SESSION 4: INTRODUCTION TO COX REGRESSION

Module 12: Introduction to Survival Analysis Summer Institute in Statistics for Clinical Research University of Washington July, 2017

Barbara McKnight, Ph.D. Professor Department of Biostatistics University of Washington

OVERVIEW

- Session 1
 - Introductory examples
 - The survival function
 - Survival Distributions
 - Mean and Median survival time
- Session 2
 - Censored data
 - Risk sets
 - Censoring Assumptions
 - Kaplan-Meier Estimator and Cl
 - Median and CI
- Session 3
 - Two-group comparisons: logrank test
 - Trend and heterogeneity tests for more than two groups
- Session 4
 - Introduction to Cox regression

OUTLINE

- Motivation:
 - Confounding in observational studies
 - Stratified randomization designs
- Cox Regression model
 - Coefficient interpretation
 - Estimation and testing
 - Relationship to 2- and K-sample tests
 - Examining non-proportionality
- Examples throughout

SISCR 2017: Module 12 Intro Survival Barbara McKnight

4 - 3

OUTLINE

- Motivation:
 - Confounding in observational studies
 - Stratified randomization designs
- Cox Regression model
 - Coefficient interpretation
 - Estimation and testing
 - Relationship to 2- and K-sample tests
 - Examining non-proportionality
- Examples throughout

CONFOUNDING

- Observational data: sometimes observed associations between an explanatory variable and outcome can be due to their joint association with another variable.
 - Age related to both sex and risk of death.
 - Other examples?

SISCR 2017: Module 12 Intro Survival Barbara McKnight

4 - 5

PRECISION IN RCTS

- Because of randomization, confounding/imbalance usually not an issue except in small trials.
- As in linear regression, regression models for censored survival data allow group comparisons among subjects with similar values of adjustment or "precision" variables (more later).
- Fairer and possibly more powerful comparison as long as adjustment variables are not the result of treatment.

STRATIFIED RANDOMIZATION

- For strong predictors: concern about possible randomization imbalance
 - Clinic or center
 - Stage of disease
 - Sex
 - Age
- Adjust for stratification variables in analysis
 - More powerful if predictors are strong
 - Same conditioning as the sampling

SISCR 2017: Module 12 Intro Survival Barbara McKnight

4 - 7

OUTLINE

- Motivation:
 - Confounding in observational studies
 - Stratified randomization designs
- Cox Regression model
 - Coefficient interpretation
 - Estimation and testing
 - Relationship to 2- and K-sample tests
 - Examining non-proportionality
- Examples throughout

COX REGRESSION MODEL

- Usually written in terms of the hazard function
- As a function of independent variables $x_1, x_2, \ldots x_k$,

$$\lambda(t) = \lambda_0(t)e^{\beta_1 x_1 + \dots + \beta_k x_k}$$

$$\uparrow$$
relative risk / hazard ratio
$$\log \lambda(t) = \log \lambda_0(t) + \beta_1 x_1 + \dots + \beta_k x_k$$

 $\log \lambda(t) = \log \lambda_0(t) + \beta_1 x_1 + \dots + \beta_k x_k$ \uparrow intercept

SISCR 2017: Module 12 Intro Survival Barbara McKnight

4 - 9

RELATIVE RISK / HAZARD RATIO

 $\lambda(t|x_1, \dots, x_k) = \lambda_0(t)e^{\beta_1 x_1 + \dots + \beta_k x_k}$ $\frac{\lambda(t|x_1, \dots, x_k)}{\lambda(t|0, \dots, 0)} = e^{\beta_1 x_1 + \dots + \beta_k x_k}$

REGRESSION MODELS

LS Linear Regression: $Y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \epsilon$

Linear:	$Y \sim N(\mu, \sigma^2)$	$\mu = EY = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$
Cox:	$T \sim S(t)$	$\lambda(t) = \lambda_0(t) e^{\beta_1 x_1 + \dots + \beta_k x_k}$
	Î	↑
	Distribution of outcome variable	Dependence of distribution on $x_1, \ldots x_k$

SISCR 2017: Module 12 Intro Survival Barbara McKnight

4 - 11

PROPORTIONAL HAZARDS MODEL

 $\lambda(t) = \lambda_0(t) e^{\beta_1 x_1 + \dots + \beta_k x_k}$

Interpretation of e^{β_1} in general:

"Relative risk (or hazard ratio) associated with a one unit higher value of x_1 , holding x_2, \ldots, x_k constant".

 $\lambda(t) \text{ for } x_1 + 1: \quad \lambda_0(t)e^{\beta_1(x_1+1)+\dots+\beta_k x_k}$ $\lambda(t) \text{ for } x_1: \quad \lambda_0(t)e^{\beta_1x_1+\dots+\beta_k x_k}$ $\text{ratio:} \quad e^{\beta_1(x_1+1-x_1)} = e^{\beta_1}$

EXAMPLE

Single binary x:

$$x = \begin{cases} 1 & \text{Test treatment} \\ 0 & \text{Standard treatment} \end{cases}$$
$$\lambda(t) = \lambda_0(t)e^{\beta x}$$

$$\chi(t) = \chi_0(t) t$$

Interpretation of e^{β} :

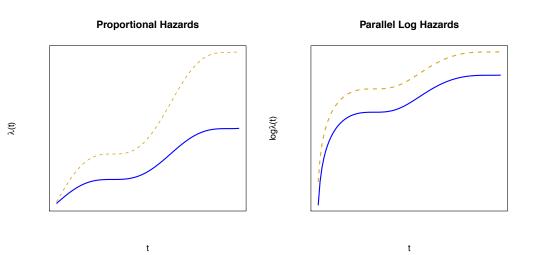
"Relative risk (or hazard ratio) comparing test treatment to standard".

$$\begin{split} \lambda(t) \text{ for } x &= 1: \quad \lambda_0(t)e^{\beta \cdot 1} \quad = \quad \lambda_0(t)e^{\beta} \\ \lambda(t) \text{ for } x &= 0: \quad \lambda_0(t)e^{\beta \cdot 0} \quad = \quad \lambda_0(t) \\ \text{ ratio: } \quad e^{\beta(1-0)} \quad = \quad e^{\beta} \end{split}$$

SISCR 2017: Module 12 Intro Survival Barbara McKnight

4 - 13

EXAMPLE



RELATIONSHIP TO SURVIVAL FUNCTION

Single binary *x*:

 $x = \begin{cases} 1 & \text{Test treatment} \\ 0 & \text{Standard treatment} \end{cases}$

$$\lambda(t) = \lambda_0(t) e^{\beta x} \implies S(t) = [S_0(t)]^{e^{\beta x}}$$

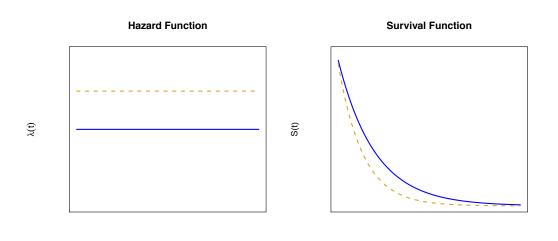
In terms of $S_0(t)$:

$$S(t) \text{ for } x = 1: \quad [S_0(t)]^{e^{\beta \cdot 1}} = [S_0(t)]^{e^{\beta}}$$
$$S(t) \text{ for } x = 0: \quad [S_0(t)]^{e^{\beta \cdot 0}} = [S_0(t)]^1 = S_0(t)$$

SISCR 2017: Module 12 Intro Survival Barbara McKnight

4 - 15

PICTURE



SISCR 2017: Module 12 Intro Survival Barbara McKnight

t

t

ESTIMATES AND CONFIDENCE INTERVALS

- We estimate β by maximizing the "partial likelihood function"
- Requires iteration on computer
- $\hat{\beta}$ is a MPLE (Maximum Partial Likelihood Estimator)
- We do not need to estimate $\lambda_0(t)$ to do this
- Most packages will estimate $se(\hat{\beta})$ using the information matrix from this PL.
- 95% CI for β : $(\hat{\beta} 1.96 \text{se}(\hat{\beta}), \hat{\beta} + 1.96 \text{se}(\hat{\beta}))$
- 95% CI for RR = e^{β} : $(e^{\hat{\beta}-1.96\text{se}(\hat{\beta})}, e^{\hat{\beta}+1.96\text{se}(\hat{\beta})})$

SISCR 2017: Module 12 Intro Survival Barbara McKnight

4 - 17

PARTIAL LIKELIHOOD

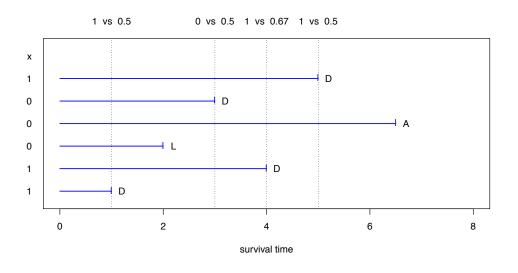
Data for the i^{th} subject: $(t_i, \delta_i, x_{1i}, \dots, x_{ki})$ For subject with the j^{th} ordered failure time : $(t_{(i)}, 1, x_{1(i)}, \dots, x_{k(i)})$

$$\mathsf{PL}(\beta_1,\ldots,\beta_k) = \prod_{j=1}^J \frac{e^{\beta_1 x_{1(j)} + \cdots + \beta_k x_{k(j)}}}{\sum_{i:t_i \ge t_{(j)}} e^{\beta_1 x_{1i} + \cdots + \beta_k x_{ki}}}$$

- $(\hat{\beta}_1, \dots, \hat{\beta}_k)$ are the values of $(\beta_1, \dots, \beta_k)$ that maximize $PL(\beta_1, \dots, \beta_k)$. (MPLEs)
- Compares x values for the subject who failed at time $t_{(j)}$ to those of all subjects at risk at time $t_{(j)}$.
- Does not depend on the values of the t_i , only on their order.
- Does not depend on $\lambda_0(t)$.

RISK SET PICTURE

Risk Sets and Treatment



SISCR 2017: Module 12 Intro Survival Barbara McKnight

4 - 19

FULL LIKELIHOOD

$$L(\beta, \lambda_{0}(t)) = \prod_{\text{Failures}} \Pr[T = t_{i}] \prod_{\text{Censorings}} \Pr[T > t_{i}]$$

$$= \prod_{\text{Failures}} \lambda(t_{i}|x_{i})S(t_{i}|x_{i}) \prod_{\text{Censorings}} S(t_{i}|x_{i})$$

$$= \prod_{i=1}^{n} [\lambda(t_{i}|x_{i})]^{\delta_{i}}S(t_{i}|x_{i})$$

$$= \prod_{i=1}^{n} [\lambda_{0}(t_{i})e^{\beta x_{i}}]^{\delta_{i}}e^{-\int_{0}^{t_{i}}\lambda_{0}(s)e^{\beta x}ds}$$

PARTIAL LIKELIHOOD

Let H_t represent the entire history of failure, censoring and x in the sample before time t.

Then the likelihood can be rewritten as follows:

$$L(\beta, \lambda_{0}(t)) = \prod_{j=1}^{J} \Pr[i^{th} \text{ subject fails at } t_{(j)}|H_{t_{(j)}}, \text{ some subject fails at } t_{(j)}] \cdot \Pr[H_{t_{(j)}}, \text{ some subject fails at } t_{(j)}]$$

$$= \prod_{j=1}^{J} \frac{\lambda(t_{(j)}|\mathbf{x}_{(j)})}{\sum_{i:t_{i} \ge t_{(j)}} \lambda(t_{(j)}|\mathbf{x}_{i})} \cdot \prod_{j=1}^{J} \Pr[H_{t_{(j)}}, \text{ some subject fails at } t_{(j)}]$$

$$= \prod_{j=1}^{J} \frac{\lambda_{0}(t_{(j)})e^{\beta\mathbf{x}_{(j)}}}{\sum_{i:t_{i} \ge t_{(j)}} \lambda_{0}(t_{(j)})e^{\beta\mathbf{x}_{i}}} \cdot \prod_{j=1}^{J} \Pr[H_{t_{(j)}}, \text{ some subject fails at } t_{(j)}]$$

$$= \prod_{j=1}^{J} \frac{e^{\beta^{\mathbf{x}_{(j)}}}{\sum_{i:t_{i} \ge t_{(j)}} e^{\beta\mathbf{x}_{i}}} \cdot \prod_{j=1}^{J} \Pr[H_{t_{(j)}}, \text{ some subject fails at } t_{(j)}]$$

$$= \prod_{partial Likelihood} Depends on \lambda_{0}(\cdot) \text{ and } \beta$$

$$\stackrel{\text{SISCR 2017: Module 12 Intro Survival}}{\text{Berbara Methods}} 4 - 21$$

HYPOTHESIS TESTS

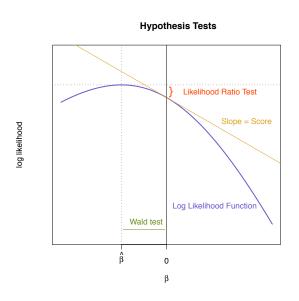
Barbara McKnight

Three tests of H_0 : $\beta = 0$ are possible:

- 1. Wald test: $\frac{\hat{\beta}}{\operatorname{se}(\hat{\beta})}$
- 2. (Partial) Likelihood ratio test
- 3. Score test: (\approx logrank test)

Likelihood ratio test is best, but requires fitting full $(\beta = \hat{\beta})$ and reduced $(\beta = 0)$ models.

LIKELIHOODS AND TESTS



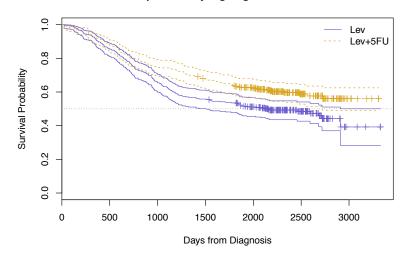
SISCR 2017: Module 12 Intro Survival Barbara McKnight

4 - 23

COLON CANCER EXAMPLE

- Clinical trial at Mayo Clinic
- Stage B₂ and C colon cancer patients; adjuvant therapy
- Three arms
 - Observation only
 - Levamisole (stage C only)
 - 5-FU + Levamisole at Mayo Clinic
- Stage C patients only
- Two treatment arms only

COLON CANCER EXAMPLE



Complementary log-log Transformation

SISCR 2017: Module 12 Intro Survival Barbara McKnight

4 - 25

COLON CANCER EXAMPLE

Variable	n	Deaths	Hazard ratio	CI	P-value
Levamisole Only	310	161	1.0 (reference)		
Levamisole + 5FU	304	123	0.71	(0.56, 0.90)	.004

Q: Which group has better survival?

A:

TEST COMPARISON

Test	Statistic	P-value
Wald's	8.13	.004
Score	8.21	.004
Likelihood Ratio	8.21	.004

Two-sided tests

SISCR 2017: Module 12 Intro Survival Barbara McKnight

4 - 27

ANOTHER EXAMPLE

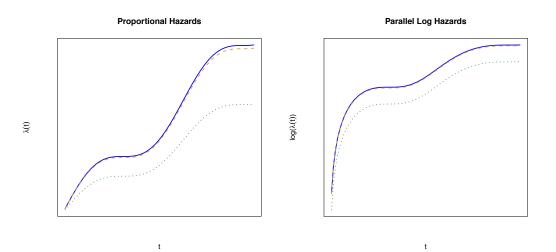
Three groups: use indicators for two

 $x_1 = \begin{cases} 1 & \text{Levamisole Only} \\ 0 & \text{otherwise} \end{cases}$ $x_2 = \begin{cases} 1 & \text{Levamisole + 5FU} \\ 0 & \text{otherwise} \end{cases}$

Model: $\lambda(t) = \lambda_0(t)e^{\beta_1 x_1 + \beta_2 x_2}$

RRs:	Levamisole Only	VS.	Observation	e^{eta_1}
	Levamisole + 5FU	VS.	Observation	e^{β_2}
	Levamisole + 5FU	VS.	Levamisole Only	$e^{\beta_2-\beta_1}$

HEURISTIC HAZARDS



SISCR 2017: Module 12 Intro Survival Barbara McKnight

4 - 29

COLON CANCER

Variable	n	Deaths	Hazard Ratio	95% CI	P-value
Observation Only	315	168	1.0 (reference)		
Levamisole Only	310	161	0.97	(0.78, 1.21)	0.81
Levamisole + 5FU	204	123	0.69	(0.55, 0.87)	0.002

Q: Which group has best survival?

A:

TEST COMPARISON

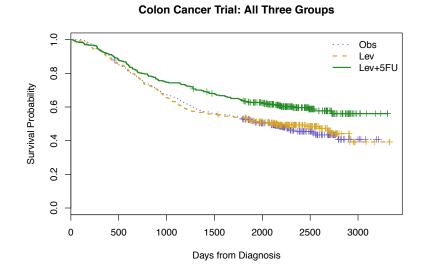
Test	Statistic	P-value
Wald's	11.56	.003
Score	11.68	.003
Likelihood Ratio	12.15	.002

Same hypothesis as 3-group heterogeneity test. Score test is same in large samples.

SISCR 2017: Module 12 Intro Survival Barbara McKnight

4 - 31

COLON CANCER TRIAL DATA



TREND

- When there are several groups, it is sometimes of interest to test whether risk increases from one group to the next:
 - Several dose groups
 - Other ordered variable
 - Example: tumor differentiation

• For $x = \begin{cases} 1 & \text{well differentiated} \\ 2 & \text{moderately differentiated} \\ 3 & \text{poorly differentiated} \end{cases}$

Model: $\lambda(t) = \lambda_0(t)e^{\beta x}$

- Score test is the same as the trend test
- Could use other values for x (actual dose levels)

SISCR 2017: Module 12 Intro Survival Barbara McKnight

4 - 33

TREND

For $x = \begin{cases} 1 & \text{well differentiated} \\ 2 & \text{moderately differentiated} \\ 3 & \text{poorly differentiated} \end{cases}$

Model: $\lambda(t) = \lambda_0(t)e^{\beta x}$

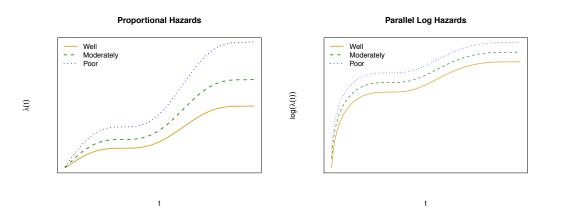
Interpretation of e^{β} : HR associated with the comparison of one worse differentiation group to one better:

- poorly differentiated to moderately differentiated, or
- moderately differentiated to well differentiated

Q: What is HR comparing poorly differentiated to well differentiated?

A:

TREND



SISCR 2017: Module 12 Intro Survival Barbara McKnight

4 - 35

TREND WITH DIFFERENTIATION

One presentation based entirely on trend ("grouped linear") model:

	Hazard Ratio	95% CI
One category worse differentiation (well, moderately, poor)	1.4	(1.1, 1.8)
P = .003 (trend)		

I prefer presenting hazard ratios and Cl's based on dummy variable model, and providing P-value for trend.

TREND WITH DIFFERENTIATION

My preferred presentation based on dummy variable mode with trend P-value:

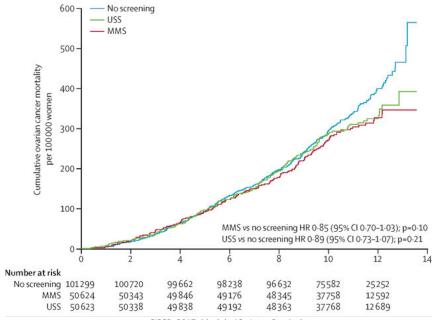
	n	Deaths	Hazard Ratio	95% CI
Well differentiated	66	26	1.0 (reference)	
Moderately differentiated	434	196	1.2	(0.80, 1.8)
Poorly differentiated	98	54	1.8	(1.2, 3.0)
P = .003 (trend)				

I usually would not present this for an *a priori* trend hypothesis, but for comparison here, the heterogeneity P-value (2 df) is 0.009.

SISCR 2017: Module 12 Intro Survival Barbara McKnight

4 - 37

OVARIAN CANCER SCREENING TRIAL



PROPORTIONAL HAZARDS

- One way to examine evidence against proportional hazards is to look at plots of scaled Schoenfeld residuals and perform tests based on them.
- For each failing subject there is a Schoenfeld residual for each x variable in the model.
- At the subject's failure time, the residual measures how the value of x for the subject who fails differs from a weighted average of x values for those still at risk. (Weights depend on estimated HR for each subject at risk).
- If consistently high or low over an interval of time, this is evidence that the hazard at that time is even higher (lower) for the subject with that x than the model indicates.

SISCR 2017: Module 12 Intro Survival Barbara McKnight

4 - 39

SCHOENFELD RESIDUALS

Formula for Schoenfeld residuals

Let $r_i(t) = e^{\hat{\beta}x_i(t)}$ be the estimated hazard ratio for the i^{th} subject at t compared to x(t) = 0.

Then for $\overline{x}(\hat{\beta}, t) = \frac{\sum_{\text{at risk at } t} r_i(t) x_i(t)}{\sum_{\text{at risk at } t} r_i(t)}$,

The Schoenfeld residual for the k^{th} subject failing at time t is given by $x_k(t) - \overline{x}(\hat{\beta}, t)$.

The scaled Schoenfeld residual is the Schoenfeld residual divided by a variance estimate.

SCHOENFELD RESIDUALS

- Grambsch and Therneau (1994) showed that the scaled Schoenfeld residual measures the deviation of a time-dependent log hazard ratio $\beta(t)$ from time-constant $\hat{\beta}$.
- Can use linear regression comparing scaled Schoenfeld residuals to functions of time to examine evidence for lack of constant hazard ratio over time.
- Grambsch PM, Therneau TM. Biometrika. 1994 Sep 1;81(3):515–526.

SISCR 2017: Module 12 Intro Survival Barbara McKnight

4 - 41

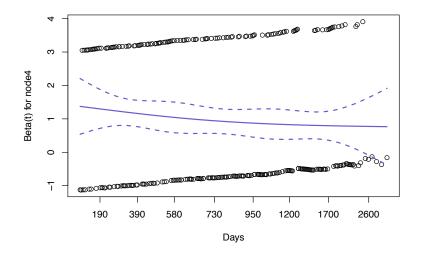
COLON CANCER TRIAL DATA

	Observation Arm Omitted				
	β	$\exp(\hat{\beta})$	$se(\hat{\beta})$	Z	Pr(> z)
5FU + Lev	-0.34	0.71	0.12	-2.83	0.0064
4+ Nodes Pos	0.98	2.67	0.12	8.08	<0.0001

 $e^{\beta_{Rx}}$ CI: (0.5629, 0.9008)

LRT: 8.098 on 1 df, P = 0.0044

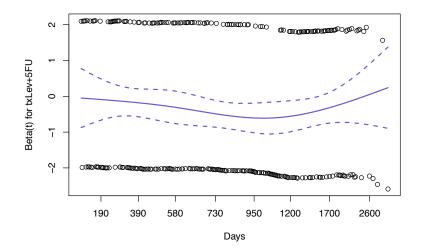
FOR NODE 4 POSITIVITY



SISCR 2017: Module 12 Intro Survival Barbara McKnight

4 - 43

FOR TREATMENT



TEST FOR NON-PROPORTIONALITY

Variable	P-value
node4	0.158
txLev+5FU	0.560

No strong evidence for non-proportionality based on scaled Schoenfeld residuals correlation with "time" S(t).

SISCR 2017: Module 12 Intro Survival Barbara McKnight

4 - 45

TO WATCH OUT FOR:

- Coefficients in Cox regression are positively associated with risk, not survival.
 - Positive β means large values of x are associated with shorter survival.
- Without certain types of time-dependent covariates, Cox regression does not depend on the actual times, just their order.
 - Can add a constant to all times to remove zeros (some packages remove observations with time = 0) without changing inference
- For LRT, nested models must be compared based on same subjects.
 - If some values of variables in larger model are missing, these subjects must be removed from fit of smaller model.
- Hazards may not always be proportional