
Absolute Risk: Methods and Applications in Clinical
Care and Public Health, Day 2 Materials

Ruth Pfeiffer

Biostatistics Branch
Division of Cancer Epidemiology and Genetics

National Cancer Institute
National Institutes of Health

Bethesda, Maryland, USA
pfeiffer@mail.nih.gov

SISCER Module 12, 2024

1 / 103



Outline Day 2

1 Brief review of Day 1

2 Assessment of risk model performance

Assessing impact of population differences
Loss function based criteria
Comparing two models

3 Applications of absolute risk
4 Miscellaneous topics:

Updating risk models
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Definitions of “Risk”

- Relative Risk

- Probability of outcome:

Prevalence models
Probability of future event of cause 1 (e.g. cancer)

- “Pure risk”:
P(a < T ≤ a + τ, cause=cancer|T > a, there are no competing risks)

- Absolute risk: (or “crude risk”, or “cumulative incidence”)
P(a < T ≤ a + τ, cause=cancer|T > a, there are competing risks)
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Absolute Risk

T : time to event
R(a, a + τ,X) = P(a < T ≤ a + τ, cause=1|T > a, there are competing
risks)

Age
Risk factors X

Die before cancer

Diagnosed with cancer

a τ+
a

1
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Modeling and Estimating Absolute Risk: Two Approaches

T : time to event, X: risk factors
R(a, a + τ,X) = P(a < T ≤ a + τ, cause=1|T > a,X)

Healthy

Cancer

Healthy

Death from other
causes

Cancer

λ(a,X) h2(a,X)h1(a,X)

Cumulative incidence regression (Fine & Gray, JASA 1999)

Cause specific approach: model hm(a,X),m = 1, 2
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Absolute Risk Model: Cause-specific Formulation

Focus on 2 types of events: 1=cancer, 2=death from other causes
Observe T= time to first event

hm(t) = lim
ε↓0

P (t ≤ T < t + ε, cause = m|T ≥ t)

ε
,m = 1, 2

R(a, a + τ,X) =P(T ≤ a + τ, cause=1|T > a,X) =∫ a+τ

a
h1(t,X) exp

[
−
∫ t

a
{h1(v ,X) + h2(v ,X)}dv

]
dt

- X - individual risk/protective factors

- τ - projection period
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General Strategy to Estimate Cause Specific Absolute Risk

- Model cause specific hazards: hi (t,X) = h0i (t)rr(β′iX), i = 1, 2

- Estimate cause specific hazards ĥ1(t,X), ĥ2(t,X)

- Obtain “plug in” estimate

R̂(a, a + τ,X) =

∫ a+τ

a
ĥ1(t,X) exp

[
−
∫ t

a
{ĥ1(s,X) + ĥ2(s,X)}ds

]
dt
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Comments

Estimate absolute risk from cohort data

Estimate absolute risk from sub-samples of cohorts (two-phase
studies)

- Nested case-control design (Langholz and Borgan, 1997): at each
time a case develops sample individuals from risk set

- Case-cohort design (Prentice and Self, 1988): analyze data from
subcohort selected at start of follow-up and all cases observed during
follow up

Estimate absolute risk by combining relative risk estimates with
registry data
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Combine Data from Different Sources to Estimate h1(t,X)

h1(t,X) = h10(t) exp(β′1X)

Cohort, nested case-control,
case cohort, case-control data

Estimate relative risk, exp(β′X)
and attributable risk, AR(X)

Disease Registries: data on
incidence by age, sex, race, no
risk factors

h∗10(t), age, sex, race specific
composite hazard

Use that AR(X) =
h∗10(t)−h10(t)

h∗10(t) to get ĥ1(t,X) = h∗10(t)(1− ÂR) exp(β̂
′
1X)

R̂(a, a + τ,X) =
∫ a+τ
a ĥ1(t,X) exp

[
−
∫ t
a {ĥ1(s,X) + ĥ2(s)}ds

]
dt
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Example 1: Absolute Risk Model for Breast Cancer in
General US Population Developed at NCI (Gail MH, et al., 1989,

JNCI)

Risk factors:

- Age at menarche

- Age at first life birth

- Number of first degree relatives with breast cancer

- Number of breast biopsies

- Diagnosis of atypical hyperplasia

http://www.cancer.gov/bcrisktool/
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Example 2: Absolute Breast Cancer Risk Model with
Modifiable Risk Factors (BCmod) Pfeiffer RM, et al., 2013, PLos Medicine

Risk factors:

- Nulliparous

- Age at first life birth

- Family history of breast/ovarian cancer

- Benign breast disease/biopsy

- Age at menopause

- BMI

- Alcohol consumption

- Hormone replacement therapy use
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Risk Model Validation

Before model can be recommended for practical use, need to understand
its performance characteristics in independent data for rigorous assessment

Calibration (bias): Does model correctly predict number of observed
events; requires cohort data

Classification accuracy: How well does model categorize/classify
individuals

Discrimination: How different are risks in cases compared to
non-cases? Quantified by AUC = P(Rcase > Rnoncase)

Criteria to assess model performance for screening applications:
Proportion of cases followed (PCF), proportion needed to follow
(PNF)
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Risk model validation

Factors that can impact performance measures, and possibly cause
misleading conclusions:

Missing data on model predictors

Incomplete follow-up in validation cohort

Differences in populations used to build and validate model

Operational definition of covariates (e.g. number biopsies)
Procedures used to diagnose the disease outcome
Screening/outcome verification
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Accommodating population differences when validating
risk prediction models (Pfeiffer, Chen, Gail, Ankerst, Stat in Med, 2023)
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Motivation: model to predict incident prostate cancer

- Cohort for model building (training data): 29699 men in
screening arm of Prostate, Lung, Colorectal and Ovarian (PLCO)
Cancer Screening Trial: annual PSA test for 6 yrs, annual digital
rectal exam (DRE) for 4 yrs

- Risk model: 5-year prostate cancer risk R(X, a) for man with risk
factors X and age a

Risk factor X HR (95% CI)

log2PSA 4.32 (4.09, 4.58)
Family history 1.42 (1.22, 1.65)
Prior negative biopsy 1.83 (1.17, 2.87)
log2PSA ∗ Prior negative biopsy 0.61 (0.50, 0.74)
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Estimated 5-year prostate cancer risk for select profiles
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Motivation: model to predict incident prostate cancer

- Cohort for model building (training data): 29699 men in
screening arm of PLCO Cancer Screening Trial: annual PSA test for 6
yrs, annual digital rectal exam (DRE) for 4 yrs

- Risk model: 5-year prostate cancer risk R(X, a)

- Validation cohort: 26422 men in Selenium and Vitamin E Cancer
Prevention Trial (SELECT); PSA ≤ 4 and normal DRE at enrollment;
6-month recommended PSA and DRE screens

- Risk factor distributions different because of differing eligibility
criteria

- Recommended for prostate biopsy if PSA > 4: Diagnosis depends on
biopsy; different screening
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Differences in training and validation cohorts

Baseline characteristics of PLCO and SELECT participants

PLCO SELECT
(N1 = 29699) (N0 = 26422)

n(%) n(%)
First PSA

- [0, 1] 13454 (45.3) 12831 (48.6)
...

- (4, 10] 2007 (6.8) 0 (0.0)
Digital rectal exam

- Suspicious 2119 (7.1) 0 (0.0)
African ancestry

- Yes 1155 (3.9) 2779 (10.5)
Family history

- Yes 2288 (7.7) 4623 (17.5)
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Differences in training and validation cohorts

Cumulative incidence for time to first biopsy
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Accommodating population differences when validating
risk prediction models

Y disease outcome

R(X) = P̂(Y = 1|X) risk model developed in training data, T = 1

T = 0 validation population

πT (X∗) = P(Y = 1|X∗,T ) true disease probabilities, X∗ = (X,Z)

Model R well calibrated if

C =
O
E

=
E (Y )

E (R)
=

∫
x∗ π(x∗)dF (x∗)∫

x R(x)dF (x)
= 1

Assumption: R well calibrated in training data, C1 = 1
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Motivation: model to predict incident prostate cancer

Calibration in PLCO estimated using 5-fold cross-validation:

Ĉ1 =

∑
i Yi∑

i R(xi )
= 0.99 (0.95, 1.04)

Calibration in SELECT: Ĉ0 = 1.19 (1.13, 1.26)
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1. Assessing impact of different predictor distributions in
training and validation data on performance measures

Assume individual level-data on X∗ for both cohorts available

Define selection weights

w(X∗) =
dF1(X∗)

dF0(X∗)
=

P(X∗|T = 1)

P(X∗|T = 0)

=
P(T = 1|X∗)P(T = 0)

P(T = 0|X∗)P(T = 1)

and selection weighted calibration measure

CW
0 =

E0[Yw(X∗)]

E0[R(X)w(X∗)]
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Reproducibility and transportability of model R(X) (!

Math)

Unweighted (C0) and selection weighted (CW
0 ) calibration measures

πT (X∗) = P(Y = 1|X∗,T ), T = 0, 1, X∗ = (X,Z)

Assumptions
Risk factor dis-
tributions

C0 CW
0

π1(X∗) = π0(X∗) Reproducibility
= C1 = 1 = C1 = 1

and F0(X) = F1(X)
F0(Z|X) = F1(Z|X)

Transportability 6= C1 = C1 = 1
F0(X) 6= F1(X)
R well calibr.
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Estimating selection weighted performance measures

Selection weights From combined training and validation data estimate

P(T = 1|X∗,γ) =
exp(γ0 + γ1

′X + γ2
′Z)

1 + exp(γ0 + γ1
′X + γ2

′Z)

estimated weights for individuals i = 1, . . . ,N0 in validation data

ŵ(x∗i ) = w(x∗i , γ̂) =
P̂(T = 1|x∗i )N0

P̂(T = 0|x∗i )N1

= exp(γ̂0 + γ̂1
′xi + γ̂2

′zi )
N0

N1

Weighted calibration measure

ĈW
0 =

∑N0
i=1 Yi ŵ(x∗i )∑N0

i=1 R(xi )ŵ(x∗i )
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i=1 Yi ŵ(x∗i )∑N0

i=1 R(xi )ŵ(x∗i )
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Selection weight model, w(X)

Odds ratios (ORs) and 95% confidence intervals (CIs) from stepwise
logistic selection weight model with cohort selection outcome T (1:in
PLCO versus 0: in SELECT) applied to 56121 combined participants
(29699 from PLCO, 26422 from SELECT).

Risk factor OR 95% CI
Intercept 2.14 (1.72, 2.65)
log2PSA 0.78 (0.64, 0.94)
Age 0.993 (0.990, 0.997)
Family history 0.39 (0.37, 0.41)
African ancestry 0.33 (0.30, 0.35)
Prior negative biopsy 0.43 (0.40, 0.47)
log2PSA ∗ Age 1.006 (1.003, 1.009)
log2PSA ∗ African ancestry 1.15 (1.08, 1.23)
log2PSA ∗ Prior negative biopsy 1.18 (1.11, 1.25)
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Assessing impact of different disease verification in training
and validation data on performance measures

- V = 1 if disease verified, V = 0 otherwise

- Observe PT (Y = 1,V = 1|X∗) instead of PT (Y = 1|X∗)
- Assume C̃1 = E1(YV )

E1{R(X)} = 1

- Define verification weight and verification weighted calibration
statistic

v(X∗) =
P1(V = 1|X∗)
P0(V = 1|X∗)

and C̃V
0 =

E0{YVv(X∗)}
E0{R(X)}

If P0(Y = 1|X∗,V = 1) = P1(Y = 1|X∗,V = 1) or if
PT (Y = 1|X∗,V = 1) = PT (Y = 1|X∗) then CV

0 = 1
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Estimating verification weighted performance measures

Verification weights Compute PT (V = 1|X∗) or PT (V (τ) = 1|X∗)
separately in training and verification data T = 0, 1, e.g.

P̂T (V = 1|X∗) =
exp(ηT0 + +η′T1X + η′T2Z)

1 + exp(ηT0 + +η′T1X + η′T2Z)

Alternatively fit survival model S(t,X∗) to time to disease verification and
compute P̂T (V (τ) = 1|X∗) = 1− ŜT (τ,X∗),T = 0, 1
Verification weights for individuals in validation data

v̂(x∗i ) =
P̂1(V = 1|x∗i )

P̂0(V = 1|x∗i )
, i = 1, . . . ,N0
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Verification probability models, P(V = 1|X,T )

Odds ratios (ORs) and 95% CIs from logistic models for verification of
outcome, i.e. biopsy performed within first five years of study (1 yes, 0
no), fit to 29699 PLCO and 26422 SELECT participants

PLCO (N1 = 29699) SELECT (N0 = 26422)
Risk factor OR (95% CI) OR (95% CI)
Intercept 0.005 (0.002, 0.014) 0.015 (0.013, 0.017)
log2PSA 4.73 (3.73, 6.03) 4.46 (4.06, 4.92)
I (PSA > 4) 350.38 (93.18,1320.18) 28.20 (15.32, 50.92)
DRE 511.01 (364.03, 735.38) 86.35 (69.22, 107.94)
Age 0.98 (0.97, 1.00) -
Family history 1.22 (1.03, 1.46) 1.37 (1.21, 1.54)
African ancestry 0.010 (0.001, 0.219) -
Prior negative biopsy 0.81 (0.68, 0.97) 1.77 (1.33, 2.34)
log2PSA ∗ I (PSA > 4) 0.78 (0.60, 1.01) 0.38 (0.29, 0.49)
log2PSA ∗ DRE 0.27 (0.21, 0.35) 0.31 (0.26, 0.37)
log2PSA ∗ Prior negative biopsy - 0.76 (0.65, 0.89)
I (PSA > 4) ∗ DRE 0.11 (0.07, 0.17) 0.62 (0.35, 1.12)
I (PSA > 4) ∗ Age 0.97 (0.95, 0.99) -
Age ∗ African ancestry 1.08 (1.02, 1.13) -
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Validation results for PLCO prostate cancer risk model in
26422 SELECT participants

Estimated unweighted and weighted calibration ratios (C0, CW
0 , CV

0 ,
CWV

0 ) with bootstrap 95% confidence intervals (CIs)

Estimate 95% CI

C0 1.19 (1.13, 1.26)
CW

0 1.16 (1.09, 1.22)
CV

0 0.89 (0.84, 0.95)
CWV

0 0.88 (0.82, 0.94)
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Validation results for PLCO prostate cancer risk model in
26422 SELECT participants

Estimated unweighted and weighted calibration ratios (C0, CW
0 , CV

0 ,
CWV

0 ) with bootstrap 95% confidence intervals (CIs)

Estimate 95% CI

C0 1.19 (1.13, 1.26)
CW

0 1.16 (1.09, 1.22)
CV

0 0.89 (0.84, 0.95)
CWV

0 0.88 (0.82, 0.94)

AUC0 0.828 (0.817, 0.840)
AUCW

0 0.824 (0.812, 0.835)
AUCV

0 0.853 (0.842, 0.865)
AUCWV

0 0.851 (0.839, 0.862)

Comment: key assumption is that weights are modeled correctly
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Summary

Proposed selection and verification weights measures of risk model
performance so that weighted validation data more closely resemble
training data w.r.t. risk factor distributions and disease ascertainment

Defined selection and verification weighted measures

Formalized notion of reproducibility and transportability of a risk
model

Assumption: correctly modeled weights
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Back to Model Performance Assessment
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Model Assessment Based on Expected Costs for Particular
Application

33 / 103



Recall: Using risk threshold t for decision making

Measure how well true outcome predicted

Sensitivity sens(t) = P(Ŷ = 1|Y = 1) = P(R ≥ t|Y = 1)

Specificity spec(t) = P(Ŷ = 0|Y = 0) = P(R < t|Y = 0)
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Model Assessment Based on Expected Costs for Particular
Application, the 2× 2 setting

Two health states, Y = 0, 1, and two intervention options; π = P(Y = 1),
R= risk estimate, C= cost

Intervene Disease Costs Risk criterion
at threshold t

Outcome probability

Yes Yes CTP R > t π × sens(t)
No Yes CFN R ≤ t π × {1− sens(t)}
Yes No CFP R > t (1− π){1− spec(t)}
No No CTN R ≤ t (1− π)spec(t)

TP, true positive; FN, false negative; FP, false positive; TN, true negative
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Model Assessment Based on Expected Costs for Particular
Application

Intervene Disease Costs Risk criterion
at threshold t

Outcome probability

Yes Yes CTP R > t π × sens(t)
No Yes CFN R ≤ t π × {1− sens(t)}
Yes No CFP R > t (1− π){1− spec(t)}
No No CTN R ≤ t (1− π)spec(t)

TP, true positive; FN, false negative; FP, false positive; TN, true negative

Expected loss in population:

C̄ (t) = π×sens(t)CTP +π×{1−sens(t)}CFN +(1−π){1−spec(t)}CFP

+ (1− π){spec(t)}CTN + Ctest
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Threshold t∗ to Minimize Expected Cost

Bcase = CFN − CTP ≥ 0 is net benefit of intervening on a case
Bnon−case = CFP − CTN ≥ 0 is net cost from intervening on a non-case
Risk threshold t∗ that minimizes C̄ (t) is

t∗ =
Bnon−case

Bnon−case + Bcase

This threshold does not depend on risk model R, only on costs

Key assumption: Model R is well calibrated

Pauker and Kassirer, NEJM 1975
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Minimal Expected Cost (at t∗)

C̄min = πCFN + (1− π)CFP + Ctest − π × sens(t∗)Bcase

− (1− π)× spec(t∗)Bnon−case

C̄perfect = πCTP + (1− π)CTN + Ctest

C̄all = πCTP + (1− π)CFP

C̄none = πCFN + (1− π)CTN
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Example: Decision to Take Tamoxifen in 100,000 Women
with Uteri, Aged 50-59

Relative risks (RRs) from tamoxifen treatment for various health outcomes
and absolute numbers of health outcomes expected in 5 years with and
without tamoxifen

Health events RR a # cases # cases
no tamoxifen tamoxifen

Invasive breast cancer 0.51 246 125.8
Hip fracture 0.55 101.6 55.9
Endometrial cancer 44.01 81.4 326.4
Stroke 1.59 110 174.9
Pulmonary emboli 3.01 50 150.5

Total 589.6 833.5

Total non-breast cancer 343 707.7

39 / 103



Optimal Threshold for Tamoxifen for Women Aged 50-54
Years

Aggregated non-breast cancer rates:
343.0 without tamoxifen
707.7 with tamoxifen
Cost = total number of life-threatening events in 100 000 women

Decision for threshold t Breast cancer No breast cancer

r ≥ t (give tamoxifen) 51 000+707.7=51 707.7 707.7
r < t (dont give tamoxifen) 100 000+343=100 343 343

Bcase = 100, 343− 51, 707.7 = 48, 635.8
Bnon−case = 707.7− 343 = 364.7
t∗ = 364.7/(364.7 + 48635.3) = 744x10−5 (=3.72% in 5 years)
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Minimized expected losses (NHS validation data)

C̄ = 1
n

∑
i{I (ri ≥ t∗,Yi = 1)× 51707.7 + I (ri ≥ t∗,Yi =

0)× 707.7 + I (ri < t∗,Yi = 1)× 100343 + I (ri < t∗,Yi = 0)× 343}

For BCmod C̄ = 1818.17

With π = 0.01475, a perfect risk model would have expected loss
0.01475× 51, 707.7 + (1− 0.01475)× 343 = 1100.6

Using no tamoxifen yields expected loss
0.01475× 100, 343 + (1− 0.01475)× 343 = 1818.00
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Example: Multiple outcomes in prevention trials

Relative risks (RRs) from tamoxifen treatment for various health outcomes
and absolute numbers of health outcomes expected in 5 years with and
without tamoxifen in population of 10,000 white 40-year-old women with
uteri and a projected breast cancer risk of 2%

Health events RR a None get All get Prevented
tamoxifen tamoxifen by tamoxifen

Invasive breast cancer 0.51 200 103 97
Hip fracture 0.55 2 1 1
Endometrial cancer 2.53 10 26 -16b

Stroke 1.59 22 35 -13
Pulmonary emboli 3.01 7 22 -15
Net life-threatening events 241 187 54

In situ breast cancer 0.50 106 53 53
Deep vein thrombosis 1.60 24 39 -15
Net serious events 130 92 38
aFrom Fisher et al., 1998.
bMinus sign means tamoxifen increases number of events
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Example: Multiple outcomes in prevention trials, cont.

Under costs ck for outcomes k = 1, 2, . . . , 7, can determine net benefit
from taking tamoxifen by testing

Net Benefit =
K∑

k=1

ckP0k −
7∑

k=1

ckP1k =
7∑

k=1

ck(P0k − P1k) > 0.

P0k/P1k : probability of outcome k without/with tamoxifen
Net benefit: expected cost without tamoxifen minus expected cost under
tamoxifen
Gail et al, 1999 used P1k = RRkP0k

ck = 1 for k = 1, 2, . . . , 5 (life-threatening events) and ck = 0.5 for
k = 6, 7 (serious events)
Young women with high BC risk had positive net benefits, older women
tended to have negative net benefit due to higher baseline risks P0k for
stroke, pulmonary emboli, deep vein thromboses and endometrial cancer
(Gail et al, 1999); for raloxifene see Freedman et al. (2011)
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Benefit/risk indices for tamoxifen and raloxifene for white
non-Hispanic women with a uterus

Freedman AN et al. JCO 2011;29:2327-2333

©2011 by American Society of Clinical Oncology

Tamoxifen Raloxifene

5-year risk 50-59 70-7960-69 50-59 70-7960-69

1
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What if Costs (and Threshold) Hard to Define? Use
“Decision Curve”

Solve

t∗ =
Bnon−case

Bnon−case + Bcase

for Bnon−case/Bcase , get

Bnon−case/Bcase = t∗/(1− t∗)

Net benefit NB(t) studies a range of Bnon−case/Bcase ratios

NB(t) = π × sens(t)− (1− π){1− spec(t)}{t/(1− t)}
is implicitly a function of cost ratios and sensitivity and specificity as
threshold t

Vickers & Elkin, Med Decision Making, 2006

45 / 103



What if Costs (and Threshold) Hard to Define? Use
“Decision Curve”

Solve

t∗ =
Bnon−case

Bnon−case + Bcase

for Bnon−case/Bcase , get

Bnon−case/Bcase = t∗/(1− t∗)

Net benefit NB(t) studies a range of Bnon−case/Bcase ratios

NB(t) = π × sens(t)− (1− π){1− spec(t)}{t/(1− t)}
is implicitly a function of cost ratios and sensitivity and specificity as
threshold t

Vickers & Elkin, Med Decision Making, 2006

45 / 103



Net Benefit or Relative Utility Curve
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Some Comments on Net Benefit Curve

Miscalibration of risk model in target population lowers the decision
curve (reduces net benefit)

If the model is mis-calibrated, thresholds will not correspond to
correct cost ratios Bnon−case/Bcase = t∗/(1− t∗) leading to incorrect
estimates of net benefit

If there are subgroups in a population with different cost ratios,
separate decision curves should be used for each subgroup.

Kerr et al. JCO 2017; Pepe et al. Stat Bioscience 2015; Van Calster and Vickers Med Decision
Making, 2015
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Comparing Two Absolute Risk Prediction Models
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NCI Absolute Breast Cancer Risk Models

Empirical models; estimated by combining relative risks with cancer
registry data on incidence

BCRAT (“Gail model”; Gail et al, 1989)

- Risk factors: age, age at menarche, age at first life birth, number
affected mother or sister, number of breast biopsies+diagnosis of
atypical hyperplasia

BCmod (Pfeiffer et al, 2013)

- Adds modifiable risk factors to BCRAT factors: body mass index
(BMI), alcohol consumptions, hormone replacement therapy use (HRT)
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Absolute Risk Estimates: Two 60 Year-old Women

Model Predictor Woman 1 Woman 2

Age at menarche 12 12
Age at first birth 25 25
Number of life births 3 3
Past diagnosis of benign breast disease no no
Family history breast/ovarian cancer no no
Menopausal yes ( age 50) yes (age 55)
Hormone replacement therapy use (duration) no yes (5yrs)
BMI, kg/m2 24 35
Alcohol consumption (drinks/day) 0 > 1
5 year BCRAT absolute risk estimate 1.6% 1.6%
5 year BCmod absolute risk estimate 1.1% 3.8%
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Comparing Two Absolute Risk Prediction Models

Compare calibration

Compare accuracy measures

Compare AUC values

Compare PCF and PNF or iPCF and iPNF

Criteria based on reclassification tables

Net reclassification improvement

Integrated discrimination improvement
Compare expected losses
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Compare calibration

Comparison of observed (O) and expected (E) incident breast cancers with 95% CIs based on
5-year predictions from BCmod and BCRAT in women ages 50–55 in NHS validation cohort.

BCmod BCRAT
O E E/O (95% CI) E E/O (95% CI)

All women 252 231 0.92 (0.72, 1.04) 238 0.94 (0.84, 1.07)
Age at menarche
< 12 59 53 0.90 (0.70, 1.16) 59 1.00 (0.77, 1.29)
12− 13 146 136 0.93 (0.79, 1.09) 140 0.96 (0.81, 1.12)
≥ 14 47 42 0.89 (0.67, 1.19) 40 0.85 (0.64, 1.13)
BMI
< 25kg/m2 144 122 0.85 (0.72, 1.00) 130 0.90 (0.77, 1.06)
25 to < 30kg/m2 77 69 0.89 (0.71, 1.12) 70 0.91 (0.73, 1.13)
30 to < 35kg/m2 18 27 1.48 (0.93, 2.35) 26 1.43 (0.90, 2.27)
≥ 35kg/m2 13 3 0.26 (0.15, 0.44) 12 0.95 (0.55, 1.64)
Benign breast disease
no 93 105 1.13 (0.92, 1.38) 106 1.14 (0.93, 1.40)
yes 159 126 0.79 (0.68, 0.93) 132 0.83 (0.71, 0.97)
# 1st degr relat w BC
0 208 200 0.96 (0.84, 1.10) 193 0.93 (0.81, 1.06)
1 43 30 0.69 (0.51, 0.93) 41 0.97 (0.72, 1.30)
2 1 1 1.18 (0.17, 8.39) 3 3.49 (0.49, 24.78)

52 / 103



Comparing Two Absolute Risk Prediction Models

Compare calibration

Compare accuracy measures

Compare AUC values

Compare PCF and PNF or iPCF and iPNF

Criteria based on reclassification tables

Net reclassification improvement

Integrated discrimination improvement
Compare expected losses
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Classification of women in NHS cohort ages 50-55 at
baseline, who got breast cancer (events) and those who did
not (non-events) for BCmod and BCRAT with 5-year risk
threshold r ∗ =1.66%

≤ 1.66% > 1.66% Total
5-yr risk from BC2013

n 13,624 3,461 17,085
Events 168 84 252
Non-events 13,456 3,377 16,833
Percentage with events(%) 1.23 2.43 1.47

5-yr risk from BCRAT
n 13,449 3,636 17,085
Events 164 88 252
Non-events 13,285 3,548 16,833
Percentage with events(%) 1.22 2.42 1.47
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Accuracy measures for estimates from BCmod and BCRAT
models using 5-year absolute risk threshold r ∗ = 0.0166 for
50− 55 year old women

Measure BCmod BCRAT
Estimate (95% CI) Estimate (95% CI) Difference (95% CI)

Sens 0.333 (0.28, 0.40) 0.349 (0.29, 0.41) 0.0159 (-0.041, 0.073)
Spec 0.799 (0.79, 0.81) 0.789 (0.78, 0.80) -0.0102 ( -0.017, -0.004))
PPV 0.024 (0.019, 0.030) 0.024 (0.020, 0.030) -0.0001 (-0.0008, 0.0007)
NPV 0.988 (0.986, 0.990) 0.988 (0.986, 0.990) 0.0001 (-0.0009, 0.0012)
PCC 0.793 (0.786, 0.799) 0.783 (0.777, 0.789) -0.0098 (-0.0159, -0.0037)

Abbreviations: PPV= Positive predictive value; NPV= Negative predictive value; PCC=
Probability of correct classification; Sens= sensitivity; Spec=specificity.
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Comparing Two Absolute Risk Prediction Models

Compare calibration

Compare accuracy measures

Compare AUC values

Compare PCF and PNF or iPCF and iPNF

Criteria based on reclassification tables

Net reclassification improvement

Integrated discrimination improvement
Compare expected losses
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Distribution of Risk Estimates in NHS Validation Cohort
by Breast Cancer Status

BCmod, no breast cancer BCmod, breast cancer

BCRAT, no breast cancer

AUC=0.58

AUC=0.56

BCRAT, breast cancer 1
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Sidetrack: Example of Distributions of Log-normal Risk
Estimates with modest AUC

Non-cases Cases

AUC=0.6, like BCmod

Absolute risk HighLow
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Sidetrack: Example of Distributions of Log-normal Risk
Estimates with good AUC

Non-cases Cases

Good discriminatory accuracy, AUC=0.8

Absolute risk HighLow
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Compare AUC values

Compute AUC using disease placement value
P(R ≥ r |Y = k) = Sk(r), k = 0, 1 (DeLong, 1988; Pepe, 2003)
nk - number of individuals with Y = k, k = 0, 1
rkij risk from model i in person with Yj = k

ÂUC i =
1

n0

n0∑
j=1

S1(r0
ij ), i = 1, 2

∆ = ÂUC 1 − ÂUC 2

If ÂUC i computed using paired samples (i.e. based on same individuals in
the cohort) then

var(∆) ≈ var(S1
1 (r0

1 )− S2
1 (r0

2 ))

n0
+

var(S1
0 (r1

1 )− S2
0 (r1

2 ))

n1

Don’t despair, bootstrap also works!
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Compare AUCs in NHS Women Ages 50-55

BCRAT: AUC1 = 0.623(0.0173)

BCmod: AUC2 = 0.617(0.0167)

∆ = ÂUC 1 − ÂUC 2 = 0.006(95%CI ;−0.0355, 0.0282)
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Reclassification Tables Cook et al, 2006

Risk estimates from 2 models are divided into risk categories and cross
tabulated

Typical application: model 2 is a refinement of model 1, e.g. additional
risk factor is added
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Reclassification Tables Cook et al, 2006

Risk stratification based on 5 year absolute risks from BCRAT and BCmod
models for women in NHS validation cohort ages 50-55 years at baseline

5-yr risk from BCRAT 5-year risk from BCmod
0 to 1 to > 1.66 to
< 1% ≤1.66% <2.5% ≥2.5% Total

0 to < 1% n 2,291 1,675 114 2 4,082
Eventsa 13 16 1 0 30
Non-events 2,278 1,659 113 2 4,052
Prop. Events (%) 0.57 0.96 0.88 0.00 0.73

1% to ≤1.66% n 1387 6632 1299 49 9367
Events 10 100 24 0 134
Non-events 1,377 6,532 1,275 49 9,233
Prop. Events (%) 0.72 1.51 1.85 0.00 1.43

> 1.66% to <2.5% n 9 1,522 1,120 78 2,729
Events 0 27 38 0 65
Non-events 9 1,495 1,082 78 2,664
Prop. Events (%) 0.00 1.77 3.39 0.00 2.38

≥2.5% n 1 107 598 201 907
Events 0 2 13 8 23
Non-events 1 105 585 193 884
Prop. Events (%) 0.00 1.87 2.17 3.98 2.54

Total n 3,688 9,936 3,131 330 17,085
Events 23 145 76 8 252
Non-events 3,665 9,791 3,055 322 16,833
Prop. Events (%) 0.62 1.46 2.43 2.42 1.47
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Net Reclassification Improvement, NRI Pencina et al, 2008

“up”: model 2 moves person to higher risk category than model 1

“down”: model 2 moves person to lower risk category than model 1

NRI = {P(up|Y = 1)−P(down|Y = 1)}+{P(down|Y = 0)−P(up|Y = 0)}

= improvement for cases + improvement for controls
Comment: NRI is function of ranks of predicted probabilities
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Net Reclassification Improvement, NRI Pencina et al, 2008

P(up|Y = i) =
number in group Y = i moving up

number in group Y = i

Breast cancer model example:

P(up|Y = 1)−P(down|Y = 1) =
16 + 1 + 0 + 24 + 0

252
−

10 + 0 + 27 + 0 + 0 + 2 + 13

252
= −0.0437

P(down|Y = 0)− P(up|Y = 0) =
1377 + 9 + 1495 + 1 + 105 + 585

16833
−

1659 + 113 + 2 + 1275 + 49 + 78

16833
= 0.0235

NRI = −0.0437 + 0.0235 = −0.0201
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Issue with NRI: Sensitivity to Mis-calibration

Assume we compare two models:

Well calibrated model: Risks uniform on [0,0.1] in Y = 0 and
uniform on [0,0.2] in Y = 1 (cases)

New poorly calibrated model adds 0.05 to all risks: r U[0.05, 0.15]
in Y = 0 and U[0.05,0.25] in Y = 1

For risk threshold 0.2, old model has sens=0 and spec=1.0; new
model has sens=.25 and spec =1.0.

AUC=0.75 for both models

NRI=(.25-0)+(1.0-1.0)=0.25 only because new model is biased
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Continuous Net Reclassification Improvement (cNRI) Pencina

et al, 2011

NRI = {P(up|Y = 1)−P(down|Y = 1)}+{P(down|Y = 0)−P(up|Y = 0)

= 2P(R2 > R1|Y = 1)− 1− 2P(R2 > R1|Y = 0)− 1

Continuous NRI

cNRI = P(R2 > R1|Y = 1)− P(R2 > R1|Y = 0)

AUC1 − AUC2 = P(RY=1
2 > RY=0

2 )− P(RY=1
1 > RY=0

1 )
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Applications of Absolute Risk Models
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Applications of Absolute Risk Models

Counseling patients

General perspective on disease risk
Weigh risks and benefits of interventions such as tamoxifen
Modify known risk factors
Prognosis for dying of a disease after disease onset
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Should a Woman in her Forties Have Screening
Mammography?

US Prev. Services Task Force (2016): “The decision to start
screening mammography in women prior to age 50 years should be an
individual one. Women who place a higher value on the potential
benefit than the potential harms may choose to begin biennial
screening between the ages of 40 and 49 years.”

No mention of risk
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Should a Woman in her Forties Have Screening
Mammography? Wu, Graubard, Gail, AIM 2012

A 40-year old woman is uncertain whether to have screening
mammograms. Her mother and sister had breast cancer. Her 5-year
absolute risk (1.8%) exceeds that of a 50-year old woman without risk
factors (0.6%).

11.4 million white women in their forties in US (74%) have risks
above that of 50-year old women without risk factors.
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Applications of Absolute Risk Models

Counseling patients

General perspective on disease risk
Weigh risks and benefits of interventions such as tamoxifen
Modify known risk factors
Prognosis for dying of a disease after disease onset
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Example of Use of Risk Model: Weighing the Risks and
Benefits of Tamoxifen for Breast Cancer Chemoprevention

Gail, Costantino, Bryant, Croyle, Freedman, Helzlsouer, Vogel, JNCI 1999;
91:1829-46.
Based on Breast Cancer Prevention Trial (P1 Trial) by Fisher et al., JNCI,
1998

73 / 103



10,000 40-Year-old White Women with Uteri. 5-Year
Absolute Risk of Invasive Breast Cancer 2%∗

PREVENTED BY
LIFE-THREATENING NO TAMOXIFEN TAMOXIFEN
Invasive Breast Cancer 200 97
Hip Fracture 2 1
Endometrial Cancer 10 -16
Stroke 22 -13
Pulmonary Embolus 7 -15

net prevented 54
SEVERE EVENTS
In situ Breast Cancer 106 53
Deep Vein Thrombosis 24 -15

net prevented 38

∗Average 5-year BC risk of 40 year old White woman in US population is 0.6%
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Applications of Absolute Risk Models

Counseling patients

General perspective on disease risk
Weigh risks and benefits of interventions such as tamoxifen
Modify known risk factors
Prognosis for dying of a disease after disease onset

Public health/prevention

Designing prevention trials
Assessing reduction in population absolute risk from decreased
exposure to modifiable risk factors
“High risk” prevention strategy
Assessing risk based screening strategies
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Designing prevention trials

Statistical power

Depends on the number of events
Number of events is proportional to average absolute risk of trial
participants

Eligibility criteria

Select subjects who stand to benefit from intervention
Increase efficiency of trial by including high risk subjects

Examples: BCPT (P-1) Trial, STAR Trial
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Applications of Absolute Risk Models

Counseling patients

General perspective on disease risk
Weigh risks and benefits of interventions such as tamoxifen
Modify known risk factors
Prognosis for dying of a disease after disease onset

Public health/prevention

Designing prevention trials
Assessing reduction in population absolute risk from decreased
exposure to modifiable risk factors
“High risk” prevention strategy
Assessing risk based screening strategies
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Models with Modifiable Risk Factors

Breast cancer

Petracci et al. JNCI 2011(exercise, BMI, alcohol)
Pfeiffer et al Plos Med 2013(BMI, HRT, alcohol)
Maas et al JAMA Oncol 2016 (BMI, HRT,alcohol, smoking)

Heart disease (Framingham models) (blood pressure, smoking, HDL,
LDL, diabetes)
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Assess Disease Preventable Due to Modifiable Risk Factors

Non-modifiable factors (X): e.g. parity, age 1st birth, benign breast
disease/biopsy,
Modifiable factors (Z): BMI, alcohol, HRT use
Absolute risk reduction for individual woman:

R(a, a + τ,X,Z)− R(a, a + τ,X,Z0)

Mean absolute risk reduction in population

E{R(a, a + τ,X,Z)− R(a, a + τ,X,Z0)}

Fractional reduction in mean absolute risk

E{R(a, a + τ,X,Z)− R(a, a + τ,X,Z0)}
E{R(a, a + τ,X,Z)}
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Modifying Alcohol Consumption, HRT use, BMI: Changes
in 20-year BCmod Risk for Women Aged 50 Years in NHS
Validation Cohort

Subset of Initial Absolute mean Fractional reduct
population abs risk (%) risk reduct (%) in mean risk (%)
Entire population
(N=2447) 5.9 1.0 17.0

Women with positive
family history (N=295) 8.0 1.5 18.8

Women in top 10% of
population risk (N=246) 9.2 2.5 27.2
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Comments on Modifiable Risks

Key assumptions for predicting preventive effects

- There are interventions to effect these changes
- Interventions have their predicted effects
- People will comply with interventions

More disease prevented by treating the entire population, rather than
high risk subset

Changes in absolute risk offer different perspective than attributable
risk
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Applications of Absolute Risk Models

Counseling patients

General perspective on disease risk
Weigh risks and benefits of interventions such as tamoxifen
Modify known risk factors
Prognosis for dying of a disease after disease onset

Public health/prevention

Designing prevention trials
Assessing reduction in population absolute risk from decreased
exposure to modifiable risk factors
High risk prevention strategy
Assessing risk based screening strategies
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Example of using well calibrated risk model: Estimating
the breast cancer (BC) burden in Germany and
implications for risk-based screening

Collaboration with German Cancer Research Center

Used data from 22 098 women aged 40+ years enrolled in EPIC
Germany cohort (European Prospective Investigation into Cancer &
Nutrition)

745 breast cancers occurred during median follow-up 12 years

Predicted breast cancer risk using BCmod

Calibration: O/EBCmod = 0.93 (95% CI: 0.83− 1.05)

Discrimination:
AUCBCmod = P(Rcase > Rnoncase) = 0.61 (95%CI: 0.58− 0.63)

(Hüsing, . . . , Pfeiffer, Cancer Causes & Control, 2020)
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(Hüsing, . . . , Pfeiffer, Cancer Causes & Control, 2020)

83 / 103



Example of using well calibrated risk model: Estimating
the breast cancer (BC) burden in Germany and
implications for risk-based screening (Quante, . . . , Pfeiffer, 2021)

Collaboration with Women’s Hospital of Munich, Germany
Currently: Mammographic screening starts at age 50 in Germany
Estimated Eτ=1 using 1-year BCmod risks for women in DEGS survey and
number needed to screen (NNS) to detect one BC case

Age 40-44 Age 45-49 Age 50-69

total population
Total count 3,261,000 3,461,000 10,498,000
Eτ=1 3,400 5,500 35,900
NNS 953 631 292
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Estimating the breast cancer burden in Germany and
implications for risk-based screening (Quante, . . . , Pfeiffer, 2021)

Int. guidelines: start screening when a woman’s 5-year BC risk > 1.7%

Age 40-44 Age 45-49 Age 50-69

total population
Total count 3,261,000 3,461,000 10,498,000
Eτ=1 3,400 5,500 35,900
NNS 953 631 292

5-year BC risk > 1.7%

Total count 0 39,000 4,761,000
Eτ=1 0 140 22,000
NNS 282 217
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Miscellaneous Topics
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Updating Prediction Models with New Risk Factors

Examples of new molecular risk factors for breast cancer:

Polygenic risk score based on SNPs

Mammographic density

Involution measures

Inflammation markers
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Improve Models: Updating Risk Models with New
Predictors

Many risk prediction models available that use well-established risk
factors

Combine new information with information from existing models to
improve predictions

Particularly relevant when new molecular markers measured in
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Approaches for incorporating new information into existing
relative risk models

Y - disease outcome, binary
X = (X1, . . . ,Xp) - vector of original old predictors
Z - new marker (could also be vector)
AIM: use information from “old model” model with predictors X

RX = P(Y = 1|X) =
exp(γ0 + γ ′X)

1 exp(γ0 + γ ′X)

New model

RX,Z = P(Y = 1|X,Z ) =
exp(β0 + β′X + βzZ )

1 + exp(β0 + β′X + βzZ )
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Approaches for incorporating new information into existing
relative risk models

Y - disease outcome, binary
X = (X1, . . . ,Xp) - vector of original old predictors
Z - new marker (could also be vector)

rr(X,Z ) = rr(β′X, βZZ ) = exp(β′X + βZZ )
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Updating Methods, General Idea

Bayes Theorem:

P(Y |X,Z ) =
P(Y |X)P(Z |X,Y )∑
Y P(Y |X)P(Z |X,Y )

Thus

log
P(Y = 1|X,Z )

P(Y = 0|X,Z )
= log

P(Y = 1|X)

P(Y = 0|X)
+ log

P(Z |Y = 1,X)

P(Z |Y = 0,X)

posterior odds, new
model R(X,Z )

=
prior odds, old
model R(X)

+
likelihood
ratio (LR)
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Updating Methods: Estimate LR from Case-Control Data
with Information on Z ,X

LR(Z |Y ,X) =
P(Z |Y = 1,X)

P(Z |Y = 0,X)

Independence Bayes: Assume Z ,X independent, model P(Z |Y )

Independence Bayes with shrinkage: θ log LR(Z |Y )

Separate estimation of LR: model P(Z |X) separately in cases and
controls

Joint estimation of LR: model distribution of marker Z as function of
case-control status Y and old predictors X model P(Z |Y ,X)
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Updating Methods: Fit R(X,Z ) to new data only

R(X,Z ) = P̂(Y = 1|X,Z ) =
exp(β0 + β′X + βzZ )

1 + exp(β0 + β′X + βzZ )

Completely ignore information from old model R(X) and fit logistic
regression model to new data only
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Updating Methods: Offset

R(X,Z ) = P̂(Y = 1|X,Z ) =
exp(γ ′X + δ0 + δ1Z )

1 + exp(γ ′X + δ0 + δ1Z )

Include prior odds as offset term in a logistic regression model that is fit to
new data set
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Updating Methods: Constraint Maximum Likelihood

Chatterjee et al. (JASA 2016) identified set of general constraints that
link full model P(Y |X,Z ) and reduced model P(Y |X) and used them to
propose semiparametric maximum likelihood estimate for updated model.

Most efficient estimate for updated model parameters
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Example: Compared calibration (E/O) of methods for
updating old model to predict HCV treatment response
with 2 new markers (IFNL4 genotype, HCV-RNA)

Cohort setting; Two new markers: Z1 (binary) and Z2 continuous
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Example: Compared calibration (E/O) of methods for
updating old model to predict HCV treatment response
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Cohort setting; Two new markers: Z1 (binary) and Z2 continuous
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Summary of Model Updating Results

Combine new predictor Z with information on “established predictors X

Fitting model to new data only (ignoring available information) yields
unbiased predictions with large variability

Likelihood ratio (LR) updating assuming independence of Z and X
typically biases updated model predictions

Logistic new and LR offset show large variability in the predictions

CML and LR methods allowing for dependence between Z and X
yield unbiased predictions with similar variance

Recommendation: LR updating by modeling P(Z |Y,X) (easy to
implement in standard software)
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Workshop Goals/Summary

Learn what “absolute risk” (“crude risk’ or “cumulative incidence’) is

Learn how to estimate it from data from various designs

Learn how to assess the validity and usefulness of a model of absolute
risk

Learn what it can be used for
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