MODULE 13: SURVIVAL ANALYSIS FOR CLINICAL TRIALS

Summer Institute in Statistics for Clinical Research University of Washington July, 2018

> Susanne May, Ph.D. Barbara McKnight, Ph.D. Department of Biostatistics University of Washington

OVERVIEW

- Session 1
 - Review basics
 - Cox model for adjustment and interaction
 - Estimating baseline hazards and survival
- Session 2
 - Weighted logrank tests
- Session 3
 - Other two-sample tests based on functionals and metrics
- Session 4
 - Choice of outcome variable
 - Surrogate endpoints
 - Power and sample size
 - Information accrual under sequential monitoring

SESSION 1: REVIEW, COX MODEL FOR ADJUSTMENT AND INTERACTION, AND ESTIMATION OF BASELINE HAZARDS AND SURVIVAL

Module 13: Survival Analysis in Clinical Trials Summer Institute in Statistics for Clinical Research University of Washington July, 2018

> Barbara McKnight, Ph.D. Professor Department of Biostatistics University of Washington

OUTLINE

- Review of censored data, KM estimation, logrank test and Cox model basics
- Covariate adjustment in Cox model
- Precision in Cox model
- Interaction (Effect Modification) in Cox Model
- Stratification adjustment in Cox model
- Estimation of baseline hazards and survival based on Cox model fit

OUTLINE

- Review of censored data, KM estimation, logrank test and Cox model basics
- Covariate adjustment in Cox model
- Precision in Cox model
- Interaction (Effect Modification) in Cox Model
- Stratification adjustment in Cox model
- Estimation of baseline hazards and survival based on Cox model fit

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 5

TIME IN A CLINICAL TRIAL

CENSORED DATA

"Censored" observations give some information about their survival time.

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 7

CENSORED DATA ASSUMPTION

• Important assumption: subjects who are censored at time t are at the same risk of dying at t as those at risk but not censored at time t.

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 9

MEDIAN & SURVIVAL CENSORED DATA

EQUIVALENT CHARACTERIZATIONS

- Any <u>one</u> of the density function(f(t)), the survival function(S(t)) or the hazard function(λ(t)) is enough to determine the survival distribution.
- They are each functions of each other:
 - $S(t) = \int_t^\infty f(s) ds = e^{-\int_0^t \lambda(s) ds}$
 - $f(t) = -\frac{d}{dt}S(t) = \lambda(t)e^{-\int_0^t \lambda(s)ds}$
 - $\lambda(t) = \frac{f(t)}{S(t)}$

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 11

LOGRANK TEST

- The test is based on a 2x2 table of group by current status at each observed failure time (ie for each risk set)
- $T_{(j)}$, j=1,...m, as shown in the Table below.

Event/Group	1	2	Total
Die	d _{1(j)}	d _{2(j)}	D _(j)
Survive	$n_{1(j)} - d_{1(j)} = s_{1(j)}$	$n_{2(j)} - d_{2(j)} = s_{2(j)}$	$N_{(j)} - D_{(j)} = S_{(j)}$
At Risk	n _{1(j)}	n _{2(j)}	N _(j)

LOGRANK TEST

- Detects <u>consistent</u> differences between survival curves over time.
- Best power when:
 - $H_{0}:$ $S_{1}(t)$ = $S_{2}(t)$ for all t vs $H_{A}:$ $S_{1}(t)$ = $[S_{2}(t)]^{c}$, or
 - $H_0: \lambda_1(t) = \lambda_2(t)$ for all t vs $H_A: \lambda_1(t) = c \lambda_2(t)$
- Good power whenever hazard function ratio is on consistent side of one.

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 13

LOGRANK TEST

Other tests (generalized Wilcoxon and others) can give more weight to early or late differences.

COX REGRESSION MODEL

- Usually written in terms of the hazard function
- As a function of independent variables $x_1, x_2, \ldots x_k$,

$$\lambda(t) = \lambda_0(t)e^{\beta_1 x_1 + \dots + \beta_k x_k}$$

relative risk / hazard ratio

$$\log \lambda(t) = \log \lambda_0(t) + \beta_1 x_1 + \dots + \beta_k x_k$$

$$\uparrow$$
intercept

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 15

EXAMPLE

RELATIONSHIP TO SURVIVAL FUNCTION

Single binary *x*:

 $x = \begin{cases} 1 & \text{Test treatment} \\ 0 & \text{Standard treatment} \end{cases}$

$$\lambda(t) = \lambda_0(t) e^{\beta x} \implies S(t) = [S_0(t)]^{e^{\beta x}}$$

In terms of $S_0(t)$:

$$S(t) \text{ for } x = 1: \quad [S_0(t)]^{e^{\beta \cdot 1}} = [S_0(t)]^{e^{\beta}}$$
$$S(t) \text{ for } x = 0: \quad [S_0(t)]^{e^{\beta \cdot 0}} = [S_0(t)]^1 = S_0(t)$$

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 17

CONFOUNDING/PRECISION

- Because of randomization not truly a problem, but imbalance may be an issue, especially in small trials.
- As in linear regression, regression models for censored survival data allow group comparisons among subjects with similar values of adjustment or "precision" variables (more later).
- Fairer and more powerful comparison as long as adjustment variables are not the result of treatment.

COLON CANCER EXAMPLE

- Levamisole and Fluorouracil for adjuvant therapy of resected colon carcinoma
 - Moertel et al. New England Journal of Medicine. 1990;322(6): 352–358.
 - <u>Moertel et al. Annals of internal medicine. 1995;122(5):321–326.</u>
- 1296 patients
- Stage B₂ or C
- 3 unblinded treatment groups
 - Observation only
 - Levamisole (oral, 1yr)
 - Levamisole (oral, 1yr) + 5 fluorouracil (intravenous 1yr)
- Will examine two treatment arms in Stage C patients only

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 19

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

COLON CANCER EXAMPLE

Variable	n	Deaths	Hazard ratio	CI	P-value
Levamisole Only	310	161	1.0 (reference)		
Levamisole + 5FU	304	123	0.71	(0.56, 0.90)	.004

Q: Which group has better survival?

A:

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 21

LIKELIHOODS AND TESTS

TEST COMPARISON

Test	Statistic	P-value
Wald's	8.13	.004
Score	8.21	.004
Likelihood Ratio	8.21	.004

Two-sided tests

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 23

OUTLINE

- Review of censored data, KM estimation, logrank test and Cox model basics
- Covariate adjustment in Cox model
- Precision in Cox model
- Interaction (Effect Modification) in Cox Model
- Stratification adjustment in Cox model
- Estimation of baseline hazards and survival based on Cox model fit

STRATIFIED RANDOMIZATION

- For strong predictors: concern about possible randomization imbalance
 - Clinic or center
 - Stage of disease
 - Sex
 - Age
- Adjust for stratification variables in analysis
 - More powerful if predictors are strong
 - Same conditioning as the sampling

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 25

ADJUSTMENT AND PRECISION

- In Cox regression, addition of variables to a model that are associated <u>only with the outcome</u> can improve power.
- There is little effect on the coefficient estimate for other variables (eg treatment) or their standard errors, except when the association between outcome and the added variable is <u>very strong</u>.
- When there is an effect of adding a predictive variable, this is what happens to inference for the treatment variable or other variable of interest:
 - The standard error of its coefficient increases
 - The estimate of the coefficient moves farther from zero
 - The test of whether the coefficient is zero has more power.

ANALYSES

- Primary analysis: If randomization was blocked on prognostic variables, adjust for them.
 - Depth of invasion (extent)
 - Interval since surgery
 - Number of positive nodes (\geq 4)
- Secondary analysis: Adjust for additional prognostic variables: Observed at time of randomization and therefore not affected by treatment
 - Obstruction
 - Histologic differentiation

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 27

PROGNOSTIC VARIABLE ADJUSTMENT

<i>x</i> ₁ =	{	 moderate differentiation otherwise 		$x_2 = \Big\{$	1 0	poc oth	or differentiati erwise	on
$x_3 = \left\{ \right.$	1 0	tumor obstructed bowel otherwise	K 4 =	$= \left\{ \begin{array}{c} 1\\ 0 \end{array} \right.$	4+ oth	noo nerw	les positive ise	
$x_5 = \left\{ \right.$	1 0	extent to muscle $x_6 = \begin{cases} 2 \\ 0 \end{cases}$	1 0	extent otherw	to s /ise	sero	sa	
$x_7 = \left\{ \right.$	1 0	extent to contiguous structures otherwise		x ₈	= {	1 0	Levamisole o otherwise	only
$x_9 = \left\{ \right.$	1 0	Levamisole + 5FU otherwise						

 $\lambda(t) = \lambda_0(t) e^{\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6 + \beta_7 x_7 + \beta_8 x_8 + \beta_9 x_9}$

PROGNOSTIC VARIABLE ADJUSTMENT

 $\lambda(t) = \lambda_0(t) e^{\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6 + \beta_7 x_7 + \beta_8 x_8 + \beta_9 x_9}$

Interpretation of e^{β_8} :

"Relative risk (or hazard ratio) comparing Levamisole Only to Observation among those with the same values of prognostic variables".

Interpretation of e^{β_9} :

"Relative risk (or hazard ratio) comparing Levamisole + 5FU to Observation among those with the same values of prognostic variables".

> SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 29

PROGNOSTIC VARIABLE ADJUSTMENT

 $\lambda(t) = \lambda_0(t) e^{\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6 + \beta_7 x_7 + \beta_8 x_8 + \beta_9 x_9}$

Interpretation of $e^{\beta_9 - \beta_8}$:

"Relative risk (or hazard ratio) comparing Levamisole + 5FU to Levamisole Only among those with the same values of prognostic variables".

 $\lambda(t) \text{ for } x_1, \dots, x_7 \text{ and } x_8 = 0 \text{ and } x_9 = 1; \quad \lambda_0(t)e^{\beta_1 x_1 + \dots + \beta_7 x_7 + \beta_8 \cdot 0 + \beta_9 \cdot 1}$ $\lambda(t) \text{ for } x_1, \dots, x_7 \text{ and } x_8 = 1 \text{ and } x_9 = 0; \quad \lambda_0(t)e^{\beta_1 x_1 + \dots + \beta_7 x_7 + \beta_8 \cdot 1 + \beta_9 \cdot 0}$ ratio: $e^{\beta_8(0-1) + \beta_9(1-0)} = e^{\beta_9 - \beta_8}$

PROGNOSTIC VARIABLES

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1-31

PROGNOSTIC VARIABLES

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

PROGNOSTIC VARIABLES

Survival by Obstruction of Colon

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1-33

PROGNOSTIC VARIABLES

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

ADJUSTED

Group	Hazard Ratio	95% CI	P-value
Observation Only	1.0 (reference)		
Levamisole Only	0.97	(0.78, 1.21)	0.79
Levamisole + 5FU	0.69	(0.54, 0.87)	0.002

Adjusted for tumor differentiation (well, moderate, poor), colon obstruction (yes, no), < 4 nodes positive, extent (submucosa, muscle, serosa, contiguous tissues)

> SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 35

ADJUSTMENT VARIABLES

Variable	Hazard Ratio	95% CI
Moderate Differentiation	0.94	(0.67, 1.29)
Poor Differentiation	1.38	(0.95, 2.00)
Obstructed bowel	1.30	(1.03, 1.63)
4+ nodes positive	2.45	(2.03, 2.98)
Extent: muscle	1.41	(0.50, 3.99)
Extent: serosa	2.29	(0.85, 6.16)
Extent: contiguous	3.34	(1.15, 9.65)

Usually not presented.

ANOTHER SIMPLER EXAMPLE

Two binary variables, x_1 and x_2 and 2 treatment groups:

 $x_1 = \begin{cases} 1 & \text{Levamisole} + 5\text{FU} \\ 0 & \text{Levamisole Only} \end{cases} \qquad x_2 = \begin{cases} 1 & 4 + \text{Nodes Positive} \\ 0 & < 4 \text{ Nodes Positive} \end{cases}$

$$\lambda(t) = \lambda_0(t) e^{\beta_1 x_1 + \beta_2 x_2}$$

Interpretation of e^{β_1} :

t

"Relative risk (or hazard ratio) comparing Levamisole + 5FU to Levamisole Only among those with similar numbers of positive nodes".

 $\lambda(t) \text{ for } x_1 = 1 \text{ and } x_2: \quad \lambda_0(t)e^{\beta_1 \cdot 1 + \beta_2 x_2}$ $\lambda(t) \text{ for } x_1 = 0 \text{ and } x_2: \quad \lambda_0(t)e^{\beta_1 \cdot 0 + \beta_2 x_2}$ ratio: $e^{\beta_1(1-0) + \beta_2(x_2 - x_2)} = e^{\beta_1}$

> SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 37

HEURISTIC HAZARDS

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

SIMPLER MODEL

Variable	Hazard ratio	95% CI	P-value
Levamisole + FU	0.71	(0.56, 0.90)	0.005
4+ nodes positive	2.67	(2.10, 3.38)	< .0001

Often, second row would not be given, and group sample sizes and numbers of deaths would be presented

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 39

COLON CANCER TRIAL DATA

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

RESULTS

"There was strong evidence that adjuvant treatment with 5FU + Levamisole improves survival in stage C colon cancer patients compared to Levamisole alone. After adjustment for number of positive nodes (<4, 4+) the hazard ratio comparing 5FU + Levamisole to Levamisole was 0.71, (95% CI 0.56 - 0.90, P = .004)."

> SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 41

OUTLINE

- Review of censored data, KM estimation, logrank test and Cox model basics
- Covariate adjustment in Cox model
- Precision in Cox model
- Interaction (Effect Modification) in Cox Model
- Stratification adjustment in Cox model
- Estimation of baseline hazards and survival based on Cox model fit

MORE SECONDARY ANALYSES

- Often interested in examining a small number of subgroups to determine subjects especially benefitted by treatment.
- Should be specified in advance!
- Should be <u>few</u> in number.
- Test results are usually corrected for multiple comparisons.
- Should <u>test</u> for interaction, not just notice that the estimated hazard ratios look different.

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 43

INTERACTION

Two binary variables, x_1 and x_2 with interaction:

 $x_1 = \begin{cases} 1 & 5FU + Levamisole \\ 0 & Levamisole alone \end{cases} \qquad x_2 = \begin{cases} 1 & 4 + nodes positive \\ 0 & <4 nodes positive \end{cases}$

$$\lambda(t) = \lambda_0(t)e^{\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2}$$

Interpretation of e^{β_1} :

HR comparing 5FU + Levamisole to Levamisole only among those with fewer than 4 positive nodes.

Interpretation of $e^{\beta_1 + \beta_3}$:

HR comparing 5FU + Levamisole to Levamisole only among those with at least 4 positive nodes. $\hfill \begin{tabular}{ll} \hline \end{tabular}$

WITH INTERACTION

Two binary variables, x_1 and x_2 with interaction:

 $x_1 = \begin{cases} 1 & 5FU + Levamisole \\ 0 & Levamisole alone \end{cases} \qquad x_2 = \begin{cases} 1 & 4+ \text{ nodes positive} \\ 0 & <4 \text{ nodes positive} \end{cases}$

 $\lambda(t) = \lambda_0(t)e^{\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2}$

 $\lambda(t) \text{ for } x_1 = 1 \text{ and } x_2 = 0; \quad \lambda_0(t)e^{\beta_1 \cdot 1} \quad \lambda(t) \text{ for } x_1 = 1 \text{ and } x_2 = 1; \quad \lambda_0(t)e^{\beta_1 \cdot 1 + \beta_2 \cdot 1 + \beta_3 \cdot 1}$ $\lambda(t) \text{ for } x_1 = 0 \text{ and } x_2 = 0; \quad \lambda_0(t)e^{\beta_1 \cdot 0} \quad \lambda(t) \text{ for } x_1 = 0 \text{ and } x_2 = 1; \quad \lambda_0(t)e^{\beta_1 \cdot 0 + \beta_2 \cdot 1 + \beta_3 \cdot 0}$ $\text{ratio: } e^{\beta_1(1-0)} = e^{\beta_1} \text{ ratio: } e^{\beta_1(1-0) + \beta_3(1-0)} = e^{\beta_1 + \beta_3}$

> SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 45

PRESENTATION

- Usually we present hazard ratios at different values of the interacting/effect modifying variable with CIs and results of a test for interaction.
- Interaction term coefficient $\beta\,$ or e^{β} usually not of primary interest.
- In previous example:
 - Treatment HR when <4 nodes positive: $e^{\beta 1}$
 - Treatment HR when 4+ nodes positive: $e^{\beta 1 + \beta 3}$

HEURISTIC HAZARDS

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 47

RESULTS

	HR (5FU + Lev/Lev)	95% CI	P-value
< 4 nodes positive	0.72	(0.53, 0.97)	0.03221
4+ notes positive	0.71	(0.49, 1.02)	0.06368
Test for interaction			0.95726

RESULTS

 "We did not find evidence that the hazard ratio associated with treatment differed depending on whether the patient had four or more positive nodes. (P = .96)."

> SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 49

OUTLINE

- Review of censored data, KM estimation, logrank test and Cox model basics
- Covariate adjustment in Cox model
- Precision in Cox model
- Interaction (Effect Modification) in Cox Model
- Stratification adjustment in Cox model
- Estimation of baseline hazards and survival based on Cox model fit

RISK SET STRATIFICATION

There are two ways to adjust for a binary (or other categorical) variable:

 $x_1 = \begin{cases} 1 & \text{Levamisole} + 5\text{FU} \\ 0 & \text{Levamisole Only} \end{cases} \qquad x_2 = \begin{cases} 1 & 4 + \text{Positive Nodes} \\ 0 & <4 \text{ Positive Nodes} \end{cases}$

Dummy variable stratification:

t

 $\lambda(t) = \lambda_0(t) e^{\beta_1 x_1 + \beta_2 x_2}$

True stratification:

$$\lambda(t) = \lambda_{0x_2}(t)e^{\beta_1 x_1}$$

Stratified logrank test \approx score test of H_0 : $\beta_1 = 0$ in true stratification model.

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1-51

DUMMY VARIABLE STRATIFICATION

TRUE STRATIFICATION

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 53

t

RESULTS

"There was strong evidence that adjuvant treatment with 5FU + Levamisole improves survival in stage C colon cancer patients compared to Levamisole alone. After adjustment for number of positive nodes (<4, 4+) the hazard ratio comparing 5FU + Levamisole to Levamisole was 0.72, (95% CI: 0.57 - 0.91) P=0.005."

Very similar to covariate adjustment.

ADDING INTERACTION

Can include interaction for variable with true stratification:

$$x_1 = \begin{cases} 1 & \text{Test treatment} \\ 0 & \text{Standard treatment} \end{cases}$$
$$x_2 = \begin{cases} 1 & \text{Failed prior treatment} \\ 0 & \text{No prior treatment} \end{cases}$$

True stratification with interaction:

 $\lambda(t) = \lambda_{0x_2}(t)e^{\beta_1 x_1 + \beta_2 x_1 x_2}$

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 55

HEURISTIC HAZARDS

t

INTERACTION AND STRATIFICATION

- The interaction model does <u>not</u> violate rules about including main effects for terms that are part of interactions in a regression model.
- The "main effect" of x_2 is included in the $\lambda_{0x2}(t)$ term.

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 57

RESULTS

	HR (5FU + Lev/Lev)	95% CI	P-value
< 4 nodes positive	0.71	(0.53, 0.97)	0.03076
4+ notes positive	0.72	(0.5, 1.04)	0.07969
Test for interaction			0.97371

Very similar to covariate node4 model.

OUTLINE

- Review of censored data, KM estimation, logrank test and Cox model basics
- Covariate adjustment in Cox model
- Precision in Cox model
- Interaction (Effect Modification) in Cox Model
- Stratification adjustment in Cox model
- Estimation of baseline hazards and survival based on Cox model fit

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 59

ESTIMATING THE FUNCTIONS

• After fitting the Cox model,

$$\lambda(t) = \lambda_0(t) e^{\beta x}$$

we may be interested in estimating

- hazard: $\lambda(t)$
- cumulative hazard: $\Lambda(t)$ and
- survival function: S(t)

at values of x, consistent with the model.

• Can be done by estimating baseline versions of these: $\lambda_0(t), \Lambda_0(t)$, and $S_0(t)$, and multiplying by $e^{\hat{\beta}x}$.

BASELINE CUMULATIVE HAZARD

$$\hat{\Lambda}_{0}(t) = \sum_{j:t_{(j)} \leq t} \frac{D_{j}}{\sum_{i \in R_{j}} e^{\hat{\beta}_{1} x_{1i} + \dots + \hat{\beta}_{K} x_{Ki}}}$$

$$\uparrow \qquad \uparrow$$

observed risk set failure times

- Estimate depends on $\hat{\beta}_1, \ldots, \hat{\beta}_K$.
- Actually makes sense. Consider special cases.

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1-61

BASELINE CUMULATIVE HAZARD

$$\hat{\Lambda}_0(t) = \sum_{j:t_{(j)} \leq t} \frac{D_j}{\sum_{i \in R_j} e^{\hat{\beta}_1 x_{1i} + \dots + \hat{\beta}_K x_{Ki}}}$$

1. One group, no covariates $(\hat{\beta}_1 x_{1i} + \ldots + \hat{\beta}_K x_{Ki} = 0)$:

BASELINE CUMULATIVE HAZARD

$$\hat{\Lambda}_0(t) = \sum_{j:t_{(j)} \leq t} \frac{D_j}{\sum_{i \in R_j} e^{\hat{\beta}_1 x_{1i} + \dots + \hat{\beta}_K x_{Ki}}}$$

2. Two groups, one binary covariate:

$$\begin{aligned} x &= \begin{cases} 1 & \text{group 2} \\ 0 & \text{group 1} \end{cases} \\ \hat{\Lambda}_{0}(t) &= \sum_{j:t_{(j)} \leq t} \frac{D_{j}}{\sum_{i \in R_{j}} e^{\hat{\beta}x_{i}}} &= \sum_{j:t_{(j)} \leq t} \frac{D_{j}}{\sum_{\substack{i \in R_{j} \\ \text{Group 1}}} e^{\hat{\beta}x_{i}} + \sum_{\substack{i \in R_{j} \\ \text{Group 2}}} e^{\hat{\beta}x_{i}}} \\ \uparrow \\ \text{For Group 1} \end{aligned}$$
$$= \sum_{j:t_{(j)} \leq t} \frac{D_{j}}{n_{1j} + e^{\hat{\beta}n_{2j}}} \underbrace{\text{Effective risk set size}}_{\text{in group 1}} \end{aligned}$$

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 63

BASELINE CUMULATIVE HAZARD

$$\hat{\Lambda}_0(t) = \sum_{j:t_{(j)} \leq t} \frac{D_j}{\sum_{i \in R_j} e^{\hat{\beta}_1 x_{1i} + \dots + \hat{\beta}_K x_{Ki}}}$$

In general:

The denominator $\sum_{i \in R_i} e^{\hat{\beta}_1 x_{1i} + \ldots + \hat{\beta}_K x_{Ki}}$ is

- Bigger than N_j when the average risk for a subject in R_j is bigger than the risk for a subject in R_j with $x_{1i} = x_{2i} = \cdots = x_{Ki} = 0$
- Smaller than N_j when the average risk for a subject in R_j is smaller than the risk for a subject in R_j with $x_{1i} = x_{2i} = \cdots = x_{Ki} = 0$

BASELINE CUMULATIVE HAZARD

$$\hat{\Lambda}_{0}(t) = \sum_{j:t_{(j)} \leq t} \frac{D_{j}}{n_{1j} + e^{\hat{\beta}} n_{2j}}$$

$$\uparrow$$
Group 1

 D_j counts deaths in both groups.

- $\hat{\beta} > 0 \implies$ More deaths in group 2 Effective risk set size must be <u>in</u>creased to estimate risk in group 1.
- $\hat{\beta} < 0 \implies$ More deaths in group 1 Effective risk set size must be <u>de</u>creased to estimate risk in group 1.

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 65

COLON CANCER TRIAL DATA

	Observation Arm Omitted				
	β	$\exp(\hat{\beta})$	$se(\hat{\beta})$	Z	Pr(> z)
5FU + Lev	-0.34	0.71	0.12	-2.83	0.0064
4+ Nodes Pos	0.98	2.67	0.12	8.08	<0.0001

 $e^{\beta_{Rx}}$ CI: (0.5629, 0.9008)

LRT: 8.098 on 1 df, P = 0.0044

COLON CANCER TRIAL DATA

At average values of the predictors

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1-67

ESTIMATING Λ AND AT COVARIATE VALUES

- Baseline survival function: $\hat{S}_0(t) = e^{-\hat{\Lambda}_0(t)}$ (Since $S(t) = e^{-\Lambda(t)}$).
- At other values:

$$\hat{\Lambda}(t|x_{1i}, x_{2i}, \dots, x_{ki}) = \hat{\Lambda}_0(t)e^{\hat{\beta}_1 x_{1i} + \dots + \hat{\beta}_k x_{ki}}$$
$$\hat{S}(t|x_{1i}, x_{2i}, \dots, x_{ki}) = [\hat{S}_0(t)]^{e^{\hat{\beta}_1 x_{1i} + \dots + \hat{\beta}_k x_{ki}}}$$

COLON CANCER TRIAL DATA

Four groups, assuming proportionality within stratum

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 69

USES FOR BASELINE AND SPECIFIC-X FUNCTIONS

- To estimate survival for different covariate combinations, according to the model.
- To check the fit of the model, by comparing $\hat{\Lambda}_x(t)$ or $\hat{S}_x(t)$ to $\hat{\Lambda}(t)$ or $\hat{S}(t)$ for groups with like values of $\hat{\beta}_1 x_{1i} + \ldots + \hat{\beta}_K x_{Ki}$.
- To check whether hazards in different risk set strata are proportional.

COLON CANCER TRIAL DATA

Four groups, assuming proportionality within stratum, KM curves black

SISCR 2018: Module 13 Survival RCTs BarbaraMcKnight

1 - 71

TO WATCH OUT FOR:

- Coefficients in Cox regression are positively associated with risk, not survival.
 - Positive β means large values of x are associated with shorter survival.
- Without certain types of time-dependent covariates (more later), Cox regression does not depend on the actual times, just their order.
 - Can add a constant to all times to remove zeros (which are removed by some software) without changing inference
- For LRT, nested models must be compared based on same subjects.
 - If some values of variables in larger model are missing, these subjects must be removed from fit of smaller model.
- Coefficient interpretation depends on what other variables are in the model and how they are coded (ie. interaction terms, 0/1 vs 1/-1 etc.)
- Hazards may not be proportional
SESSION 2: WEIGHTED LOG RANK TESTS

Module 13: Survival Analysis for Clinical Trials Summer Institute in Statistics for Clinical Research University of Washington July, 2018

> Susanne May, Ph.D. Professor Department of Biostatistics University of Washington

2- 9

EXAMPLE: LBWI

Kaplan-Meier plot

SISCR 2018: SA in Clinical Trials - SMay

2 - 16

Group12kKTotalDie $d_{1(j)}$ $d_{2(j)}$ $d_{k(j)}$ $d_{k(j)}$ $D_{(j)}$ Not Die $s_{1(j)}$ $s_{2(j)}$ $s_{k(j)}$ $s_{k(j)}$ $S_{(j)}$ At Risk $n_{1(j)}$ $n_{2(j)}$ $n_{k(j)}$ $n_{k(j)}$ $N_{(j)}$ In a manner similar to the two-group case, we estimate the expected number of events for each group under an assumption of equal survival functions as	K-Gro	up Co	K- mparis	GRC ons	OUPS	5		
Die $d_{1(j)}$ $d_{2(j)}$ $d_{k(j)}$ $d_{K(j)}$ $D_{(j)}$ Not Die $s_{1(j)}$ $s_{2(j)}$ $s_{k(j)}$ $s_{K(j)}$ $S_{(j)}$ At Risk $n_{1(j)}$ $n_{2(j)}$ $n_{k(j)}$ $n_{K(j)}$ $N_{(j)}$ In a manner similar to the two-group case, we estimate the expected number of events for each group under an assumption of equal survival functions as	Group	1	2		k		К	Total
Not Die $s_{1(j)}$ $s_{2(j)}$ $s_{k(j)}$ $s_{k(j)}$ $S_{(j)}$ At Risk $n_{1(j)}$ $n_{2(j)}$ $n_{k(j)}$ $n_{k(j)}$ $N_{(j)}$ In a manner similar to the two-group case, we estimate the expected number of events for each group under an assumption of equal survival functions as	Die	d _{1(j)}	d _{2(j)}		$d_{k(j)}$		$d_{\kappa(j)}$	$D_{(j)}$
 At Risk n_{1(i)} n_{2(i)} n_{k(i)} n_{k(i)} N_(i) In a manner similar to the two-group case, we estimate the expected number of events for each group under an assumption of equal survival functions as 	Not Die	s _{1(j)}	s _{2(j)}		s _{k(j)}		S _{K(j)}	S _(j)
 In a manner similar to the two-group case, we estimate the expected number of events for each group under an assumption of equal survival functions as 	At Risk	n _{1(j)}	$n_{1(j)} = n_{2(j)} = \dots = n_{k(j)} = \dots = n_{K(j)} = N_{(j)}$					
$\hat{E}_{k(j)} = \frac{D_{(j)}n_{k(j)}}{N_{(j)}}, \ k = 1, 2,, K$								

	TREND ANALYSIS						
•	 Trend test 						
	Groups						
	Obs	0	0				
	Lev	1	0.25				
	Lev+5FU	2	1				
			p-v	alue			
	Log-rank	0.002	0.0007				
	Wilcoxon	0.007	0.002				
	Tarone-Ware	0.004	0.001				
	Peto-Prentice	0.005	0.002				
	SISCR 2018: SA in Clinical Trials - SMay 2 -						

TREND ANALYSIS Trend test							
Groups	0	0	0				
edO	0	0	0				
Lev	1	0.25	0.75				
Lev+5FU	2	1	1				
	<i>p</i> – value						
Log-rank	0.002	0.0007	0.01				
Wilcoxon	0.007	0.002	0.008				
Tarone-Ware	0.004	0.001	0.02				
Peto-Prentice	0.005	0.002	0.02				
	SISCR 201	8: SA in Clinical Trials - S	Мау	2 -	29		

	TREND ANALYSIS						
 Trend test 							
Groups							
Obs	0	0	0	0			
Lev	1	0.25	0.75	?			
Lev+5FU	2	1	1	1			
		p-v	alue				
Log-rank	0.002	0.0007	0.01	0.79			
Wilcoxon	0.007	0.002	0.008	0.96			
Tarone-Ware	0.004	0.001	0.02	0.87			
Peto-Prentice	0.005	0.002	0.02	0.93			
Flem-Harr(1,.3)	0.0007	0.0002	0.004	0.69			
	Fight 0.0007 0.0002 0.004 0.09 SISCR 2018: SA in Clinical Trials - SMay 2 - 30 30						

Dose example, 29 animals							
df	Chi2	P-value					
2	8.05	0.018					
2	9.04	0.011					
1	5.87	0.015					
1	6.26	0.012					
1	3.66	0.056					
1	3.81	0.051					
	df 2 2 1 1 1 1 1	df Chi2 2 8.05 2 9.04 1 5.87 1 6.26 1 3.66 1 3.81					

Test	Statistic	p – value	
Log-rank		?	
Wilcoxon		?	
Peto-Prentice		?	
Tarone-Ware		?	
FI-Ha(1,0)		?	
FI-Ha(0,1)		?	

Log-rank 0.23 0.64 Wilcoxon 3.96 0.047 Peto-Prentice 4.00 0.046 Tarone-Ware 1.90 0.17
Wilcoxon 3.96 0.047 Peto-Prentice 4.00 0.046 Tarone-Ware 1.90 0.17
Peto-Prentice4.000.046Tarone-Ware1.900.17
Tarone-Ware 1.90 0.17
Fl-Ha(1,0) 2.59 0.11
FI-Ha(0,1) 4.72 0.03

•	EXAMPLE 1 REVISITED Tumor differentiation by treatment group 						
	Groups	Obs	Lev	Lev+5FU	Total		
	Well	27	37	29	93		
	Moderate	229	219	215	663		
	Poor	52	44	54	150		
	Total	308	300	298	906		
		SISCR 201	8: SA in Clinical Trials - S	May	2 -	54	

STRA	TIFIED	LOG-RA	NK TEST		
Well differentiated	Observed Events	Expected Events			
Obs	18	16.7			
Lev	16	10.6			
Lev+5FU	8	14.7			
	42	42			
Moderately differentiated	Observed Events	Expected Events			
Obs	109	98.7			
Lev	115	105.4			
Lev+5FU	87	106.9			
	311	311.0			
	SISCR 201	8: SA in Clinical Trials - SMa	ау	2 -	

STRATIFIED LOG-RANK TEST						
Poorly differentiated	Observ Event	/ed ts	Expected Events			
Obs	27		24.8			
Lev	34		30.5			
Lev+5FU	27		32.7			
	88		88.0			
		Co di	ombined over ifferentiation strata	Observed Events	Expected Events	
			Obs	154	140.1	
$\chi(2) = 10.5$			Lev	165	146.5	
P-value: 0 (005		Lev+5FU	122	154.4	
				441	441.0	
SISCR 2018: SA in Clinical Tria				у	2 - 58	

COMPARISON	STRATA V	S NO S	TRATA
1 $Y(2) = 10.5$	Combined over differentiation strata	Observed Events	Expected Events
$\lambda(2) = 10.0$	Obs	154	140.1
P-value: 0.005	Lev	165	146.5
	Lev+5FU	122	154.4
		441	441.0
	Without strata	Observed Events	Expected Events
	Obs	161	146.1
	Lev	168	148.4
- r-value. 0.003	Lev+5FU	123	157.5
		452	452
SI	SCR 2018: SA in Clinical Trials - SMa	у	2 - 59

2 - 60

(FAIR) COMPARISON STRATA VS NO STRATA							
 <i>χ</i>(2) = 10.5 P-value: 0.005 	Combined over differentiation strata	Observed Events	Expected Events				
	Obs	154	140.1				
	Lev	165	146.5				
	Lev+5FU	122	154.4				
		441	441.0				
	Without strata	Observed Events	Expected Events				
$\chi(2) = 10.6$	Obs	154	141.4				
	Lev	165	145.3				
- F-value. 0.005	Lev+5FU	122	154.3				
		441	441.0				
SI	у	2 - 62					

		30 5	STRAT	A			
		# of prox	. vessels				
# vessels	0	1	2	3			
0	5-11				Left		
0	12-16				Ventricular		
0	17-30				Score		
1	5-11	5-11					
1	12-16	12-16					
1	17-30	17-30					
2	5-11	5-11	5-11				
2	12-16	12-16	12-16				
2	17-30	17-30	17-30				
3	5-11	5-11	5-11	5-11			
3	12-16	12-16	12-16	12-16			
3	17-30	17-30	17-30	17-30			
		SISCR 2018:	SA in Clinical Trials -	SMay		2 -	66

SESSION 3: ADDITIONAL TWO-SAMPLE TESTS

Module 13: Survival Analysis in Clinical Trials Summer Institute in Statistics for Clinical Research University of Washington July, 2017

> Barbara McKnight, Ph.D. Professor Department of Biostatistics University of Washington

OUTLINE

- Limitations of proportional hazards
- Other contrasts based on functionals of S(t)
 - S(t) at fixed time point
 - Quantiles (eg. median)
 - Mean survival time
 - Restricted mean survival time
- Other metrics to describe the distance between survival curves
 - Weighted difference in S(t)
 - Maximum difference (Kolmogorov Smirnov)
 - Integrated squared difference (Cramér von Mises)
OUTLINE

- Limitations of proportional hazards
- Other contrasts based on functionals of S(t)
 - S(t) at fixed time point
 - Quantiles (eg. median)
 - Mean survival time
 - Restricted mean survival time
- Other metrics to describe the distance between survival curves
 - Weighted difference in S(t)
 - Maximum difference (Kolmogorov Smirnov)
 - Integrated squared difference (Cramér von Mises)

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 3

PROPORTIONAL HAZARDS EXAMPLES

PROPORTIONAL HAZARDS EXAMPLES

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 5

PROPORTIONAL HAZARDS EXAMPLES

PROPORTIONAL HAZARDS EXAMPLES

Q: Which group has better survival in these examples?A:

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 7

NON-PROPORTIONAL HAZARDS EXAMPLES

NON-PROPORTIONAL HAZARDS EXAMPLES

Q: Why does it appear the hazards are not proportional?

A:

Q: Which group has better survival?A:

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 9

NON-PROPORTIONAL HAZARDS EXAMPLES

YOUR CHOICE

• Which group has better survival?

• You are a newly diagnosed patient. What would you want to know before choosing whether to take treatment?

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 11

REAL DATA

Schein PS, Gastrointestinal Tumor Study Group. A comparison of combination chemotherapy and combined modality therapy for locally advanced gastric carcinoma. <u>Cancer</u>. 1982 May 1;49(9):1771–1777.

HAZARD RATIO

Log Hazard ratio: C+R to C only Based on Schoenfeld Residuals

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 13

HAZARD RATIO

	Hazard Ratio	95% CI	P-value
Chemotherapy	1.0 (reference)		
Chemotherapy + Radiotherapy	1.1	(0.72, 1.7)	.63

Assuming hazard ratio is constant...

CROSSING HAZARDS

When the proportional hazards assumption doesn't hold:

- Cox model will give weighted-average of time-specific hazard ratios (weights depend on censoring distribution)
- log rank test will test whether a weighted-average difference of hazards is zero
 - statistic numerator = $\sum_{j} \frac{n_{1j}n_{2j}}{(n_{1j}+n_{2j})} (\frac{d_{1j}}{n_{1j}} \frac{d_{2j}}{n_{2j}})$
 - More weight at earlier times when number at risk is larger
- May not be the quantity on which you want to base inference (estimation and testing)

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 15

OUTLINE

- Limitations of proportional hazards
- Other contrasts based on functionals of S(t)
 - S(t) at fixed time point
 - Quantiles (eg. median)
 - Mean survival time
 - Restricted mean survival time
- Other metrics to describe the distance between survival curves
 - Weighted difference in S(t)
 - Maximum difference (Kolmogorov Smirnov)
 - Integrated squared difference (Cramér von Mises)

FIVE-YEAR SURVIVAL

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 17

FIVE-YEAR SURVIVAL

- Compares only at a single point in time
- Ignores earlier survival differences, which may be important to some patients, given that in this example survival to 5 years in either group is low

S(t) AT A CHOSEN TIME t

- Choose time t for comparison at design stage.
- Compare $\hat{S}_1(t)$ to $\hat{S}_2(t)$ using

$$\frac{\hat{S}_1(t) - \hat{S}_2(t)}{\sqrt{\widehat{\text{var}}(\hat{S}_1(t)) + \widehat{\text{var}}(\hat{S}_2(t))}}$$

where $\widehat{var}(\widehat{S}_2(t))$ is computed using Greenwood's formula or another large-sample formula such as the one based on the complementary log-log of $\widehat{S}(t)$.

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 19

FIVE-YEAR SURVIVAL DIFFERENCE

Gastric Cancer

Difference	se(Difference)	Z Statistic	P-value
.0889	.0656	1.36	.1753

COMPARISON AT MORE THAN ONE TIME

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 21

AVERAGE DIFFERENCES

- Average difference between survival curves over time might be of interest
- In gastric cancer example, differences are of different signs at different times, so there would be cancellation
- Allows poorer survival after survival curves cross to detract from better survival before
- Interpretation?
- Also related to average quantile difference

OUTLINE

- · Limitations of proportional hazards
- Other contrasts based on functionals of S(t)
 - S(t) at fixed time point
 - Quantiles (eg. median)
 - Mean survival time
 - Restricted mean survival time
- Other metrics to describe the distance between survival curves
 - Weighted difference in S(t)
 - Maximum difference (Kolmogorov Smirnov)
 - Integrated squared difference (Cramér von Mises)

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 23

MEDIAN SURVIVAL

MEDIAN SURVIVAL

- Compares only a single quantile
- Hard for some patients to interpret the difference in medians

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 25

MEDIAN TEST

Idea: Define \hat{M}_1 and \hat{M}_2 to be the median survival times in the two samples.

Then let the overall median survival time be defined by the weighted average.

$$\hat{M} = \frac{N_1}{N}\hat{M}_1 + \frac{N_2}{N}\hat{M}_2$$

A test of $H_0: M_1 = M_2$ can be performed by testing

$$H_0: S_1(\hat{M}) = S_2(\hat{M})$$

Reference distribution based on joint asymptotic distribution of $(S_1(\hat{M}), S_2(\hat{M}))$.

Brookmeyer R, Crowley J. JASA 1982;77(378):433–440.

MORE THAN ONE QUANTILE

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 27

OUTLINE

- Limitations of proportional hazards
- Other contrasts based on functionals of S(t)
 - S(t) at fixed time point
 - Quantiles (eg. median)
 - Mean survival time
 - Restricted mean survival time
- Other metrics to describe the distance between survival curves
 - Weighted difference in S(t)
 - Maximum difference (Kolmogorov Smirnov)
 - Integrated squared difference (Cramér von Mises)

Useful Fact:
$$\int_0^\infty S(t)dt = E(T) = \int_0^\infty tf(t)dt$$

Proof:
$$\int_0^\infty S(t)dt = S(t)t|_0^\infty - \int_0^\infty t(-f(t))dt = \int_0^\infty tf(t)dt$$

by integration by parts and

the fact that $E(T) < \infty \Rightarrow tS(t) \xrightarrow{t \to \infty} 0$.

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 29

MEAN SURVIVAL TIME

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 31

MEAN SURVIVAL TIME

- Mean survival time $\mu = \int_0^\infty S(t) dt$
- Large sample (asymptotic) distribution proved by Gill in The Annals of Statistics. 1983;11(1):49–58.
- In finite samples, can be infinite if last time is a censoring
 - Integrate to last failure time only
 - Integrate to last observed time only

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 33

MEAN SURVIVAL TIME

	Mean Survival*	SE
Chemotherapy	24.1 months	3.3 months
Chemotherapy + Radiotherapy	24.3 months	4.8 months

* Up to 99.6 months (last observed time in either group)

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 35

MEAN SURVIVAL TIME DIFFERENCE

- Average of survival function differences over time
- Average of survival quantile differences over quantiles
- Allows cancellation
- Not much information at late times where few are at risk.
- Infinite estimate if KM curve doesn't descend to zero
- May want to truncate to a shorter interval, restricting to times where *S*(*t*) estimates are precise

OUTLINE

- Limitations of proportional hazards
- Other contrasts based on functionals of S(t)
 - S(t) at fixed time point
 - Quantiles (eg. median)
 - Mean survival time
 - Restricted mean survival time
- Other metrics to describe the distance between survival curves
 - Weighted difference in S(t)
 - Maximum difference (Kolmogorov Smirnov)
 - Integrated squared difference (Cramér von Mises)

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 37

RESTRICTED MEAN SURVIVAL TIME

MOTIVATION

- Clinically Interpretable ("over the next five years, patients like you live, on average, 13 months longer")
- Power/precision depends on length of observation time as well as number of events. Can achieve enough power/precision for meaningful comparisons with smaller studies.
- May be better measure for non-inferiority safety studies where events are rare. (Uno H et al. <u>Ann Intern Med</u> 2015; 21;163(2):127–134.) "Average number of days out of n event free."
- Excellent motivation when survival curves do not cross.

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 39

RESTRICTED MEAN SURVIVAL TIME

- Interpretation: average time lived in the interval $[0, \tau]$.
- Interpretation for differences: on average, the amount more time lived in $[0, \tau]$ on treatment A than on treatment B.
- Some asymptotically equivalent ways to estimate it:

$$-\hat{\mu} = \int_0^\tau \hat{S}(t) dt$$

- $\frac{1}{n}\sum_{i=1}^{n}\frac{d_{i}y_{i}}{\hat{s}_{c(y_{i})}}$ where $\hat{S}_{c(y_{i})}$ is the KM estimated survival function of the censoring distribution
- Using pseudo-observations based on the jackknife.

$$\hat{\mu} = \sum_{i=1}^{n} \hat{\mu}_i,$$

RESTRICTED MEAN SURVIVAL DIFFERENCE

- Standard estimation and testing:
 - $-\hat{\mu}_k = \int_0^\tau \hat{S}_k(t) dt$
 - $\widehat{\operatorname{var}}(\hat{\mu}_k) = \sum_{j=1}^{J} \left[\int_{t_j}^{\tau} \hat{S}_K(t) dt \right]^2 \frac{D_{jk}}{N_{jk}(N_{jk} D_{jk})}$
 - Compare test statistic:

$$T = \frac{\hat{\mu}_1 - \hat{\mu}_2}{\sqrt{\widehat{\operatorname{var}}(\hat{\mu}_1) + \widehat{\operatorname{var}}(\hat{\mu}_2)}}$$

to standard normal distribution (asymptotic).

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 41

RESTRICTED MEAN SURVIVAL TIME

$$E[\min(T,\tau)] = \widehat{E[Y]} = \int_0^\tau \hat{S}(t) dt$$

Several approaches to variance estimation:

- Asymptotic
- Random perturbation resampling method (Tian L, Zhao L, Wei LJ. Predicting the restricted mean event time with the subject's baseline covariates in survival analysis. Biostat. 2014 Apr 1;15(2):222–233.)
- Variance of pseudo observations

PSEUDO OBSERVATIONS

- There are a number of other less direct ways to estimate $\mu_k = \int_0^{\tau} \hat{S}_k(t) dt$ that make generalizing to regression models easier.
- One appealing method uses pseudo-observations based on the jackknife.
 - Group means computed in the usual way from pseudoobservations
 - Standard errors computed from pseudo-observations in the usual way.
 - Test statistic based on two-sample t-test (unequal variances) with pseudo-observations.

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 43

PSEUDO OBSERVATIONS

Estimation of μ using pseudo-observations based on the jackknife.

$$\hat{\mu} = \sum_{i=1}^{n} \hat{\mu}_i,$$

where $\hat{\mu}_{i} = n\hat{\mu} - (n-1)\hat{\mu}_{-i}$.

- $\hat{\mu}$ is computed by the first method from the pooled sample, and
- $\hat{\mu}_{-i}$ is computed the same way but leaving out the i^{th} observation.
- Andersen et al. Lifetime Data Anal. 2004;10(4):335–350.
- Functions available in Stata, R and SAS.

RESTRICTED MEAN SURVIVAL TIME

	Restricted Mean Survival (2000 days)	SE
Chemotherapy	673	77.8
Chemotherapy + Radiotherapy	599	101.1

Comparison Method	P-value
Asymptotic	.560
Pseudo observations	.566

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 45

DESIGN AND INFERENCE ISSUES

- Not much information / precision available at late times when few subjects are at risk
 - If a restricted mean over an interval [0, τ] is of interest, important to follow subjects enough longer than τ to have an adequate number still at risk at time τ.

EXAMPLE

- Schermerhorn et al. (2015) compared survival in a matched cohort of 39,966 pairs of Medicare patients who received either endovascular or open repair of an abdominal aortic aneurism.
 - Perioperative mortality and complication rates were higher in those given open repair: 5.2% vs 1.6% for mortality and 12.9% vs 3.8%
 - The estimated hazard ratio for death comparing endovascular to open repair varied over time:
 - HR = .32 (95% CI: .29 .35) over the first 30 days
 - HR = .64(95% CI: .58 -.71) for 30 90 days
 - HR = 1.17(95% C: I 1.13 1.21) for 90 days 4 years
 - HR = 1.05 (95% CI: 1.00 1.09) after 4 year.

Schermerhorn ML, Buck DB, O'Malley AJ et al. NEJM 2015 Jul 23;373(4):328–338.

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 47

EXAMPLE

- Because of non-proportional hazards they estimated differences in restricted mean survival using the pseudo observation approach of Andersen et al with the matchedpair data.
 - Over the first 4 years, the endovascular group lived an average of 12.4 days longer (95% Cl 9.0 15.6)
 - Over the first 7 years, the endovascular group lived an average of 8.2 days longer (95% CI: 1.5-14.4)
 - The authors concluded that the advantage of endovascular repair persisted to 7 years.
- The pseudo-observation approach makes it easy to accommodate the matched design.

SCREENING TRIAL

- 202,546 women 50-72 years of age, England, Wales, Northern Ireland
- Randomized to one of three arms in 1:1:2 ratio between June 1, 2001 and Oct 21, 2005.
 - Annual multimodal screening (serun CA 125 + algorithm)
 - Annual transvaginal ultrasound
 - No screening
- Screening ended Dec 31, 2011.
- Not blinded

• Primary outcome: death from ovarian cancer (by end of 2014) Jacobs IJ, Menon U, Ryan A, et al. (2016) The Lancet. 387(10022):945–956.

> SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 49

OVARIAN CANCER SCREENING TRIAL

- Primary analysis: Cox regression (proportional hazards)
 - MMS vs. no screening: Mortality reduction =
 - (1 HR)100 = 15% (95% CI: -1% 33%) P = .10
 - USS vs. no screening: Mortality reduction =

(1 – HR) 100 = 11% (95% CI: -7% - 27%) P = .21

OVARIAN CANCER SCREENING TRIAL

OVARIAN CANCER SCREENING TRIAL

- Secondary analyses, excluding prevalent cases:
- Post-hoc Weighted* logrank test:
 - MMS mortality reduction = 22% (3-38%) P = .023
 - USS mortality reduction = 20% (0 35%) P = .049
 - * by pooled cumulative mortality

SURVEY

- Trinquart et al. (JCO. 2016; 20; 34(15):1813–1819) surveyed oncology RCTs reported in five journals during the last six months of 2014.
 - 54 trials, 33,212 patients
 - Reconstructed data
 - 13 (24%) had evidence of non-proportional hazards
 - Compared tests based on HR treatment effect with tests based on ratio and difference of RMST.
 - Statistical significance in agreement between HRbased and RMST-based tests for 53 out of 54 trials.

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 53

OUTLINE

- Limitations of proportional hazards
- Other contrasts based on functionals of S(t)
 - S(t) at fixed time point
 - Quantiles (eg. median)
 - Mean survival time
 - Restricted mean survival time
- Other metrics to describe the distance between survival curves
 - Weighted difference in S(t)
 - Maximum difference (Kolmogorov Smirnov)
 - Integrated squared difference (Cramér von Mises)

ANOTHER OPTION: METRICS

- Tests based on detecting consistent differences between survival curves or hazard across time lose power when the hazards or survival curves cross.
- Weighting can focus on a time period when direction of differences is consistent.
- Other metrics can measure distance between survival functions or hazard functions in a way that does not require the direction of differences to be consistent
- Tests based on them can have more power to detect a difference when survival functions or hazards cross. (Need to think about whether the difference detected is of interest.)

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 55

METRICS

 Weighted difference between Kaplan-Meier estimates (Pepe MS, Fleming TR. <u>Biometrics</u>. 1989;497–507).
Choose weights based on toxicity profile, for example.

 $\sqrt{\frac{n_1n_2}{n}} \int_0^\infty \hat{w}(t) [\hat{S}_2(t) - \hat{S}_1(t)] dt$

 Weighted difference between Kaplan-Meier estimates with adaptively chosen weights (Uno et al. <u>Statistics in</u> <u>Medicine</u>, 2015; 34(28):3680–3695).

Hard to know what parameter is being compared.

OUTLINE

- Limitations of proportional hazards
- Other contrasts based on functionals of S(t)
 - S(t) at fixed time point
 - Quantiles (eg. median)
 - Mean survival time
 - Restricted mean survival time
- Other metrics to describe the distance between survival curves
 - Weighted difference in S(t)
 - Maximum difference (Kolmogorov Smirnov)
 - Integrated squared difference (Cramér von Mises)

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 57

METRICS

• Supremum: Tests based on the supremum of a difference of cumulative weighted hazard functions over $[0, t_m]$:

$$\sup_{t \in [0, t_m]} \sum_{i: t_i < t} W_i \frac{n_{1i} n_{2i}}{n_{1i} + n_{2i}} (\frac{d_{1i}}{n_{1i}} - \frac{d_{1i}}{n_{1i}})$$

- Gill, R.D. (1980). Censoring and stochastic integrals. Math. Centre Tracts 124, Mathematisch Centrum Amsterdam.
- Fleming TR, O'Fallon JR, O'Brien PC, Harrington DP. Biometrics. 1980;36(4):607–625.
- Fleming TR, Harrington DP, O'Sullivan M. JASA. 1987;82(397):312–320.

OUTLINE

- Limitations of proportional hazards
- Other contrasts based on functionals of S(t)
 - S(t) at fixed time point
 - Quantiles (eg. median)
 - Mean survival time
 - Restricted mean survival time
- Other metrics to describe the distance between survival curves
 - Weighted difference in S(t)
 - Maximum difference (Kolmogorov Smirnov)
 - Integrated squared difference (Cramér von Mises)

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 59

METRICS

• l^2 : Tests based on the integrated squared difference of survival or cumulative hazard functions over $[0, t_m]$:

$$\sum_{t_i:t_i \leq t_m, \delta_i = 1} (\hat{S}_2(t_i) - \hat{S}_1(t_i))^2 d(-\hat{S}(t_i))$$

or

$$\sum_{t_i:t_i \le t_m, \delta_i = 1} ((\hat{S}_2(t_i) - \hat{S}_1(t_i))W_i)^2 d(\hat{H}(t_i))$$

where the weight function W_i and H are functions of the asymptotic covariance of the cumulative hazard estimator at different times.

- Koziol Biom. J. 1978;20(6):603–608.
- Koziol, Yuh . Biom. J. 1982;24(8):743-750.
- Schumacher. International Statistical Review 1984;52(3):263–281.

ISSUE

- Hard to think of a good scientific hypothesis that specifies which of these metrics and associated tests is consistent with the hypothesis.
- Large temptation to choose the type of test <u>after</u> looking at the data and noticing crossing hazards or crossing survival functions in the search for a powerful test.
- Scientific hypotheses more likely to be consistent with a difference between functionals of the survival function S(t).

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 61

OTHER POSSIBILITIES

- Test based on Cox model with time-dependent interaction terms (time-dependent coefficients). Some on this tomorrow.
- Test based on specific richer model for how hazard ratio depends on time (Yang S, Prentice R. Biometrika. 2005;92(1):1–17).

$$\frac{\lambda_2(t)}{\lambda_1(t)} = \frac{\theta_0 \theta_\infty}{\theta_0 + (\theta_\infty - \theta_0)S_1(t)}$$

parameterized by θ_0 , the limiting hazard ratio as $t \to 0$ and θ_{∞} , the limiting hazard ratio as $t \to \infty$

TO WATCH OUT FOR

- Base quantity to be compared (weighted sum for logrank, time, quantile or restricted mean) on what would be meaningful in the context of the trial.
- Important to choose it <u>before</u> looking at the data.

SISCR 2018: Module 13 Survival RCTs Barbara McKnight

3 - 63

SESSION 4: SELECTED TOPICS

Module 13: Survival Analysis for Clinical Trials Summer Institute in Statistics for Clinical Research University of Washington July, 2018

> Susanne May, Ph.D. Professor Department of Biostatistics University of Washington

<u>4</u>

		ΕX	Kampli	Ξ		
 Total Sam Month , N Log Rank for a Tota 	nple Size an lecessary to Test with a Length of S	d Required Detect the Significan Study of 5	d Number o e Stated Ha ce Level of Years.	f Subjects zard Ratio 5 Percent	to be Rec Using a T and 80 Pe	ruited per wo-Sided ercent Power
	Hazard Ratio					
		Length of	0.75	0.5	0.25	
	Percent Lost	Recruit-	Required Number of Events			
	(per/ year)	ment Pe- riod	380	68	20	
	5	1	1114, 92.8	278, 18.9	78, 6.5	
		2	1228, 51.1	252, 10.5	88, 3.6	
		3	1358, 37.7	280, 7.8	98, 2.7	
		4	1552, 32.3	320, 6.7	112, 2.3	
	10	1	1176, 98	238, 19.8	82, 6.8	
		2	1288, 53.6	262, 10.9	90, 3.8	
		3	1418, 39.4	290, 8.1	100, 2.8	
		4	1614, 33.6	332, 6.9	116, 2.4	
		1	1250, 104.1	252, 20.9	86, 7.1	
		2	1358, 56.6	276, 11.5	94, 3.9	
1		3	1488, 41.3	302, 8.4	104, 2.9	
		4	1688, 35.1	344, 7.2	119, 2.5	
		SISCR: S	A in Clinical Trials -	SMay		4 - 45

