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Modeling Absolute Risk as Function of X: Two Approaches

T : time to event, X: risk factors
R(a, a + τ,X) = P(a < T ≤ a + τ, cause=1|T > a,X)

Healthy

Cancer

λ(a,X)

Cumulative incidence regression
(Fine & Gray, JASA 1999)
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Cumulative Incidence Regression, (Fine & Gray, JASA ’99)

Directly model cumulative incidence function of cause 1 as function of
covariates:

R(a, a + τ,X) = P(a < T ≤ a + τ, cause=1|T > a,X)

R is a sub-distribution function, i.e. a non-decreasing function of time with

R(∞) = P(cause=1)
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Cumulative Incidence Regression (Fine & Gray, JASA ’99)

Model R(t,X) = P(T ≤ t, cause=1|X) using link function g as

g{R(t,X)} = ψ0(t) + γ ′X

- ψ0 unspecified invertible monotone increasing function (captures
baseline failure probability)

- γ regression coefficients for covariates X

Fine and Gray ’99 used g(t) = log{log(1− t)}
incorporated X via proportional hazards model for sub-distribution hazard

λ(t,X) = −d log{1− R(t,X)}
dt

=

lim
ε↓0

P{t ≤ T < t + ε, cause = 1|T ≥ t ∪ (T ≤ t ∩ cause 6= 1),X)}
ε
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Cumulative Incidence Regression (Fine & Gray, JASA ’99)

Model R(t,X) = P(T ≤ t, cause=1|X) using link function g as

g{R(t,X)} = ψ0(t) + γ ′X

Fine and Gray ’99 used g(t) = log{log(1− t)}
incorporated X via proportional hazards model for sub-distribution hazard

λ(t,X) = −d log{1− R(t,X)}
dt

= λ0(t) exp(γ ′X)

where λ0(t) ≥ 0 is unspecified
Then ψ0(t) ≡ log{

∫ t
0 λ0(t)(s)ds} and

R(t,X) = 1− exp

{
−
∫ t

0
λ(s,X)ds)

}
If binary X has coefficient γ > 0 then R(t,X ) higher for those with X = 1
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Cumulative Incidence Regression: Estimation

R(t,X) = P(T ≤ t, cause=1|X) = 1− exp
{
− exp(γ ′X)

∫ t
0 λ0(s)ds

}
- partial likelihood with inverse probability of censoring weighting

(IPCW; Robins & Rotznitzky, 1992)

- Different risk sets compared to cause specific partial likelihood:
those who failed from other causes and those who have not failed
from cause 1 are at risk

- γ̂ estimated from weighted score function

- Λ̂(t,X) =
∫ t

0 λ(s,X)ds) estimated using modified Breslow estimator

- R̂(t,X) asymptotically normal

Implemented in STATA and R package cmprsk; left truncation with
time-dependent weights in R-package R package mstate de Wreede et al, 2001)
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Modeling and Estimating Absolute Risk: Two Approaches

T : time to event, X: risk factors
R(a, a + τ,X) = P(a < T ≤ a + τ, cause=1|T > a,X)

Healthy

Cancer

Healthy

Death from other
causes

Cancer

λ(a,X) h2(a,X)h1(a,X)

Cumulative incidence regression (Fine & Gray, JASA 1999)
Cause specific approach: model hm(a,X),m = 1, 2

48 / 101



Absolute Risk Model: Cause-specific Formulation

Focus on 2 types of events: 1=cancer, 2=death from other causes
Observe T= time to first event

hm(t) = lim
ε↓0

P (t ≤ T < t + ε, cause = m|T ≥ t)

ε
,m = 1, 2

Thus probability of no event in [0, t] is

P(T > t) = S(t) = exp

[
−
∫ t

0
{h1(u) + h2(u)}du

]
where S is overall survival function
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Absolute Risk Model: Cause-specific Formulation

R(a, a + τ,X) =P(T ≤ a + τ, cause=1|T > a,X) =∫ a+τ

a
h1(t,X) exp

[
−
∫ t

a
{h1(v ,X) + h2(v ,X)}dv

]
dt

- T event time

- h1(t,X) - hazard for cancer

- h2(t,X) - hazard for competing events (e.g. death)

- X - individual risk/protective factors

- τ - projection period
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General Strategy to Estimate Cause Specific Absolute Risk

- Model cause specific hazards: hi (t,X) = h0i (t)rr(β′iX), i = 1, 2

h0i - baseline hazard for cause i
rr(β′iX) = exp(β′iX) (standard Cox regression model)

- Estimate cause specific hazards ĥ1(t,X), ĥ2(t,X)

- Obtain “plug in” estimate

R̂(a, a + τ,X) =

∫ a+τ

a
ĥ1(t,X) exp

[
−
∫ t

a
{ĥ1(s,X) + ĥ2(s,X)}ds

]
dt

- For cohort data R package riskRegression implements regression
models for survival analysis with competing risks
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Cox Proportional Hazards Model for Full Cohort

hi (t,X) = h0i (t) exp(β′iX), i = 1, 2

- Benichou & Gail (’90) gave variance of absolute risk estimate R̂(t,X)
for

constant h0i (t)
piecewise constant h0i (t)
non-parametric h0i (t)

- Cheng, Fine & Wei (’98): confidence bands for R̂(t,X)

- Remark: Non-parametric estimation of absolute risk can be much
less efficient (variance ratio 4) than parametric estimation
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Semi-parametric Estimate of Absolute Risk

When no distributional assumption is made for h0m(t)

ĥ0m(tj) =

∑n
i=1 δmi (t)∑

i∈R(tj )
exp(β̂

′
mXm

i )
,m = 1, 2

where t1 ≤ t2 ≤ . . . are observed event times (possibly tied), δkj = 1 if

event at tj is of type k ; R(tj) risk set at tj ; β̂m is MLE from Cox model
Nelson-Aalen estimate of cumulative cause-specific baseline hazard

Ĥ0m(t) =
n∑

i=1

∫ t

0
ĥ0m(s)ds =

∑
tmi ≤t

ĥ0m(tmi )

tm observed event times for mth event type

Ĥm(t; Xm) =
∑
tmi ≤t

ĥ0m(tmi ) exp(β̂
′
mXm) = Ĥ0m(t) exp(β̂

′
mXm)
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Semi-parametric Estimate of Absolute Risk, cont.

semi-parametric estimate of absolute risk of event type 1 within interval
[t0, t1), given X and given no events until t0 is

R̂(t0, t1; X) = exp(β̂
′
1X1)

∑
t0≤tj<t1

ĥ0m(tj) exp{−
2∑

m=1

Ĥm(tj ; Xm)},

where tj are observed event times of type 1 occurring in [t0, t1)
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Comments

Estimate absolute risk from sub-samples of cohorts (two-phase
studies)

- Nested case-control design (Langholz and Borgan, 1997): at each
time a case develops sample individuals from risk set

- Case-cohort design (Prentice and Self, 1988): analyze data from
subcohort selected at start of follow-up and all cases observed during
follow up

- Raw data (e.g. serum samples) collected on all subjects at baseline but
analyzed only for cases and sub-cohort members.

For both designs cause-specific hazard for main cause of interest
modeled by Cox model, hazard for competing causes estimated
non-parametrically (no covariates)
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Example: Absolute Risk Model for Breast Cancer with
Modifiable Risk Factors “BCmod” Pfeiffer et al. PLoS Medicine, 2013

Combined data on white non-Hispanic women ages 50+ from two cohorts
to estimate relative risks for breast cancer

Cohort Cohort size Number of BC cases
NIH-AARP 178,463 5,480
PLCO 62, 249 2,215
Total number 240,712 7,695

To illustrate cohort methods for absolute risk, used only AARP cohort to
estimate relative risks (RRs) for invasive breast cancer and competing
mortality and baseline hazards
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Relative Risk Estimates for Breast Cancer Data Example
from Cox Model compared to Fine and Gray
sub-distribution from AARP Cohort

Risk factor Cause specific RR subdf RR
Family history of breast/ovarian cancer 1.39 1.39
Benign breast disease/biopsy 1.40 1.41
Age at menopause 1.18 1.14
Age at first live birth 1.17 1.16
Parity 1.32 1.29
Alcohol consumption
(0,< 1, 1+ drinks/day) 1.12 1.13
Body mass index (BMI)
(< 25, 25− 30, 30− 35, 35+) 1.09 1.10
Estrogen plus progestin HRT use
(never, 1-9, 10+years) 1.40 1.43
Other HRT use (no/yes) 1.16 1.23
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Example: Relative Risk Estimates for Breast Cancer and
Competing Mortality from AARP Cohort

Risk factor BC RR Comp RR
Family history of breast/ovarian cancer 1.39
Benign breast disease/biopsy 1.40 0.88
Age at menopause 1.18 0.86
Age at first live birth 1.17 0.93
Parity 1.32 1.13
Alcohol consumption
(0,< 1, 1+drinks/day) 1.12 1.13
Body mass index (BMI)
(< 25, 25− 30, 30− 35, 35+) 1.09 0.80
Estrogen plus progestin HRT use
(never, 1-9, 10+years) 1.40 0.75
Other HRT use (no/yes) 1.16 0.80
Smoking (never, former, current) 1.29
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Absolute BCmod Breast Cancer Risk Estimates: Two
60-year-old Women

Model Predictor Woman 1 Woman 2

Age at first birth 25 25
Number of life births 3 3
Menopausal yes (age 50) yes (age 55)
Past diagnosis of benign breast disease no no
Family history breast/ovarian cancer no no
Hormone replacement therapy use (duration) no yes (5yrs)
BMI, kg/m2 24 35
Alcohol consumption (drinks/day) 0 > 1
Relative BC risk 1.0 2.0
5 year absolute risk estimate 0.82% 2.9%

59 / 101



Limitations of Cohort Data

- Non-representative absolute risks

- Often assumed relative risks are generalizable but not baseline hazards

- Imprecise and unrepresentative data on competing cause of death

- Lack of detailed covariate data on whole cohort
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Comments

Estimate absolute risk from sub-samples of cohorts (two-phase
studies)

- Nested case-control design (Langholz and Borgan, 1997): at each
time a case develops sample individuals from risk set

- Case-cohort design (Prentice and Self, 1988): analyze data from
subcohort selected at start of follow-up and all cases observed during
follow up

- Raw data (e.g. serum samples) collected on all subjects at baseline but
analyzed only for cases and sub-cohort members.

For both designs cause-specific hazard for main cause of interest
modeled by Cox model, hazard for competing causes estimated
non-parametrically (no covariates)

Cause-specific approach allows combining data from different sources
to estimate hm(t,X)
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Combine Relative Risk Estimates with Registry Data

Estimate relative risk rr(X, t) and attributable risk AR(t) from

- Cohort data
- Nested case-control data
- Case-cohort data
- Case-control data

Registry (e.g. NCI’s Surveillance, Epidemiology, and End Results
(SEER) Program, population-based cancer registries covering 48% of
US population): Obtain composite age-specific hazard h∗1(t) and
competing mortality hazard h∗2(t)
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Attributable Risk, AR

Model hazard function: h1(t,X) = h10(t) exp(β′1X)

h∗10(t) composite sex- age-specific registry incidence rates (no covariates)

Attributabe risk of factors X: AR(X) =
h∗10(t)−h10(t)

h∗10(t)

Obtain
ĥ10(t) = h∗10(t)(1− ÂR(X))

Estimate AR(X) from case-control study for type 1 outcomes (Bruzzi et al
’85) (δ1i = 1 if person i has event of type 1, 0 otherwise, i.e. is case
indicator):

ÂR(t) = 1−
∑n

i=1 δ1i exp{ ˆ−β1
′
xi}∑n

i=1 δ1i
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Combine Data from Different Sources to Estimate h1(t,X)

h1(t,X) = h10(t) exp(β′1X)

Cohort, nested case-control,
case cohort, case-control data

Estimate relative risk, exp(β′X)
and attributable risk, AR(X)

Disease Registries: data on
incidence by age, sex, race, no
risk factors

h∗10(t), age, sex, race specific
composite hazard

Use that AR(X) =
h∗10(t)−h10(t)

h∗10(t) to get ĥ1(t,X) = h∗10(t)(1− ÂR) exp(β̂
′
1X)

R̂(a, a + τ,X) =
∫ a+τ
a ĥ1(t,X) exp

[
−
∫ t
a {ĥ1(s,X) + ĥ2(s)}ds

]
dt
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Absolute Risk Model for Breast Cancer in General US
Population Developed at NCI (Gail MH, et al., 1989, JNCI)

https://bcrisktool.cancer.gov/ (BCRAT or “Gail model”)
Predictors: History of biopsy/benign breast disease, family history of breast cancer, 
reproductive characteristics              
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Absolute Risk Model for Breast Cancer in General US
Population Developed at NCI (Gail MH, et al., 1989, JNCI)

Risk factors:

- Age at menarche

- Age at first life birth

- Number of first degree relatives with breast cancer

- Number of breast biopsies

- Diagnosis of atypical hyperplasia

http://www.cancer.gov/bcrisktool/
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Example: Absolute Breast Cancer Risk Model with
Modifiable Risk Factors (BCmod) Pfeiffer RM, et al., 2013, PLos Medicine

240 712 white women ages 50+
from two cohorts, 7 695 breast
cancers; predictors: reproduc-
tive & clinical factors, BMI, al-
cohol consumption, hormone
replacement therapy use

Estimated exp(β′X) and AR(X)

US SEER Cancer Registries:
data on race- and age-specific
incidence and competing mor-
tality

ĥ1(t,X) = h∗10(t)(1− ÂR) exp(β̂
′
1X)

R̂(a, a + τ,X) =
∫ a+τ
a ĥ1(t,X) exp

[
−
∫ t
a {ĥ1(s,X) + ĥ2(s)}ds

]
dt
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]
dt

67 / 101



Relative Risk Estimates for BCmod

Risk factor RR
Family history of breast/ovarian cancer 1.39
Benign breast disease/biopsy 1.40
Age at menopause 1.18
Age at first live birth 1.17
Nulliparous 1.32
Alcohol consumption (0, < 1, 1+drinks/day) 1.12
Body mass index (BMI)
(< 25, 25− 30, 30− 35, 35+) 1.09
Estrogen plus progestin HRT use
(never, 1-9,10+years) 1.40
Other HRT use (no/yes)
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Absolute BCmod Breast Cancer Risk Estimates: Two
50-year-old Women

Model Predictor Woman 1 Woman 2

Age at first birth 25 41
Number of life births 3 1
Menopausal no yes (48)
Past diagnosis of benign breast disease no yes
Family history breast/ovarian cancer no yes
Hormone replacement therapy use (duration) no yes (5yrs)
BMI, kg/m2 24 35
Alcohol consumption (drinks/day) 0 > 1
10 year absolute risk estimate 1.8% 9.5%
20 year absolute risk estimate 4.1% 20.1%
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Advantages of Cause-Specific Modeling

Familiar interpretation of cause-specific relative risks

Standard survival methods & software for estimation with cohort data

Possible to combine different data sources:

Relative risks from case-control or case-cohort data
Incorporate composite registry incidence rate h∗1 (t) into baseline hazard

h10(t) = h∗1 (t){1− attributable risk(t)}

Software
https:

//bioconductor.org/packages/release/bioc/html/iCARE.html

Can accommodate disease heterogeneity, e.g. hormone receptor
status in breast cancer
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Some Cancer Risk Models

Cancer incidence

https://bcrisktool.cancer.gov/(breast BCRAT)
https://ccge.medschl.cam.ac.uk/boadicea/ (breast BOADICEA)
https://ibis.ikonopedia.com/ (breast IBIS)
https://ccrisktool.cancer.gov/ (colorectal cancer)
https://mrisktool.cancer.gov/ (melanoma)
Other models: Bladder, Endometrial cancer, Lung, Ovary, Pancreas,
Prostate

Absolute risk of death from prostate cancer after diagnosis
(Albertson, Hanley, Fine, JAMA 2005)
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Assessment of Risk Model Performance, Model Validation
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Risk Model Validation

Before model can be recommended for practical use, need to understand
its performance characteristics in independent data for rigorous assessment

Calibration (bias): Does model correctly predict number of observed
events; requires cohort data

Classification accuracy: How well does model categorize/classify
individuals

Discrimination: How different are risks in cases compared to
non-cases?
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Types of Validation

External validation: evaluation of model performance in sample
independent of that used to develop the model

Internal validation: reusing same dataset on which model was
developed to assess overfit and correct for resulting optimism in
model performance
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Independent Population for Validation (External
Validation) of Absolute Risk Model

Assume population of N individuals followed prospectively over time
period τ

Observe

Yi =

{
1 if ith subject develops cancer by time τ
0 otherwise
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Notation and General Framework

P(Yi = 1) = πi true (unknown) absolute risk of ith person
R(Xi ) absolute risk estimate for ith person with baseline covariates Xi ,
including age ai
Risk model is fixed and known from previous data
In validation cohort distribution H of X induces distribution F of risk R

F (r) = P(R ≤ r) =

∫
{x :R(x)≤r}

dHX(x),

If validation cohort is simple random sample estimate F from observed
risks r1, . . . , rn by

F̂ (r) = Fn(r) =
1

n

n∑
i=1

I (ri ≤ r)
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Example: Assess Model Performance of BCmod Breast
Cancer Risk Model in Independent Population

Nurses Health Cohort: N = 57, 907 women ages 51-70 at baseline
https://www.nurseshealthstudy.org/

Compute BCmod breast cancer risk estimate R(a, τ,X) for each woman,
given her baseline risk factors X, age a, and projection period τ

Observe breast cancers that develop during follow-up (median 16 years)
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Distribution F of BCmod Risks in Nurses Health
Validation Cohort

BCmod  risk estimates
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Assessing Calibration Using Independent Validation Cohort

Y - event indicator at end of cohort follow-up
R(X) = P̂(Y = 1|X, a, τ) - absolute τ year cancer risk (e.g. τ = 5)
Model R well calibrated (unbiased) in population if, for every value r

P(Y = 1|R(X) = r) = r

Then E (Y ) = P(Y = 1) = E (R)
If R well calibrated (unbiased) in cohort with (Yi ,Xi ), i = 1, . . . , n

Ê (Y ) =
1

n

n∑
i=1

Yi ≈
1

n

n∑
i=1

R(Xi ) = Ê (R)
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Assessing Calibration Using Independent Validation Cohort

Goodness-of fit criteria based on comparing observed (O) and expected
(E) numbers of events overall or in subgroups of population

Here we use
O
E

=

∑n
i=1 Yi∑n

i=1 R(Xi )

If R << 1, then O ∼ Poisson

If R well calibrated O has mean E and

O
E
≈ 1

BCmod calibration in N=57,907 women in NHS cohort:
O/E = 2934/2930 = 1.00, (95%CI: 0.96, 1.04)
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Assessing Calibration Using Independent Validation Cohort

Compute deciles ξ0.1g of empirical distribution of Ri and let
Sg = {Xi : ξ0.1(g−1) ≤ Ri < ξ0.1g}, g = 1, . . . , 10, (ξ0 = 0)

Hosmer-Lemeshow statistic : Q =
G∑

g=1

(Og − E g )2

E g (1− E g/Ng )
(1)

where Ng is number of subjects in group g .

BCmod calibration in N=57,907 women in NHS cohort:
Q = 16.7 < χ2

10 = 18.31
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Calibration Plot for BCmod for Incident Breast Cancers in
NHS Cohort
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Why a Risk Model May be Poorly Calibrated in Validation
Population

Differences in

Operational definition of predictor (e.g. number biopsies)
Procedures used to diagnose the disease outcome
Screening/outcome verification

Incomplete follow-up in validation cohort

Missing predictor information
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Assessing model calibration when predictors missing on
cohort members (Shin, Gail, Pfeiffer, Biostatistics, 2020)

Assume event indicator Y always observed, O known
Predictors for R(X,Z) fall into two categories:

X available on everybody, “phase 1 predictors”

Z only observed for subset sampled into phase 2

MCAR: data are missing completely at random
MAR: missing at random; Phase 2 sampling depends on observed data
Important (MAR) sub-sampling designs from cohort:

Nested case-control (NCC) design: each time case develops
sample controls from those at risk

Case-cohort (CC) design: sub-cohort selected at start of follow-up
and all cases sampled during follow-up
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Estimate E using Multiple Imputation

Standard approach to dealing with missing data

Create K complete copies of data by imputing missing values from
model for their predictive distribution conditional on observed data,
using e.g. mice (multivariate imputation by chained equations) in R
(Buuren et al, ’10)

Compute

Êmi = K−1
K∑

k=1

n∑
i=1

R(xi , z̃
(k)
i ) =

n∑
i=1

R̄(xi , z̃i )

where R̄(xi , z̃i ) = K−1
∑K

k=1 R(xi , z̃
(k)
i ) is mean of risks evaluated at

imputed value z̃
(k)
i for kth imputation

Use all observed data including follow-up time in imputation model
(White et al, 09)
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Estimate Ê = Ê (R) =
∑

i R(Xi ,Zi) using weighting
approaches

Si - sampling indicator (Si = 1 if person i in phase-2, 0 if not)
ρi = P(Si = 1) phase 2 inclusion probability known for MCAR, NCC, CC
sampling
Unbiased estimate of expected number of cases in cohort is

Êo =
n∑

i=1

Siw
o
i R(xi , zi )

where wo
i = 1/ρi is inverse probability of inclusion weight

Problem: (Horvitz-Thompson) estimate inefficient
Solution: improve efficiency by adjusting wo using phase 1 variables
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Adjustment of sampling weights (! Math)

wo = (wo
1 , . . . ,w

o
n ) - inclusion probability weights

X = f (X,U,Y ) - function of phase 1 data observed on all cohort members

wadj = arg minw

n∑
i=1

Sid(wi ,w
o
i ) s.t.

n∑
i=1

Xi =
n∑

i=1

SiwiXi

distance measure d(a, b) = a(log a− log b) + b − a
Raking calibration (Deville & Särndal ’92):

wadj
i = wo

i e
ηTXi

Implemented in function calib in R package sampling
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Auxiliary variables for weight adjustment (! Math)

Key: find good auxiliary variables for E using complete data
Our Proposal:

- Predict Z from phase 1 variables (X,U,Y ) using weighted (wo) GLMs

- Use “pseudo-risk” estimate R(x, ẑ) as auxiliary variable in weight
adjustment
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Empirical relative efficiency (ratio of empirical variance
from full cohort to that from two-phase estimate) of O/E
using simulated data
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Assessing Model Accuracy
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Assessing Model Accuracy

For clinical decision making a rule is needed to classify subject i as
diseased based on model estimate

Ŷ =

{
0 if R ≤ r∗

1 if R > r∗

where r∗ is risk/decision threshold

Thus, rather than giving risk estimate R, one is forced to guess outcome

Classification accuracy measures how well rule identifies cases/non-cases
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Accuracy Scores

Measure how well true outcome predicted

Positive predictive value, PPV = P(Y = 1|Ŷ = 1)

Negative predictive value, NPV = P(Y = 0|Ŷ = 0)

Weighted combinations of both, e.g.

PCC = P(correct classification) =

P(R > r∗)P(Y = 1|R > r∗) + P(R < r∗)P(Y = 0|R < r∗)

Depend on sensitivity P(Ŷ = 1|Y = 1) = P(R > r∗|Y = 1), specificity
P(Ŷ = 0|Y = 0) = P(R ≤ r∗|Y = 0), disease prevalence/incidence,
P(Y = 1)
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Depend on sensitivity P(Ŷ = 1|Y = 1) = P(R > r∗|Y = 1), specificity
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Accuracy measures for BCmod in NHS validation cohort

5-year absolute risk threshold r∗ = 0.0166 for 50 to 55 year old women
(252 cases, 16833 non-cases). E.g. 84 cases had R > 0.0166

Accuracy measure Estimate 95% CI
Sensitivity 84/252 = 0.33 (0.28, 0.40)
Specificity 13456/16833= 0.80 (0.79, 0.81)
PPV 84/3461 = 0.024 (0.019, 0.030)
NPV 13456/13624 = 0.988 (0.986, 0.990)
PCC (13456+ 84)/ 17085 = 0.793 (0.786, 0.799)

PPV=Positive predictive value, NPV=Negative predictive value
PCC=Prob. of correct classification
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Measures of Discrimination for Range of Thresholds

ROC curve: plots sensitivity against 1-specificity
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Measures of Discrimination for Range of Thresholds

ROC curve: plots sensitivity against 1-specificity

Area under the ROC curve (AUC):

AUC = P(Ri > Rk |Yi = 1,Yk = 0)

Concordance statistic (Rockhill et al, 2001; Bach et al, 2003)
Mann-Whitney-Wilcoxon Rank Sum Test

Partial area under the ROC curve (Pepe, 2003; Dodd & Pepe, 2003)
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Distribution of BCmod Risk Estimates in NHS Cohort by
Breast Cancer Status at End of Follow-up

BCmod risk in women with 
breast cancer diagnosis  

BCmod risk in women 
without breast cancer 
diagnosis  

1AUC=0.58
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Criteria to Assess Model Performance for Screening
Applications Pfeiffer and Gail, 2011; Pfeiffer, 2013

Proportion of cases screened: % of cases found in top 10% of
population based on risk estimated from model

Proportion needed to screen: % of population at highest risk from
model needed to be screened to capture e.g. 90% of cases
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Distribution of Risks in NHS Validation Cohort

q=10%

98 / 101



Proportion of Cases Screened (“Followed”), PCF (q)

Proportion of cases included in proportion q of population at highest risk

Population distribution of risk: F (r) = P(R ≤ r)

Distribution of risk in cases (Y = 1): G (r) = P(R ≤ r |Y = 1)

PCF (q) = P(Rcase > (1− q)th quantile of F ) = 1− G{F−1(1− q)}

Integrated PCF

iPCF =

∫ 1

0
PCF (q)dq = P(RG > RF )

Distribution of risk in non-cases (Y = 0): K (r) = P(R ≤ r |Y = 0)

AUC = P(RG > RK )
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ROC and PCF curves, AUC=0.58, iPCF=0.56
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Accommodating population differences when validating
risk prediction models (Pfeiffer, Chen, Gail, Ankerst, Stat in Med, 2023)

This topic will be discussed on day 2 of the course
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