SESSION 2: ONE-SAMPLE METHODS

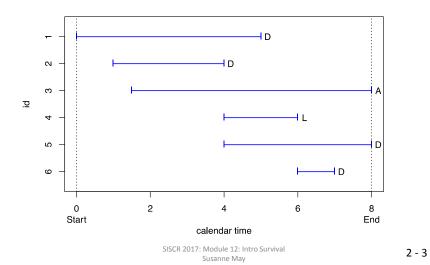
Module 12: Introduction to Survival Analysis Summer Institute in Statistics for Clinical Research University of Washington June, 2017

Susanne May, Ph.D.
Professor
Department of Biostatistics
University of Washington

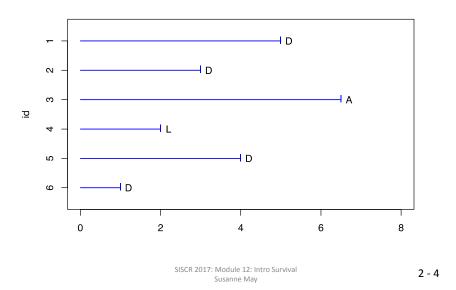
OUTLINE

- Session 2:
 - Censored data
 - Risk sets
 - Censoring assumptions
 - Kaplan-Meier Estimator
 - Median estimator
 - Standard errors and CIs

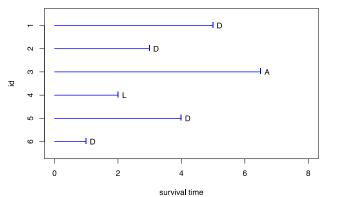
CLINICAL TRIAL



CENSORED DATA



CENSORED DATA



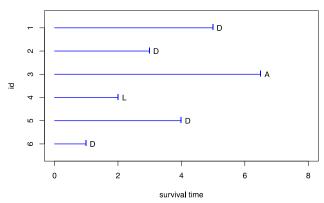
id	Υ	δ
1	5	1
2	3	1
3	6.5	0
4	2	0
5	4	1
6	1	1

"Censored" observations give some information about their survival time.

SISCR 2017: Module 12: Intro Survival Susanne May

2 - 5

CENSORED DATA



id	Υ	δ
1	5	1
2	3	1
3	6.5	0
4	2	0
5	4	1
6	1	1

"Censored" observations give some information about their survival time.

SISCR 2017: Module 12: Intro Survival Susanne May

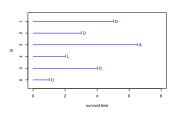
ESTIMATION

- Can we use the partial information in the censored observations?
- Two off-the-top-of-the-head answers:
 - Full sample: Yes. Count them as observations that did not experience the event ever and estimate S(t) as if there were not censored observations.
 - Reduced sample: No. Omit them from the sample and estimate S(t) from the reduced data as if they were the full data.

SISCR 2017: Module 12: Intro Survival Susanne Mav

2 - 7

CENSORED DATA



Problem: How to estimate:

Pr[T > 3.5] Pr[T > 6]

 $\frac{4}{6} = .67$ $\frac{2}{6} = .33$ $\frac{2}{4} = .5$ $\frac{0}{4} = 0$ Full Sample:

Reduced Sample:

SISCR 2017: Module 12: Intro Survival Susanne May

CENSORED DATA

Based on the data and estimates on the previous page,

Q: Are the Full Sample estimates biased? Why or why not?

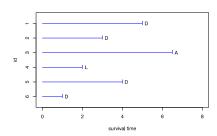
A:

Q: Are the Reduced Sample estimates biased? Why or why not?

A:

SISCR 2017: Module 12: Intro Survival Susanne Mav 2 - 9

CENSORED DATA



Problem: How to estimate:

$$\begin{array}{ccc} & \text{Pr}[T > 3.5] & \text{Pr}[T > 6] \\ \\ \text{Full Sample:} & \frac{4}{6} = .67 & \frac{2}{6} = .33 & \leftarrow \text{too high} \\ \\ \text{Reduced Sample:} & \frac{2}{4} = .5 & \frac{0}{4} = 0 & \leftarrow \text{too low} \\ \end{array}$$

Need a good way to use the partial information in the censored observations.

MPORTANT ASSUMPTION: Subjects who are censored at time t are representative of all subjects at risk of dying at time t.

SISCR 2017: Module 12: Intro Survival
Susanne May

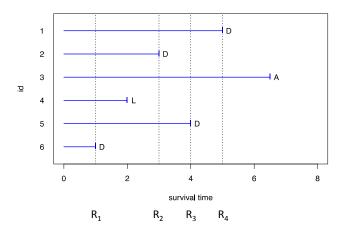
OUTLINE

- Session 2:
 - Censored data
 - Risk sets
 - Censoring assumptions
 - Kaplan-Meier Estimator
 - Median estimator
 - Standard errors and CIs

SISCR 2017: Module 12: Intro Survival Susanne May

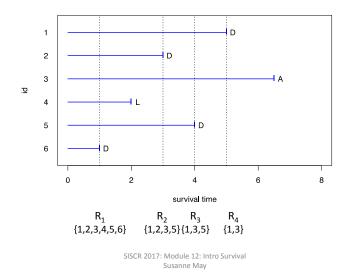
2 - 11

RISK SETS



SISCR 2017: Module 12: Intro Survival Susanne May

RISK SETS



CENSORED DATA ASSUMPTION

- Important assumption: subjects who are censored at time t are at the same risk of dying at t as those at risk but not censored at time t.
 - When would you expect this to be true (or false) for subjects lost to follow-up?
 - When would you expect this to be true (or false) still alive at the time of the analysis?

SISCR 2017: Module 12: Intro Survival Susanne May

CENSORED DATA ASSUMPTION

- Important assumption: subjects who are censored at time t are at the same risk of dying at t as those at risk but not censored at time t.
- This means the risk set at time t is an unbiased sample of the population still alive at time t.
- Can use information from the unbiased risk sets to estimate S(t) using the method of Kaplan and Meier (Product-Limit Estimator).

SISCR 2017: Module 12: Intro Survival Susanne May 2 - 15

OUTLINE

- Session 2:
 - Censored data
 - Risk sets
 - Censoring assumptions
 - Kaplan-Meier Estimator
 - Median estimator
 - Standard errors and CIs

SISCR 2017: Module 12: Intro Survival Susanne May

USING RISK SETS INFO TO ESTIMATE S(t)

Repeatedly use the fact that for t₂ > t₁,

$$Pr[T > t_2] = Pr[T > t_2 \text{ and } T > t_1] = Pr[T > t_2 | T > t_1]Pr[T > t_1]$$

 An observation censored between t₁ and t₂ can contribute to the estimation of Pr[T > t₂] by its unbiased contribution to estimation of Pr[T > t₁].

PRODUCT-LIMIT (KAPLAN-MEIER) ESTIMATE

Notation: Let $t_{(1)}, t_{(2)}, \dots, t_{(J)}$ be the <u>ordered failure</u> times in the sample in ascending order.

```
\begin{array}{ll} t_{(1)} = & \text{smallest } Y_i \text{ for which } \delta_i = 1 & (t_{(1)} = 1 \ ) \\ t_{(2)} = 2^{nd} \text{ smallest } Y_i \text{ for which } \delta_i = 1 & (t_{(2)} = 3 \ ) \\ \vdots & & \vdots \\ t_{(j)} = & \text{largest } Y_i \text{ for which } \delta_i = 1 & (t_{(4)} = 5 \ ) \end{array}
```

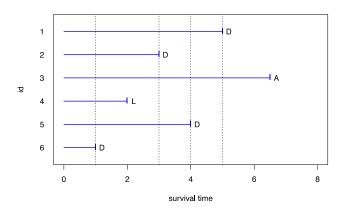
Q: Does J = the number of observed deaths in the sample?

A:

Q:When does J = n?

A: SISCR 2017: Module 12: Intro Survival 2 - 18

 $t_{(j)}$



SISCR 2017: Module 12: Intro Survival Susanne Mav

2 - 19

MORE NOTATION

For each $t_{(j)}$:

 $D_{(j)}$ = number that die at time $t_{(j)}$

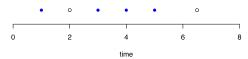
 $S_{(j)} = \text{number known to have survived beyond } t_{(j)}$ (by convention: includes those known to have been censored at $t_{(j)}$)

 $N_{(j)}=$ number "at risk" of being observed to die at time $t_{(j)}$ (ie: number still alive and under observation just before $t_{(j)}$)

 $S_{(j)} = N_{(j)} - D_{(j)}$

SISCR 2017: Module 12: Intro Survival Susanne May

FOR EXAMPLE DATA



 $S_{(j)}$ $D_{(j)}$ $t_{(j)}$ $N_{(j)}$

Product-limit (Kaplan-Meier) Estimator:

 $\hat{S}(t) = \Pi_{j:t_{(j)} \leq t} (1 - \tfrac{D_{(j)}}{N_{(j)}}) = \Pi_{j:t_{(j)} \leq t} (\tfrac{S_{(j)}}{N_{(j)}})$

for t in $\hat{S}(t)$

[0, 1)1 (empty product)

$$[1,3)$$
 $1 \times \frac{5}{6} = .833$

[3,4)
$$1 \times \frac{5}{6} \times \frac{3}{4} = .625$$

[4,5)
$$1 \times \frac{5}{6} \times \frac{3}{4} \times \frac{2}{3} = .417$$

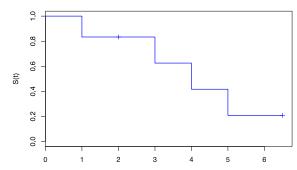
[4,5)
$$1 \times \frac{5}{6} \times \frac{3}{4} \times \frac{2}{3} = .417$$

[5, ∞) $1 \times \frac{5}{6} \times \frac{3}{4} \times \frac{2}{3} \times \frac{1}{2} = .208$
SISCR 2017: Module 12: Intro Survival Susanne May

2 - 21

K-M ESTIMATOR

Survival Function Estimate



Note: does not descend to zero here t (since last observation is censored).

Since the estimate jumps only at observed death times, how does information from the censored observations contribute to it?

A:

SISCR 2017: Module 12: Intro Survival Susanne May

OUTLINE

• Session 2:

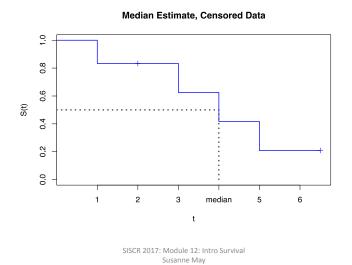
- Censored data
- Risk sets
- Censoring assumptions
- Kaplan-Meier Estimator
- Median estimator
- Standard errors and CIs

SISCR 2017: Module 12: Intro Survival Susanne Mav

2 - 23

2 - 24

MEDIAN SURVIVAL CENSORED DATA



12

OUTLINE

- Session 2:
 - Censored data
 - Risk sets
 - Censoring assumptions
 - Kaplan-Meier Estimator
 - Median estimator
 - Standard errors and CIs

SISCR 2017: Module 12: Intro Survival Susanne May 2 - 25

KM STANDARD ERRORS

Greenwood's Formula:

- $\widehat{Var}(\hat{S}(t)) = \hat{S}^2(t) \sum_{j:t_{(j)} \le t} \frac{D_{(j)}}{N_{(j)}S_{(j)}}$
- $\operatorname{se}(\hat{S}(t)) = \sqrt{\widehat{Var}(\hat{S}(t))}$
- Pointwise CI: $(\hat{S}(t) z_{\frac{\alpha}{2}} \operatorname{se}(\hat{S}(t)), \hat{S}(t) + z_{\frac{\alpha}{2}} \operatorname{se}(\hat{S}(t)))$
 - Can include values < 0 or > 1.

SISCR 2017: Module 12: Intro Survival Susanne May

LOG -LOG KM STANDARD ERRORS

Use complementary log log transformation to keep CI within (0,1):

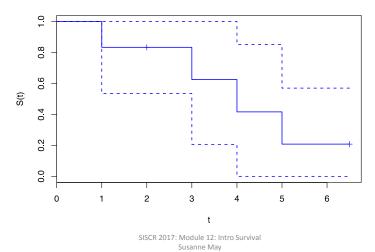
•
$$\widehat{Var}(\log(-\log(\hat{S}(t)))) = \frac{\sum_{j:t_{(j)} \le t} \frac{D_{(j)}}{N_{(j)}S_{(j)}}}{[\log(\hat{S}(t))]^2}$$

- se = $\sqrt{\widehat{Var}(\log(-\log(\hat{S}(t))))}$
- CI for $\log(-\log(S(t)))$: $(\log(-\log(\hat{S}(t))) z_{\frac{\alpha}{2}}se, \quad \log(-\log(\hat{S}(t))) + z_{\frac{\alpha}{2}}se)$
- CI for $\hat{S}(t)$: $([\hat{S}(t)]^{e^{Z_{\alpha/2}Se}}, [\hat{S}(t)]^{e^{-Z_{\alpha/2}Se}})$
 - CI remains within (0,1).

SISCR 2017: Module 12: Intro Survival Susanne Mav 2 - 27

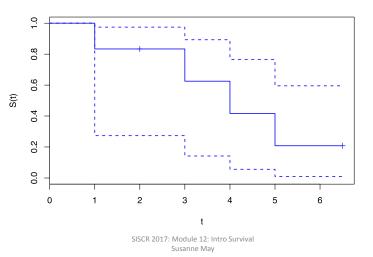
GREENWOOD'S FORMULA

Survival Function Estimate



COMPLEMENTARY LOG-LOG

Survival Function Estimate



2 - 29

MEDIAN CONFIDENCE INTERVAL

Confidence interval for the median is obtained by inverting the sign test of H_0 : median = M (Brookmeyer and Crowley, 1982).

- With complete data T_1, T_2, \dots, T_n , the sign test of H_0 : median = M is performed by seeing if the observed proportion, $\hat{P}[Y > M]$ is too big (Binomial Distribution or Normal Approximation).
- With censored data $(Y_1, \delta_1), (Y_2, \delta_2), \dots, (Y_n, \delta_n)$ giving incomplete data about T_1, T_2, \ldots, T_n , we cannot always tell whether $T_i > M$:

When $Y_i > M$

When $Y_i \leq M$, $\delta_i = 1$ observed death before Mdeath or censored after M When $Y_i \le M$, $\delta_i = 0$ censored before M

we know $T_i \leq M$ we know $T_i > M$ we don't know if $T_i \leq M \text{ or } T_i > M$

SISCR 2017: Module 12: Intro Survival Susanne May

MEDIAN CONFIDENCE INTERVAL

Solution: Following Efron (self-consistency of KM), we estimate $\Pr[T > M]$ when $Y_i \leq M$, $\delta_i = 0$ using $\frac{\hat{S}(M)}{\hat{S}(Y_i)}$.

- For complete data, we let $U_i = \left\{ \begin{array}{ll} 1 & T_i > M \\ 0 & T_i \leq M \end{array} \right.$ and our test is based on $\sum_{i=1}^n U_i$.
- $\bullet \text{ For censored data, we let } U_i = \left\{ \begin{array}{ll} 1 & Y_i > M \\ \frac{\hat{S}(M)}{\hat{S}(Y_i)} & Y_i \leq M; \delta_i = 0 \\ 0 & Y_i \leq M; \delta_i = 1 \end{array} \right. \\ \text{and our test is based on } \sum_{i=1}^n U_i.$

SISCR 2017: Module 12: Intro Survival Susanne Mav

2 - 31

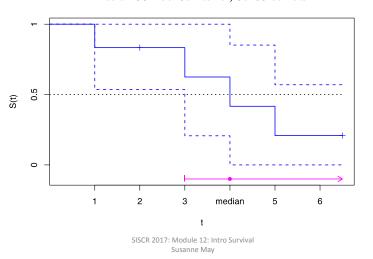
MEDIAN CONFIDENCE INTERVAL

- It turns out, this is the same as basing our test of H_0 : median = M on a test of H_0 : $S(M) = \frac{1}{2}$.
- So a 95% CI for the median contains all potential M for which the test of $H_0: S(M) = \frac{1}{2}$ cannot reject at $\alpha = .05$ (2 sided).
- Since $\hat{S}(M)$ only changes value at observed event times, the test need only be checked at $M = t_{(1)}, t_{(2)}, \dots, t_{(l)}$.
- Originally proposed for Greenwood's formula CIs for $\hat{S}(M)$, but any good CIs are OK.
- Implemented in many software packages.

SISCR 2017: Module 12: Intro Survival Susanne May

MEDIAN CONFIDENCE INTERVAL

Median Confidence Interval, Censored Data



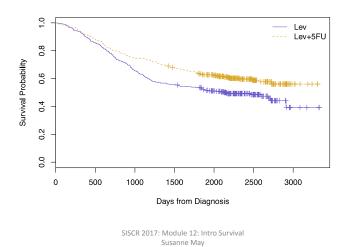
2 - 33

COLON CANCER EXAMPLE

- Clinical trial at Mayo Clinic (Moertel et al. (1990) NEJM)
- Stage B₂ and C colon cancer patients; adjuvant therapy
- Three arms
 - Observation only
 - Levamisole
 - 5-FU + Levamisole
- Stage C patients only
- Two treatment arms only

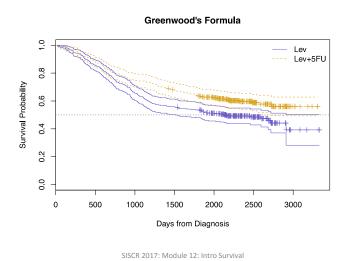
SISCR 2017: Module 12: Intro Survival Susanne May

COLON CANCER EXAMPLE



2 - 35

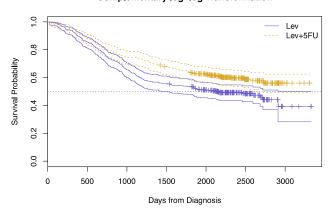
COLON CANCER EXAMPLE



Susanne May

COLON CANCER EXAMPLE

Complementary log-log Transformation



SISCR 2017: Module 12: Intro Survival Susanne May

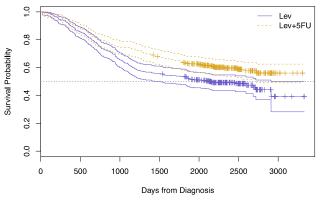
2 - 37

PRESENTATION

	N	Events	Median (days)	95% CI
Levamisole Only	310	161	2152	(1509, ∞)
5FU + Levamisole	304	123		(2725, ∞)

SISCR 2017: Module 12: Intro Survival Susanne May

COLON CANCER EXAMPLE



SISCR 2017: Module 12: Intro Survival Susanne May 2 - 39

ESTIMATION

- Estimate S(t) using KM curve (nonparametric).
 - Pointwise standard errors and Cis
 - Almost always presented
 - Not appropriate when the event of interest happens only to some (more on this this tomorrow)
- Median: based on KM curve: often presented (too often?)

SISCR 2017: Module 12: Intro Survival Susanne May

TO WATCH OUT FOR

- Mean survival time hard to estimate without parametric assumptions
 - Censoring means incomplete information about largest times
 - Mean over restricted time interval may be useful in some settings (some on this tomorrow)
- Median estimate more complicated than median of times
- Even with CIs, evaluating differences between curves visually is subjective
- Interpretation of survival function estimates depends on validity of censoring assumptions

SISCR 2017: Module 12: Intro Survival Susanne May