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Course Outline

All times are Pacific Daylight Savings Time (PDT)
Day 1

1. 8:30-8:40 Introductions

2. 8:40-9:30 Choice of primary outcome and analysis

9:30-9:45 Break

3. 9:45-10:30 Randomization

10:30-10:45 Break

4. 10:45-12:00 Sample size/ Power

Day 2

6. 8:30-10:15 Interim monitoring

7. 10:15-10:45 Break

8. 10:45-12:00 Futility
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Course Outline (2)

All times are Pacific Daylight Savings Time (PDT)
Day 3

1. 8:30-9:30 Handling missing data

9:30-9:45 Break

2. 9:45-10:45 Multiple Comparisons

10:45-11:00 Break

3. 11:00-11:55 Adaptive design

4. 11:55-12:00 Wrap Up
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Course overview

Overall aim
That you will gain a set of simple tools and principles that go a long
way towards robust clinical trial design and analysis.

▶ Emphasis will be on practical application

▶ Examples will be used throughout

▶ Key references provided
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Lecture 1: Choice of primary outcome and
analysis
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RCT

▶ A Randomized Controlled Trial (RCT) is a study of a novel
intervention in human subjects where the intervention
assignment is randomized

▶ An RCT is the gold standard for clinical evidence for establishing
efficacy

▶ International Council for Harmonisation (ICH)/FDA Guidance
provide universally adopted guidelines to maintain rigorous
standards for the ethical and scientific integrity of the trial
▶ ICH E9 Statistical Principles
▶ https://www.ich.org/page/efficacy-guidelines

▶ A central pillar to the scientific rigor of the RCT is the choice of a
relevant clinical endpoint that will reliably and efficiently capture
the treatment effect of interest
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A few definitions....
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Types of randomized studies

Parallel group - subjects randomized to one of k treatments

Cross-over - each subject used as their own control. Patients
receive each treatment sequentially, and the order is randomized

Factorial design - Multiple treatments under study, where each
has a control. So for k treatments, subjects randomized to one of
2k possible arms in a full factorial design

Cluster randomized - groups instead of individuals are
randomized (eg. schools, building, clinic)
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Phases of clinical trials
https://www.fda.gov/patients/drug-development-process/step-3-clinical-research

▶ Phase 1: Evaluates safety and dosage of drug. Generally 20-100
subjects, either healthy or with condition

▶ Phase 2: Evaluating efficacy and side effects. Up to 300 subjects
with condition

▶ Phase 3: Evaluating efficacy and monitoring adverse events.
300-3000 with disease condition

Note, these sample size ranges can vary based on disease setting,
e.g. cancer treatment trials tend to be smaller, cancer prevention tend
to be large
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The RCT Gold Standard

Key features that contribute to the strength of evidence of the RCT:

▶ Randomization of the treatment allocation allows for causality to
be established

▶ A single primary outcome to evaluate efficacy is chosen

▶ Outcomes and analyses are pre-specified

▶ Analyses are done as intent-to-treat
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Intent-to-treat analyses

An intent-to-treat (ITT) analysis is one where randomized individuals
are analyzed in the group they were randomized to, regardless of
what happens during the trial. Analyze as you randomize!

▶ Randomization ensures that there are no systematic differences
between the treatment groups

▶ The exclusion of patients from the analysis on a systematic basis
(e.g., lack of compliance with assigned treatment) can introduce
systematic differences between treatment groups, thereby
biasing the comparison

▶ Sometimes a modified ITT analysis (mITT) is considered, which
would consider very limited exceptions to ITT
▶ Shortly after randomization and before any intervention was given

(control or otherwise), trial participant drops out
▶ Other exceptions to ITT not widely accepted (more details in

Lecture 2)
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Implication of ITT for primary endpoint

▶ ITT means representing patients in the analysis even if they have
missing data
▶ Missing data must be imputed for an ITT or IPW approach to be

considered (Day 3 topic)

▶ Too much missing data will degrade the integrity/acceptability of
the trial results

▶ A fundamental consideration of primary endpoint is that it be
something that can be reliably obtained on all subjects
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Considerations for the primary outcome

▶ Should be measured similarly in both treatment arms

▶ Less is more (benefits of choosing 1 primary)

▶ Reliability/feasibility

▶ Clinical relevance (surrogate endpoints, composite endpoints)
▶ Primary analysis: Efficiency versus robustness. (phase 1 vs

phase 3)
▶ In phase 1 avoid type II error, in phase 3 avoid type I error. Phase 2

you are somewhere in between

▶ Composite outcomes

▶ Interpretability (Clearly stated estimand)
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The Measurement Principle

The process of measurement of the primary outcome should not be
influenced by treatment

▶ The primary outcome should be measurable in all subjects

▶ There should be similar monitoring of events in both treatment
arms

▶ Sometimes violations of the measurement principle can be
subtle
▶ Example: Suppose a viral vaccine causes mild disease. Then

comparison of viral load between arms may suggest a treatment
benefit, but point is moot since vaccine caused the disease
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So why choose only 1 endpoint?

Probability of at least one false positive test assuming multiple
independent tests under the null

Number of tests Prob of ≥ 1 significant test
1 0.0500
2 0.0975
3 0.1426
4 0.1855
5 0.2262
6 0.2649
7 0.3017
8 0.3366
9 0.3698

10 0.4013
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Maintaining type I error without loss of power

The dominant paradigm:

1. Pick one efficacy outcome as the primary outcome
▶ Formal hypothesis test maintains α level

2. Consider other endpoints as secondary or exploratory

3. If rigorous standards are sought for more than primary outcome,
consider adjustment for multiple comparisons (Day 3 topic)
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Reliability

▶ Clinical outcomes that are more variable between patients, such
as those affected by more factors than just the treatment, will
have less power

▶ Difficult to measure quantities will have more missing data (e.g.
more assay failure)
▶ This can introduce bias, particularly if say lower levels more likely

to be missing
▶ Worry if too many values below limit of detection, it will be difficult

to detect arm differences
▶ If your trial involves a novel assay, having some pilot data will be

important before launching the trial
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Efficacy and Safety of Metronidazole for Pulmonary
Multidrug Resistent Tuberculosis (MDR-TB)
Study NCT00425113

Background

▶ MDR TB is a difficult to treat disease. Individuals have been
observed to fail first line therapies (Isoniazid and Rifampicin)

▶ Standard MDR-TB treatment is 18-24 months of 2nd-line
antibiotics

▶ In vitro data showed that metronidazole is active against
Mycobacterium tuberculosis (MTB) maintained under anaerobic
conditions

▶ Pre-clinical studies (non-human primates, rabbits) also showed
metronidazole may have unique activity against an anaerobic
sub-population of bacilli in human disease
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Design of the Metronidazole for MDR-TB Trial

▶ A double-blinded RCT with a planned 60 patients with MDR-TB
randomized to one of placebo or 500 mg MTZ for first 8 weeks of
2nd-line TB therapy. 2nd line therapy to continue for 18-24
months.

▶ Primary outcome was ”Changes in TB lesion sizes” at 6 months

▶ In humans, TB disease characterized by aerobic (cavities) and
anaerobic (caseous necrotic nodules) areas

▶ Hypothesis was that MTZ would reduce the volume of nodules in
the lung, which would be quantified at baseline and follow-up,
using FDG-PET HRCT

▶ FDG-PET HRCT was a relatively novel tool for assessing extent
of TB disease
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Problematic Primary outcome

▶ As scans were evaluated on the patients in the trial it became
clear that the primary outcome was not a good measure of
change

▶ For some patients, volume of lesions decreased because lesions
were reducing in size as patients improved

▶ For some patients, volume of lesions decreased because lesions
collapsed into cavities as patients got worse

▶ Number of lesions was discussed as a secondary endpoint, but
the number of lesions could increase or decrease as patients got
better

▶ Investigators had no choice but to alter the primary and other
outcome measures of the trial

▶ Changing primary endpoint mid-trial is problematic
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Transparency on Clinical Trials.gov
Study NCT00425113

5 years after trial opened and after study had closed early, primary
outcome was changed

Changes in TB Lesion Sizes Using High Resolution Computed Tomography (HRCT). [
Time Frame: 6 months. ] Lesions were defined as nodules (<2 mm, 2-<4 mm, and
4−10 mm), consolidations, collapse, cavities, fibrosis, bronchial thickening, tree-in-bud
opacities, and ground glass opacities. Each CT was divided into six zones (upper,
middle, and lower zones of the right and left lungs) and independently scored for the
above lesions by three separate radiologists blinded to treatment arm. A fourth
radiologist adjudicated any scores that were widely discrepant among the initial three
radiologists. The HRCT score was determined by visually estimating the extent of the
above lesions in each lung zone as follows: 0=0% involvement; 1= 1-25% involvement;
2=26-50% involvement; 3=51-75% involvement; and 4=76-100% involvement. A
composite score for each lesion was calculated by adding the score for each specific
abnormality in the 6 lung zones and dividing by 6, with the change in composite score
measured at 2 and 6 months compared to baseline. Composite sums of all 10
composite scores are reported.
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RCT Example: Effect of Ranitidine on Hyper-IgE
Recurrent Infection (Job’s) Syndrome
NCT00527878

Background

▶ Hyper-IgE syndrome (HIES) is an immunological disorder
caused by a genetic mutation (STAT3) characterized by recurrent
infections of the ears, sinuses, lungs and skin, and abnormal
levels of the antibody immunoglobulin E (IgE).

▶ Patients with hyper-IgE syndrome also tend to have skeletal
abnormalities: characteristic face, retained teeth, and recurrent
fractures from minimal trauma

▶ An early phase RCT was launched in 2007 at NIAID to study
whether ranitidine would reduce infections
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Considerations for an endpoint for this diverse disease

One possibility: A patient-reported score of severity of symptoms.
Problem: Patients with more severe disease less bothered by mild to
moderate symptoms, and high functioning patients bothered by
relatively minor symptoms
Alternative: A numeric score was considered that would capture the
number of new infections
▶ The number of infections that required new antibiotics was

reported on a quarterly basis, to balance burden and accuracy
(require recall over shorter period)

▶ Total number in a year is prone to missingness
▶ Rate of infections per month is a more flexible endpoint

▶ Disease had many other chronic morbidities (e.g. recurrent
fracture), but ranitidine only expected to affect infections

Final: Primary endpoint chosen was the rate of infections (i.e. avg #
per month during first year). Primary endpoint to require at least 2 of
the 4 quarters to give a robust estimate of the yearly rate.
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Clinical relevance

▶ When weighing possible outcomes/endpoints want to consider
the relative seriousness of the different conditions/symptoms the
drug could be affecting

▶ Also need to consider the mechanisms of action for the
intervention under study and the outcomes expected to have the
biggest change

▶ Often a trade-off between clinical relevance and power: frequent
less serious events and infrequent serious events

▶ In some trials it is more practical to observe a surrogate outcome
▶ In TB trials the short-term endpoint of sputum conversion or

change in first 6 months used in place of the gold standard “cure”
outcome: 6 months after end of therapy need to be disease free
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Surrogate Outcome

▶ Various definitions exist for a surrogate endpoint. Ellenberg and
Hamilton (1989) lay out a general definition: A “Surrogate
endpoint captures an intermediate endpoint on the disease
pathway, which is informative of the true outcome”

▶ Generally, the point of a surrogate endpoint is to have an
expected reduction in sample size or trial duration, such as when
a rare or distal endpoint is replaced by a more frequent or
proximate endpoint

▶ In 1989, Prentice laid out conditions for a surrogate outcome
(known as the Prentice criterion), as well as a working definition,
that assumes a treatment Z effect on the true endpoint Y is
completely captured by the surrogate endpoint X
▶ E(Y |Z ,X ) = E(Y |X )

▶ Prentice criterion has come under criticism as not practical and
various other discussions have ensued regarding the definition of
and how to validate a surrogate
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Examples of surrogate endpoints

▶ Cholesterol, when ultimate goal to reduce cardiovascular events
(e.g., heart attacks and strokes)

▶ Blood pressure, when ultimate goal to reduce stroke risk

▶ CD4 or HIV viral load, when ultimate goal to reduce serious
infections AIDS infections or death

▶ Hemoglobin A1c, when ultimate goal to reduce serious
complications of diabetes
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CAST Example: Caution is needed when working with
surrogate endpoints

▶ Arrhythmias can lead to cardiac arrest, which is fatal a high
percentage of time

▶ Given that arrhythmia is on the causal pathway to cardiac arrest
and sudden death, arrhythmia could be considered a surrogate
endpoint for cardiac arrest/sudden death

▶ In mid-80s to 1990, encainide, flecainide and moricizine were
approved by FDA on basis of their effect on arrhythmias

▶ Anti-arrhythmia drugs were in broad use at the time of Cardiac
Arrhythmia Suppression Trial (CAST )
▶ Led to difficulties in recruitment
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Cardia Arrhythmia Suppression Trial (CAST)
CAST Investigators, 1989

CAST would test hypothesis that suppression of ventricular
premature complexes after a myocardial infarction would improve
survival
▶ Patients at high risk for death from cardiac arrest were eligible

(recent MI, low ejection fraction)
▶ Three suppression drugs considered, with matching placebos:

encainide, flecainide and moricizine
▶ The primary endpoint of the trial was death or cardiac arrest with

resuscitation, either of which was due to arrhythmia
▶ During titration phase analysis of Holter recordings required to

show that a drug had indeed suppressed arrhythmias adequately
before a patient could be randomized

▶ Randomization was to the agent that achieved successful
suppression or matching placebo

▶ Trial launched in June 1987 with 3 year planned recruitment
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CAST Results
Ruskin (1989)

▶ In April 1989 after 1498 patients randomized, the ecainide and
flecainide arms were stopped due to higher overall cardiac
mortality and higher mortality due to arrhythmia

▶ In April 1989 CAST II - placebo-controlled trial was launched with
moricizine as only active drug
▶ Only 277 patients to date had been randomized

▶ Titration phase now had a blinded placebo

▶ Early exposure to moricizine was shown to have higher death
rates than the placebo arm

▶ Anti-arrhythmia drugs were no longer routinely recommended
(Greene et al., 1992)

▶ Deadly Medicine: Why tens of thousands of heart patients died
in America’s worst drug disaster Moore (1995a)
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Surrogate Endpoints: Controversy continues

▶ In early phase trials, need biologically motivated intermediate
endpoints

▶ Many would argue in large phase III trials, need to move to the
target clinical (non-surrogate) endpoint

▶ Those in pharmaceutical industry would argue that validated
surrogates would mean smaller, faster cheaper trials
▶ Fewer patients are exposed during testing, and beneficial new

medications reach the market faster

▶ Problem: No universal way to validate a surrogate. Some
advocate meta-analyses (Molenberghs et al., 2002)

▶ Buyse and Molenberghs (1998); Buyse et al. (2000) reviews
different methods to validate a surrogate, with extension to
meta-analyses

31 / 464



Many examples of misleading surrogates

▶ Cyclic adenosine monophosphate– enhancing agents, such as milrinone, were
considered a “particularly rational approach to the treatment of chronic heart
failure.” Milrinone was later found to increase mortality by 28% over placebo.
(Svensson et al. (2013))

▶ Estrogen in pre-menopausal women thought to be protective against heart
disease. Hormone replacement therapy used for decades in post-menopausal
women before found to be harmful in the WHI

▶ High blood sugar in diabetics can lead to bad outcome. Hemoglobin A1c used to
monitor diabetes mellitus therapy (short-term effects of treatment). In ACCORD,
over suppression of hbA1c led to increased mortality (Action to Control
Cardiovascular Risk in Diabetes Study Group, 2008)

▶ Svensson et al. (2013) give multiple examples of treatment approved based on
surrogate, later found harmful on true outcome

▶ Even when new drug under consideration is a member of an already
established class, adequate safety cannot be assumed (cerivastatin)

▶ Demonstrated value for one indication does not necessarily extend to a
related indication (Dronedarone hydrochloride)
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Composite outcomes are another way to improve
practicality

Composite outcomes are an outcome that combine multiple clinical
endpoints. General idea behind composite endpoints is to increase
power through an increased event-rate

Examples

▶ Time-to-first of disease progression or death (Progression-free
survival)

▶ Relapse-free survival

▶ Major adverse cardiovascular events (MACE)

▶ Time to first serious AIDS or serious non-AIDS event in the
Strategic Timing of AntiRetroviral Treatment (START) trial

▶ Time to first of cardiac arrest or arrhythmic death (CAST)

Note: Some composite endpoints are surrogate endpoints
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Considerations for composite endpoints
Neaton et al. (2005)

▶ The definition of the endpoint should be clearly established a
priori

▶ Endpoints should have similar seriousness

▶ In order to interpret the results of the trial, should look at
treatment effect on the individual components of the composite
(secondary endpoints)

▶ All endpoints should be affected by the drug
▶ You could decrease power if you expand composite to include

things not affected by treatment just for sake of higher event rate
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Example: SOLVD Trial
NEJM 1991, 325: 293-302.

Background

▶ SOLVD a RCT examining novel treatment for prevention of
mortality/hospitalization in patients with congestive heart failure
(CHF) and weak left ventricle ejection fraction (EF)

▶ In 1986-89, 2569 patients randomized to enalapril or placebo

▶ Enalapril found beneficial for mortality (p = 0.0036) and time to
first hospitalization/death (p < 0.0001)

Subgroup Analysis (Shaw and Fay (2016))

▶ Seek to evaluate treatment effect on subset of 662 diabetic
subjects

▶ Considered alternative to time to first that considers overall
severity
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SOLVD: Results

Enalapril Placebo
(N=319) (N=343) Cox PH Score Test

Endpoint Yes No Yes No HR (P-value)
Death 137 182 145 198 0.99 (0.91)
Hospitalization 94 225 148 195 0.60 (< 0.0001)
TTF 174 145 229 114 0.71 (0.0007)

▶ Treatment arm: 57/94 (61%) hospitalization followed by death

▶ Placebo arm: 64/148 (43%) hospitalization followed by death

Shaw and Fay severity score test p = 0.07 (Shaw and Fay, 2016)
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Alternative to Time-to-First: Prioritized severity score
(Shaw and Fay, 2016; Shaw, 2018)

▶ General idea: rank individuals according to clinical severity
▶ Depending on setting, clinical severity could consider two or

more outcomes or event times
▶ Shaw and Fay (2016) Proposed ranking considered surrogate

and ”true” event of interest
▶ Rank the time to event of interest (death) if it is observed
▶ Rank time to surrogate event (MI hospitalization) for the survivors
▶ Surrogate time does not affect clinical severity when event of

interest is observed
▶ Perform two sample test on clinical severity which incorporates

bivariate survival information
▶ Resulting test is average of two log-rank tests (aids interpretation)

▶ Prioritization endpoints have grown in popularity in recent years.
Examples: win ratio (Pocock et al., 2012), Desirability of outcome
ranking (DOOR) (Evans et al., 2015). See review Shaw (2018).
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Choice of primary analysis

▶ Want to choose an efficient analysis

▶ Need to consider the interpretation of the parameter for your test
statistic

▶ If no one understands the method or parameter interpretation,
then unlikely to affect clinical practice

▶ There may be some trade-off between efficiency and
interpretability.
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Common test statistics for a parallel two-arm trial

▶ Continuous outcome: t-test (assuming unequal variance) is a
common choice
▶ Note non-parametric tests like Wilcoxon Rank sum test will be

more robust, particularly for modest sample sizes.

▶ Binary outcome: difference of proportions often of interest - exact
test will be more robust and often preferred particularly for small
samples sizes

▶ Survival outcome: simple log-rank test

▶ If anticipate missing data, good to consider how your primary test
statistic will be calculated
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Interpretability: Wilcoxon

▶ There are different ways to interpret a test, and some may be
more relevant than others.

▶ Example: Wilcoxon rank sum and Mann-Whitney tests are
equivalent.
▶ Wilcoxon, assumes one distribution is shifted relative to other, and

estimates size of shift.
▶ Mann Whitney compares (treatment, control) pairs and estimates

the following probability for outcome of randomly picked
treatment/control patients (> means better):

P(treatment > control)+(1/2)P(treatment = control)

▶ Latter helpful in COVID-19 trial with ordinal score like WHO-8.
Even if proportional odds assumption is violated, still asymptotically
equivalent to Mann-Whiney (Wang and Tian (2017)), so still
estimates above probability parameter.

▶ Another example: Hazard ratio versus restricted mean survival
time (RMST). Many believe RMST is easier to interpret.
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Change from baseline

▶ Frison and Pocock (1992) generalize the following.
▶ With continuous outcome Y , at least 3 ways to analyze:

▶ T-test on end of study value, treatment effect estimate δ̂ = ȲT − ȲC .
▶ T-test on change from baseline, treatment effect estimator

δ̂ = (ȲT − X̄T )− (ȲC − X̄C).
▶ Analysis of covariance (ANCOVA) regression using baseline value

as covariate:
Y = β0 +β1X +β2Z + ε,

where z is treatment indicator and ε is a random error independent
of X . Treatment effect estimator δ̂ = ȲT − ȲC − β̂1(X̄T − X̄C).

▶ Which one is best?

▶ Assume ANCOVA model is correct.

▶ Unconditionally (averaged over distribution of X ), all 3 estimate
the same parameter, E(YT )−E(YC) because X is baseline
variable, so E(XT ) = E(XC).
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Change from baseline

▶ Asymptotically,
▶ T-test on Y , var(Y ) = β 2

1 σ2
X +σ2

ε .
▶ T-test on Y −X ,

var(Y −X ) = var{β0 +(β1 −1)X + ε}= (β1 −1)2σ2
X +σ2

ε .
▶ ANCOVA is essentially t-test on Y −β1X , and

var(Y −β1X ) = var(ε) = σ2
ε . Smallest variance, so best.

Asymptotic power when σX = σY = 1, ρ = cor(X ,Y ).

ρ Post Change ANCOVA
0.00 0.50 0.28 0.50
0.20 0.50 0.34 0.52
0.40 0.50 0.43 0.57
0.60 0.50 0.59 0.69
0.80 0.50 0.87 0.90
0.90 0.50 0.99 0.99
0.95 0.50 1.00 1.00

Note: Post is better than change if ρ < 0.50.
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Special considerations for cluster RCT

Public Access Defibrillation (PAD) Trial (Hallstrom et al. (2004))
▶ Cardiac arrest has very low survival probability (10%). Can we

improve survival by putting defibrillators in communities and
letting lay people use them?

▶ Note: No guarantees because lay people might make mistakes
with defibrillator and fail to call 911.

▶ Communities (shopping malls, apartment buildings, etc.)
randomized to CPR training of lay people (like managers) or
CPR training of lay people plus defibrillators.

▶ Primary outcome: number of people saved after cardiac arrest.
▶ In community-randomized trial, think of community like we think

of individuals in individual-randomized trial. Primary endpoint is
measured in each community (number of saves).

▶ 993 communities! Most community-randomized trials have only
about 20 communities.
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Conclusions

▶ The choice of a good primary outcome is paramount. Ultimately,
an RCT will be judged a success or failure based on the primary
outcome results

▶ For RCT’s there are rigorous standards for the primary outcome:
single endpoint with a pre-specified ITT, analysis

▶ Reliability/feasibility of measurement need to be considered

▶ Surrogate endpoints are often used in early phase trials, but a
definitive trial on the clinical endpoint is required to truly
understand treatment effect (remember CAST!)

▶ When choosing a primary analysis, robustness, power and
interpretability all come into play
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Lecture 2: Randomization
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Outline

▶ Basic principles
▶ Randomization Methods

- simple, permuted block, stratified

▶ Cluster vs individual designs

▶ Platform trials

▶ Adaptive randomization

▶ Threats to integrity of randomization
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Basic definitions (1)

What do we mean by random?

▶ In everyday speech, we describe a process as random if there
was no discernible pattern

▶ In statistics, random characterizes a process of selection that is
governed by a known, probability rule

- i.e., 2 treatments have equal chance of being assigned
- Random in statistics does not mean haphazard
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Basic Definitions (2)

What is random treatment allocation?
By random allocation, we mean that each patient has a known

chance, usually equal chance, of being given each treatment, but the
treatment to be given cannot be predicted. (Altman 1991)

▶ Randomization is the act of allocating a random treatment
assignment.

▶ A patient is said to be randomized to a treatment arm or group
when they are assigned to the treatment group using random
allocation

▶ Clinical trials that use random treatment allocation are referred to
as randomized clinical trials
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Random Examples

Flip a coin

- “Heads” and “Tails” have equal chance for a fair coin

Rolling a die

- The numbers 1 through 6 have equal chance of coming up

Draw one ball out of an urn filled with 10 red balls and 10 blue balls

- The chance of drawing a red or blue ball are equal
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Random Examples

Everybody pick a random number from this list

0 1 2 3 4 5 6 7 8 9 10
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Examples of Randomized Designs

▶ Parallel 1-1 randomized 2-arm trial

▶ Parallel k-1 randomized 2-arm trial

▶ Factorial designs: Two or more treatments given in combination:
AB, aB, Ab, ab

▶ Crossover trials: every patient gets all treatments under study

▶ Cluster randomized trials: entire communities are randomized to
receive a treatment (example: anti-smoking campaign for high
schools)
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Motivation Behind Randomization

▶ Randomization tries to ensure that only one factor is different
between two or more study groups.

▶ Provides basis for valid statistical tests between treatment groups

▶ Randomization means we can attribute causality, i.e. any
between group difference in outcomes can be attributed to the
treatment

▶ In truth, randomization does not guarantee causality, but it
increases the likelihood that causality is the main driving factor
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Ethics of Randomization

Equipoise – uncertainty about which intervention under study in a
clinical trial would have a better outcome for the participant

- The fundamental principle underlying the ethics of random
treatment allocation
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Masking/Blinding: Key Components of Randomization

▶ Double-blinded trial: the treatment assignment is masked so
neither the investigator nor participants know the treatment
assignment

- Treatment assignments are masked, individuals are blinded

▶ Single-blinded trial : only one of investigator/participant (usually
investigator) knows the treatment assignment

▶ Unpredictability of treatment allocation prevents selection bias
- Even when treatment can’t be blinded, it is helpful to have a blinded

randomization process

▶ Maintaining blind throughout the trial prevents
evaluation/response bias
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Ways to Randomize

▶ Standard ways:
- Computer programs (R, stata, sas, REDCap...)
- Random number tables
- Online tools (e.g., randomization.com)

▶ NOT legitimate
- Odd vs even birth dates
- Last digit of the medical record number
- Alternate as patients enroll

▶ Theoretically legitimate, but not so in practice
- Flipping a coin
- Rolling dice
- Drawing balls (m&ms) out of an urn (bag)
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Summary of Important Features of Randomization

▶ Random Allocation
- Known chance receiving a treatment
- Cannot predict the treatment to be given
- Scheme is reproducible

▶ Minimizes the risk of selection bias

▶ In double-blinded trials, no response/evaluation bias
▶ Similar treatment groups

- Patient characteristics will tend to be balanced across study arms
- Chance baseline imbalances between groups may still occur
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Types of Randomization

▶ Simple

▶ Blocked Randomization

▶ Stratified Randomization

▶ Cluster Randomization

▶ Baseline Covariate Adaptive Allocation

▶ Response Adaptive Allocation (using interim data)
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Simple Randomization

▶ Randomize each patient to a treatment with a known probability
- For example, to assign one of (T,C) with equal chance then:

Use a random number generator to generate a number in (0,1);
If u < 0.5 assign C; If u >= 0.5 assign T

▶ Advantage: Simple to conduct

▶ Advantage: Simple to analyze. The usual two-group tests ( t-test,
Wilcoxon, Fisher’s exact, etc) are appropriate

▶ Disadvantage: Could have imbalance in # per arm or trends in
group assignment

- No guarantee equal number of heads and tails
- Could have runs of heads or tails
- Could have different distributions of a trait like gender in the

different arms

▶ Particularly good for large trials
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Chance of Imbalance Decreases with Sample Size

E.g., suppose 1000 women; expected & “worse case” allocation
across T and C:
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Block Randomization

▶ Each block would contain the desired treatment ratio. For
example: equal numbers of patients assigned to each treatment
within a block

- Sample size 24, Block size = 6, 2 study interventions- A & B

BAABAB AAABBB ABABAB BBABAA

▶ Exactly balanced after each completed block
▶ Ensures treatment number on each arm at any given time is not

that not far out of balance
- Maintaining balance over time protects against unintended patterns

created by changes in patient population over time

▶ Good for small and modest sample sizes
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Block Randomization (2)

▶ Block size can be fixed or random

▶ Variable block size (permuted) adds an additional layer of
blindness, especially if not masked

▶ Does not protect against possibility of an imbalance of a trait like
gender in the two arms possible

▶ Any complication means more ways to make a mistake: Test
algorithm!!!

- Archive code and results (preserve reproducibility)
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Issues for Block Randomization

▶ If blocking is not masked, the sequence can get predictable
Example: Block size 4
A B A B B A B ? Must be A.

A A ? ? Must be B B.
▶ If block too small, unblinding one subject can reveal rest of block

- i.e. if block size is 2, knowing one reveals a second
- Solution: use random block sizes, don’t use block size of 2

▶ Predictability can lead to selection bias
▶ Simple solution to selection bias

- Do not reveal blocking mechanism
- Use random block sizes

▶ Proper analysis would incorporate the blocking used in
randomization, such as a test stratified on the randomization
blocks (Matts and Lachin, 1988)
▶ This is rarely done
▶ Why some have advocated for simple randomization for larger

trials, allows for simpler analysis (Lachin et al., 1988)
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Sample Code in R

> library(blockrand)

> set.seed(31415)

> list<-blockrand(24,num.levels=2,

levels=c("T","C"),id.prefix="CCP2-",block.sizes=2:4)

> list

id block.id block.size treatment

1 CCP2-01 1 6 T

2 CCP2-02 1 6 T

3 CCP2-03 1 6 C

...

28 CCP2-28 5 8 T

29 CCP2-29 5 8 T

30 CCP2-30 5 8 C

> table(list$treatment)
C T

15 15
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Stratified Randomization

▶ A priori certain factors known to be important predictors of
outcome (e.g. age, gender, diabetes)

▶ AABB BABA BABA BAAB, balanced trial of 16 but what if women
are patients 1,2,6,8 and 16?

▶ Stratified randomization: Randomize within strata so different
levels of the factor are balanced between treatment groups

▶ Stratified blocked randomization is a useful way to achieve
balance

- For each subgroup or strata, perform a separate block
randomization

## stratified by sex, 100 in stratum, 2 treatments

male <- blockrand(n=100, id.prefix=’M’,

block.prefix=’M’,stratum=’Male’)

female <- blockrand(n=100, id.prefix=’F’,

block.prefix=’F’,stratum=’Female’)
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Considerations for Stratified/Blocked Randomization

▶ Common choices for strata
- Strong prognostic variables: age, gender, diabetes
- Logistics and politics can motivate stratification by center

▶ Balance will be defeated if you choose too many strata and wind
up with many incomplete blocks

- Strata add up quickly: 5 age groups, 2 genders, 3 centers = 30
strata

▶ Stratification should be taken into account in the data analysis
- Blocks commonly ignored due to preference for a simple (easy to

understand) analysis
- Adjusting for strong prognostic variables can help with precision

(Pocock et al., 2002; Tsiatis et al., 2008)
- Not adjusting for stratification variables can result in inflated

standard errors and incorrect nominal confidence interval coverage
(Kahan and Morris, 2012)

- Adjusting for too many factors could be a concern for small trials,
another reason to keep strata # small (Kahan and Morris, 2012)
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Stratified Block Randomization Example
Preexposure Prophylaxis Initiative (iPrEx) Trial
REF: NEJM 2010 v363 (27): 2587-2599

▶ Double-blinded placebo-controlled randomized trial examining
safety and efficacy of a chemoprophylaxis regimen (once-daily
oral FTC–TDF) for HIV prevention

▶ International multi-center study
- 9 sites: US: Boston, San Francisco; Peru: Iquitos, Lima; Brazil:

São Paulo, Rio de Janeiro (2 sites); Ecuador; Guayaquil; Thailand:
Chiang Mai

- Multiple advantages to achieving balanced allocation by site

▶ 2499 HIV- men or transgender women were randomly assigned
in blocks of 10, stratified according to site

- Main analysis an unadjusted logrank test for HIV seroconversion
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Design consideration: Who/What to Randomize

▶ Person
- Most common unit of randomization in RCTs

▶ Provider
- Doctor
- Nursing station

▶ Locality
- School
- Community

▶ The sample size is predominantly determined by the number of
randomized units

- This is due to correlation of repeated samples within a
person/doctor/community
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Cluster Randomization

▶ Same ideas as before
▶ Unit of randomization

- School/Clinic/Hospital/Providers/Community

▶ Outcome measurement
- Students/Patients

▶ Need to use special models for analysis when those reporting
outcomes are nested within a cluster, to account for within cluster
correlation

▶ Best for interventions meant to be implemented at community
level (smoking cessation program) and relatively quick and easy
to assess outcome

- Cost can often be an issue
- In todays world, isolated communities harder to find
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Randomization in Platform Trials

▶ Platforms trials compare multiple intervention arms to the same
control to treat a single disease

- Different from umbrella trials that might be studying multiple
indications for a single drug

▶ A common strategy is to randomize first to a component [(A,C)
(B,C) (D,C)] and then randomize to arm in that component (Drug
vs Control)

▶ Randomization probabilities are generally set so that you have
approximately equal sized groups for each drug and control

- From power standpoint and fixed total sample size, nC/nA =
sqrt(#active arms) Is optimal

- But a preference often to have equal sample size
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Platform Example
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Considerations for Platform Trials
Gold et al. (2022); Berry et al. (2015)

▶ Attractive in settings where there may be multiple novel
candidates, potentially evolving over time

- COVID 19: Solidarity, Recovery, ACTIV-k
- Cancer

▶ Analytical Downsides:
- Comparisons are little tricky between active drugs: Unless all

patients eligible for all components, not a randomized comparison if
lumping all exposed patients

- If adding interventions over time, need to worry about issue of
non-concurrent controls

▶ Upsides
- Can take more patients into trial.
- Efficient infrastructure
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The Danger of Non-concurrent Controls
Dodd et al. (2021)
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What is Adaptive Randomization?

▶ All previously discussed methods of randomization were
examples of fixed allocation schemes

- Order of treatment assignments can be completely determined in
advance of the trial

▶ Adaptive randomization schemes “adapt” or change according
to characteristics of subjects enrolled in trial

- Sequence of treatment assignments cannot be determined in
advance

- Probability of assigning a new participant a particular treatment can
change over time

- Two major classes: adaptive with respect to baseline
characteristics or with respect to patient outcomes

▶ Note not all adaptive trials involve adaptive randomization, namely
group sequential trials

73 / 464



Baseline Adaptive Schemes (1)

▶ Biased coin randomization: allocates treatment for the next
participant with a probability that depends on current balance
between arms

- Introduced by Brad Efron, suggested p=2/3 for the arm with fewer
participants

- Benefits: low probability of long runs, maintaining simple coin-flip
type randomization, avoids the potential unmasking problems of
permuted blocks

- Con: statistical analysis less straight forward. Familiar tests lose
their asymptotic normality and exact inference is recommended
(Markaryan and Rosenberger, 2010)
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Baseline Adaptive Schemes (2)

▶ Dynamic allocation algorithms based on maintaining balance
across multiple important prognostic variables

- Develop an index of imbalance across multiple baseline
covariates

- Minimization: next treatment assignment minimizes current
imbalance

- Other dynamic allocation schemes give the treatment which
minimizes the imbalance a higher probability of assignment

- Benefits: can maintain balance across several prognostic
variables, without worrying about lots of incomplete blocks.
Maintains balance better than stratified permuted block,
particularly in small trials and/or many covariates

- Cons: statistical analysis less straight forward, easy to screw up,
hard to document. Classic problem: what happens if find an error
in allocation or participant’s data
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Eye-Opening Experience for Minimization

▶ Genzyme conducted Late Onset Treatment Study (LOTS)
- 90 patients with late onset Pompe’ disease
- Primary outcome: 6 minute walk test
- 2:1 allocation to drug/placebo using minimization

▶ Site
▶ BL 6 minute walk (≤300m, >300m)
▶ Forced vital capacity (≤55% pred., >55% pred.)

- One analysis requested by FDA: re-randomization test
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Eye-Opening Experience for Minimization

▶ At the time, FDA was skeptical about minimization, so they
require companies to use a re-randomization test

▶ Proponents of minimization argue that you can do a
re-randomization test, but it is unnecessary because you get
about same answer as t-test

▶ Wrong!
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ANCOVA p = 0.035 Rerandomization p = 0.06
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Eye-Opening Experience for Minimization

▶ The problem is that minimization severely limits amount of
randomization

▶ The particular randomization scheme for unequal allocation was
flawed (see Kuznetsova and Tymofyeyev (2012) for how to fix it)

For the statistical geeks:
▶ Big problem: mean of re-randomization distribution is NOT 0

- It is 0 for standard randomization methods

▶ Nonzero mean causes loss of efficiency of re-randomization test:
no longer close to t-test even for very large sample sizes
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Eye-Opening Experience for Minimization

▶ For more details on LOTS trial, see Van der Ploeg et al (2010)
NEJM 362, 1396-1406

▶ For more details about statistical problems minimization caused
see Proschan et al. (2011), and for how to fix them, see
Kuznetsova and Tymofyeyev (2012)

▶ For more details about mathematics of randomization see:

Rosenberger, W. F., and Lachin, J. M. (2015). Randomization in
clinical trials: theory and practice. John Wiley & Sons.
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Response Adaptive Schemes

▶ Response adaptive allocation: responses of participants
enrolled to date are taken into account when randomizing next
participant

- Relies on assumption that response to treatment can be assessed
fairly quickly and cohort is not changing over time

▶ Zelen’s Play the Winner: assigns same treatment if previous
patient a success and the other treatment if otherwise

▶ Randomized Play the Winner: gives more successful treatment
a higher chance of allocation (but p<1)

▶ Many other methods, including Bayesian approaches
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Goals of Response Adaptive Schemes can vary

▶ Some may seek to relate probability of the treatment arm with
probability of a positive response

- Lots of algorithms. Methods vary whether this may be
deterministic, probabilistic

▶ Some response adaptive schemes may target increasing power
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ECMO Trial: A Cautionary Tale for Response
Adaptive Allocation

▶ ECMO Trial: study of extracorporeal membrane oxygenator in
newborns suffering from respiratory failure

▶ Play the winner type algorithm used for treatment allocation

▶ First baby randomly assigned to active arm and was a success;
2nd baby randomized to control and died; next 9? babies
assigned to experimental ECMO arm and survived

▶ Trial stopped after 2 more babies non-randomly assigned ECMO

▶ By chance, control baby was the sickest

▶ After much controversy, a second trial was launched

▶ More controversy and debates over methodology and ethics
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Challenges of Response Adaptive Schemes:
Analytical properties are hard to decipher

▶ Some argue these trials are more ethical, because they aim to
maximize number of people on the better treatment

- There have been statistical efficiency claims, but actually now
shown to be false

▶ Adaptive allocation designs are difficult to implement without
mistakes or problems with blinding

▶ Inference for response-adaptive randomization is very
complicated because both the treatment assignment and
responses are correlated (Rosenberger and Lachin, 2015)

▶ Analytical properties are not well-established, especially of new
designs

▶ Advice: These methods are controversial and prone to
problems, avoid unless you are an expert and willing to repeat
your trial
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Lessons from ECMO If you must use RAR
Proschan and Evans (2020); Chandereng and Chappell (2020)

▶ Randomization should have fairly long run in of standard
randomization before you start the adaptive allocations

▶ In multi-arm trial, you can change assigned probability of being
assigned to a component but you keep the probability of being
assigned to the control the same

▶ In trial analysis, need to have methods to adjust for time trends
- Essentially doing a stratified analysis within time buckets

85 / 464



What Randomization scheme is best?

▶ Depends on the study and resources available
- Currently likely never to recommend response-adaptive
- Best scheme likely dictated by what is practical given resources,

including programming resources and other infrastructure

▶ Keep it simple
- Simple randomization: hard to mess up, large trials will be

balanced
- Permuted block randomization: simple, widely used, widely

understood
- Stratified by site: common choice for multi-site trials
- Choose block size(s) appropriate to sample size
- Randomize at last possible second
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Maintaining Randomization Integrity

▶ Fundamental motivation of randomization: create comparable
treatment groups

- Allows causality inference

▶ To maintain comparability, primary analysis is an intent-to-treat
(ITT) analysis

- All subjects are analyzed according to randomization assignment,
regardless of what treatment they actually get
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Flavors of ITT

▶ ITT analysis
- Analyze according to the study regimen assigned
- Requires models to weight observed or impute missing outcomes,

requires sensitivity analysis
- Only analysis which preserves randomization

▶ Modified ITT (MITT) analysis
- ITT, but only include people who take the first dosage
- In well-implemented trials few people drop out before first dose
- Potentially minor departure from ITT if blinded
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Analysis Choices (2)

▶ Per Protocol Analysis:
- Analysis includes data only from completers/adherers
- Subject to bias, analyzes only the well behaved and potentially only

the healthiest participants (no adverse events)
- Especially problematic when drop out rates different by treatment

arm
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Threats to Randomization Integrity

▶ Improper masking or blinding
- Bias will creep into data

▶ Excluding subjects who withdraw from treatment: can lead to
bias

▶ Drop-out/missing data: breaks randomization without ITT;
weakens treatment result with ITT

- Long trials may need to have a screening period to assess
commitment of subjects before randomization
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“Analyze as you randomize”

▶ Analysis of study results generally should take into account the
method of randomization

- Adjusting for stratification is recommended (to avoid overly wide
confidence intervals)

- Adaptive procedures need to be accounted for
- Ignoring “blocks” is standard and generally considered okay
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Summary

▶ Permuted block randomization often the best
- Stratify on only a few factors, usually one or two
- Choose block size(s) appropriate to sample size

▶ Randomize smallest independent element at last possible
second

▶ Masking/blinding is key for preventing bias

▶ ITT (intent to treat) analysis necessary to preserve
randomization and infer causality, or lack thereof

▶ Proper documentation as important as proper implementation
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Conclusion

▶ Randomized Studies are the Gold Standard of Clinical
Research

▶ Randomization to treatments separates clinical trials from all
other studies; don’t muck it up!

▶ Randomization
- Eliminates selection bias
- Forms basis for statistical tests
- Balances arms with respect to prognostic variables (known and

unknown)
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Lecture 3: Sample Size/Power
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Outline

▶ Introduction to Power/Sample Size

▶ Introduction to EZ Principle

▶ Where Does the Key Formula Come From?

▶ General EZ Principle and Applications

▶ T-test
▶ Test of Proportions
▶ Survival
▶ Noninferiority
▶ Lack of Reproducibility

▶ Sample Size: Practical Aspects

▶ Treatment Effect
▶ Nuisance Parameters

▶ Sample Size: Estimation

▶ Sample Size: Safety
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Introduction to Power/Sample Size
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Introduction to Power/Sample Size

▶ Clinical trials are the gold standard of evidence.

▶ Clinical trials use hypothesis testing to choose between null and
alternative hypotheses:

H0 : treatment has no effect
H1 : treatment has an effect.

▶ We hope to reject H0 and conclude that treatment works.

▶ α, the probability of falsely rejecting H0 (making a type 1 error )
is set low to avoid approving an ineffective treatment.

▶ If H0 is rejected, there is strong evidence against the null
hypothesis and in favor of treatment benefit.
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Introduction to Power/Sample Size

▶ But abandoning an effective treatment by failing to reject H0

when H1 is true (making a type 2 error ) is also a serious error.

▶ To be confident we are not making a type 2 error, we should
make β , the probability of a type 2 error, low.

▶ Equivalently, we should make power , namely
1−β = P( rejecting H0 when H1 is true), high.

▶ If power is high and we still do not reject H0, treatment probably
did not have its intended effect.
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Introduction to Power/Sample Size

▶ See chapter 8 of Proschan (2022).

▶ Standardized test statistics (z-scores) in clinical trials are often:
▶ Of form Z = δ̂/se(δ̂ ), where δ̂ is a treatment effect estimator.
▶ Approximately N(θ ,1) for large sample sizes, where θ = 0 under

H0.

▶ Examples:
▶ T-statistic: δ̂ = ȲT − ȲC ; se(δ̂ ) =

√
2σ2/n.

▶ Z-score for proportions: δ̂ = p̂T − p̂C ; se(δ̂ )≈
√

2p(1−p)/n.
▶ Z-score for logrank statistic: δ̂ = ∑(Oi −Ei )/∑Vi estimates log

hazard ratio; se(δ̂ ) = 1/∑Vi , where Oi ,Ei ,Vi are observed,
expected, and variance from 2×2 table at each event.

▶ Z-scores for maximum likelihood estimators (MLEs), minimum
variance unbiased estimators, Cox models, etc.
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Introduction to EZ Principle
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Introduction to EZ Principle

▶ There is really only one power/sample size formula.

▶ EZ principle (its easy!): Power depends on E(Z ), the expected
z-score.

▶ Parameterize so that large z-scores mean treatment is beneficial.
E.g., may need to change δ = µT −µC to δ = µC −µT .

▶ For a 2-sided test at α = 0.05 (or a 1-sided test at α = 0.025),
E(Z ) must be:
▶ 3.24 for 90% power.
▶ 3.00 for 85% power.
▶ 2.80 for 80% power.

▶ We will see justification after some examples.
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Introduction to EZ Principle

▶ Makes checking sample size calculations quick and easy.

▶ Continuous outcome example: You compare a new treatment to
standard treatment for hepatitis C virus.
▶ Primary outcome: log viral load at end of study minus log viral load

at baseline. Use t-test.
▶ Want 80% power for difference δ = 0.5 and you expect σ = 1.25.
▶ Investigator says you need 50/arm. Is that correct?

▶ Z = δ̂/
√

2σ2/n, δ̂ = ȲC − ȲT (treatment beneficial if > 0).

▶ Expected z-score is

E(Z ) =
µC −µT√

2σ2/n
=

0.5√
2(1.25)2/50

= 2.

▶ E(Z ) much less than 2.80. Power much less than 0.80.

102 / 464



Introduction to EZ Principle

▶ Binary outcome example: New treatment for hospitalized
COVID-19 patients on mechanical ventilation/ECMO.
▶ Primary endpoint: 60-day mortality.
▶ Want 85% power to detect improvement in 60-day mortality from

0.20 to 0.12.
▶ Statistician reports you need n = 1,000 per arm. Is it correct?

Parameterize so positive values are good: δ = pC −pT .

Z =
δ̂

se(δ̂ )
=

p̂C − p̂T√
2p(1−p)/n

, p =
0.20+0.12

2
= 0.16.

▶ Expected z-score is:

E(Z ) =
pC −pT√

2p(1−p)/n
=

0.20−0.12√
2(0.16)(1−0.16)/1000

= 4.880.

▶ E(Z ) much larger than 3. Power much larger than 85%.
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Introduction to EZ Principle

▶ Before looking at more examples, let’s look at the basis for the
EZ principle.

▶ This will show us a general formula that allows us to compute, for
any alpha :
▶ Sample size for a given treatment effect and power.
▶ Power for a given treatment effect and sample size.
▶ Treatment effect for a given sample size and power.
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Where Does The Key Formula Come From?

105 / 464



Where Does The Key Formula Come from?

 

 

0 1.96

Area 0.025

Under H0

Figure: The standard normal null density for the z-statistic. For a 1-tailed test at
α = 0.025, we reject H0 if Z > 1.96.
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Where Does The Key Formula Come from?

 

 

0 1.96 θ

Under H1

θ

Area 0.90

Figure: The alternative N(θ ,1) density for Z . For power 0.90, we want the blue
shaded area to be 0.90.
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Where Does The Key Formula Come from?

 

 

1.96 − θ 0

Area 0.90

Figure: The blue shaded area in Figure 2 equals the blue shaded area to the right of
1.96−θ under the standard normal curve. For power 0.90, 1.96−θ =−1.28, so
θ = 1.96+1.28 = 3.24.
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General EZ Principle and Applications

109 / 464



General EZ Principle and Applications

▶ Same reasoning applies for different levels of α and β .

▶ For 2-tailed test at level α and power 1−β , set

E(Z ) = zα/2 +zβ , (EZ Principle) (1)

where, for 0 < a < 1, za denotes the (1−a)th quantile of a
standard normal distribution.

▶ zα/2 = 1.96 for α = 0.05, 2-sided test.

▶ zβ = 0.84, 1.04, or 1.28 for β = 0.20, 0.15, or 0.10.

▶ zα/2 +zβ = 2.80, 3.00, or 3.24 for 80%, 85%, or 90% power.

▶ 1 formula, for sample size, power, or detectable effect.
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General EZ Principle and Applications

 

 

 zβ

area= β

0

area= 1 − β

Figure: The area to the right of zβ is β , so the area to the left of zβ is 1−β =power.
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General EZ Principle and Applications

▶ Continuous outcome example: return to hepatitis C (HCV) trial.
▶ Primary outcome: Change in log viral load from baseline. T-test.
▶ Want sample size for 80% power for 2-sided test at α = 0.05.
▶ δ = 0.5 and σ = 1.25.

Z =
δ̂

se(δ̂ )
=

ȲC − ȲT√
2σ2/n

; E(Z ) =
δ√

2σ2/n
=

0.5√
2(1.25)2

n

.

E(Z ) = zα/2 +zβ (EZ Principle).

0.5√
2(1.25)2

n

= 1.96+0.84 = 2.80. Solve for n :

n =
2(1.25)2(2.80)2

0.52 = 98.

Need 98/arm.
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General EZ Principle and Applications

▶ Suppose you can only recruit 75/arm. What is the detectable
effect (the δ ) with 80% power?

Z =
δ̂

se(δ̂ )
=

ȲC − ȲT√
2σ2/n

E(Z ) =
δ√

2(1.25)2
75

= (zα/2 +zβ ) (EZ Principle)

δ√
2(1.25)2

75

= 1.96+0.84 = 2.80. Solve for δ :

δ = 2.80

√
2(1.25)2

75
= 0.57.

Detectable effect is 0.57 logs.
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General EZ Principle and Applications

▶ What is power for detecting 0.5 log if you only recruit 75/arm?

Z =
δ̂

se(δ̂ )
=

ȲC − ȲT√
2σ2/n

; E(Z ) =
δ√

2σ2/n

E(Z ) =
0.5√

2(1.25)2
75

= zα/2 +zβ (EZ Principle)

2.449 = 1.96+zβ

0.489 = zβ . Let Φ(x) denote N(0,1) distribution function at x .

Φ(0.489) = Φ(zβ ) = 1−β = power,

Power is Φ(0.489)≈ 0.69.
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General EZ Principle and Applications

▶ Binary outcome example: Return to COVID-19 example:
▶ Primary endpoint: 60-day mortality.
▶ Want 85% power to detect improvement in 60-day mortality from

0.20 to 0.12.

Z =
p̂C − p̂T√

2p(1−p)
n

.

E(Z ) =
pC −pT√

2p(1−p)
n

=
0.20−0.12√
2(0.16)(1−0.16)

n

.

0.20−0.12√
2(0.16)(1−0.16)

n

= zα/2 +zβ = 3 for 85% power (EZ Principle).

n ≈ 2(0.16)(0.84)(3)2

(0.08)2 = 378. (2)

Need 378/arm.
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General EZ Principle and Applications

▶ Exercise: Show that if you can only get 300/arm, power is
approximately 0.76.
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General EZ Principle and Applications

▶ Schoenfeld (1981) derives sample size for survival tests.

Table: Table at i th death.

Dead Alive
Control Oi nCi

Treatment nTi

1 ni −1 ni

nCi
,nTi = numbers at risk in treatment, control just prior to i th death.

Oi =indicator that i th death is in control arm.

Under H0, no difference in survival, the i th death is equally likely to be
from any of the ni = nCi

+nTi people at risk.

Oi is Bernoulli with parameter pi = nCi
/ni under H0.
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General EZ Principle and Applications

Table: Table at i th death.

Dead Alive
Control Oi nCi

Treatment nTi

1 ni −1 ni

nCi
,nTi = numbers at risk in treatment, control just prior to i th death.

Oi =indicator that i th death is in control arm.

Ei =null expected value of Oi , given marginal totals: Ei = pi = nCi
/ni .

Vi =null variance of Oi , given marginal totals: Vi = pi(1−pi) =
nCi

nTi
n2

i
.
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General EZ Principle and Applications

▶ FUN FACT: “O minus E except after V principle” (justified in
Section 7.7 of Proschan (2022)): δ̂i = (Oi −Ei)/Vi is crude
estimate of log hazard ratio with variance (conditioned on
marginal totals) 1/Vi . Combine these to get a better estimate of
log hazard ratio.

▶ Optimal weighted average of the δ̂i weights inversely proportional
to variances, wi = 1/var(δ̂i) = Vi .

δ̂ =
∑

d
i=1 wi δ̂i

∑
d
i=1 wi

=
∑

d
i=1��Vi{(Oi −Ei)/��Vi}

∑
d
i=1 Vi

=
∑

d
i=1(Oi −Ei)

∑
d
i=1 Vi

. (3)

▶ δ̂ estimates log hazard ratio and var
(

δ̂
∣∣marginals

)
= 1/∑

d
i=1 Vi .
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General EZ Principle and Applications

Logrank z-statistic is

Z =
δ̂√

var(δ̂ )
=

∑
d
i=1(Oi −Ei)√

∑
d
i=1 Vi

=

(
∑

d
i=1(Oi −Ei)

∑
d
i=1 Vi

)√√√√ d

∑
i=1

Vi

= δ̂

√√√√ d

∑
i=1

Vi , (4)

With 1-1 randomization, Vi ≈ (1/2)(1−1/2) = 1/4, so
∑

d
i=1 Vi ≈ ∑

d
i=1(1/4) = d/4 and

Z ≈ δ̂
√

d/4
E(Z ) ≈ δ

√
d/4, (5)

d =number of deaths, δ̂ , δ are estimated and true log hazard ratios.
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General EZ Principle and Applications

▶ For power 1−β , equate E(Z ) to zα/2 +zβ and solve for number
of deaths (events) d :

E(Z ) = δ
√

d/4 = (zα/2 +zβ ) (EZ Principle)

d =
4(zα/2 +zβ )

2

δ 2 , (6)

δ =log hazard ratio (parameterized so that large hazard ratios
show that treatment works).

▶ Continue the trial until this number of deaths.

121 / 464



General EZ Principle and Applications

▶ Example: return to COVID-19 trial, but suppose you use logrank
test instead of test of proportions.

▶ Want 85% power to detect a control-to-treatment hazard ratio of
1.333. Set

Z =
∑

d
i=1(Oi −Ei)√

∑
d
i=1 Vi

=

(
∑

d
i=1(Oi −Ei)

∑
d
i=1 Vi

)√√√√ d

∑
i=1

Vi ≈ δ̂
√

d/4.

E(Z ) = δ
√

d/4 = (zα/2 +zβ ) = (1.96+1.04) = 3 (EZ Principle)

d =
4(3)2

δ 2
4(3)2

{ln(1.333)}2 ≈ 436 events. (7)
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General EZ Principle and Applications

▶ Suppose you get only 350 events (deaths).

▶ For power to detect hazard ratio of 1.333,

E(Z ) = ln(1.333)
√

350/4 = 2.689

2.689 = (zα/2 +zβ ) = 1.96+zβ (EZ Principle)

2.689−1.96 = zβ

Φ(2.689−1.96) = Φ(zβ ) = 1−β = power. (8)

Power is approximately Φ(0.729) = pnorm(0.729) = 0.77.
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General EZ Principle and Applications

▶ Exercise: Suppose you get only 350 events (deaths). What
hazard ratio can be detected with 85% power?,

▶ Answer: Control to treatment hazard ratio is approximately 1.378.

124 / 464



General EZ Principle and Applications

▶ In noninferiority trials, not trying to prove new treatment (N) is
better than standard treatment (S), but that it is almost as good.

▶ One application of NI testing: Standard treatment might be
onerous (3 injections/day) and new treatment is easier to take (1
pill/day).

▶ Prefer new treatment provided is is not worse than standard by
more than some small amount known as the noninferiority (NI)
margin).

▶ Let pN and pS be probability of event on new and standard
treatment.

125 / 464



General EZ Principle and Applications

▶ NI trials often use 1-sided α = 0.05 and test nonzero null.

▶ E.g., if willing to tolerate new treatment being worse than
standard by 0.10 (NI margin=0.10), test:

H0 : pS −pN <−0.10 versus H1 : pS −pN ≥−0.10.

▶ Convert to zero-null by:

H0 : pS −pN +0.10 < 0 versus H1 : pS −pN +0.10 ≥ 0.

▶ Suppose we want 90% probability of showing noninferiority if
truth is that pN = pS .

▶ Again use EZ principle:
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General EZ Principle and Applications

Z =
p̂S − p̂N +0.10√
p̂S(1−p̂S)+p̂N (1−p̂N )

n

(9)

If pS = pN ,

E(Z ) ≈ 0.10√
2p(1−p)

n

= (zα/2 +zβ ) (EZ Principle)

0.10√
2p(1−p)

n

= 1.645+1.282 = 2.927.

n = 2p(1−p)(2.927)2/(0.1)2.

If p is expected to be 0.5, n = 429 per arm.
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General EZ Principle and Applications

▶ One important implication of EZ principle: Inability to replicate
results (see, e.g, Goodman (1992); Halsey et al. (2015)).

▶ Suppose Z = 1.96, and you believe this reflects the truth; i.e.,
you believe that E(Z ) = 1.96.

▶ If we repeat trial, can compute power using EZ principle:

E(Z ) = 1.96+zβ

1.96 = 1.96+zβ

0 = zβ

Φ(0) = Φ(zβ ) = 1−β = power
0.5 = power (10)

Only a 50% chance of replicating the result!
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General EZ Principle and Applications

▶ Why?

▶ Z = 1.96 is much smaller than its expected value of 3.24 for 90%
power.

▶ Lesson: Can reach statistical significance even though
observed treatment effect is much smaller than expected.
▶ Stresses need to supplement hypothesis test with treatment

effect estimate and confidence interval

▶ Not surprisingly, if true treatment effect is much smaller than
expected, may not reproduce statistically significant result.
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Sample Size: Practical Aspects
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Sample Size: Practical Aspects

▶ Sample size depends on treatment effect and nuisance
parameters.
▶ Nuisance for t-test: σ .
▶ Nuisance for test of proportions: pC (or overall p).

▶ The treatment effect and nuisance parameter are very different.
▶ We can specify treatment effect either as minimal relevant effect or

the anticipated effect based on other studies.
▶ We must estimate the nuisance parameter accurately for power

calculations.

▶ Understimating σ in a t-test or overestimating pC in a test of
proportions to detect a given relative effect (e.g., 25%) will
result in an underpowered trial.
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Sample Size: Practical Aspects: Treatment Effect

▶ If treatment has many side effects or is difficult (e.g., several
injections a day), then treatment effect should be large to justify
its use.

▶ If treatment has few side effects (e.g., a diet), even a small effect
is worthwhile.

▶ Dietary Approaches to Stop Hypertension (DASH) trial (Appel
et al. (1997))
▶ Compared 3 diets: (1) control, (2) fruits & vegetables, (3)

combination fruits and vegetables and lowfat dairy.
▶ Primary endpoint: change in diastolic blood pressure from baseline.
▶ Powered for 2mmHg difference because even a small effect has

public health benefit with few expected side effects.
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Sample Size: Practical Aspects: Treatment Effect

▶ In early phase trials, type 2 may be more serious than type 1
error.
▶ Type 2 error ends further testing– may be abandoning a good drug.
▶ Type 1 error is not tragic because definitive test is in phase 3.

▶ Therefore, want to ensure high power in early phase trials.

▶ Stack deck in your favor by:
▶ Picking population especially expected to benefit (might use a

run-in phase before randomization to weed out people who cannot
tolerate drug)

▶ Using an intermediate outcome that treatment should affect.
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Sample Size: Practical Aspects: Nuisance
Parameters

▶ With t-test, power depends on standard deviation, σ .

▶ Err on side of overestimating σ to avoid underpowered trial.

▶ Use estimates based on similar trials, if possible.

▶ If σ estimated from observational study, increase it.

▶ When standard deviation is of a change from baseline, use a trial
with a similar or longer duration (standard deviation of a change
usually increases with duration)
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Sample Size: Practical Aspects: Nuisance
Parameters

▶ Useful formula for variance of change from baseline (BL) to end
of study (EOS):

var(YEOS −YBL) = 2σ
2(1−ρ), where

σ2 is variance at fixed time (BL or EOS) and ρ = cor(YBL,YEOS).

▶ E.g., if variance at single time is 65, and ρ = 0.80, use

var(YEOS −YBL) = 2(65)(1−0.80) = 26.

▶ NOTE: If ρ < 0.5, then you should use YEOS , NOT YEOS −YBL.
Even better, use baseline value as covariate (also called analysis
of covariance–ANCOVA).

▶ Err on side of underestimating ρ to avoid underpowered trial.
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Sample Size: Practical Aspects: Nuisance
Parameters

▶ With binary endpoint, nuisance parameter is control event
probability, pC .

▶ If treatment effect is a relative reduction (e.g., 25%, so
RR= 0.75), err on side of underestimating pC to avoid an
underpowered trial.

▶ If estimate of pC comes from observational trial, decrease it!
Clinical trial participants tend to be more health conscious &
have lower event rates (healthy volunteer effect).
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Sample Size: Practical Aspects: Nuisance
Parameters

▶ Sample size is often a negotiation between principal investigator
and statistician.

▶ Statistician: “You will need 10,000 people”.

▶ Options:
▶ Increase treatment effect. PI: “A larger effect is unrealistic.”
▶ Use a different primary endpoint. E.g., add stroke to composite of

coronary heart disease/death. Statistician: “That will work as long
as treatment has a similar effect on added component. Otherwise,
you could decrease power.”
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Sample Size: Estimation
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Sample Size: Estimation

▶ In early phase, may do 1-arm trial to get a reasonable estimate
of effect. Set sample size to achieve given accuracy.

▶ Example: How large does n need to be to estimate the
proportion of successes on new treatment to within 0.15?

▶ 95% confidence interval: p̂±1.96
√

p(1−p)/n

▶ Set
1.96

√
p(1−p)/n = 0.15

and solve for n:
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Sample Size: Estimation

n =
(1.96)2p(1−p)

(0.15)2 = 341.4756p(1−p). (11)

▶ If we expect p = 0.3, substitute 0.3 into Equation (11) to get
n = 72.

▶ Could also use p = 0.5 as a worst case scenario: Substituting
0.5 into (11) gives n = 86.
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Sample Size: Safety
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Sample Size: Safety

▶ In safety studies, want to calculate probability of seeing at least
one adverse event (AE) of a given probability.

P(see at least one AE of probability p)

= 1−P(0 AEs of probability p)
= 1− (1−p)n. (12)

▶ Example: in a study of 20 people, the probability of at least one
AE of probability 0.10 is 1− (1−0.10)20 = 0.88.

▶ Confident we will see at least one if true probability is 0.10.
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Summary

▶ High power is essential for avoiding type 2 errors.

▶ EZ principle: You need only 1 formula for sample
size/power/detectable effect for 2-sided test at level α (or 1-sided
at α/2). For power 1−β , set

E(Z ) = zα/2 +zβ .

▶ For 2-sided α = 0.05, E(Z ) must be
▶ 3.24 for 90% power.
▶ 3.00 for 85% power.
▶ 2.80 for 80% power.

▶ Can apply to any statistic that is asymptotically N(θ ,1).
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Summary

▶ Sample size depends on treatment effect and nuisance
parameters.

▶ Nuisance parameters are:
▶ σ for continuous outcome using t-test.
▶ pC or overall p for binary outcome.

▶ For t-test, err on side of overestimating σ .

▶ For binary outcome when trying to detect a given relative
treatment effect (i.e., 25% reduction in event rate), err on side of
underestimating pC .
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Lecture 4: Interim Monitoring: Efficacy
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Outline

▶ Introduction to Efficacy Monitoring
▶ Historical Monitoring Boundaries

▶ Haybittle-Peto
▶ Pocock
▶ O’Brien-Fleming

▶ Unified Approach: Information, Z-Scores, B-Values
▶ Alpha Spending Functions

▶ Definition
▶ O’Brien-Fleming-Like Spending Function
▶ Pocock-Like Spending Function
▶ Familes of Spending Functions

▶ Effect of Efficacy Monitoring on Power

▶ Case Study: CAST
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Introduction to Efficacy Monitoring
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Introduction to Efficacy Monitoring

▶ The ACTG 076 trial in France and the U.S. (Connor et al. (1994))
compared AZT to placebo to prevent mother to infant
transmission of HIV.

▶ Primary endpoint: HIV in infant. Planned 636 mother/infant pairs.

▶ After 363 live births with known HIV status:
1. 13 AZT infants infected.
2. 40 placebo infants infected.

▶ Z = 4.03. Enough evidence, or could this be the play of chance?

▶ Who decides and how?

▶ Must consider welfare of trial participants and whether results will
change clinical practice.
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Introduction to Efficacy Monitoring

▶ Clinical trials are monitored by a Data and Safety Monitoring
Board (DSMB) (also called a DSMC or DMC).

▶ Committee of 3-9 EXTERNAL experts (MDs, 1-2 statisticians, an
ethicist). Keeps study team blinded to results.

▶ Typically meet 1-2 times a year.

▶ Review general trial conduct (accrual, data quality, missing data,
etc.), safety (serious adverse events, unexpected events, etc.),
futility, and efficacy.

▶ Make recommendations to trial sponsor, sponsor makes final
decision (but almost always accepts recommendations).
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Introduction to Efficacy Monitoring

▶ Futility: Are data so unpromising or is trial conduct so poor that a
null result is almost assured?

▶ Efficacy: If one arm is clearly superior, may stop trial or
recommend change (e.g., announce result, make the superior
treatment the new control, etc.).

▶ Problem: If we reject H0 whenever nominal p-value (not
adjusted for monitoring) is ≤ α, the familywise 1 error rate
(probability of rejecting H0 at some point) is inflated.

▶ Even with only 1 interim and 1 final analysis,
P(rejecting H0 |H0) = 0.083 for 2-sided test at α = 0.05 if looks
are equally-spaced.

▶ Armitage et al. (1969) showed inflation of type 1 error rate.
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Introduction to Efficacy Monitoring

▶ Situation can be worse if looks are not equally-spaced.

▶ Example: Suppose looks are after 10 and 10,000 observations.
▶ The 2 p-values are nearly independent because the overlap is only

10 out of 10,000 people.

▶ Independence is the worst case; the type 1 error rate is

P(Reject H0 |H0) = P(P1 ≤ 0.05∪P2 ≤ 0.05)
= 1−P(P1 > 0.05∩P2 > 0.05)
≈ 1−P(P1 > 0.05)P(P2 > 0.05)
= 1− (1−0.05)2 = 0.0975. (13)
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Introduction to Efficacy Monitoring
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Introduction to Efficacy Monitoring

Table: Type 1 error rate for unadjusted monitoring for 2-sided test at α = 0.01 or

α = 0.05. Note: 2p ≤ 0.05 means 2-sided p-value ≤ 0.05.

Reject H0 if 2p ≤ 0.01 Reject H0 if 2p ≤ 0.05
# Looks (k) Equally Spaced Worst Case Equally Spaced Worst Case

2 0.018 0.020 0.083 0.098
3 0.024 0.030 0.107 0.143
4 0.029 0.039 0.126 0.185
5 0.033 0.049 0.142 0.226

10 0.047 0.096 0.193 0.401
20 0.064 0.182 0.248 0.642
∞ 1 1 1 1

▶ This table applies to many different tests: t-test, test of
proportions, logrank test, Cox model, etc.
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Introduction to Efficacy Monitoring

▶ Because efficacy (upper) boundary could differ from “harm”
(lower) boundary, we focus for the rest of this lecture on
1-sided efficacy (upper) boundaries.

▶ For symmetric, 2-sided z-score boundaries at level α, use ±ci ,
where ci is 1-sided boundary at level α/2.

▶ This is slightly conservative. Actual 2-sided error rate is
infinitesimally less than α.
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Historical Monitoring Boundaries
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Historical Efficacy Boundaries: Haybittle-Peto

▶ The earliest boundary was the Haybittle-Peto boundary
(Haybittle (1971)).

▶ Original suggestion used a very large z-statistic boundary (3) for
interim looks, and 1.96 for final look.

▶ Haybittle-Peto was modified using the Bonferroni inequality:
▶ Use p-value threshold 0.001 at interim looks.
▶ Use p-value threshold α − (k −1)(0.001) at final look.
▶ E.g., with 3 interim and 1 final analysis, reject at interim if

p ≤ 0.001, and at end if p ≤ 0.025−3(0.001) = 0.022.

▶ By Bonferroni, the type 1 error rate, P(reject H0 sometime), is

≤ 0.001+0.001+ . . .+0.001+α − (k −1)(0.001) = α.
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Historical Efficacy Boundaries: Haybittle-Peto

▶ Desirable properties of Haybittle-Peto.
▶ Simple to implement.
▶ Can use regardless of timing of analyses.
▶ Valid for any test statistic (don’t need to know joint distribution of

test statistic over time because Bonferroni inequality is used).
▶ Final z-statistic boundary is close to what it would be with no

monitoring (for a reasonable number of analyses).

▶ Undesirable property of Haybittle-Peto: Reversal of fortune
▶ Z-statistic boundary drops drastically at the end, causing a logical

inconsistency: Could be under boundary at penultimate look, see a
partial reversal, and be over boundary at end. How could you be
convinced now that you’ve seen a partial reversal?
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Historical Efficacy Boundaries: Haybittle-Peto
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Figure: Reversal of fortune problem with Haybittle-Peto.
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Historical Efficacy Boundaries: Pocock

▶ Pocock (1977) raised the z-statistic boundary by the same
amount for each look.

▶ Pre-specify number of looks, k , and assume they are equally
spaced.

▶ Use z-score boundary c = c(k) such that

P

(
k⋃

i=1

Zi ≥ c

)
= α.
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Historical Efficacy Boundaries: Pocock

Table: 1-sided z-score/p-value boundaries for Pocock procedure.

# Looks (k) α = 0.005 α = 0.025 α = 0.05
1 2.576 1.960 1.645

0.0050 0.0250 0.0500
2 2.772 2.178 1.875

0.0028 0.147 0.0304
3 2.873 2.289 1.992

0.0020 0.0110 0.0232
4 2.939 2.361 2.067

0.0016 0.0091 0.0194
5 2.986 2.413 2.122

0.0014 0.0079 0.0169
6 3.023 2.453 2.164

0.0013 0.0071 0.0152
7 3.053 2.485 2.197

0.0011 0.0065 0.0140
8 3.078 2.512 2.225

0.0010 0.0060 0.0130
9 3.099 2.535 2.249

0.0010 0.0056 0.0123
10 3.117 2.555 2.270

0.0009 0.0053 0.0116
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Historical Efficacy Boundaries: Pocock

▶ Problem with Pocock: Z-statistic boundary at end is too high
(equivalently, p-value boundary is too low).

▶ Example: for k = 5 looks, 1-sided 0.025 final boundary for
z-statistic (p-value) is 2.413 (0.0079).

▶ Causes loss of power, requiring larger sample sizes.

▶ Also practical reasons for wanting high early boundaries and
lower late boundaries. Early in trial, staff may not understand
protocol.

▶ Pocock recommends against his own procedure.
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Historical Efficacy Boundaries: O’Brien-Fleming

▶ Haybittle-Peto had a desirable final z-statistic boundary, but
dropped so abruptly that it allowed a logical inconsistency.

▶ Assume looks are equally-spaced.

▶ What is the steepest descending boundary that avoids the logical
inconsistency? Answer: O’Brien and Fleming (1979) boundary.

▶ Z-statistic boundary at look i is proportional to 1/
√

i .

▶ Z-statistic boundaries at looks 1,2, . . . ,k are

a√
1
= a,

a√
2
, . . . ,

a√
k
,

where a = a(k) is a constant making the type 1 error rate α.
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Historical Efficacy Boundaries: O’Brien-Fleming

Table: 1-sided O’Brien-Fleming z-score/p-value boundaries for α = 0.025.

k 1 2 3 4 5 6 7 8 9 10
1 1.960

0.0250
2 2.796 1.977

0.0026 0.0240
3 3.471 2.454 2.004

0.0003 0.0071 0.0225
4 4.048 2.862 2.337 2.024

2.6×10−5 0.0021 0.0097 0.0215
5 4.562 3.226 2.634 2.281 2.040

2.5×10−6 0.0006 0.0042 0.0113 0.0207
6 5.029 3.556 2.903 2.514 2.249 2.053

2.5×10−7 0.0002 0.0018 0.0060 0.0123 0.0200
7 5.458 3.860 3.151 2.729 2.441 2.228 2.063

2.4×10−8 0.0001 0.0008 0.0032 0.0073 0.0129 0.0196
8 5.861 4.144 3.384 2.930 2.621 2.393 2.215 2.072

2.3×10−9 1.7×10−5 0.0004 0.0017 0.0044 0.0084 0.0134 0.0191
9 6.240 4.412 3.603 3.120 2.791 2.547 2.358 2.206 2.080

2.2×10−10 5.1×10−6 0.0002 0.0009 0.0026 0.0054 0.0092 0.0137 0.0188
10 6.600 4.667 3.810 3.300 2.951 2.694 2.494 2.333 2.200 2.087

2.1×10−11 1.5×10−6 0.0001 0.0005 0.0016 0.0035 0.0063 0.0098 0.0139 0.0184
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Historical Efficacy Boundaries
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Unified Approach: Information, Z-Scores,
B-Values
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Unified Approach: Information, Z-Scores, B-Values

▶ We want to unify monitoring so same boundaries apply to many
different testing settings.

▶ We will see that for large sample sizes, joint distribution of test
statistics over time is same for different tests.
▶ Lan and Zucker (1993).
▶ Proschan et al. (2006).
▶ Jennison and Turnbull (2000)

▶ Warning: This section is technical.
▶ May be difficult to absorb the first time, and you may need to

return to this material.
▶ We summarize important points in blue.
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Unified Approach: Information, Z-Scores, B-Values

▶ First step: Think about simple setting of iid N(δ ,1) data
Y1,Y2, . . . ,YN and we monitor after n, n < N:

▶ Estimator is δ̂n = Ȳn = Sn/n, Sn = ∑
n
i=1 Yi .

▶ Sample size n measures amount of information contained in δ̂n.
▶ Note: var(δ̂n) = 1/n, so n = 1/var(δ̂n) is information in δ̂n.

▶ Fraction of information at interim analysis, t = n/N, is called
information time or information fraction.
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Unified Approach: Information, Z-Scores, B-Values

▶ For t = n/N, Z (t) = Sn√
n . Note that

E{Z (t)} = E
(

Sn√
n

)
=

nδ√
n
=
√

nδ

=
(√

N δ

)√ n
N

= θ
√

t ,

where θ =
√

N δ = E
(

SN√
N

)
= E{Z (1)}. (14)

▶ Can also find variances and covariances of Z (t) process.
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Unified Approach: Information, Z-Scores, B-Values

▶ Summary of z-score process: Joint distribution of
Z(t1), . . . ,Z(tk ) is multivariate normal with:
▶ E{Z(t)}= θ

√
t , where θ = E{Z(1)}.

▶ var{Z(t)}= 1.

▶ cov{Z(s),Z(t)}=
√

s/t , s ≤ t .

▶ Note that z-scores become more correlated the closer their
information times are to each other.

▶ Can use joint distribution of z-scores to find boundaries that
control the type 1 error rate.
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Unified Approach: Information, Z-Scores, B-Values

▶ We can instead monitor using ‘B-values’.

▶ Let B(t) =
√

tZ(t) =
√

n
N

(
Sn√

n

)
= Sn√

N
.

▶ B(t) is proportional to a sum of iid N(δ ,1) observations, where
the proportionality constant makes B(1) = Z (1), (z-score at end).

▶ Think of B(t) like a sum.

Sn SN −Sn

X1 + . . .+Xn Xn+1 + . . .+XN

▶ Sn and SN −Sn independent because sums don’t overlap, and
similarly for Sn1 ,Sn2 −Sn1 ,Sn3 −Sn2 , . . .

▶ Likewise, B(t1), B(t2)−B(t1), B(t3)−B(t2) . . . are independent.
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Unified Approach: Information, Z-Scores, B-Values

▶ Independent increments make calculations of conditional power
much easier. E.g.,

Sn SN −Sn

X1 + . . .+Xn Xn+1 + . . .+XN

P(SN ≥ c |Sn = s) = P(s+SN −Sn ≥ c)
= P(SN −Sn ≥ c−s). (15)

Same approach works when using B-values.

▶ Also, E{B(t)}=
√

t E{Z (t)}=
√

t θ
√

t = θ t , where θ = E{Z (1)}.

▶ Easy to see if treatment is better (B(t)> θ t) or worse (B(t)< θ t)
than expected.
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Unified Approach: Information, Z-Scores, B-Values

▶ Summary of B-values: B(t) =
√

tZ(t) has the following
properties:
▶ The joint distribution of B(t1), . . . ,B(tk ) is multivariate normal.
▶ E{B(t)}= θ t , θ = E{Z(1)}.
▶ var{B(t)}= t and, for s ≤ t , cov{B(s),B(t)}= s.
▶ B(t) has independent increments.

▶ B(t) is called a Brownian motion with drift θ .
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Unified Approach: Information, Z-Scores, B-Values

Brownian Motion, B(t)

t
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Figure: Brownian motion B(t) with drift 0. t is information time. Paths are continuous
everywhere but differentiable nowhere!

172 / 464



Another Interpretation of O’Brien-Fleming
Procedure

▶ B-values also help us understand another motivation for
O’Brien-Fleming.

▶ Pocock is a constant boundary for Z (t), whereas
O’Brien-Fleming is a constant boundary for B(t).

▶ To see this, note that if we use constant B-value boundary a at
times ti = i/k , i = 1, . . . ,k , then

B(i/k)≥ a ⇔ Z (i/k)≥ a√
i/k

,

so z-score boundary is proportional to 1/
√

i , which is how we
defined the O’Brien-Fleming boundary.
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Unified Approach: Information, Z-Scores, B-Values

Table: Properties of Z(t) and B(t) processes, where
θ = E{Z(1)}= E{B(1)}. See Appendix 1 at end of this lecture for
additional details.

Z(t) B(t)
E{Z(t)} or E{B(t)} θ

√
t θ t

Var{Z(t)} or var{B(t)} 1 t

Cov{Z(s),Z(t)} or Cov{B(s),B(t)}, s ≤ t
√

s
t s

Independent increments? No Yes

▶ We can monitor with B(t) or Z (t), but calculations of probabilities
are easier with B(t) because of independent increments and
B(t) tells whether treatment trend is continuing or reversing.
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Unified Approach: Information, Z-Scores, B-Values

▶ Key Fact: The same joint distribution of tests statistics
holds for many different test statistics, provided we define
information time correctly
▶ One- and two-sample t-tests.
▶ One and two-sample z-tests of proportions.
▶ The logrank test and Cox model.
▶ Large sample tests using an MLE.
▶ Tests based on a complete, sufficient statistic.
▶ Many more.

▶ Information time is n/N , except for survival, when it is d/D,
where n and N are interim and final sample sizes and d and
D are interim and final numbers of people with events.

▶ See Lan and Zucker (1993); chapter 2 of Proschan et al. (2006);
chapters 3 and 11 of Jennison and Turnbull (2000).
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Unified Approach: Information, Z-Scores, B-Values

▶ Key idea is that many estimators δ̂ behave just like a mean of
some number, I , of iid N(δ ,1) observations.

▶ Just as δ̂ behaves like a mean, I δ̂ behaves like a sum.

▶ We just have to define I (information) appropriately;
I = 1/var(δ̂).

▶ What really matters is information fraction, t = I/Iend, where I
and Iend are the information at interim analysis and end of trial.

▶ For most estimators, information is proportional to sample
size, so t = n/N , where n and N are interim and final sample
sizes.

▶ In survival, information is proportional to # events, so
t = d/D, where d and D are interim and final # people with
events.
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Alpha Spending Functions
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Alpha Spending Functions

▶ For any z-score boundary c1, . . . ,ck , we can compute
probabilities of crossing boundaries by different times.

▶ Likewise, if we know probabilities of crossing by different times,
we can re-construct boundaries.

▶ Lan and DeMets (1983): Instead of specifying boundaries,
specify an alpha spending function α∗(t) giving cumulative
alpha spent by information time t .
▶ α∗(t) increases as t increases.
▶ α∗(0) = 0, α∗(1) = α (spend no alpha at beginning and all alpha by

the end).

▶ Then use information times to construct boundaries.
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Alpha Spending Functions

▶ Properties depend on which spending function we choose.

▶ Most popular spending function for a 1-sided test at level α:

α
∗(t) = 2

{
1−Φ

(zα/2√
t

)}
, (16)

where zα/2 =Φ−1(1−α/2).

▶ For 1-sided, α = 0.025,

α
∗(t) = 2

{
1−Φ

(
2.2414√

t

)}
. (17)

▶ Generates boundaries similar to O’Brien-Fleming’s for
equally-spaced t , but spending function approach does not
require equal spacing
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Alpha Spending Functions

▶ We illustrate boundary construction using this spending function
and 3 looks for a survival trial planned for 200 deaths by end.

▶ Suppose first look occurs at 58th death, t = 58/200 = 0.29.

▶ Cumulative alpha to spend by t = 0.29 is

α
∗(0.29) = 2

{
1−Φ

(
2.2414√

0.29

)}
= 3.15×10−5. (18)

▶ Need to find c1 such that P{Z (0.29)≥ c1}= 3.15×10−5.

▶ In R, can use ldBounds command in ldbounds function.
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Alpha Spending Functions

library(ldbounds);t<-c(.29);ldBounds(t, iuse=1, alpha=0.025, sides=1)

▶ iuse=1 is O’Brien-Fleming spending function. R responds with:

Lan-DeMets bounds for a given spending function

n = 1

Overall alpha: 0.025

Type: One-Sided Bounds

alpha: 0.025

Spending function: O’Brien-Fleming

Boundaries:

Time Upper

0.2900 4.0011

▶ First z-score boundary is c1 = 4.0011.
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Alpha Spending Functions

▶ Suppose Z (0.29)< 4.0011, so go to second look.

▶ Second look occurs after 110th death, so t = 110/200 = 0.55.

▶ Cumulative alpha to spend by t = 0.55 is

α
∗(0.55) = 2

{
1−Φ

(
2.2414√

0.55

)}
= 0.0025. (19)

▶ Need to find c2 such that

P{Z (0.29)≥ 4.0011∪Z (0.55)≥ c2}= 0.0025

(cumulative error rate 0.0025).
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Alpha Spending Functions

t<-c(.29,0.55); ldBounds(t, iuse=1, alpha=0.025, sides=1)

Lan-DeMets bounds for a given spending function

n = 2

Overall alpha: 0.025

Type: One-Sided Bounds

alpha: 0.025

Spending function: O’Brien-Fleming

Boundaries:

Time Upper

1 0.29 4.0011

2 0.55 2.8074

▶ c2 = 2.8074.
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Alpha Spending Functions

▶ Suppose Z (t2)< 2.8074, so go last look at t = 1:

▶ Cumulative alpha to spend by t = 1 is

α
∗(1) = 2

{
1−Φ

(
2.2414√

1

)}
= 0.025. (20)

▶ Need to find c3 such that

P{Z (0.29)≥ 4.0011∪Z (0.55)≥ 2.8074∪Z (1)≥ c3}= 0.025

(cumulative error rate 0.025).
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Alpha Spending Functions

t<-c(.29,0.55,1); ldBounds(t, iuse=1, alpha=0.025, sides=1)

Lan-DeMets bounds for a given spending function

n = 3

Overall alpha: 0.025

Type: One-Sided Bounds

alpha: 0.025

Spending function: O’Brien-Fleming

Boundaries:

Time Upper

1 0.29 4.0011

2 0.55 2.8074

3 1.00 1.9740
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Alpha Spending Functions

▶ Last boundary is c3 = 1.9740.

▶ Boundaries at the 3 looks are:
▶ t = 0.29: c1 = 4.0011.
▶ t2 = 0.55: c2 = 2.8074.
▶ t = 1: c3 = 1.9740.

▶ Note: Could also use Free software at U. Wisconsin (see
Appendix 2 at end of this lecture).
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Alpha Spending Functions

▶ For 2-sided test at α = 0.05, change R command to:

t<-c(.29,0.55,1); ldBounds(t, iuse=1, alpha=0.05, sides=2)

Lan-DeMets bounds for a given spending function

n = 3

Overall alpha: 0.05

Type: Two-Sided Symmetric Bounds

Lower alpha: 0.025

Upper alpha: 0.025

Spending function: O’Brien-Fleming

Boundaries:

Time Lower Upper

1 0.29 -4.001115 4.001115

2 0.55 -2.807364 2.807364

3 1.00 -1.973987 1.973987
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Alpha Spending Functions

▶ We have been using the cumulative alpha formulation. An
equivalent way to compute ci uses the first crossing formulation:

P(Z (t1)< c1 ∩ . . .∩Z (ti−1)< ci−1 ∩Z (ti)≥ ci) = α
∗(ti)−α

∗(ti−1)

(for 2-sided symmetric test, replace Z (ti) with |Z (ti)|).

▶ That is, probability of first crossing boundary at time ti is
α∗(ti)−α∗(ti−1).

▶ Then cumulative probability of crossing by ti is

α
∗(t1)+{α

∗(t2)−α
∗(t1)}+ . . .+{α

∗(ti)−α
∗(ti−1)}= α

∗(ti).
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Alpha Spending Functions

▶ Big advantages of spending function approach:
▶ Looks need not be equally-spaced.
▶ Don’t even have to pre-specify number of looks (but number

and timing of looks assumed independent of data).

▶ Nonetheless, pre-specification of number and timing of looks is
advisable.
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Alpha Spending Functions

▶ Pocock-like spending function: Lan and DeMets noticed that
amount spent by Pocock boundaries looked like a log function for
a large number of looks.

▶ To get similar spending function:

α
∗(t) = α ln(a+bt),

α
∗(0) = 0 ⇒ a = 1

α
∗(1) = α ⇒ b = e−1

α
∗(t) = α ln{1+(e−1)t}. (21)

(21) is Pocock-like spending function. Generates boundaries
similar to those of Pocock’s when looks are equally spaced.
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Alpha Spending Functions
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Alpha Spending Functions

▶ O’Brien-Fleming-like spending function is convex and spends
almost no α early in trial, then rises quickly toward end
(desirable).

▶ In contrast, Pocock-like spending function is concave and spends
more aggressively early (undesirable).

▶ Consequence: O’Brien-Fleming-like spending function
(good) creates high early boundaries and boundaries close
to 1.96 at end, whereas Pocock (bad) has lower early
boundaries but higher late boundaries.
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Alpha Spending Functions

▶ There are also families of spending functions like the Kim
DeMets power family (Kim and DeMets (1987)):

α
∗(t) = αtφ ,

where small values of power parameter φ spend α aggressively
early, whereas larger values spend alpha conservatively until
close to t = 1.

▶ Another family is the Hwang, Shih-DeCani family, also called the
gamma family (Hwang et al. (1990)):

α
∗(0) = 0, α

∗(t) = α ×
{

1− exp(−γt)
1− exp(−γ)

}
, t > 0.

▶ γ can be positive (aggressive early spending) or negative
(conservative early spending).

▶ γ =−4 is like O’Brien-Fleming.
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Alpha Spending Functions

Power Family
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Figure: The power family α∗(t) = 0.025tφ for different values of φ .
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Alpha Spending Functions
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Figure: Wang, Shih, DeCani family of spending functions,
{1−exp(−γt)}/{1−exp(−γ)} for different values of γ.
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Effect of Efficacy Monitoring on Power
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Effect of Efficacy Monitoring on Power

▶ Just like in non-monitoring setting, power in monitoring setting
depends only on E{Z (1)}= θ , the expected z-score at end (drift
parameter of Brownian motion).

▶ Monitoring must incur a sample size penalty; always more
powerful to spend all alpha at end (Neyman-Pearson lemma).

▶ The size of the penalty depends on the spending function
▶ Pocock–big penalty
▶ O’Brien-Fleming–small penalty.

▶ Why?
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Effect of Efficacy Monitoring on Power

▶ Consider O-F-like spending function with 4 equally-spaced looks.
Z-score boundaries are:

Table: Boundaries for O-F-like spending function, 4 equally spaced looks.

t = 1/4 t = 2/4 t = 3/4 t = 1
Z boundary 4.3326 2.9631 2.3590 2.0141

Pθ (Z (1)≥ 2.0141)≤ Power, monitoring ≤ Pθ (Z (1)≥ 1.96).

▶ Left and right sides are almost equal, so power with O-F almost
same as power with no monitoring! Not true for Pocock.

▶ O-F spending function has minimal effect on power.
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Effect of Efficacy Monitoring on Power

▶ We can compute sample size/power for monitoring using
the EZ principle.

▶ Just like in non-monitoring setting, power depends on EZ,
namely E{Z (1)} (the drift parameter, θ ).

▶ Can use R to compute drift parameter θ for given power.

▶ Then equate E{Z (1)} to given value of drift and solve for N.
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Effect of Efficacy Monitoring on Power

▶ For example, suppose we want 4 equally-spaced looks.

▶ t = (1/4,2/4,3/4,1).

▶ To use R, first compute boundaries:

t<-c(1/4,2/4,3/4,1)

bdry<-ldBounds(t, iuse=1, alpha=0.05, sides=2)

lwr<-bdry$lower.bounds

upr<-bdry$upper.bounds

▶ Now lwr and upr contain lower and upper boundaries

200 / 464



Effect of Efficacy Monitoring on Power

▶ Now compute drift parameter using:

ldPower(t, za=lwr, zb=upr, pow=0.90, drift=NULL)

▶ Note: Can use ldpower to compute either the drift parameter for
given power or power for given drift parameter.

▶ Whichever you give R (drift parameter or power level), it will
supply the other.

▶ R responds with the following output:
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Effect of Efficacy Monitoring on Power

Lan-DeMets method for group sequential boundaries

n = 4

Boundaries:

Time Lower Upper Lower probs Upper probs

1 0.25 -4.332634 4.332634 0.000000e+00 0.003497291

2 0.50 -2.963112 2.963112 6.586691e-08 0.254380134

3 0.75 -2.359023 2.359023 9.702757e-08 0.427384452

4 1.00 -2.014059 2.014059 5.061840e-08 0.214737908

Power : 0.9

Drift: 3.271063

▶ Tells us we need a drift parameter of 3.2711.
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Effect of Efficacy Monitoring on Power

▶ Tells us that in sample size calculations, make expected z-score
3.2711 instead of 1.96+1.28 = 3.24.

▶ Example: For a t-test, expected z-score at end is

δ√
2σ2

N

▶ Equate to 3.2711 and solve for N. Per-arm sample size is

N =
2σ2(3.2711)2

δ 2 per arm.
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Effect of Efficacy Monitoring on Power

▶ If δ = 5 and σ = 14, N ≈ 168 per arm.

▶ Compare to 165 per arm with no monitoring.

▶ For O’Brien-Fleming, only require 3 more people per arm
than if we did not monitor the trial!

▶ For “Pocock” spending function, only difference is replace

bdry<-ldBounds(t, iuse=1, alpha=0.05, sides=2)

with

bdry<-ldBounds(t, iuse=2, alpha=0.05, sides=2)
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Effect of Efficacy Monitoring on Power

▶ For Pocock, drift parameter needed for 90% power is 3.5177.

▶ New per-arm sample size is

N =
2(14)2(3.5177)2

52 ≈ 195.

▶ Bottom line: Much more substantial sample size penalty for
Pocock spending function than O’Brien-Fleming spending
function.

205 / 464



CASE Study: CAST
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Case Study: CAST

▶ Recall the Cardiac Arrhythmia Suppression Trial (Case Study:
CAST).

▶ Patients with prior heart attack and arrhythmias.

▶ Several papers showed arrhythmias are associated with
increased risk of death after heart attack (see, e.g., CDP (1973),
Ruberman et al. (1977)).

▶ Class I antiarrhythmic drugs encainide, flecainide, and moricizine
were approved based on surrogate arrhythmia endpoint.

▶ Goal of CAST: Determine whether suppressing arrhythmias
leads to fewer sudden deaths/cardiac arrests.

▶ CAST titrated encainide, flecainide, and moricizine until they
found one that worked (did not care which drug used).

▶ Wanted to ensure arrhythmias could be suppressed, so patients
whose arrhythmias not suppressed were not randomized.
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Case Study: CAST
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Figure: CAST design.
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Case Study: CAST

▶ Some died during titration, but that’s expected in sick population.

▶ Doctors already believed suppression hypothesis.

▶ In fact, some felt it was unethical to withhold treatment after
finding a drug that suppressed arrhythmias.
▶ Led to recruitment problems in CAST.

▶ So convinced were doctors that results could only be beneficial
that CAST investigators proposed a 1-sided test at α = 0.05.

▶ At first DSMB meeting 3/14/87, DSMB reviewed protocol and
recommended using 1-sided α = 0.025 instead of 0.05 for
efficacy. Asked for monitoring guideline in future.

▶ Next meeting January 1988: Board chose to be blinded.
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Case Study: CAST

▶ Next DSMB meeting: 9/16/88. DSMB discussed and approved
monitoring plan.

▶ Plan used α = 0.025 for efficacy.

▶ DSMB decided to use symmetric lower 0.025 boundary for harm.

▶ Spending function spent α = 0.0125 linearly until just before end,
then spent remaining 0.0125 at end:

α
∗(t) =

0.0125t if t < 1,

0.025 if t = 1.
(22)
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Case Study: CAST
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Figure: Spending function for efficacy used in CAST. Used symmetric lower boundary.
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Case Study: CAST

▶ After approving monitoring plan, the DSMB examined data.

▶ Proportion with sudden death/cardiac arrest:
▶ Arm X: 3/576.
▶ Arm Y: 19/571.

▶ Information fraction after 22 of 425 expected events:
t = 22/425 = 0.05.

▶ No boundary was yet in place, but suppose it were.
▶ Can spend α∗(0.05) = 0.0125(0.05) = 0.000625. Boundary would

have been −3.22 and logrank z-score was −3.43.
▶ Would have crossed harm boundary!

▶ Board decided no matter which arm was placebo, they wouldn’t
stop. Remained blinded.
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Case Study: CAST

▶ Next DSMB meeting: 4/16-4/17, 1989.

▶ There were now 48 sudden deaths/cardiac arrests, 35 of which
were on arm Y!

▶ Now clear they overestimated final number events. Now
expected to be 300, so t = 48/300 = 0.16.

▶ Boundary ±2.97.

▶ DSMB unblinded and discovered arm Y was active.

▶ Logrank z-score: Z (0.16) =−3.22. Harm boundary crossed!

▶ DSMB was shocked.
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Case Study: CAST

▶ Maybe pills were mis-labeled? No. In preparation for meeting,
they analyzed pills and found no mis-labeling.

▶ Maybe randomization failed? No. Baseline characteristics were
similar across arms.

▶ Maybe harm was confined to a certain subgroup? No. Results
were consistent across subgroups and secondary endpoint of
mortality.

▶ Maybe harm was confined to 1 or 2 drugs? It appeared that
encainide and flecainide were the “bad actors” and moricizine
was good.

▶ Decided to discontinue encainide and flecainide and continue
CAST II with moricizine.
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Case Study: CAST

▶ DSMB chose to be blinded again. Saw results by Arm P versus
Arm Q.

▶ Changed entry criteria to get sicker patients: Thought drugs
should work in sicker patients.

▶ Decided to spend 0.05 for harm and 0.025 for benefit.

▶ Included 2-week placebo titration phase to see if too many
patients were dying while titrating drugs.

▶ On July 31, 1991, there were 3 events on arm P and 15 on arm
Q in 2-week titration phase.

▶ Arm Q was moricizine!

▶ CAST II ended.
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Case Study: CAST

▶ Lessons from CAST:
▶ Can have benefit on surrogate (arrhythmias) and harm on

endpoint of real interest (sudden death/cardiac arrest).
▶ Harm can never be ruled out. Include upper and lower

boundaries in clinical trials.
▶ May make sense to use asymmetric boundaries for harm

versus benefit.
▶ Blinding DSMBs is ill-advised. Members think this makes

them more objective, but the opposite is true.
▶ Pre-conceived ideas enter maximally if blinded.
▶ Why waste time pondering what you would do if results were in

one direction or the other, when they are only in one direction?

▶ CAST references: CAST (1989) and CAST (1992).

▶ Moore (1995b) gives a history of the suppression hypothesis and
development and testing of antiarrhythmic drugs.
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Summary

▶ Unified monitoring:
▶ Information I in treatment effect estimator δ̂ is 1/var(δ̂ ), and

information time is t = Icurrent/Ifinal.
▶ B(t) and δ̂ (t) behave like sum and sample mean of I iid N(δ ,1)

observations.
▶ t often reduces to ratio of current to final sample size (non-survival)

or current to final number of people with events (survival).
▶ Same boundaries apply to different test statistics.

▶ Can monitor using Z (t) or Brownian motion B(t). Joint
distribution over time is multivariate normal with:
▶ E{Z (t)}= θ

√
t , cov{Z (s),Z (t)}=

√
s/t , s ≤ t .

▶ E{B(t)}= θ t , cov{B(s),B(t)}= s, s ≤ t .

θ = E{Z (1)}= E{B(1)} is drift parameter.
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Summary

▶ classic boundaries (Haybittle-Peto, Pocock, O’Brien-Fleming)
require equal spacing and pre-specification of number of looks.

▶ Desirable z-score boundaries (e.g., O’Brien-Fleming) are high
early and close to zα at end. Effect on power is minimal (unlike
Pocock).

▶ Haybittle-Peto simple and valid regardless of joint distribution of
test statistic, but has reversal of fortune problem.

▶ Alpha spending functions are flexible and preferable to classic
boundaries. Neither number nor timing of looks must be
pre-specified. Can pick shape to ensure desired properties.
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Appendix 1: Unified Approach

▶ Consider trial with continuous outcome and paired differences
D1,D2, . . . ,DN , one member on treatment, other on control.

Interim: Zn =
Sn√
nσ2

, Final: ZN =
SN√
Nσ2

.

cov(Zn,ZN) = cov
{

Sn√
nσ2

,
SN√
Nσ2

}

=
cov{Sn,SN}√

nσ2
√

Nσ2

=
cov{Sn,Sn +(SN −sn)}√

nσ2
√

Nσ2
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Appendix 1: Unified Approach

=
cov{Sn,Sn}+ cov{Sn,(SN −sn)}√

nσ2
√

Nσ2

=
var(Sn)+0√
nσ2

√
Nσ2

=
nσ2

√
nσ2

√
Nσ2

=
√

n/N =
√

t , t = n/N.

▶ t is called the information fraction or information time of the
interim analysis.

▶ Note that t = 0 and 1 at the beginning and end of the trial.
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Appendix 1: Unified Approach

=
cov{Sn,Sn}+ cov{Sn,(SN −sn)}√

nσ2
√

Nσ2

=
var(Sn)+0√
nσ2

√
Nσ2

=
nσ2

√
nσ2

√
Nσ2

=
√

n/N =
√

t , t = n/N.

▶ t is called the information fraction or information time of the
interim analysis.

▶ Note that t = 0 and 1 at the beginning and end of the trial.

220 / 464



Appendix 1: Unified Approach

▶ Similarly, at interim analyses with n1 and n2 observations,
n1 < n2,

cov(Zn1 ,Zn2) =

√
n1

n2
=

√
n1/N
n2/N

=
√

t1/t2. (23)

▶ The closer the two interim analyses are, the higher the
correlation of z-statistics. The mean of the z-statistic is:

E{Z (t)} = E
{

Sn√
nσ2

}
=

nµ√
nσ2

=

√
nµ

σ

θ ≡ E{Z (1)} =

√
Nµ

σ
, so

E{Z (t)}= θ
√

t . (24)
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Appendix 1: Unified Approach

▶ By the central limit theorem, Z (ti) is approximately normal for
large sample size.

▶ Moreover, the joint distribution of {Z (t1), . . . ,Z (tk )} is also
approximately multivariate normal.

▶ Sometimes it is more convenient to look at the B-value rather
than the z-statistic.

B(t) =
√

tZ (t). (25)
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Appendix 1: Unified Approach

▶ The B-value has mean

E{B(t)} =
√

t E{Z (t)}
=

√
t
(

θ
√

t
)
= θ t . (26)

Also, for s ≤ t ,

cov{B(s),B(t)} = cov
{√

s Z (s),
√

t Z (t)
}

=
√

s
√

t cov{Z (s),Z (t)}

=
√

s
√

t
√

s
t
= s. (27)
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Appendix 1: Unified Approach

▶ Notice that, for s < t ,

cov{B(s),B(t)−B(s)} = cov{B(s),B(t)}− cov{B(s),B(s)}
= s−s = 0. (28)

▶ Because B(s) and B(t)−B(s) are bivariate normal with 0
correlation, B(s) and B(t)−B(s) are independent.

▶ (Independent increments property) More generally, for
t1 < t2 < .. . < tk , the increments B(t1), B(t2)−B(t1),
. . . ,B(tk )−B(tk−1) are independent.

▶ B(t) is continuous everywhere, differentiable nowhere.
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Appendix 2: U. Wisconsin Software

▶ To use U. Wisconsin software instead of R to compute
boundaries for O’Brien-Fleming-like spending function at
information times t = (0.29,0.55,1), use the following steps.
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Appendix 2: U. Wisconsin Software
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Appendix 2: U. Wisconsin Software

.2.29 

Figure:
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Appendix 2: U. Wisconsin Software

▶ Free software says c2 = 2.8074.

▶ Last look is at 200th death, t = 200/200 = 1.

▶ Cumulative alpha to spend by t = 1 is

α
∗(1) = 2

{
1−Φ

(
2.2414√

1

)}
= 0.025. (29)

▶ Need to find c3 such that

P[{Z (0.29)≥4.0011}∪{Z (0.55)≥2.8074}∪{Z (1)≥ c3}] =0.025.

▶ Free software says c = 1.9740.
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Appendix 2: U. Wisconsin Software

Lan-DeMets Group Sequential Boundaries 
Calculations 
Compute Spending 
Analysis Parameters 
Interim Analyses (k): 3 

Information times(t): User Input 

Test Boundaries: Two-Sided Symmetric 

Spending Function 
Overall Significance Level: 0.05 

Spending Function: OBrien-Fleming 

Truncate Bounds? No 

 

Time Lower Upper Nominal Upr Alpha Cum Alpha 

0.29 -4.0011 4.0011 0.00003 0.00006 

0.55 -2.8074 2.8074 0.00250 0.00502 

1.00 -1.9740 1.9740 0.02419 0.05000 
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Appendix 2: U. Wisconsin Software

▶ Now use University of Wisconsin software to compute sample
size/power for 4 equally-spaced looks using either the
O’Brien-Fleming-like spending function or Pocock-like spending
function.
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Appendix 2: U. Wisconsin Software

▶ Use WinLD software at U. of Wisconsin.

▶ Click on “Compute” menu and click on “Drift”. Choose “Interim
Analyses (k)”, select 4 and hit enter (must hit enter).

▶ Table at upper right shows 4 equally-spaced looks (to change to
unequal spacings, use “Use Input” under “Information Times”).

▶ Choose power level (default is 0.90) under “Power and Bounds
Parameters”.

▶ Choose spending function under “Spending Function” (default is
O’Brien-Fleming).
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Appendix 2: U. Wisconsin Software

▶ Click on the “Calculate” button.

▶ In lower left, under “Drift” is number 3.2711.

▶ Tells us that in sample size calculations, make expected z-score
3.2711 instead of 1.96+1.28 = 3.24.

▶ Example: For a t-test, expected z-score at end is

δ√
2σ2

N

▶ Equate to 3.2711 and solve for N. Per-arm sample size is

N =
2σ2(3.2711)2

δ 2 per arm.
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Appendix 2: U. of Wisconsin Software

▶ If δ = 5 and σ = 14, N ≈ 168 per arm.

▶ Compare to 165 per arm with no monitoring.

▶ Now choose “Pocock” spending function and hit “Calculate”.
▶ New drift is 3.5177.
▶ New per-arm sample size is

N =
2(14)2(3.5177)2

52 ≈ 195.

▶ More substantial sample size penalty.
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Appendix 3: Post-Monitoring Inference: Panoply of
Problems

▶ Assume nuisance parameters are known.

▶ With no monitoring, z-statistic is sufficient statistic.
▶ Inferences should be based solely on Z .

▶ Likelihood ratio for testing H0 : θ = 0 versus H1 : θ > 0 is monotone.
▶ Most powerful test against each simple alternative H1 : θ = θ1 is same

for all θ1 > 0.
▶ Z > zα is UMP level α test for H1 : θ > 0.

▶ MLE of θ is Z and is unbiased.
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Appendix 3: Post-Monitoring Inference: Panoply of
Problems

▶ These are all problematic with monitoring.

▶ If τ is info time when trial stopped, likelihood ratio is

L(θ)/L(0) = exp
{

θ
√

τ Z (τ)− (θ2/2)τ
}
.

▶ Consequently, sufficient statistic is pair {τ,Z (τ)}, so inferences
should be based solely on {τ,Z (τ)} or, equivalently, {τ,B(τ)}.

▶ No monotone likelihood ratio, so most powerful test against
H1 : θ = 1 could be different from most powerful test against
H1 : θ = 2 (no UMP test against H1 : θ > 0).

▶ Must specify how to order sample space to compute p-value to test
H1 : θ > 0.

▶ MLE of θ , B(τ)/τ, is biased high.
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Appendix 3: Post-Monitoring Inference: Panoply of
Problems

▶ Regarding calculating 1-sided p-value adjusted for monitoring,
consider all outcomes consistent with boundaries, and order
them in some way:

▶ MLE ordering orders by B(τ)/τ. {τ2,Z (τ2)} more extreme than
{τ1,Z (τ1)} if B(τ2)/τ2 ≥ B(τ1)/τ1.

▶ Z-score ordering orders by Z (τ). {τ2,Z (τ2)} more extreme than
{τ1,Z (τ1)} if Z (τ2)≥ Z (τ1).

▶ B-value ordering orders by B(τ). {τ2,Z (τ2)} more extreme than
{τ1,Z (τ1)} if B(τ2)≥ B(τ1).

▶ Stagewise ordering orders first by τ, then by Z (τ). {τ2,Z (τ2)}
more extreme than {τ1,Z (τ1)} if τ2 < τ1 or if τ2 = τ1 and
Z (τ2)≥ Z (τ1).

▶ My favorite because does not force us to consider future events to
compute p-value.
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Appendix 3: Post-Monitoring Inference: Panoply of
Problems

▶ Regarding estimation, suppose I have 2 independent unbiased
estimators, δ̂1 and δ̂2, of treatment effect δ .

▶ I peek at δ̂1.
▶ If δ̂1 is very large, I report only δ̂1.
▶ If δ̂1 is not large, I average it with δ̂2 and report the average.

▶ Intuitively clear that this overestimates δ .

▶ That is monitoring! Suppose 1 interim analysis at halfway point.
▶ If interim estimate is very large, stop trial and report δ̂1.
▶ If interim estimate is not large, continue to end, so final estimate is

average, (δ̂1 + δ̂2)/2, of 1st and 2nd half estimates.
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Appendix 4: Small Sample Sizes

▶ Methods so far have considered large samples sizes.

▶ What can we do if sample sizes are small?

▶ Consider continuous outcomes.

▶ Applying Z-score boundaries to the t-statistic is bad because:
▶ Marginal distribution of T-score differs from that of Z-score.
▶ Joint distribution of T-scores differs from that of Z-scores.

▶ Better approach: Apply p-value boundaries to p-value from
t-distribution. Marginal distribution of p-value is correct (uniform).
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Appendix 4: Small Sample Sizes

▶ Example: Suppose you monitor continuous outcome using
t-statistic with 4 equally-spaced looks and Pocock boundary for
1-sided α = 0.025.

▶ At first look after 5 people per-arm, compute t-statistic

T =
ȲT − ȲC√

2s2/5
.

and compute p-value using the t-distribution with 2(5−1) = 8
degrees of freedom.

▶ Convert the z-score boundary of 2.361 to p-value boundary
0.0091.

▶ Declare benefit if the p-value from t-test is ≤ 0.0091.
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Appendix 4: Small Sample Sizes

▶ Another approach with small sample sizes: Use permutation test.
Pawitan and Hallstrom (1990)

▶ E.g, with spending function α∗(t), determine boundary ci such
that.

Pperm(Z (t1)≥ c1 ∪ . . .∪Z (ti)≥ ci) = α
∗(ti),

where Pperm(A) denotes permutation probability of A:

Pperm(A) =
# permutations such that event A occurs

total # permutations
.
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Lecture 5: Monitoring for Futility
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What is futility monitoring?

Interim look at the analysis of the primary endpoint for the purposes
of examining whether the trial has a reasonable chance of providing
useful scientific evidence

▶ Futility analyses often consider the current trend in the data and
whether the trial has a reasonable chance of producing a
statistically significant result at end of study

▶ There could be many factors contributing to possible futility
▶ Lack of treatment effect
▶ Lower than expected recruitment rate
▶ Lower than expected event rate
▶ Emerging evidence from other trials

▶ Futility caused by poor recruitment, too much loss to follow-up or
non-adherence, is called operational futility
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When is futility monitoring worth considering?

▶ Futility monitoring gives a trial a chance to stop early if there
appears to be little to no chance the trial will provide useful
evidence

▶ Trials for which a failure to show an advantage for a new
treatment would not lead to changes in medical practice would
be candidates for interim futility assessments

▶ Stopping trials on a path to failure prevents patients from taking
unnecessary risks

▶ Stopping trials on a path to failure saves resources that can be
redirected to therapies with better potential

▶ Some have argued large publicly funded trials should always
consider futility monitoring, saving costs and recruiting fewer
patients to failed trials (Sully et al., 2014)
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*Elllenberg and Shaw 2022
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The Cardiovascular Inflammation Reduction Trial
(CIRT)
Background

▶ Inflammation plays a key role in atherothrombosis
▶ The Canakinumab Anti-inflammatory Thrombosis Outcomes

Study (CANTOS) found use of a monoclonal antibody reduced
cardiovascular events over placebo, without lowering blood
pressure or lipids
▶ Largest reduction in events were in subjects with largest reductions

in interleukin-6 and high-sensitivity C-reactive protein
▶ There was interest to study another anti-inflammatory drug

▶ Low-dose methotrexate is an inexpensive, effective, and widely
used treatment for inflammatory conditions, including rheumatoid
arthritis, psoriatic and juvenile arthritis

▶ In observational studies, patients with rheumatoid/psoriatic arthritis
who received low-dose methotrexate had fewer cardiovascular
events than patients receiving other therapies.
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The Cardiovascular Inflammation Reduction Trial
(CIRT)
NCT01594333

▶ Randomized placebo-controlled trial examining whether
low-dose methotrexate reduces heart attacks, strokes, or death

▶ NIH-sponsored trial launched in 2013 with goal of randomizing
7000 men and women

▶ Trial included medically stable participants with type 2 diabetes
or metabolic syndrome and history of a heart attack or multiple
coronary blockages

▶ Study protocol included a statistical plan for early termination for
“futility”
▶ If emerging data indicate trial unlikely to demonstrate benefit, this

would not lead to changes in clinical practice
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CIRT Futility Analysis
NCT01594333

▶ There were two planned looks, when 50% and 75% of the
planned primary events had accrued

▶ In March of 2018, the DSMB recommended trial termination.
▶ Median follow-up of 2.3 years in 4786 participants

▶ The Methotrexate HR crossed a prespecified inefficacy boundary
(Freidlin et al. (2010))

▶ Methotrexate did not reduce high-sensitivity C-reactive protein
levels during the run-in phase

▶ Methotrexate elevated liver enzymes
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ACTIV-4B Example
A trial that ended for logistical reasons

▶ Accelerating Covid-19 Therapeutic Interventions and Vaccines
(ACTIV-4B), a placebo-controlled trial testing antithrombotic
agents given prophylactically to people with Covid-19 who had
not yet been hospitalized

▶ Basis for trial was that thrombosis was a known risk for subjects
with Covid-19

▶ DSMB recommended trial end for futility when it was observed
event rate far too low to demonstrate benefit for treatment
▶ 3/558 participants had a thrombotic event (Connors et al., 2021)

▶ Decision to conclude for futility also that such a low event rate
does not justify the use of anticoagulant or antithrombotic drugs
(Ellenberg and Shaw, 2022)
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When is futility monitoring NOT worth considering?

▶ Even if a treatment is showing little benefit partway through the
trial, additional safety evidence may be desired

▶ Trials comparing two or more widely used therapies to see
whether one has advantages over the other
▶ Non-inferiority trials typically would not need futility monitoring,

since more about exploring safety profiles and not establishing
superiority

▶ Some settings would require full evidence to accrue in order to
have a convincing null result (as long as ethical)
▶ Trials of therapies already in use may need a convincing result to

change practice

▶ Although futility monitoring may not have been pre-specified,
unexpected events or trends in trial may lead a DSMB to
recommend consideration of futility
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Testosterone Trials
Snyder et al. (2016)

▶ Testosterone Trials studied testosterone therapy in older men
with documented subnormal testosterone levels

▶ Trial evaluated a widely used product not well studied for many of
the functional outcomes it was advertised for

▶ It was deemed important to collect as much data as possible

▶ Stopping early for futility would be less likely to persuade
providers and consumers than a larger database, and full safety
information was particularly important given concerns about
testosterone’s effects on prostate and cardiovascular health

▶ No futility plan was provided by the study investigators
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Women’s Health Initiative (WHI)
Women’s Health Initiative Study Group and others (1998)

The WHI Hormone Replacement Therapy (HRT) Trials studied the
risks and benefits of estrogen therapy in post-menopausal women.
▶ HRT came into wide use in 1960s, based largely on

presumptions and observational data
▶ Observational studies suggested HRT reduced a women’s risk of

coronary heart disease (CHD) by 40-50%
▶ Evidence from trials suggested estrogen prevented hip fracture
▶ Some concern regarding increased risk of breast cancer

▶ Two trials launched in 1993 that would enroll a 27,347 women.
▶ 16,608 in the progestin+ estrogen trial (EP) and 10,739 in the

estrogen alone (E alone) trial.
▶ Primary outcome was CHD; secondary outcome hip fracture;

safety outcome breast cancer
▶ The WHI HRT trials monitored for efficacy and harm
▶ The results of these trials changed clinical practice (Rossouw

et al., 2002; Anderson et al., 2004)
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Monitoring the Women’s Health Initiative (WHI)
Wittes et al. (2007)

▶ There were a number of twists and turns in the monitoring of the
WHI HRT, including early indications of increased risk of venus
thrombosis and stroke

▶ In May 2001, the DSMB was convinced neither trial would show
a benefit of HRT on CHD
▶ Study continued because there would need to be unequivocal

results in order to change practice
▶ More data would also help elucidate some contrary trends: EP

seemed to increase or breast cancer, E alone decreased risk
▶ In July 2002, 3 years before expected end, its EP arm was halted

because compared to placebo, experimental developed more
heart disease, invasive breast cancer, and other harmful
outcomes such that risks outweighed benefits

▶ In Feb 2004, the E alone arm was halted due to concerns of
stroke, with no apparent benefit on CHD
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Methods for monitoring futility
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Conditional Power

Conditional Power (CP) is the probability that a trial would
successfully reject the null hypothesis if the trial continued until
planned completion.
▶ CP useful in settings in which a convincing positive result at the

end of the trial is needed to change clinical practice
▶ If the conditional power falls below a pre-specified threshold

(commonly 10 to 20%), termination for futility may be considered
▶ CP must be computed by an unblinded statistician

▶ Calculated using the observed trend in the data so far and a
hypothesized trend for the data not yet collected

▶ A DSMB may wish to see several estimates of conditional power
based on a range of assumptions about the true treatment effect.

▶ CP using the originally hypothesized trend generally the main
estimate of CP

▶ A binding rule w.r.t. CP (i.e., stop if CP ≤ γ is called stochastic
curtailment)
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Conditional Power (CP)

To calculate the CP at an interim analysis, we again can make use of
the B-value B(t) =

√
tZ (t) and information fraction t (see Lecture

4)

▶ Where Z(t) is the Z-score at the interim analysis and

▶ n observations out of the planned N are available at the interim
analysis, yielding t = n/N
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Conditional Power Calculation (part 1)
Proschan (2021)

Suppose c is the critical value needed for signficance at end of trial

CP = P{Z (1)> c |Z (t) = z}= P
{

B(1)> c | B(t) = z
√

t
}

= P
{

B(1)−B(t)> c−z
√

t
∣∣B(t) = z

√
t
}

=

= P
{

B(1)−B(t)> c−z
√

t
}

(independent increments).

Also, B(1)−B(t) is normal with mean θ ·1−θ · t = θ(1− t), where
θ = E{Z (1)}, and variance

var{B(1)−B(t)} = var{B(1)}+var{B(t)}−2cov{B(1),B(t)}
= 1+ t −2t
= 1− t .
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Conditional Power Calculation (part 2)

▶ Therefore, conditional power is

CP = P

{
B(1)−B(t)−θ(1− t)√

1− t
>

c−z
√

t −θ(1− t)√
1− t

}

= 1−Φ

{
c−z

√
t −θ(1− t)√
1− t

}

= Φ

{
z
√

t +θ(1− t)−c√
1− t

}
,

where z is value of the z-statistic at information time t .
θ = E(Z (1)) and c is critical value at end of study
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CP Example: t-test
Proschan (2021)

Consider trial randomizing patients with hepatitis B to new drug (N)
and standard (S). Primary outcome: change in log10 viral load
between baseline and 1 week expected SD =2.8, N=250 per arm
gives 85% power to detect 0.8 log difference.

At interim analysis: nS=108 and nN = 111, mean change:
ȲS =−0.30 and ȲN =−0.18, sd of change: sS = 2.35 and sN = 2.60

so pooled variance = (108−1)s2
S+(111−1)s2

N
108+111−2 = 6.15

information fraction t = 1/var(δ̂ )
1/var(δ̂end )

= 1/{σ2(1/108+1/111)}
1/(2σ2/250)

or t ≈ (108+111)/2/250 = 0.438

Z (0.438) = ȲS−ȲN√
s2(1/nS+1/nN )

= −0.30−(−0.18)√
6.15(1/108+1/111)

=−0.358

B(0.438) =
√

tZ (t) =
√

0.438(−0.358) =−0.237
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CP Example: t-test (part 2)

Conditional power under original alternative hypothesis:
Because original power was 85%, expected Z score at end of trial is
θ = 1.96 + 1.04 = 3

CP3 =Φ(−0.237+3(1−0.438)−1.96√
1−0.438

) = Φ(−0.682) = 0.25

Conditional power under the null hypothesis:
CP0 =Φ(−0.237+0(1−0.438)−1.96√

1−0.438
) = Φ(−2.931) = 0.002
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PREVAIL II: Binomial CP Example
Proschan (2021)

PREVAIL II was a trial of Ebola virus disease that compared triple
monoclonal antibody product ZMapp + standard of care (SOC) with
SOC alone

Primary endpoint was 28-day mortality, target ss was 100/arm that
gave ≈ 87% power to detect a 50% reduction in mortality: 40% to
20%. Trial ended with 71 observations because epidemic ended, but
an interesting question is would the results have been significant at
end of trial?

There were: 13/35 deaths on SOC and 8/36 deaths on SOC+ZMapp.
t = 1/{p(1−p)(1/35+1/36)}

100/{2p(1−p)} = 0.355

Z (.355) = 13/35−8/36√
(21/71)(1−21/71)(1/35+1/36)

= 1.377

B(.355) =
√

(.355)Z (.355) = .820

θ = E(Z (1)) = 0.40−0.20√
(2(.30)(1−.30)/100

= 3.086
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PREVAIL II: Binomial CP Example (part 2)
Proschan (2021)

Conditional power under original alternative hypothesis:

CPorig =Φ(0.820+3.086(1−.0355)−1.96√
1−0.355

) = Φ(1.059) = 0.86

Conditional power under current trend

CPtrend =Φ(0.820+2.31(1−0.355)−1.96√
1−0.355

) = Φ(0.436) = 0.67
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PREVAIL II: Survival CP Example

Suppose PREVAIL II had planned to use the logrank test instead of
test of proportions and that the trial had 80% power to detect a
control to treatment hazard ratio of 1.6, with 142 events.

Suppose at interim analysis, there were 21 deaths observed and that
the log-rank zscore was Z=0.83

The expected Z score at end θ = 1.96+ .84 = 2.80
Information fraction is the ratio of current number of deaths to the
number expected at end of trial d/D = 21/142 = 0.148
Then, B(0.148) =

√
0.148(0.830) = 0.319

CP2.8 ≈ Φ(0.319+2.8(1−0.148)−1.96√
1−0.148

) = Φ(0.807) = 0.79

When amount of information is so low (15% in this case), nearly
impossible to stop for futility using conditional power. Note,
conditional power is close to the original power in this case.
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Recall CAST Example

Cardiac Arrhythmia Suppression Trial (CAST)

▶ Tested whether suppressing arrhythmias in patients with prior
heart attack reduces composite of sudden deaths/cardiac
arrests.

▶ Planned for 425 sudden deaths/cardiac arrests by end of trial.

▶ At DSMB meeting 4/17/1989, 35 sudden deaths/cardiac arrests
in active arm, 13 in placebo arm.
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CP can help decision making
CAST Example (Proschan, 2021)

▶ Expected z-score at end if treatment reduces sudden
deaths/cardiac arrests by 25% θ = ln(4/3)∗

√
425/4 = 2.965.

Note, 25% reduction means treatment/control hazard ratio is 3/4,
so control/treatment hazard ratio is 1/(3/4)=4/3.

▶ Information time at interim analysis was (35+13)/425=0.113.
▶ Z-score was Z (0.113) =−3.22 = z (suggesting harm).
▶ Conditional power assuming 25% reduction is

Φ

{
z
√

t +θ(1− t)−c√
1− t

}
≈ Φ

{
−3.22

√
.113+2.965(1− .113)−1.96√

1−113

}
= Φ(−.438) = 0.33.

▶ Only 33% chance of proving benefit at end, given current results
and optimistic 25% reduction. CP under null hypothesis= 0.0006.

▶ Final # events now predicted to be 300, not 425.
▶ Using 300 final events and recomputing θ and t , CP≈ 0.10 under

25% reduction and CP = 0.0002 under null hypothesis.
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Planning for Futility Monitoring

▶ Though futility monitoring tends to be less formal, generally good
idea to specify out a plan in the protocol

▶ How often to monitor will likely depend on setting
▶ Timing often tied to achieving some threshold, such as when 50%

and 75% of event rates have accrued
▶ Hard to have low conditional power when less than 25% of data

accrued

▶ DSMB may ask for an evaluation of futility partway thru the trial,
even if not pre-specified
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Other factors at play

When evaluating futility, DSMB may consider emerging results from
other trials.

▶ In the CIRT trial described earlier, the conditional power to detect
the originally targeted effect size was 28%.

▶ The observed effect sizes in recently completed trials of
anti-inflammatory agents in similar populations were much
smaller than the targeted effect size in CIRT, increasing the
DSMB’s concern that CIRT was very unlikely to show a benefit.

▶ This emerging outside evidence together with the lack of effect
on inflammatory markers, in addition to low CP, contributed to the
DSMB’s recommendation to terminate the trial for futility.
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Predicted Intervals

Predicted intervals predict the confidence interval that might be
observed at trial’s end under a given assumption about the future
data. (Evans et al., 2007; Li et al., 2009)
▶ Can enhance the interpretation of the conditional power at an

interim analysis
▶ To calculate predicted intervals you simulate the remaining

unobserved data for the trial, under a hypothesized trend, and
combine with interim data

▶ Generate a large number of such confidence intervals (CI) and
plot, ordering by effect size

▶ The comparisons of the width of the CI based on observed
interim data alone with the width of the predicted interval sheds
light on precision that could be gained with trial continuation, a
potentially valuable tool for a DSMB

▶ Easily done in the R Software with package PIPS
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Predicted Intervals: Hypothetical Example
Ellenberg and Shaw (2022)

Predicted interval plot: 100 simulations of a hypothetical trial. At
interim analysis: Deaths were 10/40 in group A vs 8/38 in group B
halfway through trial. Hypothesized trend: 25% mortality for group A
vs 50 % mortality for group B for future data. Can see CP = 20%
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Are there downsides to monitoring for futility?
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Effect of monitoring for futility on Type I and Type II
errors

▶ Monitoring for futility increases the probability that there will be a
null result at the end of the trial (i.e. increased probablity of failing
to reject null hypothesis for primary endpoint)

▶ Type I error can not be inflated by monitoring for futility

▶ Type II error can be inflated
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The effect of stochastic curtailment on Power

▶ A stochastic curtailment rule like stop if CP under originally
hypothesized treatment effect < 0.20 lowers power because if
you had continued, you might have gotten significant result at
end

▶ Lan et al. (1982) showed that even if you monitored continuously,
power is reduced only by small amount.
▶ If type 2 error rate with no monitoring is β and stochastic

curtailment rule stops if CP (computed under original
hypothesis)≤ γ, then actual type 2 error rate is no greater than
β/(1− γ).

▶ E.g., suppose stop if CP ≤ 0.20 and type 2 error rate was
β = 0.10 (power= 0.90) with no monitoring. Actual type 2 error
rate is at most 0.10/(1−0.20) = 0.125, so actual power is at
least 1−0.125 = 0.875 even if you monitor continuously!
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Beta spending

▶ Another approach to futility monitoring is to consider a
beta-spending approach. Analogous to alpha-spending, one
could create a lower futility boundary which would guide stopping
for futility if this boundary is crossed.

▶ The idea is that you can allow for repeated monitoring for futility
while controlling the trial’s false negative rate, thereby retaining
trial power despite the multiple testing

▶ Advantage: Can choose the beta spending function of your liking
(making it easier or harder to stop early)

▶ Tying upper boundary to lower futility boundary allows for slight
increase in α, to offset fact that futility monitoring lowers
probability of falsely concluding significant result
▶ This must be followed as a binding rule and so generally is NOT

recommended.
▶ Better to not have upper tied to the lower boundary, since may

ignore the lower boundary.
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Another downside to futility monitoring: Data in
pipeline could change results

Whether the study team preparing report or DSMB member, need to
think about a few things regarding stopping for futility

▶ Were the data used for the futility analysis the same for the
endpoint used for final analysis: i.e. adjudicated endpoints?

▶ How much outstanding data was in pipeline at time of interim
analysis?

▶ How much follow-up time/events will accrue between time of
stopping for futility and final analysis?
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Example: LUME-2 Lung Trial
Hanna et al. (2016)

▶ LUME-Lung 2, a phase III trial of treatment of non–small cell lung
cancer

▶ This trial was stopped early for futility on the basis of low
conditional power (approximately 10%)

▶ Final trial results showed a significant benefit for the novel
treatment on the primary end point of progression-free survival

▶ How did this happen?
▶ Interim analysis based on the investigators’ evaluation of disease

progression, while final analysis based on centrally adjudicated
determination of progression

▶ There was also additional follow-up between stopping for futility
and final analysis

▶ Nice discussion by Lesaffre et al. (2017)
▶ Conditional power might have been a useful tool to consider

chances for result to turn around.
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Other Tools
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Revised Power

A revised power calculation can be done part-way through a trial
using updated information on important design considerations, such
as the variance of a continuous outcome, event rate, or the expected
recruitment rate.

▶ The purpose of revised power is to determine whether a null
result at the end of the trial would be informative under the
updated assumptions.

▶ If the revised power is low, a null result would not rule out the
original hypothesized treatment effect, suggesting that continuing
the trial may be futile.

▶ Revised power is done blinded, unlike conditional power. It
does not rely on interim trends in the data with respect to
treatment effect.
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Revised Power: Don’t always have to stop...
Love et al. (2015); Hade et al. (2019)

▶ An international breast cancer trial was launched in 2013 to
study the effects of surgical timing during the menstrual phase
on disease-free survival
▶ Prior studies suggested adjuvant oophorectomy surgery during the

luteal phase of the menstrual cycle may improve disease-free
survival and overall survival compared to the follicular phase

▶ Concern arose from emergent data, including another trial, that
the event rate assumed for the placebo arm during the planning
stage may have been too high, potentially resulting in an
underpowered trial

▶ In cooperation with the DSMB, investigators agreed to implement
a blinded sample size re-estimation that relied on blinded trial
data

▶ These calculations resulted in an increase in trial size from 340
to 510 due to the lower expected event rate.
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Bayesian Approaches
Snapinn et al. (2006); Dmitrienko and Wang (2006)

There are a number of Bayesian approaches to futility monitoring
▶ One can compute predictive power (Dmitrienko and Wang,

2006), which is the conditional power averaged over a range of
assumptions about the treatment difference that will be observed
in the future data.

▶ The predictive probability framework is a fully Bayesian
approach that specifies a prior probability for the treatment effect
and, using the observed interim data, determines the posterior
probability of a clinically important treatment difference

▶ For Bayesian approaches, careful thought must be given to
specifying the prior probability.
▶ Weak priors may give too much weight to early data
▶ Dmitrienko and Wang (2006) argue that weak priors are advisable

in large mortality trials to lessen the exposure of critically ill patients
to ineffective interventions
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Summary

▶ Futility monitoring (FM) allows DSMB to evaluate mid-trial of
whether scientifically useful information will be gained if trial
continues until the planned end

▶ FM makes sense for some settings, not others

▶ Conditional Power one of the most common tools used for futility
monitoring

▶ FM boundaries are generally considered advisory and not
binding

▶ DSMB will always consider totality of evidence before
recommending stopping for futility
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Lecture 6: Handling Missing Data
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Outline for lecture

▶ Review of concepts regarding impact of missing data
▶ Impact on bias and precision
▶ Taxonomy of missing data: MCAR, MAR, MNAR

▶ Approaches to analysis in presence of missing data
▶ Approaches to avoid
▶ Recommended approaches

▶ Sample R code

▶ Misconceptions about missing data (If time allows)

286 / 464



Overview: Impact of Missing data

Conducting an analysis that simply excludes the observations with
missing data suffers from:

▶ Introduction of bias

▶ Loss of precision

▶ Lack of internal and face validity, particularly if a large amount of
data are missing
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Key Questions

▶ What are some ways that missing data can cause bias in a study
analysis?

▶ How do we preserve intent-to-treat principle with missing data?

▶ What are the differences between these types of missing data:
MCAR, MAR, MNAR?

▶ What are the methods of analysis to handle missing data and the
assumptions they rely on to be appropriate?
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Common Causes of Missing Data

▶ Dropout

▶ Loss to follow-up
▶ Noncompliance with measurement procedure

- Missed visit
- Refused procedure/skipped questions or surveys

▶ Error
- Test not done
- Test done improperly
- Results lost

▶ Deliberate exclusion from analysis
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THE BIG WORRY ABOUT MISSING DATA

▶ Missingness may be associated with outcome and confound
analysis

▶ We don’t know the form of this association
- Any fix we apply relies on untestable assumptions

▶ Nevertheless, if we fail to account for the (true) association, we
may bias our results
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ANTURANE REINFARCTION TRIAL (ART)
Temple and Pledger (1980)

▶ Randomized, double-blind, placebo-controlled trial in post-MI
subjects

▶ Primary endpoint: mortality
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REASONS FOR INELIGIBILITY

▶ 1/3 - time since MI: < 25 days or > 35 days

▶ 1/3 - enzymes not elevated

▶ 1/3 - other: age, enlarged heart, prolonged hospitalization, .. . .

▶ Number ineligible about the same in each treatment group (38 vs
33)

But....
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ANTURANE MORTALITY RESULTS
Temple & Pledger (1980) NEJM, p. 1488
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FDA CONCERNS

▶ Apparently haphazard application of “eligibility” criteria by
adjudication group

▶ Some deaths excluded on drug arm were very similar to deaths
not excluded on placebo arm

▶ Overall, cause of death classification deemed very unreliable

▶ No pre-specified plan to exclude any randomized subjects from
analysis

▶ No issue of deliberate bias; adjudicators were blinded to
treatment arm
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HISTORICAL IMPORTANCE OF ART

▶ Anturane example established the ITT principle
- Account for all participants randomized
- Account for all events during follow up

▶ Extremely influential in FDA approach to review
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INTENT-TO-TREAT (ITT) PRINCIPLE

All randomized patients should be included in the (primary)
analysis, in their assigned treatment groups
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A PERENNIAL PROBLEM: NONCOMPLIANCE

▶ There will always be noncompliant subjects in clinical trials

▶ There will always be people who don’t use medical treatment as
prescribed

▶ Conflict between the question we may WANT to ask, and the
question we CAN ask
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PRAGMATIC VS EXPLANATORY

▶ “Explanatory” question: is the product safe and effective when
used appropriately in carefully defined population

- Scientific question, what pharmaceutical companies and FDA are
trying to establish

- Evaluation of treatment product (treatment efficacy)

▶ “Pragmatic” question: Is this product safe and effective when
prescribed for its generally intended purpose by practicing
physicians?

- Public health perspective: if we put this product out there, what are
the benefits and what are the risks?

- Evaluation of treatment policy (treatment effectiveness)
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Estimands, Estimates, and Estimators
Little and Lewis (2021)

▶ Estimand- a target quantity; ie, what the study aspires to
measure

▶ Estimator -a formula or algorithm used to estimate the target
quantity from the clinical trial data

▶ Estimate - the numeric value obtained when the estimator is
applied to the actual data from the trial.

Another good reference: https://www.fda.gov/regulatory-
information/search-fda-guidance-documents/e9r1-statistical-principles-
clinical-trials-addendum-estimands-and-sensitivity-analysis-clinical
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ITT and the Causal Estimand

▶ The ITT analysis addresses the treatment policy estimand–
difference between randomized groups regardless of compliance
▶ Most common choice in RCTs

▶ Some argue ITT analysis is not estimating the ideal causal
estimand

- When analyze outcome regardless of compliance, not getting at
”pure” treatment effect

▶ An estimand evaluating the causal treatment effect can be much
more difficult to estimate

- Have to address missing data
- Will involve an unobserved counterfactual outcome
- May involve a “hypothetical” outcome

▶ See Olarte Parra et al. (2023); Lipkovich et al. (2020) for nice
discussion of alternative estimands in clinical trials.

- The average treatment effect (ATE) and average treatment effect
among the treated (ATT) are common alternatives
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So why cant we just exclude those who did not take
the treatment?

▶ Better outcomes in those who follow prescribed regimen could
be due to the fact that they actually took the treatment

▶ Could be the reverse: those who are better prognostically may
be more likely to be good adherers
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CLASSIC EXAMPLE

▶ Coronary Drug Project (CDP)
- Large RCT conducted by NIH in 1970’s
- Compared several treatments to placebo
- Goal: improve survival in patients at high risk of death from heart

disease

▶ Results disappointing

▶ Investigators recognized that many subjects did not fully comply
with treatment protocol
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CDP: Five-Year Mortality by Treatment Arm
Coronary Drug Project Research Group (1975)
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CDP: Five-Year Mortality by Adherence to Clofibrate
Coronary Drug Project Research Group, JAMA, 1975
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CDP: Five-Year Mortality by Adherence to Clofibrate
and Placebo
Coronary Drug Project Research Group, JAMA, 1975
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Implication of ITT for Study Design and Analysis

▶ Implication for design: collect all required data on all patients,
regardless of compliance

- Keep on study even if off treatment

▶ Implication for analysis: Need to model the missingness
- Common approaches: Have to impute either the probability that

each participant would have compete data or impute the missing
outcome or do an analysis that adjusts for the confounding
introduced by missingness

- To be successful, need to observe the variables associated with
missingness

- This is hard. Thus, avoid missing data
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Best method for handling missing data
Little et al. (2012)

PREVENTION

▶ The less missing data, the less chance that missing data can
impact your analysis

▶ There are many practical approaches through study design and
implementation to prevent missing data
▶ Have a detailed informed consent process
▶ Minimize participant burden
▶ Think about practicality of study length and endpoints
▶ For long trials or complicated/burdensome procedures, consider a

run-in period
▶ Maintain routine contact with participants to maintain interest and

up-to-date contact information
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HANDLING MISSING VALUES IN ANALYSIS
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Many different approaches for handling missing data

▶ Exclude subjects with missing values (“Completers” analysis or
“complete case” analysis)

▶ Last Observation Carried Forward (LOCF)

▶ Baseline Observation Carried Forward (BOCF)

▶ Group means

▶ Inverse probability weighting (IPW)

▶ Multiple imputation (MI)

▶ Confounder adjustment

▶ Causal modeling for desired estimand
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Taxonomy for Missing Data
Little et al. (2012); Rubin (1976)

▶ Missing completely at random (MCAR)
- Missingness mechanism depends neither on the observed or

unobserved data

▶ Missing at random (MAR)
- Missingness mechanism depends on data that are observed, but

not data that are not observed

▶ Missing not at random (MNAR), or nonignorable missing

310 / 464



MISSING COMPLETELY AT RANDOM (MCAR)

▶ Missing data are independent of any covariates and independent
of the true outcome

▶ Fact that the data are missing provides no information about
outcome, nor could it be predicted from other measured variables

▶ Under MCAR, completers analysis will give unbiased estimate of
treatment effect

▶ Rare that we can be confident that missing data in clinical trials
are MCAR
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MISSING AT RANDOM (MAR)

▶ Missingness is associated with other variables we measure, but
once we account for those variables missingness is not
associated with the missing value

▶ Implication: we can predict the missing outcome in an unbiased
way from characteristics of subject, of other subjects, and on
observed outcomes of other subjects

- Two common approaches: multiple imputation (MI), inverse
probability weighting (IPW)
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MISSING NOT AT RANDOM (MNAR)

▶ Missingness depends on unobserved events/characteristics
▶ The MNAR setting of concern is when missingness is dependent

on the outcome (either directly or through unobserved prognostic
variables)
▶ When outcome has MNAR missingness, one cannot make

unbiased estimates of the outcome using other measured variables
▶ There can be MNAR missingness in covariates, but if missingness

is conditionally independent of outcome given observed data, then
wont bias treatment association of interest (Bartlett et al. (2014);
Daniel et al. (2012))

▶ Incorporation of subjects with missing data in the analysis
requires modeling the missing data mechanism

- Generally takes form of sensitivity analysis of results under
different scenarios or a “pattern mixture” modeling

313 / 464



IMPLICATIONS FOR ANALYSIS

▶ MCAR
- Inference for subjects with complete data will be same as for

subjects with missing data; can just exclude dropouts

▶ MAR
- Inference for subjects with missing data will be the same after

accounting for baseline characteristics and observed data for other
participants

▶ MNAR
- Inference requires additional assumptions about missingness

mechanism
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Simple Example

Clinical Trial outcomes

Arm 1: 155 135 120 175 160 144 190 185 210 180

Arm 2: 125 145 120 185 170 134 200 175 205 185

mean Arm 1: 165; mean Arm 2: 164

Observed Clinical Trials Outcomes

Arm 1: 175 160 144 185 210 180

Arm 2: 125 145 120 185 170 134 175 205 185

mean Arm 1: 176; mean Arm 2: 160
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EXCLUSIONS OF SUBJECTS

▶ Excluding subjects with missing values “completers analysis” is
simplest approach

- Requires assumption that excluded subjects are a random subset
of all randomized subjects: MCAR or a special case of MNAR

▶ Approach generally not recommended unless amount of missing
data is minimal (<5%)

- Assumptions too difficult to justify
- Complete case data does not take advantage of the partial data

available on excluded participants

▶ Unfortunately very common approach; often, no
acknowledgement of basic assumptions
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IMPUTATION

▶ Determine a value that is “best guess” of true value of missing
data point

▶ Several approaches proposed and/or in use

▶ Simplest approaches are generally statistically most problematic

▶ Any approach involving “made-up” data is problematic to some
degree
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SINGLE IMPUTATION APPROACHES

▶ Last Observation Carried Forward (LOCF)
- Use last measurement available in patients with missing data after

a certain point

▶ Baseline Observation Carried Forward (BOCF)
- Use the measurement at baseline as final data point

▶ Group means
- Assign average value of outcome variable among those in that

treatment group (or in total study population) with complete data

Historically popular, Statistically not recommended
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LAST OBSERVATION CARRIED FORWARD (LOCF)

▶ Used in trials with repeated measures but where primary
comparison is final value to baseline value

▶ Concept: whatever the last measurement was prior to dropout,
use that as the final value

▶ Commonly used in trials evaluating symptom relief for new
products
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EXAMPLE

▶ Trials of new antidepressants generally use the Hamilton
Depression (Ham-D) scale as the primary outcome

▶ Trials typically last 4-8 weeks; subjects are evaluated weekly

▶ Primary comparison is value at final week to baseline value

▶ If subject drops out after week 3 evaluation, week 3 score is used
to assess effect in that subject
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APPEAL OF LOCF

▶ It’s simple

▶ Allows all randomized subjects receiving at least one evaluation
to be included in final analysis: looks sort of like ITT

▶ Assumption is that dropout is related to lack of effect; scores
after dropout may improve if subject initiates active medication

▶ In certain settings, some (including regulators) have argued this
approach is conservative (unlikely to inflate Type 1 error) but. . . .
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PROBLEMS WITH LOCF

▶ The last observation before dropout is not a reliable estimate of
the effect of the treatment at the desired time point

▶ Variance underestimated: get same credit for full sample size as
if all data were available

▶ Will not always be conservative!

▶ Generally regarded as a suboptimal method
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WHY IS LOCF NOT ALWAYS CONSERVATIVE?

▶ If active treatment has side effects that cause subjects to
discontinue, efficacy data may look OK at time of treatment stop
but would be expected to worsen once subject is off treatment

▶ If tolerability is a major cause of treatment stop, LOCF analysis
could overstate treatment benefit

▶ Allowing use of entire sample size increases power for detecting
differences (that may not be real)
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BASELINE OBSERVATION CARRIED FORWARD

▶ Same idea as LOCF, but use baseline as final value

▶ Often used in pain studies; assumption is that subjects
abandoning treatment are getting no relief

▶ Idea again is to be conservative; assume no improvement from
baseline

▶ Big problem: people might have worsened on assigned
treatment, so could be anticonservative

▶ As with LOCF, get credit for more data than actually have

▶ Generally regarded as a suboptimal method
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GROUP MEANS

▶ Assumption: best estimate of effect for individual is the average
effect of that individual’s treatment group

▶ This is equivalent to simply excluding dropouts from analysis,
except worse—we give ourselves credit for a larger sample size
and so reduce variance

▶ Generally regarded as a suboptimal method

▶ Perhaps more conservative: use average effect of both groups
combined or average effect from the control group –but still not
accounting for added uncertainty from missing data
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MORE SOPHISTICATED: MODEL-BASED
Imputation APPROACH (MAR)

▶ Model-based imputation: Predict missing outcome on basis of
outcomes for other patients with similar characteristics

▶ These approaches will yield comparisons with little to no bias if
the data are “missing at random” and the models correct
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Multiple Imputation vs Single Imputation

▶ LOCF, BOCF, group means are all examples of single imputation
methods

- Choose an estimate for the missing data point, and insert that, so
that the subject can be included in the analysis

- This essentially gives you credit for an observation you don’t have;
results in an underestimate of variability, artificially increases
precision of estimate

▶ Multiple imputation (MI)
- A way to account for the extra variability that is inherent in

estimating the missing data point
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MI: Basic Idea

▶ Create a model to predict missing value on basis of covariates
and outcomes
▶ Develop this model on those with complete data

▶ Apply this model to obtain multiple versions of the “completed
data” – impute multiple estimates of possible data points for each
missing observation

▶ Data analysis proceeds by using each of these completed
datasets to get the target estimate, then aggregates results into
an overall results

▶ Variability among outcomes for subjects with missing data
incorporated into overall variability
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Simple Example: Regression based imputation
Molenberghs et al. (2014)

Suppose only a continuous outcome is missing

Step 1: Use complete cases to build model and predict outcome
Y based on covariates observed on everyone
▶ That prediction model will have regression coefficients (α) that

have uncertainty and residual unexplained variance (σ2)

Step 2: Draw α̂(m) and σ̂ (m) from “posterior” distributions
- Note, a “proper” imputation would take into account the uncertainty

of the model parameters and prediction error

Step 3: For each missing yi , draw ε
(m)
i N(0, σ̂ (m)) and impute

(predict) the missing outcome: y (m)
i = X t

i α̂(m)+ ε(m)

Step 4: Do outcome regression on completed data to obtain
parameter estimate β̂ (m) of interest

Step 5: Repeat Step 2-4 m times (10,25,50. . . )

Step 6 : Average β and get Rubin’s variance/df
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Rubin’s Rules

▶ Each imputation yields β̂ m and var(β̂ m)

▶ Pool the estimates across the M imputations:

β̂MI = Avg(β̂ m)

var(β̂MI) = Avg(var(β̂ m)))+var(β̂MI) (Rubin’s rules)

▶ Note the typical formula for Rubin’s rules was for a small number
of imputations (M≈5) and had an adjustment to the 2nd variance
term that isn’t needed for large M

▶ For reproducibility of results, today M≈25 or larger is much more
typical and better for reproducibility

▶ A few references for practical considerations are White et al.
(2011) and Von Hippel (2020)

330 / 464



More advanced multiple imputation techniques

▶ Multivariate Imputation by Chained Equations (MICE) is a
popular, flexible and powerful approach (mice package in R
(Van Buuren and Groothuis-Oudshoorn (2011)), proc MI in SAS)
- this involves specifying a set of equations for how each variable
can be predicted.
▶ Don’t assume the package defaults are okay for your problem
▶ Generally a Gibbs sampler type algorithm and needs a ”burn-in”
▶ There are pitfalls to be aware of with common algorithms: in that

you could specify conditional models that are not compatible with a
joint distribution, which can lead to inflated variance estimates.

▶ Imputation with survival endpoints needs special consideration

▶ Multiple Imputation of Covariates by Substantive Model
Compatible Fully Conditional Specification is one alternative in R
and Stata (smcfcs package) that addresses common pitfalls of
MICE (Bartlett et al., 2015)

▶ This is a deep topic that needs its own short course
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Adjustment Approach for Handling MAR in RCTs

▶ In the simple case of missing outcome only, adjustment of the
outcome model for covariates will address bias from missingness
under MAR and be fully efficient (Groenwold et al. (2012) )
▶ Some argue (Sullivan et al., 2018; Little et al., 2022) that non-MI

approaches should be considered more often under MAR (e.g.
mixed-effects modeling or adjustment method), with caveat MI still
offers chance to be more precise

▶ Common approach in longitudinal data (e.g. mixed models)

▶ MI approaches allow you to handle MAR and still do the original
statistical test (e.g. two group comparison).

▶ MI approaches directly satisfy ITT

▶ Groenwold et al. (2012) work suggested when MNAR MI could
address bias better than adjustment approach, but both biased

▶ Generally good to do multiple approaches as sensitivity analyses
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INVERSE PROBABILITY WEIGHTING

▶ If the probability of having an observed value (i.e., not missing) is
closely related to the values of other measured variables, this
method can be useful

▶ Weights observed values inversely by the probability of being
observed

▶ Can reduce bias if the assumption that the probability of being
observed is a function of other measured variables is reasonable

- In other words, if we are in a “missing at random” situation

▶ Easy to do in software, many standard estimators accept
weighted observations in R, Stata, and ...
▶ the R package survey has additional tools to handle “design

weights”
▶ the IPW package in R has tools for developing IPW weights

(van der Wal and Geskus (2011))
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Nitty Gritty: IPW

Step 1: Create a binary variable indicating completeness
outcome

- 1=complete case
- 0=non-complete case (missing at least one of: outcome or key

covariate)

Step 2: Model this completeness outcome (e.g. with logistic
regression

- Include characteristics thought to be related to missingness (need
to be observed on most people)

Step 3: Create IPW weights for each person= 1/predicted
probability from logistic model

Step 4: Perform a weighted regression using IPW

Step 5: Final analysis should consider variability in the weights:
either using a bootstrap or sandwich approach ((Carpenter and
Kenward, 2007))

334 / 464



You can examine the success

▶ Should evaluate the predictive accuracy of the IPW model.
- Could consider AUC for the ROC for phat to predict the binary

outcome complete (yes/no)
- AUC close to 0.50 means your model could not predict which data

were complete
- Poor AUC means wont have a good adjustment for missingness

▶ Analytical concern: sometimes large weights can create
instability

- Look at distribution of weights, check for extreme values
- Look for influential points in regression
- More sophisticated algorithms are available that stabilize weights

(van der Wal and Geskus (2011))
- Sometimes large weights will be trucated (e.g. at 10 or 50), but

difficult to choose cut off

▶ IPW approach can be more variable than MI
- Classic Bias/variance tradeoff
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Approaches for MAR:Take aways

▶ Validity of analytical approaches under MAR depend on
assumption that we can model the systematic mechanisms
driving the missing data

▶ Build models to predict missing outcome or to predict probability
of being observed

▶ IPW seen as more “robust” (relying on fewer assumptions) than
MI

▶ MI seen as more “efficient” (less variable) than IPW
▶ MI approach more common, more intuitive way to preserve ITT

and efficiency is attractive
▶ Very flexible MI algoirthms now in standard software (e.g. MICE)

▶ If equally confident about imputation and missingness models,
then choose MI for efficiency
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Sample R code: MICE

See Day 3 handout
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Sample R code IPW

See Day 3 handout
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What to do if data are MNAR?
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SENSITIVITY ANALYSES

▶ Analyze data under variety of different assumptions regarding
missing data—see how much the inference changes

▶ Sensitivity analyses could involve any of approaches already
described, and others

▶ When multiple sensitivity analyses are done without changing
conclusions, we can be more comfortable that missing data are
not obscuring important information about treatment effect
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SIMPLE SENSITIVITY ANALYSIS: Impute the most
extreme scenarios

▶ Provide bounds for the “true” results if all planned data points
had been observed

▶ Provides a sense of how far off any of the other analyses could
be

▶ Does not provide a single “answer” but aids in interpretation of
other “answers”

341 / 464



EXAMPLE

▶ Suppose outcome for each subject is “response” or
“nonresponse”

▶ In worst case analysis, assume each missing subject in
treatment group has “nonresponse” and each missing subject in
control group has “response”

▶ In best case analysis, reverse
▶ Less straightforward but still feasible when outcome is a

continuous rather than a binary variable
- In weight loss trial, there are biological limits to how much weight

could change in 6 months.
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More Complex Sensitivity Analyses

▶ “Pattern mixture” methods consider how patterns in the missing
data may be different than the observed patterns

▶ Can show how departures from the MAR assumption can
influence conclusions

▶ Tipping point analysis: e.g. conjecture differential outcome
models until results are reversed. Judge to what extent that
scenario would be possible/believable.

▶ Using different models and showing minimal impact on
conclusions will support primary findings
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Great reference:
Little RJ, Carpenter JR, Lee KJ. A comparison
of three popular methods for handling missing

data: complete-case analysis, inverse
probability weighting, and multiple imputation.

Sociological Methods & Research, 2022.
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MISCONCEPTIONS ABOUT HANDLING
MISSING DATA
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MISCONCEPTIONS ABOUT HANDLING OF
MISSING DATA

1. If a dropout rate of x% is expected, the sample size should be
adjusted upward by x% to compensate.
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MISCONCEPTIONS ABOUT HANDLING OF
MISSING DATA

1. If a dropout rate of x% is expected, the sample size should be
adjusted upward by x% to compensate.

Problem: This provides the desired number of data points for
precision, but the results may be biased

Example: Suppose dropouts are those who are not benefiting
from treatment. Then we are hiding treatment failures by
replacing such patients.

Not wrong to enlarge sample size; it just doesn’t make the
problem go away

Key consideration: to safeguard power, likely need to assume a
certain % on tx arm wont respond /has a worse outcome. . . reduces
power by bringing arms closer

347 / 464



MISCONCEPTIONS ABOUT HANDLING OF
MISSING DATA

2. If the amount of missing data is the same in each study arm,
everything is OK
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MISCONCEPTIONS ABOUT HANDLING OF
MISSING DATA

2. If the amount of missing data is the same in each study arm,
everything is OK

Problem: The reasons for data being missing may not be the
same for each arm. On one arm, drop outs may be those doing
well; on the other, those doing poorly
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MISCONCEPTIONS ABOUT HANDLING OF
MISSING DATA

3. If the baseline characteristics of subjects with missing data are
similar to those of subjects with complete data, it is probably safe to
limit analysis to “completers”
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MISCONCEPTIONS ABOUT HANDLING OF
MISSING DATA

3. If the baseline characteristics of subjects with missing data are
similar to those of subjects with complete data, it is probably safe to
limit analysis to “completers”

Problem: Many aspects of prognosis are not understood and
therefore not measured. The balance on unknown prognostic
factors provided by randomization is no longer assured when
randomized subjects are excluded.
Note: this is the big concern about methods assuming MAR.
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Final note on Reporting

▶ CONSORT Guidelines for Clinical Trial Reporting (Altman et al.,
2001) have detailed recommendations on how to report missing
data

▶ Must account for all randomized subjects/all individuals in
original cohort

▶ Describe pre-specified approach to handling missing data in
analysis

▶ Address extent to which results may be biased due to missing
data

▶ Report results of sensitivity analyses

352 / 464



SUMMARY

▶ The less missing data, and the lower the rate of noncompliance,
the less concern about

- bias
- unreliable conclusions
- inappropriate methods of analysis

▶ Methods to replace/account for missing data are all problematic
in important ways – but put your best foot forward! (In analysis,
try to address bias, incorporate uncertainty)

▶ Sensitivity analyses are essential to evaluating reliability of
conclusions
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KEY REFERENCES

▶ Little et al. (2022)
▶ Missing data in randomised controlled trials— a practical guide

by John Carpenter (https://researchonline.lshtm.ac.uk/
id/eprint/4018500/1/rm04_jh17_mk.pdf)

▶ National Research Council report: “The Prevention and
Treatment of Missing Data in Clinical Trials” (National Academy
Press, 2010)

- Detailed discussion of different methods with examples
▶ Little RJ, D’Agostino R, Cohen ML, Dickersin K, Emerson SS,

Farrar JT, Frangakis C, Hogan JW, Molenberghs G, Murphy SA,
Neaton JD. The prevention and treatment of missing data in
clinical trials. NEJM 2012;367(14):1355-60.

- Overview discussion of different methods for handling missing
data, with examples

▶ Schulz KF, Altman DG, Moher D. CONSORT 2010 statement:
updated guidelines for reporting parallel group randomised trials.
Trials. 2010 Dec;11(1):1-8.
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Lecture 7: Multiple Comparisons
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Outline

▶ Introduction
▶ Strong/Weak Control of FWER
▶ Methods for Strong Control of FWER

▶ Bonferroni
▶ Holm’s Sequentially Rejective Bonferroni
▶ Graphical Alpha Transfer
▶ The Closure Principle

▶ Multiple Arms
▶ Dunnett and Variants

▶ Multiple Subgroups
▶ Forest Plots
▶ Permutation Methods

▶ Multiple Endpoints
▶ Hochberg

▶ False Discover Rate (FDR)
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Introduction
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Introduction

▶ See Hochberg and Tamhane (2009) for thorough treatment and
Proschan and Brittain (2020) for a tutorial on multiple
comparisons.

▶ Multiple comparisons arise in many ways in clinical trials: Arms,
endpoints, subgroups, analyses, covariates, time points
(monitoring).

▶ Problem: With enough comparisons, some will be significant
even if nothing is going on.

“If you torture the data long enough, it will confess to any-
thing.”

Ronald H. Coase, British economist.

▶ Sometimes the size of the multiplicity problem is not clear.
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Introduction: Magnitude of Problem

▶ In 2003, VaxGen announced their AIDSVAX HIV vaccine may be
effective in Blacks and Asian-Americans.
▶ 5,108 men who have sex with men (MSM) and 309 high risk

women in North America and the Netherlands.
▶ Overall, only a 3.8% reduction in HIV incidence in vaccine arm

compared to placebo (p=0.76).
▶ Blacks: 4/203 vaccine versus 9/111 placebo participants got HIV.
▶ Asians: 2/53 vaccine versus 2/20 placebo participants got HIV.

“If we announced to the world that we were abandoning the project
because the study failed in whites, we’d be crucified.”

VaxGen CEO Lance Gordon.

▶ Very controversial.

▶ How many subgroups did they examine?
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Introduction: Magnitude of Problem

▶ ISIS-2 trial evaluated effect of aspirin on mortality in heart
patients (ISIS-2 (1988)).

▶ Journal asked for subgroup results, but authors thought it would
mislead. Journal insisted, so authors included signs of zodiac to
prove a point:

“. . . for patients born under Gemini or Libra there was a
slightly adverse effect of aspirin on mortality (9% SD 13 in-
crease; NS), while for patients born under all other astrolog-
ical signs there was a strikingly beneficial effect (28% SD 5
reduction; 2p<0.00001).”

▶ They combined 2 astrological signs and compared to others; if
that had not worked, they probably would have combined 3
signs. Number of potential comparisons huge!
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Strong/Weak Control of FWER
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Strong/Weak Control of FWER

▶ Consider testing hypotheses H1, . . . ,Hk .

▶ Global null hypothesis is ∩iHi , meaning set of parameter
vectors such that all null hypothesis are true. E.g., for comparing
all pairs among 3 means, global null is {(µ1,µ2,µ3) : µ1 =

µ2,µ1 = µ3,µ2 = µ3}= {(µ1,µ2,µ3) : µ1 = µ2 = µ3}.

▶ Familywise error rate (FWER) is
P(at least 1 false rejection of a null hypothesis).

▶ Can calculate FWER under global null or under other nulls.

▶ Weak control of FWER means FWER is controlled if global null is
true.

▶ Strong control of FWER means FWER is controlled no matter
which nulls are true.

Strong control ⇒ weak control.
362 / 464



Strong/Weak Control of FWER: Fisher’s LSD

▶ Example: Comparing all pairs of means of arms 1,2,3,4.

▶ Fisher’s least significant difference (LSD) procedure: If F-test
comparing all arms is significant at level α, compare each pair
with level α t-test.

▶ For 4 (or more) arms, Fisher’s LSD controls FWER weakly,
but not strongly.

▶ Weak control: To declare any differences, F must be significant,
and P(F significant |global null) = α.

▶ Therefore, Fisher’s LSD controls FWER weakly.
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Strong/Weak Control of FWER: Fisher’s LSD

µ1

µ2

µ3

µ4

L U

Figure: Configuration of 4 population means that inflates the FWER for Fisher’s LSD:
µ1 = µ2 = µ3 = L and µ4 = U, where U −L is huge.

▶ Lack of strong control of Fisher’s LSD with 4 arms: Suppose
µ1 = µ2 = µ3 = L, µ4 = U, where U −L is huge.
▶ F is almost guaranteed significant.
▶ In above scenario, Fisher’s LSD almost same as doing unadjusted

t-tests, which inflates FWER among µ1,µ2,µ3.
▶ So Fisher’s LSD does not strongly control FWER for ≥ 4 arms.
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Strong/Weak Control of FWER: Fisher’s LSD

▶ Sometimes easy to show a procedure strongly controls FWER by
enumerating all possibilities.

▶ Can use enumeration method to show Fisher’s LSD with 3
arms does strongly control FWER.

▶ Why? Consider all possible configurations of parameters.
▶ If global null is true, P(F significant)≤ α, so FWER protected.
▶ If global null is false, then at most one pairwise null is true and its

t-test protects type 1 error rate if that pairwise null is true.

▶ Argument shows FWER protected under all configurations of
parameters, so Fisher’s LSD strongly controls FWER when k = 3
arms.
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Methods for Strong Control of FWER
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Strong Control Methods: Bonferroni

▶ Bonferroni method always strongly controls FWER.

▶ Bonferroni method requires Pi ≤ α/k to reject Hi , where Pi is
p-value for i th comparison and k =number comparisons.

▶ Why does Bonferroni strongly control FWER?
▶ Suppose t is number of true nulls, & without loss of generality,

assume they are the first t .
▶ By Bonferroni inequality,

P(∪t
i=1reject Hi) ≤

t

∑
i=1

P(reject Hi)

≤ t(α/k)≤ k(α/k)

= α. (30)
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Strong Control Methods: Bonferroni

▶ Bonferroni too conservative if statistics highly correlated.

▶ For example, if statistics had correlation 1, then could use level α

for each.

▶ If statistics are independent, Bonferroni is only slightly
conservative:

α −α
2/2 ≤ FWER ≤ α. (proof in Appendix 1) (31)

▶ If α = 0.05, then 0.04875 ≤ FWER ≤ 0.05 for independent
comparisons.
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Strong Control Methods: Holm’s Sequentially
Rejective Bonferroni

▶ Holm’s sequentially rejective Bonferroni method (Holm
(1979)):
▶ Order p-values P(1) < P(2) < .. . < P(k).
▶ Compare P(1) to α/k .

▶ If P(1) > α/k , stop and declare nothing significant.
▶ if P(1) ≤ α/k , reject null associated with P(1) and proceed to next step.

▶ Compare P(2) to α/(k −1).
▶ If P(2) > α/(k −1), stop and declare nothing else significant.
▶ If P(2) ≤ α/(k −1), reject null associated with P(2) and proceed to

next step.
▶ Compare P(3) to α/(k −2).

▶ If P(3) > α/(k −2), stop and declare nothing else significant.
▶ If P(3) ≤ α/(k −2), reject null associated with P(3) and proceed to

next step.
...
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Strong Control Methods: Holm’s Sequentially
Rejective Bonferroni

Death Mech vent/death WHO 8-pt ord score
0.042 0.020 0.013

▶ Suppose p-values for 3 endpoints in COVID-19 trial are as
shown in above table.

▶ For Holm:

▶ p(1) = 0.013 ≤ 0.05/3, so WHO 8-point scale is significant.

▶ p(2) = 0.020 ≤ 0.05/2, so mechanical ventilation/death is
significant.

▶ p(3) = 0.042 ≤ 0.05/1, so mortality is significant.

▶ For ordinary Bonferroni, only WHO 8-point scale is significant.
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Strong Control Methods: Holm’s Sequentially
Rejective Bonferroni

Death Mech vent/death WHO 8-pt ord score
0.042 0.020 0.013

▶ Equivalent formulation: Adjust p-values and compare to 0.05.

▶ In R, first store p-values in a variable:

pvals<-c(0.042,0.020,0.013)

▶ Now use function p.adjust. E.g., for Holm:

p.adjust(pvals, method="holm")

Adjusted p-values (0.042,0.040,0.039) ≤ 0.05; all significant.

▶ For ordinary Bonferroni:

p.adjust(pvals, method="bonferroni")

Gives 0.126, 0.060, 0.039; Only 0.039 is ≤ 0.05, so only WHO
8=point ordinal score is significant by ordinary Bonferroni.
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Strong Control Methods: Holm’s Sequentially
Rejective Bonferroni

▶ Holm strongly controls FWER and is more powerful than
Bonferroni.

▶ Informal rationale for Holm: Once we reject null associated with
P(1), we have either made a type 1 error or not.
▶ If so, it doesn’t matter what happens next because we already

made ≥ 1 type 1 error.
▶ If not, then null associated with P(1) was false, so there were at

most k −1 true nulls. Can use Bonferroni with α/(k −1).

▶ Once we reject null associated with P(2) we have either made
≥ 1 type 1 error or not.
▶ If so, it doesn’t matter what happens next because we already

made ≥ 1 type 1 error.
▶ If not, then nulls associated with P(1) and P(2) were false, so there

were at most k −2 true nulls. Can use Bonferroni with α/(k −2).
...
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▶ If not, then null associated with P(1) was false, so there were at

most k −1 true nulls. Can use Bonferroni with α/(k −1).

▶ Once we reject null associated with P(2) we have either made
≥ 1 type 1 error or not.
▶ If so, it doesn’t matter what happens next because we already

made ≥ 1 type 1 error.
▶ If not, then nulls associated with P(1) and P(2) were false, so there

were at most k −2 true nulls. Can use Bonferroni with α/(k −2).
...
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Strong Control Methods: Graphical Alpha Transfer

▶ Same reasoning to tranfer alpha from significant comparisons to
other comparisons (Bretz et al. (2011)).
▶ Pre-specify initial alpha levels α1, . . . ,αk with ∑i αi ≤ α.
▶ Pre-specify plan for transferring alpha from significant comparisons

to other comparisons.

▶ Example: 3 endpoints: (1) Cardiovascular disease (CVD), (2)
Coronary heart disease (CHD), (3) stroke.
▶ CVD primary, so initial allocation of alpha: (α,0,0) to (CVD, CHD,

stroke).
▶ If CVD is significant, transfer all of its alpha to secondary endpoint

CHD.
▶ If reach CHD & it is significant, transfer all of its alpha to secondary

endpoint stroke.
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Strong Control Methods: Graphical Alpha Transfer

▶ Called a gatekeeping procedure. Must pass through each gate
to test subsequent hypothesis.

▶ Great if you are confident of passing through gates. E.g.,
comparing doses of drug to placebo.
▶ Compare high dose to placebo at level α. Stop if not significant.
▶ If significant, compare middle dose to placebo at same level α.

Stop if not significant.
▶ If significant, compare low dose to placebo at same level α.

▶ Downside: Must stop testing if fail to pass through gate.

▶ Another option in 3-endpoint example: If CVD significant, transfer
half of alpha to each of CHD & stroke.

▶ If reach CHD/stroke & one is significant, transfer all of its alpha to
other one.
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Strong Control Methods: Graphical Alpha Transfer

Cardiovascular Disease
𝛼

Coronary Heart Disease
0

Stroke
0

1/2 1/2

1

1

Cardiovascular
Disease
𝛼

Coronary Heart
Disease

0

Stroke            
0

1 1

Figure: Two alpha transfer options for primary endpoint (cardiovascular disease) and
two secondary endpoints (coronary heart disease, stroke).
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Strong Control Methods: Graphical Alpha Transfer

▶ Can represent with graph: Initial alpha allocation inside nodes,
proportion of alpha transferred shown on arrows.

▶ Top option: Gatekeeping procedure.

▶ Bottom option with α = 0.05: If CVD not significant at α = 0.05,
stop. If CVD significant at α = 0.05, test both secondary
endpoints at α = 0.05/2 = 0.025.

▶ If either secondary is significant at 0.025, transfer all of 0.025 to
other secondary.

▶ I.e., if primary and one secondary significant, last endpoint is
tested at 0.025+0.025 = 0.05.
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Strong Control Methods: Graphical Alpha Transfer

▶ Bretz et al. (2011) show that graphical alpha transfer method
strongly controls FWER.

▶ Same reason that Holm method strongly controls FWER:

▶ Key Principle: Once you reject a null hypothesis, you either
erred or you didn’t.
▶ If you erred, it doesn’t matter what happens next because

you’ve already made at least 1 type 1 error.
▶ If you didn’t err, then that null hypothesis was false and you

never needed to spend any alpha on it. Therefore, you can
transfer its alpha! (but only if you follow pre-specified method
for transferring).
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Strong Control Methods: Graphical Alpha Transfer

▶ Another advantage of graphical transfer method: Graph
succinctly summarizes what would take pages of text to explain,
and the text would be harder to understand!

▶ Order of testing doesn’t matter provided you continue until no
longer able to transfer any alpha, but some orders are more
efficient than others.

▶ Bretz et al. (2011) give efficient way to carry out procedure.
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Strong Control Methods: The Closure Principle

▶ Marcus et al. (1976).

▶ Testing finite family F of all intersections of {H0i , i = 1, . . . ,n}.

▶ Suppose that for each subset P ⊂ {1, . . . ,n}, there is an α level
test of HP = ∩i∈PHi .

▶ Closure principle: Reject HP if and only if the test of HR is
significant at α = 0.05 for each HR that implies HP (i.e., for each
R such that R ⊃ P).

Theorem
(Marcus et al. (1976)) Following the closure principle strongly
controls the FWER among the family F .
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Strong Control Methods: The Closure Principle

▶ Very powerful tool for proofs (used to prove strong FWER control
for Holm, gatekeeping, etc.), but sometimes misunderstood.

▶ E.g., suppose compare 4 means, Hij : µi = µj .

▶ Newman-Keuls procedure: for comparing pairs of means,
Hij : µi = µj . Reject H12 if and only if T12, F123, F124, and F1234

are all significant at level α, where T and F denote t and F
statistics. Similarly for other pairwise comparisons.

▶ Does Newman-Keuls follow closure principle?

▶ No! Closure principle also requires an α level test of H12 ∩H34.

▶ In fact, Newman-Keuls does not strongly control FWER for k = 4.
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Strong Control Methods: The Closure Principle

µ1

µ2

µ3

µ4

L U

Figure: Configuration of 4 population means that inflates the FWER for
Newman-Keuls: µ1 = µ2 = L and µ3 = µ4 = U, where U −L is huge.

▶ F123, F124, F134, F234, and F1234 nearly guaranteed to be
statistically significant, so FWER of Newman Keuls ≈ FWER of
rejecting if either T12 or T34 is significant at level α.

FWER ≈ P (T12 signif. or T34 signif.)
= 1−P(neither signif.) = 1− (1−0.05)2

= 0.0975. (32)

▶ Doesn’t violate closure principle: To truly follow closure, must
have α-level test of H12 ∩H34. Newman-Keuls doesn’t do this.
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Multiple Arms
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Multiple Arms: Dunnett and Variants

▶ Consider 1-sided problem of comparing k arms to same control
(platform trial) on continuous endpoint Y .

▶ Hi : µi = µ0, µ0 and µi are means in control and arm i .

▶ Global null is H = ∩Hi : µ0 = µ1 = . . .= µk .

▶ Poor option: Bonferroni.
▶ Reject hypothesis associated with p(i) if p(i) ≤ α/k .

▶ Better option: Holm sequentially rejective Bonferroni using
p-value thresholds of α/k ,α/(k −1), . . . ,α/1 for p(1), . . . ,p(k).

▶ Better still: Dunnett procedure Dunnett (1955): Find actual joint
distribution of test statistics using clever trick.
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Multiple Arms: Dunnett and Variants

▶ Assume Y normally distributed with same variance σ2 in
different arms, and assume n large enough to treat σ2 as known.

▶ Zi =
Ȳi−Ȳ0√

2σ2/n
, i = 1, . . . ,k .

▶ Zi are dependent only because of shared control. Can condition
on control sample mean to remove dependence, then
uncondition at end.

▶ See Appendix 2 at end of this lecture for details of derivation of
Dunnett critical value.
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Multiple Arms: Dunnett and Variants

Table: Dunnett critical values ck for 1-sided test at α = 0.025 for large n.

k Z-score boundary
1 1.960
2 2.212
3 2.349
4 2.442
5 2.511
6 2.567

▶ Substitute pooled variance σ̂2 for σ2 in Zi .
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Multiple Arms: Dunnett and Variants

▶ Even better option: Use sequential Dunnett based on
closure principle. Let Z(1) < Z(2) < .. . < Z(k) be order
statistics:
▶ Compare Z(k) to ck .

▶ If Z(k) < ck , stop.
▶ If Z(k) ≥ ck , reject hypothesis associated with Z(k) and proceed to

next step.

▶ Compare Z(k−1) to ck−1.
▶ If Z(k−1) < ck−1, stop.
▶ If Z(k−1) ≥ ck−1, reject hypothesis associated with Z(k−1) and proceed

to next step.

▶ Compare Z(k−2) to ck−2.
▶ If Z(k−2) < ck−2, stop.
▶ If Z(k−2) ≥ ck−2, proceed to next step.

...
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Multiple Arms: Dunnett and Variants

Table: Dunnett critical values ck for 1-sided test at α = 0.025 for large n.

k Z-score boundary
1 1.960
2 2.212
3 2.349
4 2.442
5 2.511
6 2.567

▶ Example of sequential Dunnett comparing 3 arms to control:
Start by comparing maxi=1,2,3 Zi to 2.349.

▶ Suppose max is Z2 and Z2 ≥ 2.349. Declare Arm 2 better than
control and compare maxi=1,3 Zi to 2.212.

▶ Suppose maxi=1,3 Zi is Z1 and Z1 ≥ 2.212. Declare Arm 1 better
than control and compare Z3 to 1.96.

▶ Declare Arm 3 better than control if Z3 ≥ 1.96.
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Multiple Subgroups
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Multiple Subgroups

▶ Subgroups difficult to deal with because of their sheer number:
▶ Demographics: race, sex, age, etc.
▶ Prognostic characteristics: prior heart attack or family history in

heart disease trial, risky behaviors in HIV vaccine trial, etc.

▶ Two opposing problems: (1) Multiplicity leads to false positives
and (2) Low power to detect interactions, exacerbated by
adjusting for multiple comparisons!

▶ Typical approaches either don’t control, or weakly control, FWER.

▶ E.g., for each factor, first test (factor)×(treatment) interaction.
Only if interaction is significant, test treatment effect separately
within subgroups. Doesn’t control FWER, even weakly.

▶ Accompanying plot: Forest plot .
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Multiple Subgroups: Forest Plots

NEJM 2020; 
383:1813-26

Figure: Forest plot from the ACTT-1 clinical trial of Remdesivir for treatment of
hospitalized COVID-19.

390 / 464



Multiple Subgroups: Forest Plots

▶ Forest plots often show good agreement of treatment effect
across subgroups, but there is no FWER control.

▶ Could control FWER using Bonferroni on number of subgroup
comparisons.

▶ Problem: Too conservative because subgroups based on
prognostic factors can have big overlap.
▶ E.g., in HIV, big overlap of patients in worst viral load and worst

CD4 count subgroups.

▶ How do we control FWER weakly, accounting for overlap?

▶ There are bootstrap (Rosenkranz (2014)) and permutation (Dane
et al. (2019); Lipkovich et al. (2011)) methods. We focus on one
permutation method.
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Multiple Subgroups: SEAMOS

▶ Standardized Effects Adjusted for Multiple Subgroups
(SEAMOS) (Dane et al. (2019)).
▶ Compute standardized difference between effect δ̂ij in category j of

factor i and overall effect δ̂ that ignores subgroups, then take max:

Zij =
δ̂ij − δ̂

se(δ̂ij )
, M =max

ij
(Zij ). (33)

▶ Fix outcome & treatment vectors, randomly interchange covariate
vectors across people, compute M for covariate-interchanged data.

▶ Repeat many times to get null reference distribution of M. Declare
effect in a subgroup better than average if original (unpermuted) M
exceeds 97.5th percentile of permutation distribution.

▶ SEAMOS preserves overall treatment effect and dependence of
covariates.
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Multiple Subgroups: SEAMOS

Patient Treatment 
Assignment

Outcome 
(28-day 

mortality)

Ordinal 
Score

Other Covariates

1 T 0 4 𝐱𝟏

2 P 1 6 𝒙𝟐

3 P 0 5 𝐱𝟑

4 T 0 5 𝒙𝟒

5 T 0 4 𝒙𝟓

6 P 1 7 𝒙𝟔

⋮ ⋮ ⋮ ⋮

Fix

SEAMOS Method

Figure: SEAMOS method illustrated for mortality comparison in ACCT-1 trial: Fix
outcomes and treatment indicators, randomly permute patient covariate vectors,
compare original M =maxij (Zij ) from Equation (33) to its permutation distribution.
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Multiple Subgroups: SEAMOS

SEAMOS applied to Adaptive COVID-19 Treatment Trial (ACTT 1)

Table: Mortality results from ACTT-1.

Subgroup Remdesivir Placebo HR (95% CI)
OS-4 ( no ox.) 3/75 3/63 0.82 (0.17, 4.07)
OS-5 (suppl. ox.) 9/232 25/203 0.30 (0.14, 0.64)
OS-6 (non-inv. vent. 19/95 20/98 1.02 (0.54, 1.91)
OS-7 (inv. mech. vent.) 28/131 29/154 1.13 (0.67, 1.89)
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Multiple Subgroups: SEAMOS

Figure: Forest plot of hazard ratios for mortality in ACTT-1 by baseline ordinal score..
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Multiple Subgroups: SEAMOS

SEAMOS applied to Adaptive COVID-19 Treatment Trial (ACTT 1)

Table: Mortality results from ACTT-1.

Subgroup Remdesivir Placebo HR (95% CI)
OS-4 ( no ox.) 3/75 3/63 0.82 (0.17, 4.07)
OS-5 (suppl. ox.) 9/232 25/203 0.30 (0.14, 0.64)
OS-6 (non-inv. vent. 19/95 20/98 1.02 (0.54, 1.91)
OS-7 (inv. mech. vent.) 28/131 29/154 1.13 (0.67, 1.89)

Adjusted p-value comparing OS-5 to overall effect using SEAMOS:
0.005: Effect in OS-5 is different from overall effect
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Multiple Endpoints
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Multiple Endpoints: Hochberg*

▶ Hochberg (1988) is used to test whether effect in any subgroup.

▶ Holm’s procedure started with most significant (smallest p-value)
result and proceded to less significant results.

▶ Can also go in reverse direction.
▶ Start with largest p-value, p(k) and compare to α.

▶ If p(k) ≤ α, reject ALL hypotheses and stop.
▶ If p(k) > α, do not reject hypothesis associated with p(k), but move

to next step.

▶ Compare p(k−1) to α/2.
▶ If p(k−1) ≤ α/2, reject hypotheses associated with p(k−1), . . . ,p(1).
▶ If p(k−1) > α/2, do not reject hypothesis associated with p(k−1), but

move to next step.

▶ Compare p(k−2) to α/3 . . .

*Not guaranteed to strongly control FWER without further conditions
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Multiple Endpoints: Hochberg*

▶ Called Hochberg procedure.

▶ P-value thresholds for Holm and Hochberg are same, but
Holm starts with most significant, while Hochberg starts
with least significant.

p(1) ≤ α

k p(2) ≤ α

k−1 p(k−1) ≤ α

2 p(k) ≤ α

Holm Hochberg

. . . . . .

Figure: Holm and Hochberg procedures.

*Not guaranteed to strongly control FWER without further conditions
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Multiple Endpoints: Hochberg*

▶ Hochberg always more powerful than Holm, which is more
powerful than Bonferroni.

▶ Problem: Hochberg does not always strongly control FWER.

▶ However, Hochberg DOES strongly control FWER when test
statistics independent or have certain types of positive
dependence.

*Not guaranteed to strongly control FWER without further conditions
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Multiple Endpoints: Hochberg*

▶ Hochberg is attractive for multiple positively correlated
endpoints.

▶ Example: COVID-19 trial with primary endpoints 1. mechanical
ventilation or death, 2. death.

▶ Declare benefit on at least one endpoint if
▶ smaller p-value ≤ 0.025 for Bonferroni/Holm procedure,
▶ smaller p-value ≤ 0.025 or both p-values ≤ 0.05 for Hochberg

procedure.

▶ If the two endpoints are positively correlated, then Hochberg
procedure strongly controls FWER.

*Not guaranteed to strongly control FWER without further conditions
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False Discovery Rate (FDR)
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False Discovery Rate (FDR)

▶ Another error rate is false discovery rate.

Table:

Declared not Declared significant
significant

H0 True T V m0

H0 Untrue U W m−m0

m−X X m

▶ Q = V/X , proportion of nulls that are true among rejections
(defined as 0 if X = 0).

▶ FDR= E(Q), expected proportion of nulls that are true among
rejections.

▶ FDR≤FWER (FDR less stringent). See Appendix 3
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False Discovery Rate (FDR)

▶ Can have FDR≤ α and FWER> α but not vice-versa.

▶ FDR control is reasonable when # comparisons very large.

▶ Benjamini-Hochberg procedure (Benjamini and Hochberg
(1995)).

▶ Reject hypotheses associated with p(1), . . . ,p(j) at level q∗ if
p(j) ≤ (j/k)q∗.

▶ If test statistics are independent, Benjamini-Hochberg controls
FDR at level q∗.
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False Discovery Rate (FDR)
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False Discovery Rate (FDR)

▶ Note that under global null, if test statistics independent and
have continuous distribution function, E(P(j)) = E(U(j))

= j/(k +1), where Ui are iid uniforms,

▶ In that case, Benjamini-Hochberg rejects hypotheses associated
with p(1), . . . ,p(j) at level q∗ if

p(j)

E(P(j))
≤
(

k +1
k

)
q∗ ≈ q∗ if k large.

▶ In terms of stringency,

Benjamin-Hochberg ≤ Hochberg ≤ Holm ≤ Bonferroni.

▶ FDR usually reserved for large # comparisons (e.g., gene
association studies).
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Summary

▶ Multiple comparisons in clinical trials caused by multiple arms,
endpoints, analyses, subgroups, time points (monitoring), etc.

▶ P(at least one type 1 error)=FWER. Can control it:
▶ Weakly: Under global null.
▶ Strongly: Regardless of which nulls are true.

▶ Bretz et al. (2011) graphical method of transferring alpha from
rejected hypotheses to other hypotheses is very powerful.
Several techniques are special cases, including
▶ Gatekeeping procedures.
▶ Sequentially rejective Bonferroni.

▶ Closure principle also useful for proving strong control of FWER.

▶ With huge number of comparisons, may want to control FDR
(less conservative) instead of FWER.
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Appendix 1: Bonferroni with Independent Test
Statistics

Use Bonferroni’s other inequality (p. 100 of Feller (1957)):

FWER = P(∪k
i=1reject Hi)

≥
k

∑
i=1

P(reject Hi)− ∑∑
1≤i<j≤k

P(reject Hi ∩ reject Hj)

= k(α/k)−
(

k
2

)
(α/k)2

≥ α −α
2/2. Thus,

α −α
2/2 ≤ FWER ≤ α. (34)
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Appendix 2: Deriving Distribution of Dunnett

▶ Assume Y normally distributed with same variance σ2 in
different arms, and for simplicity, assume n large enough to treat
σ2 as known.

▶ Zi =
Ȳi−Ȳ0√

2σ2/n
, i = 1, . . . ,k .

▶ To compute FWER, assume without loss of generality that
Yi ∼ N(0,1), i = 1, . . . ,k .

▶ Zi are dependent only because of shared control. Condition on
control sample mean to remove dependence.
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Appendix 2: Deriving Distribution of Dunnett

Given Ȳ0 = y0,

Z1 =
Ȳ1 −y0√

2/n
, Z2 =

Ȳ2 −y0√
2/n

, . . . , Zk =
Ȳk −y0√

2/n
are iid.

Let M =max(Z1, . . . ,Zk ). Then

P(M ≤ ck | Ȳ0 = y0) = P
{
max

(√
nȲ1, . . . ,

√
nȲk

)
≤
√

2ck +
√

ny0

}
=

{
Φ
(√

2ck +
√

ny0

)}k
.
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Appendix 2: Deriving Distribution of Dunnett

▶ Now integrate over density, fn(y0), of Ȳ0, which is normal with
mean 0 and variance 1/n.

P(M ≤ ck ) =
∫

∞

−∞

{
Φ
(√

2ck +
√

ny0

)}k
fn(y0)dy0. (35)

▶ Make substitution z0 =
√

ny0. Because Z0 =
√

nȲ0 ∼ N(0,1), get

P(M ≤ ck ) =
∫

∞

−∞

{
Φ
(√

2ck +z0

)}k
φ(z0)dz0,

where φ(z0) is standard normal density.

▶ Equate to 1−α and solve for ck .
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Appendix 3: Proof that if FWER ≤ α, then FDR≤ α

Table:

Declared not Declared significant
significant

H0 True T V m0

H0 Untrue U W m−m0

m−X X m

▶ Claim: I(V ≥ 1)≥ Q = V/X because:
▶ If V = 0, then I(V ≥ 1) = 0 and Q = V/X = 0 (even if X = 0).
▶ If V ≥ 1, then I(V ≥ 1) = 1 and Q = V/X ≤ 1.

▶ Because I(V ≥ 1)≥ Q, FWER=E{I(V ≥ 1)} ≥ E(Q) = FDR.
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Lecture 8: Adaptive Procedures
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Outline

▶ Introduction
▶ Blinded Sample Size Methods

▶ Binary Outcomes
▶ Continuous Outcomes

▶ Unblinded Sample Size Methods

▶ Unplanned Changes
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Introduction

▶ WARNING: This is a brief overview of a vast topic! Only the main
ideas are provided. See chapter 11 of Proschan (2022).

▶ Assume 1-sided, level α testing rejecting H0 for large Z .

▶ Clinical trial planning requires information such as:
▶ The control event rate (for binary outcome) or variance (for

continuous outcome).
▶ The treatment effect.
▶ Whether data will be skewed, etc.

▶ This information is lacking in new disease.

▶ What do we do?

▶ Adaptive methods: Pre-specified procedures to use within-trial
data to change design.
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Introduction

▶ Examples:
▶ Sample size re-estimation based on lumped event rate (binary

outcome trial) or lumped variance (continuous endpoint trial).
▶ Examine lumped data to detect outliers. If none, use t-test; if

outliers, use Wilcoxon rank sum test.
▶ Sample size re-estimation based on treatment effect.
▶ Change of primary endpoint after examining treatment effect.

▶ First two are very different from last two: They don’t require
unblinding.

▶ Unblinding is undesirable because could lead to:
▶ Background treatment bias, selection bias, etc.
▶ Problems with regulators.
▶ Inflation of type 1 error rate if not careful.
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Blinded Sample Size Methods
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Blinded Sample Size Methods

▶ We begin with binary outcomes and safest adaptations–blinded
ones (Gould (1992)).

▶ In trials with binary endpoint like 28-day mortality, we often
over-estimate event rate. Why?

▶ Event rate estimates may be based on observational data.
People volunteering for clinical trials:
▶ May be more health-conscious.
▶ May get better care in clinical trial.
▶ Must satisfy entry criteria that could exclude sickest patients.
▶ May undergo run-in to weed out non-adherers.

▶ If power is based on a given relative effect (e.g., 25%
reduction in 28-day mortality), overestimating event rate
means underpowering trial.
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Blinded Sample Size Methods: Binary Outcomes

▶ Want specified power to detect fixed relative risk R < 1. E.g., for
25% reduction, R = 0.75.

▶ Procedure:
▶ Calculate initial sample size n0/arm based on fixed relative

risk R < 1 and pre-trial estimate of control probability pC .
▶ At planned halfway point, n1 = n0/2 per arm (or another

fraction), calculate overall event rate (blinded)
p̂1 = (# with event)/(# evaluated).

▶ Equate

(pT +pC)/2 = p̂1

pT /pC = R, (36)

and solve for pT and pC .

pC =
2p̂1

R +1
, pT =

2Rp̂1

R +1
. (37)
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Blinded Sample Size Methods: Binary Outcomes

▶ Review of Notation:

▶ n0: Initial (pre-trial) guess of per-arm sample size at end (fixed).

▶ n1: Per-arm sample size at interim analysis (stage 1 sample size),
n1 = n0/2 (fixed).

▶ n2: Per-arm sample size in 2nd stage (random).

▶ n = n1 +n2: Actual per-arm sample size at end (random).

▶ pT and pC : True treatment and control probabilities (fixed),

▶ p̂1 = (p̂C1 + p̂C2)/2: Lumped empirical event probability in stage 1
(random).

▶ R: Assumed relative risk (fixed).
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Blinded Sample Size Methods: Binary Outcomes

▶ Example: COVID-19 trial of hospitalized patients, usual
care+new drug versus usual care+placebo.

▶ Primary endpoint: Mechanical ventilation/death by day 60.

▶ Initial estimate of control probability: pC = 0.20.

▶ Want 85% power to detect 25% reduction (R = 1−0.25 = 0.75 )
using 2-tailed test at α = 0.05.

▶ Initial sample size: n0 = 1,036/arm.

▶ After n1 = 500/arm, 150 have events (combined across arms), so
proportion with events is p̂1 = 150/1,000 = 0.15.
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Blinded Sample Size Methods: Binary Outcomes

▶ Compute

pC =
2p̂1

R+1
=

2(0.15)
0.75+1

= 0.1714

pT =
2Rp̂1

R+1
=

2(0.75)(0.15)
0.75+1

= 0.1286.

▶ New sample size based on pC = 0.1714 and pT = 0.1286:
n = 1249/arm.

▶ Increase sample size to 1249/arm and use z-test of
proportions at end as if sample size were fixed in advance.

▶ Could also stratify analysis by before/after sample size change
(always good to compare results pre- and post-adaptation).
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Blinded Sample Size Methods: Binary Outcomes

▶ One problem with blinded sample size method: Overall event
rate could be low for at least 2 reasons:

1. Control event rate is lower than expected.
2. Treatment effect is much higher than expected.

▶ If second reason is true, then don’t need to increase sample size!

▶ But very large treatment effects are unusual in clinical trials.

▶ Why not avoid problem by looking at control event rate instead of
overall rate?

▶ Problem 1 with peeking at control event rate: Even blinded
investigators may know overall event rate.
▶ knowledge of control event rate plus overall rate reveals the

observed treatment effect!

424 / 464



Blinded Sample Size Methods: Binary Outcomes

▶ Problem 2 with peeking at control event rate: Even if
investigators don’t know overall event rate, control event
rate gives some information about treatment effect because
control event rate is correlated with observed treatment
effect:

cov(p̂C1, p̂T1 − p̂C1) = cov(p̂C1 , p̂T1)–cov(p̂C1, p̂C1)

= 0−var(p̂C1)

= −pC(1−pC)/n1. (38)

▶ Dividing by product of standard deviations gives correlation
ρ ≈−0.71 under the null hypothesis.

▶ Nonzero correlation implies that the type 1 error rate could be
inflated by procedure that allows peeking at control event rate.
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Blinded Sample Size Methods: Binary Outcomes

▶ Not a problem with blinded method because:

cov
{
(p̂T1 + p̂C1)/2, p̂T1 − p̂C1

}
= (1/2)

{
cov(p̂T1 , p̂T1)− cov(p̂T1, p̂C1)+ cov(p̂C1, p̂T1)− cov(p̂C1, p̂C1)

}
= (1/2){var(p̂T1)−0+0−var(p̂C1)}

= (1/2){pT (1−pT )/n1 −pC(1−pC)/n1}

= (1/2){p(1−p)/n1 −p(1−p)/n1} (under H0)

= 0. (39)
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Blinded Sample Size Methods: Continuous
Outcomes

▶ Same ideas apply to trials with continuous outcomes analyzed
using unpaired t-test. Gould and Shih (1992).

▶ Sample size depends on treatment effect and variance σ2.

▶ Blinded method: Keep treatment effect fixed.
▶ Use pre-trial estimate of σ2 for initial sample size n0/per arm.
▶ At planned halfway point, n1 = n0/2/arm, re-estimate σ2 using

variance of combined data across arms.
▶ Modify sample size and treat as fixed in final analysis (use

ordinary t-test at end).
▶ Alternatively, could use t-test stratified by stage.

▶ Similar issue as with binary outcomes: Blinded variance could be
large because treatment effect is huge.
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Blinded Sample Size Methods: Continuous
Outcomes

Figure: Lumped variance is inflated when there is large treatment effect.

▶ Still, unless treatment effect is huge, the variance inflation
problem is minor.

▶ E.g., if σ2 is within-arm variance and E = δ/σ is treatment effect
relative to standard deviation (some authors call this the effect
size, then var(Y ) = σ2(1+E2/4).

▶ Even large treatment effect of E = 1/2 results in only 6% inflation
of variance, 3% inflation of standard deviation.
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Unblinded Sample Size Methods
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Unblinded Sample Size Methods

▶ Now consider unblinded sample size methods: Much riskier
and error rate can be inflated if not careful.

▶ Example: Suppose original sample size is 1,000/arm and we
peek at z-score after 10/arm.
▶ If Z10 ≥ 1.96, change final sample size to 10/arm & reject H0.
▶ If Z10 < 1.96, continue to 1,000/arm and reject if Z1,000 ≥ 1.96.

▶ Z10 and Z1,000 are nearly independent because they share only
1% of data; type 1 error rate, P{Z10 ≥ 1.96∪Z1,000 ≥ 1.96}, is

= 1−P{Z10 < 1.96∩Z1,000 < 1.96}
≈ 1− (1−0.025)2 = 0.0494. (40)

▶ Proschan and Hunsberger (1995) showed that the most
nefarious method more than doubles the type 1 error rate.
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Unblinded Sample Size Methods

▶ How can we protect the type 1 error rate?

▶ Assume n is large enough to treat nuisance parameters (like σ or
p) as known.

▶ Again specify initial sample size n0/arm and assume sample size
reassessment is after n1 = n0/2/arm (fixed number).

▶ Let Z1 be z-score at stage 1 with n1/arm.

▶ Choose n2 = n2(Z1) (random, as is n = n1 +n2) based on Z1. We
give more details on choice of n2 later.
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Unblinded Sample Size Methods

▶ If make no change in sample size (n2 = n0/2), then usual, fixed
sample size z-score using all data equally weights z-scores:

Z =
Z1 +Z2√

2
. (41)

▶ Key to adaptive method: Even if we change n2, still equally
weight Z1 and Z2, as in (41), and reject if Z in (41) is ≥ zα .

▶ Justification:
▶ Under H0, Z1 ∼ N(0,1) and Z2 |Z1 ∼ N(0,1), regardless of n2.

▶ Because distribution of Z2 |Z1 does not depend on Z1, (Z1,Z2) are
independent.

▶ Conclusion: (Z1,Z2) are iid N(0,1) under H0 in this adaptive
setting, just as in fixed sample setting.
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Unblinded Sample Size Methods

▶ More generally, any level α rejection region (Z1,Z2) ∈ R
when n2 is fixed remains level α in adaptive n2 setting.

▶ Weakness of adaptive method is clear: Equally weighting
z-scores from stage 1 and 2 even though n2 is much larger (or
smaller) than n1 is inefficient.

▶ Reasonable if n2 doesn’t change much, but not if it does!

▶ Extreme case: Can even reject H0 for right-tailed alternative
hypothesis when conventionally computed z-score is negative!
▶ Proschan and Hunsberger (1995) showed this.
▶ Burman and Sonesson (2006) “rediscovered” this fact.

▶ Other adaptive procedures have similar drawbacks.
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Unblinded Sample Size Methods

▶ Note: procedure would NOT work if weighted Z1 and Z2 by
sample sizes instead of equally weighting them.

▶ Why not? Because then we would be taking weighted
combination w1Z1 +w2Z2, where

▶ if Z1 is small, n2 (and therefore w2) would be large.

▶ If Z1 is large, n2 (and therefore w2) would be small.

▶ Intuitively clear that giving more weight to a very large observed
z-score would create bias and inflate type 1 error rate.
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Unblinded Sample Size Methods

▶ Could combine 1-sided p-values, Pi = 1−Φ(Zi), i = 1,2 instead
of z-scores.

▶ Called a p-value combination function.

▶ Any level α rejection region (P1,P2) ∈ R when n2 is fixed
remains level α in adaptive n2 setting.

▶ Z-score and p-value combination procedures are equivalent:

▶ Any z-score combination procedure corresponds to some
p-value combination function procedure and vice versa.

▶ One such p-value combination function: Fisher’s method of
combining p-values:

−2 ln(P1P2)∼ χ
2
4 under H0. (42)
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Unblinded Sample Size Methods

▶ Bauer and Köhne (1994) method:
▶ After observing first stage p-value, change sample size but

continue to use (42) at end.
▶ Reject H0 if −2 ln(P1P2)≥ χ2

4 (α), the (1−α)th quantile of a
chi-squared distribution with 4 degrees of freedom.

▶ They also modified procedure to allow stopping at first stage
for futility/benefit.

▶ Note: If −2 ln(P1)≥ χ2
4 (α), the (1−α)th quantile of a χ2

4
distribution, no need for second stage.

▶ Procedure has same drawback as equally weighting z-scores:
Giving equal weight to p-values is inefficient if one p-value is
based on much more information than the other.
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Unblinded Sample Size Methods

▶ Another equivalent way to formulate adaptive methods, the
conditional error function approach of Proschan and
Hunsberger (1995), works as follows.

▶ Pre-specify a function A(z1), 0 ≤ A(z1)≤ 1, telling how much
conditional error rate you can spend after seeing Z1 = z1,
where∫

∞

−∞

A(z1)φ(z1)dz1 = α and φ(z1)denotes standard normal density.

▶ After seeing Z1 = z1, do a test using second stage z-score Z2

only, but use alpha level A(z1).

▶ A(z1) is called a conditional error function because it is the
conditional type 1 error rate given Z1 = z1 (conditional power
under H0).
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Unblinded Sample Size Methods

▶ Z-score combinations, p-value combinations, and
conditional error functions are mathematically equivalent.
They are different formulations of the same idea.

▶ Conditional error formulation is useful because we can choose
n2 by considering conditional power under an alternative
hypothesis.

▶ At end of first stage, alpha level A = A(z1) to use in second stage
is fixed.

▶ To achieve (conditional) power 1−β , use EZ principle: Equate

E(Z2) = zA +zβ ,

and solve for n2.

438 / 464



Unblinded Sample Size Methods

▶ For example, in t-test setting, if A(z1) = 0.15,

E(Z2) =
δ√

2σ2/n2
.

▶ Estimate σ2 and δ . Suppose estimates are σ̂2 = 25 and δ̂ = 1. If
we want 90% conditional power, set

√
n2 δ√
2σ2

= z0.15 +z0.10 = 1.036+1.282 = 2.318

n2 =
2σ2(2.318)2

δ 2 =
2(25)(2.318)2

12 ≈ 269. (43)

▶ Choose second stage sample size 269/arm.

439 / 464



Unblinded Sample Size Methods

▶ Adaptive methods based on treatment effect have been criticized
on grounds of inefficiency and potentially strange behavior
(Burman and Sonesson (2006); Jennison and Turnbull (2003);
Jennison and Turnbull (2006)).

▶ Additionally, Tsiatis and Mehta (2003) showed that it is more
powerful to set large initial sample size and use group-sequential
monitoring to stop early.

▶ Therefore, in general, adaptive methods based on treatment
effect should be avoided.
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Unplanned Changes
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Unplanned Changes

▶ In rare cases, unplanned changes are needed (Posch and
Proschan (2012)).

▶ Recall Pam’s example of Metronidazole for TB (NCT00425113):
Investigators reviewed blinded lung scans, discovered primary
endpoint was not meaningful, and changed it.

▶ Can anything be done to protect the type 1 error rate?
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Unplanned Changes

▶ Can anything be done to protect type 1 error rate in
Metronidazole example? Assume endpoint change was made at
end of trial.

▶ A re-randomization test would still protect type 1 error rate
under strong null hypothesis that treatment has no effect on
any outcome examined.

▶ Get null distribution by treating data as fixed constants,
re-randomizing many times, and computing new value of test
statistic for each re-randomization.

▶ Compute p-value as proportion of re-randomized trials with result
at least as extreme as observed result.

▶ Valid because re-randomization tests already condition on
outcomes. Tests strong null hypothesis: H0: Treatment has no
effect on any endpoint you examined.
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Unplanned Changes

▶ What about unplanned sample size increase after examining
data by arm? Can anything be done to protect type 1 error rate?

▶ One potentially useful method is due to Chen et al. (2004).
▶ Compute conditional power (CP) under the current trend

estimate, B(t)/t = Z(t)/
√

t of drift parameter, θ (remember,
θ = E{Z(1)}).

▶ If CP is greater than 0.50, you can increase sample size with
no penalty.

▶ Justification: If CP≥ 0.50, then increasing the sample size
decreases the null conditional power.

▶ Proven to protect type 1 error rate with at most 1 interim analysis,
and simulations suggest control of error rate with more interim
analyses.
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Unplanned Changes

▶ Müller and Schäfer (2004) proposed a method to make any
design change (number or timing of interim analyses,
sample size, primary endpoint, analysis method, etc.).

▶ Let CRPorig be conditional rejection probability at interim
analysis under original design:

CRPorig = P0(Cross future boundary with original design |Z = z),

where z is interim z-score.

▶ Make design change but make sure CRPnew ≤ CRPorig.

445 / 464



Unplanned Changes

▶ Controls type 1 error rate because

P0(reject H0 with new design)

=
∫

P0(reject H0 with new design |Z = z)φ(z)dz

=
∫

CRPnew(z)φ(z)dz ≤
∫

CRPorig(z)φ(z)dz

=
∫

P(reject H0 with original design |Z = z)φ(z)dz

= P(reject H0 with original design) = α. (44)

▶ Still, use only in emergencies and for minor changes!
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Summary

▶ Adaptive methods use within-trial data to make design changes.

▶ Adaptive methods should be preplanned, although emergencies
sometimes happen.

▶ Blinded methods are safer & less controversial than unblinded
methods.

▶ Blinded sample size re-estimation is common.
▶ Binary outcomes: Gould (1992): Use overall event rate and

hypothesized treatment effect to compute pT and pC and
re-compute sample size.

▶ Continuous outcomes Gould and Shih (1992): Treat overall
variance as within-arm variance and re-compute sample size.
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Summary

▶ Unblinded sample size increase based on promising trend also
safe if use Chen et al. (2004).
▶ Can increase sample size if conditional power under current

treatment effect estimate is ≥ 0.50.
▶ Boundary at end is unchanged.
▶ Logistical issues: Who makes sample size decision? Investigators

should remain blinded.

▶ Müller and Schäfer (2004) can be used in emergencies.
▶ Allows any design change after looking at data by arm.
▶ Type 1 error rate is protected if conditional rejection probability

(CRP) is ≤ CRP of original design.
▶ Will generate controversy unless design change is minor.
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Thank you!
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