SESSION 1:
REVIEW AND COX MODEL
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Module 17: Survival Analysis for Observational Data
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Barbara McKnight, Ph.D. and Susanne May, Ph.D.
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Department of Biostatistics
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OVERVIEW

Session 1

— Quick review of introductory material

— Adjustment in the Cox model: confounding and precision

— Effect modification in the Cox model
Session 2

— Nonparametric hazard function estimation

— Competing risks

— Cumulative Incidence estimation
Session 3

— Left entry and left truncation

— Choice of the time variable

— Interactions with functions of time
Session 4

— Immortal time bias

— Time-dependent covariates
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OUTLINE

Review of censored data, KM estimation, logrank test
and Cox model basics

Covariate adjustment in Cox model
Stratification adjustment in Cox model
Interaction (Effect Modification) in Cox Model

Precision in Cox model
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CENSORED DATA

id Y &

° 1 5 1

' 2 3 1

A 3 65 0

— 't 4 2 0
o 5 4 1

—o 6 1 1

survival time

“Censored” observations give some information about their survival time.
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id

RISK SETS

0 2 4 6 8
survival time
R, R, R, R,
{1,23,456} {1,2,3,5413,5} {13}
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CENSORED DATA ASSUMPTION

* Important assumption: subjects who are censored at
time t are at the same risk of dying at t as those at
risk but not censored at time t.
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MEDIAN & SURVIVAL CENSORED DATA

Median Estimate, Censored Data
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EQUIVALENT CHARACTERIZATIONS

* Any one of the density function( f(t)), the survival
function(S(t)) or the hazard function(A(t)) is enough to
determine the survival distribution.

e They are each functions of each other:

o S(t)= ftoof(s)ds — o~ JoMs)ds
o f(t)= —%S(t) =\(t)e” JoA(s)ds

« M) =L3
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LOGRANK TEST

* The test is based on a 2x2 table of group by current
status at each observed failure time (ie for each risk
set)

* T,y j=1,...m, as shown in the Table below.

Die

dy dy) D)
Survive Nyd1)= S1) Nagyda) = Sz(y Niy~Dg) = Sg
At Risk 1) ) N
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LOGRANK TEST

¢ Detects consistent differences between survival curves over
time.

e Best power when:
— Hg: S,(t) = S,(t) for all t vs Hyp: S(t) = [S,(t)]¢ , or
— Hg: Ay (t) = Ay(t) for all t vs Hu: A (t) = c A,(t)

* Good power whenever survival curve difference is in
consistent direction
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LOGRANK TEST
Can Detect This But Not This
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Other tests (generalized Wilcoxon and others) can give more weight to early
or late differences.
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COX REGRESSION MODEL

e Usually written in terms of the hazard function

e As a function of independent variables x1, X2, ... Xk,

M) = Ao(t)ePrxa+--+Bixk
!

relative risk / hazard ratio

logA(t) = logAo(t)+ B1x1+ -+ BrXk
T

intercept
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EXAMPLE

Proportional Hazards Parallel Log Hazards

logA(t)
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RELATIONSHIP TO SURVIVAL FUNCTION

Single binary x:

_ [ 1 Testtreatment
X 0 Standard treatment

A(t) = Ao(D)eP* = S(t) = [So(H)]¢™

In terms of Sq(t):

S() forx=1: [So(H)]¢"" =[So()]¢*
S(H) forx=0: [So(H)]¢"° =[So()]* = So(t)
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CONFOUNDING

* Observational data: sometimes observed
associations between an explanatory variable and
outcome can be due to their joint association with
another variable.

— Age related to both sex and risk of death.

— Age related to immunoglobulin levels and risk of
death (example next)
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SURVIVAL AND IG

* Random subset of the data from A. Dispenzieri, J.
Katzmann, R. Kyle, D. Larson, T. Therneau, C. Colby, R.
Clark, G. Mead, S. Kumar, L.J. Melton Ill, and S.V.
Rajkumar. Use of monoclonal serum immunoglobulin
(ig) free light chains (flc) to predict overall survival in
the general population. Mayo Clinic Proc, 87:512—
523, 2012.

* Are high free-chain ig levels associated with survival?
— Population-based Olmstead County example
— Men and women 50+ years of age

SISCR 2018 Module 17
Survival Observational S. May 1-16

7/10/2018



TOP DECILE FLC
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coef  exp(coef) se(coef) z Pr(>|z])
topdecileTRUE ~ 1.452639  4.274378 0.0523126 27.7684 0
25 % 97.5 %
topdecileTRUE  3.857841 4.735389
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ADJUSTED COX REGRESSION

coef  exp(coef) se(coef) z  Pr(>[z])
topdecileTRUE  0.8012613  2.228350 0.0543721 14.73663 0
age 0.1018649  1.107234 0.0022780 44.71700 0

25 % 97.5 %

topdecileTRUE 2.003096 2.478934
age 1.102301  1.112189
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WHY?

100-

age

\ .
FALSE TRUE
topdecile
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ADJUSTMENT MODEL

One binary variable, x1, with continuous adjustment variable x;:

X1 = 1 Top decile FLC
1= 1 0 Otherwise

X2 = Age in years

A(t) = Ag(t)ePrx1+haxz

Interpretation of ef1:

"Relative risk (or hazard ratio) comparing top decile FLC to the rest,
among those of the same age".

A(t) for x1 =1 and x2:  Ag(t)efrlthaxz
A(t) for x; =0 and x2:  Ag(t)ePr0+h2x2

ratio: ePf1(1-0)+B2(x2—x2) = gh1
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hazard

ADJUSTMENT

Proportional Hazards Parallel Log Hazards

—— Bottom 9
- - Top Decile

—— age 60
age 80

log hazard

' — Bottom 9
- - Top Decile
________ - —— age 60
M age 80
time time
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RESULTS

* “We found strong evidence that adjusted for age,
free light chain(FLC) values in the top decile were
associated with the risk of death (P <.0001). Among
individuals of the same age, we estimate that having
an FLC value in the top decile is associated with 2.23
times the hazard of death (95% Cl: 2.00, 2.48).
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STRATIFICATION ADJUSTMENT

One binary variable, x1, with grouped adjustment variable x3:

Xe = 1 Top decile FLC
171 0 Otherwise

age 50-59

290 60-69 A() = Aox (D)
age 70-79

age 80-89

age 90+

X2 =

B WNE=EO
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STRATIFICATION ADJUSTMENT

A(t) = Aox, (H)ePX1

Interpretation of ef1:

"Relative risk (or hazard ratio) comparing top decile FLC to the rest,
among those in the same age group".

A(t) forx; =1 and x3:  Agy,(t)efrl
A(t) for x1 = 0 and x2:  Aox,(t)efr0

ratio: %eﬂlu_m =ehr
x2
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hazard

STRATIFICATION ADJUSTMENT
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INTERACTION

One binary variable with continuous linear interaction, x; and x2

_ [ 1 Top Decile FLC
X1=1 0 Otherwise

X2 = Age in years

A() = )\O(t)eB1X1+Bzxz+ﬁ3X1xz

Interpretation of ef1:

"Relative risk (or hazard ratio) comparing top decile FLC to the rest

among those with age (= x) = zero".

Interpretation of ef1+x2f3;

"Relative risk (or hazard ratio) comparing top decile FLC to the rest

among those with age = x>".

At)forx; =1 and xp =0: Ag(t)efrl A(t) forx; =1and xp #0:  Ag(t)efrl+haxa+fs1lxz
A(t) forx; =0 and x2 = 0:  Ao(t)efr0 A(t) for x;1 =0 and xp #0:  Ag(t)ePr0+B2x2+f3:0

ratio: eP1(1-0) = gh1 ratio: eP1(1-0)+B3(x2—0) — gB1+x263
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hazard

INTERACTION
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coef exp(coef) se(coef) z  Pr(>|z])
topdecileTRUE 27312322 15.3517922 0.4154009  6.574930 0.0e+00
age 0.1067648 1.1126726 0.0025185 42.392311  0.0e4-00

topdecileTRUE:age

-0.0252304

0.9750852  0.0054342

-4.642936 3.4e-06

25 % 97.5 %
topdecileTRUE 6.8009436  34.6536508
age 1.1071938 1.1181785
topdecileTRUE:age 0.9647549 0.9855261
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TOP DECILE HR BY AGE
age exp(coef) z  Pr(>z|) 25 % 97.5 %
50 3.897886 8.499784 0.00e+00 2.848328 5.334189
60 3.077554 10.309487 0.00e+00 2.485373 3.810831
70  2.429865 13.162515 0.00e+00 2.128957 2.773302
80 1.918486 10.861243 0.00e+00 1.705679 2.157843
90 1.514729 4.368336 1.25e-05 1.257254  1.824932
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ADJUSTMENT AND PRECISION

In Cox regression, addition of variables to a model that are associated
only with the outcome can improve power.

There is little effect on the coefficient estimate for other variables (eg
treatment) or their standard errors, except when the association between
outcome and the added variable is very strong.

When there is an effect of adding a predictive variable, this is what
happens to inference for the treatment variable or other variable of
interest:

— The standard error of its coefficient increases
— The estimate of the coefficient moves farther from zero

— The test of whether the coefficient is zero has more power.
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PRIMARY BILIARY CIRRHOSIS

Clinical trial with virtually no treatment effect

Conducted before widespread use of immune
suppressive therapies

Good data for examining prognostic factors in PBC

Some patients received liver transplant—treated as
censored here

Serum bilirubin associated with survival
Treating age as a “precision variable”
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coef  exp(coef) se(coef) z  Pr(>z])
bili  0.1418533 1.152408 0.0115685 12.26201 0
25 % 97.5 %
bili  1.126572  1.178836
coef  exp(coef) se(coef) z  Pr(>|z|)
bili  0.1436238  1.154450 0.0114189 12.577714 Oe-+00
age 0.0431303 1.044074 0.0080554 5.354198 1e-07
25 % 97.5 %
bili 1.128899 1.180578
age 1.027719 1.060689
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TO WATCH OUT FOR:

Coefficients in Cox regression are positively associated with risk, not
survival.

— Positive B means large values of x are associated with shorter survival.

Without certain types of time-dependent covariates (more later), Cox
regression does not depend on the actual times, just their order.

— Can add a constant to all times to remove zeros (which are removed
by some software) without changing inference

For LRT, nested models must be compared based on same subjects.

— If some values of variables in larger model are missing, these subjects
must be removed from fit of smaller model.

Coefficient interpretation depends on what other variables are in the
model and how they are coded (ie. interaction terms, 0/1 vs 1/-1 etc.)

SISCR 2018 Module 17
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SESSION 2: COMPETING RISKS, CAUSE-
SPECIFIC HAZARDS,
CUMULATIVE INCIDENCE AND FINE-
GRAY MODELS

Module 17: Survival Analysis for Observational Data

Summer Institute in Statistics for Clinical Research
University of Washington
July, 2018

Barbara McKnight, Ph.D.

OUTLINE

Definition of competing risks

Identifiability issues

Estimating cumulative incidence

Interpretation under independent competing risks
— Cumulative incidence

— Fine-Gray regression

— Cox regression

— Cause-specific hazards

Interpretation under dependent competing risks
— Cox regression and cause-specific hazards

— Cumulative incidence and Fine-Gray regression
Composite outcomes

Examples
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OUTLINE

* Definition of competing risks
* |dentifiability issues
* Estimating cumulative incidence
* Interpretation under independent competing risks
— Cumulative incidence
— Fine-Gray regression
— Cox regression
— Cause-specific hazards
* Interpretation under dependent competing risks
— Cox regression and cause-specific hazards
— Cumulative incidence and Fine-Gray regression
* Composite outcomes
* Examples

COMPETING RISKS

* When there is more than one cause of failure:
— Cancer recurrence or death before recurrence
— M, stroke, PE or death from other causes
* The different types of failure are called “competing
risks”.
— They “compete” to be the first to make subjects
experience an event



MONOCLONAL GAMMOPATHY

e 241 Mayo Clinic Patients (Monoclonal Gammopathy
of Undetermined Significance)

* 20-40 years of follow-up after diagnosis

* 64 developed plasma cell malignancy (PCM), 163
died without it.

* PCM and death without PCM are competing risks

R Kyle, Benign monoclonal gammopathy — after 20 to 35 years of follow-up,
Mayo Clinic Proc 1993; 68:26-36

DATA

* In the monoclonal gammopathy data, there are k = 2
competing risks

* Data for the it" subject are T,and c, where
— T, = time to first of PCM or death
—c¢,=1if PCM; ¢, =2 if death



OUTLINE

Definition of competing risks

Identifiability issues

Estimating cumulative incidence

Interpretation under independent competing risks
— Cumulative incidence

— Fine-Gray regression

— Cox regression

— Cause-specific hazards

Interpretation under dependent competing risks
— Cox regression and cause-specific hazards

— Cumulative incidence and Fine-Gray regression
Composite outcomes

Examples

CENSORING?

Letc=k, k=1, ..., Kindicate the “cause” of failure out of
K competing risks. Here K =2 (PCM and death no PCM).

Suppose we are interested in risk factors for the
development of PCM

How do we treat the subjects who die without having
experienced PCM? Can we treat them as censored?

— Censoring assumptions:

— Are they met?



IDENTIFIABILITY AND COMPETING RISKS

* Tsiatis (1975) showed that we cannot identify from (7, ¢ = k) data
whether subjects who fail from one cause would have been more
or less susceptible later to failure from another cause, had they
survived.

— Cannot tell whether those who die from heart disease would
have been more or less likely to develop cancer had they lived.

— Cannot tell whether those who die w/o PCM would have been
more or less likely to develop PCM had they lived.

* Dependence between the competing risks is not identifiable from
(T, c) data.

SISCR 2018: Module 17: Survival
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OUTLINE

* Definition of competing risks
* |dentifiability issues
* Estimating cumulative incidence
* Interpretation under independent competing risks
— Cumulative incidence
— Fine-Gray regression
— Cox regression
— Cause-specific hazards
* Interpretation under dependent competing risks
— Cox regression and cause-specific hazards
— Cumulative incidence and Fine-Gray regression
* Composite outcomes
* Examples
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TREATING DEATHS AS CENSORING

* What could be the effect on the KM estimate of S(t)?

* What could be the effect on Cox regression for the
association of risk factors with PCM?

SISCR 2018: Module 17: Survival
Observational B. McKnight

KAPLAN MEIER

* In situations like this, it was once common practice
to apply the KM method to estimate “survival”
functions:

— Probability of avoiding PCM over time

— Probability of avoiding death w/o PCM
* For PCM curve, treat deaths w/o PCM as censored
* For death w/o PCM, treat PCMs as censored

SISCR 2018: Module 17: Survival
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KM FOR DEATH NO PCM

Probability no Death without PCM

10 20 30 40
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BOTH KM SURVIVAL FUNCTIONS

Probability of avoiding PCM or death w/o PCM

S
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What is wrong with this picture?
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KM ESTIMATE OF S(t)

* Recall that the Kaplan-Meier estimate of the survival
function S(t) = Pr[T > t] = the probability of surviving
beyond time t is given by:

A S()
5(t) = —
* Where t; is the jth smallest failure time, S is the

number known to survive beyond t;, , and N, is the
number at risk of being observed to fail at t; .

SISCR 2018: Module 17: Survival
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ESTIMATING 1 — S(t) FOR K™ TYPE

We can write

Pk
1-80@) = Y L 5®t;_yy)
jitgyst VU

At the second failure time of type k,

(k) (k) (k) (k) (k)
Nw)-Dny N@-Dpy _ Py | Dy Nay—-Da

&(k _
1-50(te) =1~ Na) Noy ~ Na " Ngy N

If any failures of another type have occurred between t(1) and
t N(l)—DES : .
) theT term is too big.

This bias will accumulate and get larger, as we move to larger
and larger t).

SISCR 2018: Module 17: Survival
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ESTIMATING CUMULATIVE INCIDENCE

e Letting Dg.()) = the number of failures of types other than k at

t(), an unbiased estimate of FK)(t) is given by

k) j_1 . p®) _ p® K j_1y o p o &)
Dy riNo =Dy —Py _ - Po TiNo—Py No —Dgy
jitgst NOY =1 N jig<t N =1 No N

e Compare to biased upward

(k) (K) i—1 pr . (k)

. D:y . D¢y == Ny — Dg;

1-50@) = 3, P80 = Y =2 0
ity <t Ng) Jitgy st Ny =1 No
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Cumulative Incidence
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PREFERRED: TOGETHER
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OUTLINE

Definition of competing risks

Identifiability issues

Estimating cumulative incidence

Interpretation under independent competing risks
— Cumulative incidence

— Fine-Gray regression

— Cox regression

— Cause-specific hazards

Interpretation under dependent competing risks
— Cox regression and cause-specific hazards

— Cumulative incidence and Fine-Gray regression
Composite outcomes

Examples
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START BY ASSUMING INDEPENDENCE

* To understand the strengths and weaknesses of
estimating cumulative incidence and various
regression models for competing risks data, it is
helpful to begin by assuming the two risks are
independent (unverifiable assumption)

— Subjects who fail of one cause at t would have the
same risk as those who do not fail of going on to
experience the other event

— In example: participants who die without PCM at t
would be just as likely as those who do not to go
on to develop PCM after t.

SISCR 2018: Module 17: Survival
Observational B. McKnight

INDEPENDENT COMPETING RISKS AND
CUMULATIVE INCIDENCE

* How might an intervention that increased the rate of
the competing risk (death w/o PCM) influence the
cumulative incidence of the event of interest (PCM)?

SISCR 2018: Module 17: Survival
Observational B. McKnight



INDEPENDENT COMPETING RISKS AND
CUMULATIVE INCIDENCE

 How might an intervention that increased the rate of
the competing risk (death w/o PCM) influence the
cumulative incidence of the event of interest (PCM)?

— Higher death w/o PCM rate could mean fewer
subjects develop PCM: ie. lower PCM incidence

SISCR 2018: Module 17: Survival .95
Observational B. McKnight

SOME SUBTLETIES

* Cumulative incidence: the probability that an event of type k
has occurred by time t:
— Makes sense without requiring that a time to the k" type
of event be defined for all subjects
— Depends on the portion of the population still at risk at
each time, so its value will depend not only on the risk of
the event of interest, but also on the risk of all the other
causes of failure.
— Is a population-specific quantity that depends on what
other risks are operating in the population and how they
are related to the risk of the event of interest.

SISCR 2018: Module 17: Survival 2-26
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INDEPENDENT COMPETING RISKS AND
CUMULATIVE INCIDENCE

 How might an intervention that increased the rate of the
competing risk (death w/o PCM) influence the
cumulative incidence of the event of interest (PCM)?

— Higher death w/o PCM rate could mean fewer
subjects develop PCM: ie. lower PCM incidence

— Would we think this is wrong we were interested
mainly in what influenced overall cost or prognosis?

SISCR 2018: Module 17: Survival 5.97
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INDEPENDENT COMPETING RISKS AND
CUMULATIVE INCIDENCE

 How might an intervention that increased the rate of the
competing risk (death w/o PCM) influence the
cumulative incidence of the event of interest (PCM)?

— Higher death w/o PCM rate could mean fewer
subjects develop PCM: ie. lower PCM incidence

— Would we think this is wrong we were interested
mainly in what influenced cost or prognosis?

— If cost, no. If prognosis, probably, though would want
to look at association with all competing risks. This
argues for a different (combined) definition of the
event of interest. More on this later.

SISCR 2018: Module 17: Survival .28
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INDEPENDENT COMPETING RISKS AND
CUMULATIVE INCIDENCE

 How might an intervention that increased the rate of
the competing risk (death w/o PCM) influence the
cumulative incidence of the event of interest (PCM)?

— Higher death w/o PCM rate could mean fewer
subjects develop PCM: ie. lower PCM incidence

* For understanding causal associations, how useful
would it be to look at how risk factors are associated
with the cumulative incidence?

INDEPENDENT COMPETING RISKS AND
CUMULATIVE INCIDENCE

 How might an intervention that increased the rate of
the competing risk (death w/o PCM) influence the
cumulative incidence of the event of interest (PCM)?

— Higher death w/o PCM rate could mean fewer
subjects develop PCM: ie. lower PCM incidence

* For understanding causal associations, how useful
would it be to look at how risk factors are associated
with the cumulative incidence.

— Not very. Apparent associations could be due to
causal association only with the competing risk.



CUMULATIVE INCIDENCE: WHEN TO USE

* Q: For what types of questions would we be
interested in cumulative incidence, and determining
what variables associated with cumulative
incidence?

e A:

SISCR 2018: Module 17: Survival
Observational B. McKnight

CUMULATIVE INCIDENCE: WHEN TO USE

e Q: For what types of questions would we be
interested in cumulative incidence, and variables
associated with cumulative incidence?

e A:In studying prognosis, and variables related to
prognosis like total cost, population disease burden.

SISCR 2018: Module 17: Survival
Observational B. McKnight
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INDEPENDENCE: WHEN TO USE

Q: When would we want to estimate the cumulative
incidence?

“Independent” competing risks

Prognosis/Cost Causality
Estimating Cumulative
distribution of T Incidence

(Not KM)

Regression
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ASSOCIATIONS WITH PROGNOSIS

* To see if a risk factor is associated with prognosis/
cost, best to see how it is related to cumulative
incidence.

* Fine-Gray regression models are the analogue of
Cox regression for the cumulative incidence function.
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FINE-GRAY HAZARD

AFER) (1) = A|im0 Pr[T e[t t+At),c=k|T >t or both T <t and c # k]/At

* The risk of failure of type k among those still event free
at t and those who have experienced any event other
than a type k event by time t. (Note if type k is not death,
this would include subjects who had already died.)

* The hazard function associated with the sub-distribution
function which is the cumulative incidence of a type-k
failure.
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FINE-GRAY MODEL

* Fine-Gray hazard

AFGUR (£ = Jim Pr{T € [t, t+At), c=k|T 2 t or both T <t and ¢ # k]/At

* Fine-Gray regression model

)\FG(k)(tlx) — )\FG(/()(tlo)eBX
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INTERPRETATION

* When is Fine-Gray model appropriate?

* When concern is about associations with population
burden of Type k events (ie PCM), total cost of type k
events, or patient prognosis

FINE-GRAY RISK SETS

* All those who have not yet failed of any cause PLUS
all those who have previously failed of all causes
other than the cause of interest

* In monoclonal gammopathy example, assuming
interest is in association with PCM, at time t, the risk
sets is composed of:

— All those alive and at risk of developing PCM AND
— All those who died earlier without PCM



INDEPENDENCE: WHEN TO USE

Q: What regression model to use when interested in
prognosis or total cost?

“Independent” competing risks

Prognosis/Cost Causality
Estimating Cumulative
distribution of T Incidence

(Not KM)
Regression Fine/Gray

regression
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CAUSALITY AND INDEPENDENT COMPETING
RISKS

 Q:Soif we are interested in what is causally related
to one of our competing risks and we think the
different risks are independent, what can we do?

e A:
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CAUSALITY AND INDEPENDENT COMPETING
RISKS

* Q:Soif we are interested in what is causally related
to one of our competing risks and we think the
different risks are independent, what can we do?

* A: Cox regression.

— When we treat failures of the other types like we
treat censoring, we are estimating the association

with the “cause-specific hazard
function” (Prentice et al., 1978)

AK(t) = limar—o Pr[T € [ t, t + At), c = k|T > t]/At
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PROPERTIES

T = time to first "failure" of any type

AR (8) = A|£m0 Pr[T e [t, t + At), c = k|T > t]/At

e The different events defined by ¢ must be mutually exclusive
e The different events defined by ¢ must be exhaustive

e The hazard function for the distribution of T is given by :

K
NOEDIPIRA(S)
k=1
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COX MODEL RISK SETS

* All those who have not yet failed of any cause

* In monoclonal gammopathy example, assuming interest is in
association with PCM, at time t, the risk sets is composed of:

— All those alive, PCM free, and at risk of developing PCM

* Under independent competing risks, this will not be affected
by variables that cause differences in the risk of failure due to
other causes (death no PCM).

— If more people die sooner without PCM, there are fewer
PCM events in the population, but there are also fewer
subjects in the risk set (denominator).

— If the risks are independent, the cause-specific hazard
function should be unaffected.
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COX MODEL

* Cause-specific hazard
AK)(t) = Alimo Pr[T e[t t+ At), c = k|T > t]/At
e Cox model

AR (t]x) = AK)(t|0)elX
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INDEPENDENCE: WHEN TO USE

Q: What to plot when interested in causality?

“Independent” competing risks

Prognosis/Cost Causality
Estimating Cumulative
distribution of T Incidence
(Not KM)
Regression Fine/Gray Cox regression
regression
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INDEPENDENCE: DISTRIBUTION ESTIMATION
FOR CAUSALITY

* Can estimate the cause-specific hazard function for a
subgroup (or the whole sample) using kernel —
smoothing methods (not covered).

e Allows visual comparison of the cause-specific
hazard functions
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MG DATA : HAZARDS
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INDEPENDENCE: WHEN TO USE

Q: What to plot when interested in causality?

“Independent” competing risks

Prognosis/Cost Causality
Estimating Cumulative Kernel-smoothed
distribution of T Incidence cause-specific
(Not KM) hazards
Regression Fine/Gray Cox regression
regression
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OUTLINE

* Definition of competing risks
* |dentifiability issues
* Estimating cumulative incidence
* Interpretation under independent competing risks
— Cumulative incidence
— Fine-Gray regression
— Cox regression
— Cause-specific hazards
* Interpretation under dependent competing risks
— Cox regression and cause-specific hazards
— Cumulative incidence and Fine-Gray regression
* Composite outcomes
* Examples

DEPENDENT COMPETING RISKS

* How do these interpretations and recommendations
change when we think the competing risks might be
dependent?

— As one example: What if subjects who died with
without PCM were also less likely to go on to
develop PCM, had they lived? (ie. Pretend
population is a mix of susceptibles to PCM and
susceptibles to death from other causes.) How
would this affect interpretation of:

e Cumulative incidence?
* Cause-specific hazard?



DEPENDENT COMPETING RISKS

In addition, suppose there is a potential risk factor that raises the
risk of death with no PCM among susceptibles (and that
susceptibles who die without PCM would be unlikely to go on to
develop PCM)

How might this risk factor affect the cause-specific hazard function
for PCM?
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DEPENDENT COMPETING RISKS

In addition, suppose there is a potential risk factor that raises the
risk of death with no PCM among susceptibles (and that
susceptibles who die without PCM would be unlikely to go on to
develop PCM)
How might this risk factor affect the cause-specific hazard function
for PCM?

— It could raise it (fewer alive and at risk at any time, but a higher

proportion of them develop PCM)

Do we care?
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DEPENDENT COMPETING RISKS

* In addition, suppose there is a potential risk factor that raises the
risk of death with no PCM among susceptibles (and that
susceptibles who die without PCM would be unlikely to go on to
develop PCM)

* How might this risk factor affect the cause-specific hazard function
for PCM?

— It could raise it (fewer alive and at risk at any time, but a higher
proportion of them develop PCM)

* Do we care?

— Yes if interested in causality for PCM. Risk factor associated
with PCM cause-specific hazard, but not biologically/causally
related to the PCM disease process.

— Perhaps not if interested in predicting annual per-person cost.

INTERPRETATION

* Prentice et al (1978) argued that the cause-specific
hazard function (Cox model) was the best basis for
causal inference in the population as it is constituted,
but cannot extend interpretation to another
population where competing risks are not operating.

— Cannot say how x might be related to cancer risk
in a population where there are no deaths from
M



DEPENDENT COMPETING RISKS

» Still suppose there is a potential risk factor that raises the
risk of death with no PCM among susceptibles (and that
susceptibles who die without PCM would be unlikely to
go on to develop PCM)

* How might this risk factor affect the cumulative
incidence of PCM?

DEPENDENT COMPETING RISKS

 Still suppose there is a potential risk factor that raises the
risk of death with no PCM among susceptibles (and that
susceptibles who die without PCM would be unlikely to
go on to develop PCM)

* How might this risk factor affect the cumulative
incidence of PCM?

— Might not affect it much if the two sub-populations of
susceptibles are entirely distinct.

e Do we care?



DEPENDENT COMPETING RISKS

» Still suppose there is a potential risk factor that raises the
risk of death with no PCM among susceptibles (and that
susceptibles who die without PCM would be unlikely to
go on to develop PCM)

* How might this risk factor affect the cumulative
incidence of PCM?

— Might not affect it much if the two sub-populations of
susceptibles are entirely distinct.

e Do we care?

— No. Fine-Gray regression gives valid estimate of
association with prognosis and total cost in
population as currently constituted.

DEPENDENT COMPETING RISKS

e As another example: What if subjects who died with
without PCM were more likely to go on to develop
PCM, had they lived? (ie. Pretend some members of
the population are frail and susceptible to both PCM
and other causes of death.) How would this affect
interpretation of:

— Cumulative incidence?
— Cause-specific hazard?



DEPENDENT COMPETING RISKS

Pretend some members of the population are frail and
susceptible to both PCM and other causes of death, so those
who die without PCM would have been more likely to develop
it, had they lived.

How might a risk factor that increases the risk of death
without PCM affect the cause-specific hazard function for
PCM?

SISCR 2018: Module 17: Survival
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DEPENDENT COMPETING RISKS

Pretend some members of the population are frail and
susceptible to both PCM and other causes of death, so those
who die without PCM would have been more likely to develop
it, had they lived.

How might a risk factor that increases the risk of death
without PCM affect the cause-specific hazard function for
PCM?
— It could lower it (presence of risk factor is depleting the
population of susceptibles)

Do we care?
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DEPENDENT COMPETING RISKS

Pretend some members of the population are frail and
susceptible to both PCM and other causes of death, so those
who die without PCM would have been more likely to develop
it, had they lived.

How might a risk factor that increases the risk of death
without PCM affect the cause-specific hazard function for
PCM?

— It could lower it (presence of risk factor is depleting the
population of susceptibles)

Do we care?
— Perhaps, if interested in biologic causality for PCM.

— Perhaps not, if interested in predicting annual per-person
cost.
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DEPENDENT COMPETING RISKS

Pretend some members of the population are frail and
susceptible to both PCM and other causes of death, so
those who die without PCM would have been more likely
to develop it, had they lived.

How might this risk factor affect the cumulative
incidence of PCM?
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DEPENDENT COMPETING RISKS

* Pretend some members of the population are frail and

susceptible to both PCM and other causes of death, so
those who die without PCM would have been more likely
to develop it, had they lived.

How might this risk factor affect the cumulative
incidence of PCM?

— Might lower it. (presence of risk factor depletes the
population of susceptibles)

Do we care?

DEPENDENT COMPETING RISKS

Pretend some members of the population are frail and
susceptible to both PCM and other causes of death, so
those who die without PCM would have been more likely
to develop it, had they lived.

How might this risk factor affect the cumulative

incidence of PCM?

— Might lower it. (presence of risk factor depletes the
population of susceptibles)

Do we care?

— No. Accurate estimate of association with prognosis
and total cost in population as currently constituted.



DEPENDENT COMPETING RISKS

Prognosis/Cost Causality
Estimating Cumulative Incidence ? Interpreting cause-
distribution of T (Not KM) specific hazard
estimates may require
knowledge/
assumption about
mechanism
Regression Fine/Gray regression  ? Interpreting Cox

regression may
require knowledge/
assumption about
mechanism
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Purpose

%N

—— Annual Cost Prognosis Overall Cost
Causality
v v v y

Strongly Strongly Strongly Strongly
Believe Believe Believe Believe

Independent? Independent? Independent?

Independent?

Yes/\No Yes/\No

F-G
Cum
Inc or
Com-
posite
Event

Cox Cox
? C-S C-S
hazd hazd
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COMPETING RISKS: IMPORTANT POINTS

* Because we cannot tell whether competing risks are
dependent, we cannot estimate hazard or incidence
or anything else about the distribution of the event
(time) of interest if there were no competing risks.

e All we can estimate and relate exposures to is the
cumulative incidence and cause-specific hazard of
the event of interest in the population as it is
constituted (with potentially dependent competing
risks).

COMPETING RISKS: IMPORTANT POINTS

* Biologic causality inferences from Cox regression
must depend not only on the data, but also on
biologic knowledge/assumptions that cannot be
verified in the data.

e Cumulative incidence estimation and Fine-Gray
regression are OK for inferences about prognosis or
total cost even in the face of dependent competing
risks, but these are not the same as inferences about
biologic causality and may not be what we are
interested in.



ADJUSTED FOR COMPETING RISKS

Some people think of the results of Fine-Gray regression as the
regression method that is “adjusted for competing risks”

This is incorrect!

— Fine-Gray regression gives us valid inferences about how
variables are related to the cumulative incidence function.

— It does not give us valid inferences about biologically causal
associations between and exposure and the event of interest

— Cox regression for cause-specific hazard functions can give valid
inferences about biologically causal associations between
exposure and the event of inference if the competing risks are
independent, but we have no way of telling if they are.

— If competing risks are not independent, all it tells us is how
disease incidence rates in the population as it is constituted are
related to exposure.

OUTLINE

Definition of competing risks

Identifiability issues

Estimating cumulative incidence

Interpretation under independent competing risks
— Cumulative incidence

— Fine-Gray regression

— Cox regression

— Cause-specific hazards

Interpretation under dependent competing risks
— Cox regression and cause-specific hazards

— Cumulative incidence and Fine-Gray regression
Composite outcomes

Examples



PROGNOSIS

 If both competing risks are events we hope to avoid,
Fine-Gray regression of risk factor’s association with
cumulative incidence of a single one of the risks may not
be the most useful for estimating association with
prognosis.
* Another option: composite events:
— Death or PCM
— Cancer relapse or death (“progression-free survival”)
— Death from any cause

* In clinical studies, combined event often of most interest
to a patient
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CUMULATIVE FUNCTIONS

Event-free Survival:

Estimating the probability a subject is alive and event-of-interest-
free at time t is easy:

1. Redefine the event of interest to be either the original event of
interest or death

5 = 1 event of interest or death from any cause
‘~1 0 censored

T; = time to event of interest, death or censoring

2. Compute the KM estimate of S(t) in the usual way with (T, 6;)
data.
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Cumulative Incidence
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Malignancy-Free Survival
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MALIGNANCY-FREE SURVIVAL

I
14000
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Days Since Diagnosis
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EXAMPLE

Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Perez EA, Shenkier T, Cella D,
Davidson NE. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic
breast cancer. New England Journal of Medicine. 2007;357(26):2666—2676.

A B
100 100
—_ Paclitaxel plus bevacizumab
R AN
S 80+ ) _ . 80
s Paclitaxel plus bevacizumab x Paclitaxel
2 ‘\ :l; aclitaxel "5\ Median: paclitaxel, 25.2 mo;
a 604 Y 2 604 \‘\ paclitaxel plus bevacizumab,
@ 1 - . | 2 ~ 26.7 mo
] Median: paclitaxel, 5.9 mo; 5 S -
“é‘ 40 \\ paclitaxel plus bevacizumab, 11.8 mo a 404 ™
L A\, [ x P=0.16
I3 R\ [ RN,
8 \ 3 =
B 207 S P<0.001 20 e
& Pac\itaxeT\"----..________q_
0 T T T T T T 1 0 T T T T T T T T 1
0 6 12 18 24 30 36 42 48 54 0 6 12 18 24 30 36 42 48 54
Month Month
No. at Risk No. at Risk
Paclitaxel plus 347 323 167 100 53 25 14 7 2 1 Paclitaxel plus 347 323 280 232 190 147 88 46 24 7
bevacizumab bevacizumab
Paclitaxel 326 159 89 47 20 12 6 2 0 0 Paclitaxel 326 284 236 199 162 138 83 47 23 5
Figure 2. Survival Analyses.
Progression-free survival (Panel A) and overall survival (Panel B) in all eligible patients were analyzed with the use of the Kaplan—Meier
method. Analyses including all patients assigned to treatment yielded similar results (data not shown).
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FINE POINT

* When there are competing risks, functions that
describe the probability distribution of the time to
one of the events do not make sense.

* Cannot talk about P[T > t] or P[T <t] for a time to
PCM T, since T does not exist for everyone

* Instead, need to interpret these functions as “Event
has happened by time t” (cumulative incidence at t)
and “Event has not happened by time t” (1 —
cumulative incidence at t).
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OUTLINE

Definition of competing risks

Identifiability issues

Estimating cumulative incidence

Interpretation under independent competing risks
— Cumulative incidence

— Fine-Gray regression

— Cox regression

— Cause-specific hazards

Interpretation under dependent competing risks
— Cox regression and cause-specific hazards

— Cumulative incidence and Fine-Gray regression
Composite outcomes

Examples

MGUS REGRESSION EXAMPLE

Cox and Fine-Gray models for the association of sex
with PCM and Death before PCM in the Monoclonal
Gammopathy data.

Will show
— Cause-specific hazard functions by sex and cause
— Cumulative incidence functions by sex and cause

— Estimated Hazard ratios (male to female) by cause
under both models



CAUSE-SPECIFIC HAZARD ESTIMATES

Plasma Cell Malignancy

o males
s |1 — females
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CAUSE-SPECIFIC HAZARD ESTIMATES

Deaths from Other Causes

o males
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COX MODELS

Outcome Type M/F Hazard Ratio 95% Cl P-value
Plasma Cell Malignancy 0.95 (0.58, 1.56) 0.8441
Death from Other Causes 1.55 (1.13, 2.14) 0.0064
S
—— Female Death no PCM
Male Death no PCM
© _| = - Female PCM
o Male PCM
S T T T T T
0 10 20 30 40
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CUMULATIVE INCIDENCE

3 -1 Males
Death no PCM —— Females
:_é T - Alive PCM-free
S T T T T T
0 10 20 30 40
Years
e
Outcome Type M/F Hazard Ratio 95% CI P-value
Plasma Cell Malignancy 0.71 (0.44,1.16) 0.17
Death from Other Causes 1.45 (1.06, 1.97) 0.02

PCM hazard ratio farther from one here because men are more likely to
die from other causes and not survive to develop PCM.
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EXAMPLE

* Ashburner et al (2017) studied a cohort of 13,559 subjects
diagnosed with atrial fibrillation (AF) at Kaiser Northern
California

— 1092 thromboembolism events (1017 ischemic strokes)
— 4414 experienced death without thromboembolism event

— Thromboembolism-free Death rate was 5.5/100 PY among
warfarin takers and 8.1/100 PY among non-takers

— Non-takers were older had higher stroke-risk scores

* They compared Cox and F-G regression with time-dependent
current warfarin use as the exposure
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Adjusted
Event Model Hazard Ratio 95% CI
Thromboembolism Cox 0.57 (0.50, 0.65)
Fine-Gray 0.87 (0.77,0.99)

* They concluded that the Fine-Gray model that “accounted
for” competing risks gave a better “real-world” assessment of
the benefit of warfarin.

* What are your thoughts?

Ashburner JM, Go AS, Chang Y, Fang MC, Fredman L, Applebaum KM, Singer
DE. J Am Geriatr Soc. 2017 Jan 1;65(1):35-41.
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TO WATCH OUT FOR

* Interpretation in the presence of competing risks can be tricky
and requires extra care.

— Cannot interpret cumulative incidence or cause-specific
hazard as applying in a population without competing risks
present.

— 1 - KM estimator can give upward biased estimate of
cumulative incidence.

— Fine-Gray model is not THE way to account for competing
risks. It tells us only what variables are associated with
cumulative incidence, and this may not be what you are
interested in.
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SESSION 3a: CHOICE OF THE TIME SCALE
AND INTERACTIONS WITH TIME

Module 17: Survival Analysis for Observational Data
Summer Institute in Statistics for Clinical Research
University of Washington
July, 2018

Barbara McKnight, Ph.D.

OUTLINE

* Choice of the time scale for analysis
» Left entry into observation (left truncation)

» Cox models including interaction with time variables/
time-dependent coefficients
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OUTLINE

Choice of the time scale for analysis
Left entry into observation (left truncation)

Cox models including interaction with time variables/
time-dependent coefficients

WELSH NICKEL REFINERS STUDY

679 nickel refinery workers identified twice on
paysheets April 1929, 1934, 1939, 1944, 1949

Follow-up until 1981

Refinery cleaned up by various means 1922-1932, so
all important exposure occurred before beginning of
follow-up

Interest in whether duration of employment in high-
exposure areas, and age at first exposure, were
related to lung and nasal sinus cancer mortality risk.



Survival Probability
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ALL-CAUSE MORTALITY
—— Unexposed
Exposed

10 20 30 40 50

Years of Active Follow—up

SISCR 2018: Module 17: Survival
Observational B. McKnight



Hazard Rate
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WELSH NICKEL REFINERS

Nasal Cancer Death

—— Unexposed
Exposed

0 10 20 30 40

Years of Active Follow-up

SISCR 2018: Module 17: Survival
Observational B. McKnight

3a-

3a-



WELSH NICKEL REFINERS

Other Cause of Death
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coef  exp(coef) se(coef) z  Pr(>]z])
exposedTRUE  0.9200182  2.509336 0.1869493 4.921217 9e-07
coef  exp(coef) se(coef) z Pr(>|z|)
exp0.5 - 4.0 0.6030012 1.8275955 0.2121299 2.8426041 0.0044747
exp4.5 - 8.0 1.0862839 2.9632419  0.2828485 3.8405146  0.0001228
exp8.5-12.0 1.2772969 3.5869307 0.3742268 3.4131628 0.0006421
expl2.5+ 1.4873597 4.4253955  0.4798472 3.0996524 0.0019375
afe20-27.5 0.8103938 2.2487934 0.3079688 2.6314149 0.0085030
afe27.5 - 35 0.9149895 2.4967489 0.3291081 2.7802097 0.0054324
afe35+ 0.8068991  2.2409482  0.4237839 1.9040342 0.0569057
yfe1910-1914 0.3342204 1.3968510 0.2695145 1.2400835 0.2149445
yfel915-1919 -0.1340505 0.8745459 0.3749097 -0.3575540 0.7206771
yfe1920-1925 0.0744977 1.0773429 0.2966621 0.2511197 0.8017216
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NASAL CANCER FU TIME

coef  exp(coef) se(coef) z  Pr(>|z])

exposedTRUE  1.614074  5.023236 0.3516507 4.589994 4.4e-06
coef exp(coef) se(coef) z Pr(>|z|)
exp0.5 - 4.0 0.8356274 2.3062606 0.4032111 2.072432 0.0382252
exp4.5 - 8.0 1.1366437 3.1162916  0.4706657 2.414970 0.0157365
exp8.5-12.0 2.2945326 9.9197981 0.5117936 4.483316 0.0000073
expl2.5+ 2.8713357 17.6605917 0.5697217 5.039892  0.0000005
afe20-27.5 1.4686105 4.3431963 0.7518514 1.953326 0.0507810
afe27.5 - 35 2.1598639 8.6699580 0.7588726 2.846148 0.0044252
afe35+ 3.4767227 32.3535148 0.7843101 4.432842 0.0000093
yfel910-1914 0.7130093 2.0401213  0.3728470 1.912338 0.0558329
yfel915-1919 0.5040978 1.6554913 0.5034466 1.001294 0.3166849
yfel920-1925 -0.9304088 0.3943924 0.5152666 -1.805684 0.0709677

SISCR 2018: Module 17: Survival
Observational B. McKnight da- 11

coef  exp(coef) se(coef) z  Pr(>|z])

exposedTRUE  0.3962896 1.4863 0.0972056 4.076818 4.57e-05
coef  exp(coef) se(coef) z Pr(>|z|)
exp0.5 - 4.0 0.1318081 1.1408894 0.1105672 1.1921083  0.2332188
exp4.5 - 8.0 0.1308735 1.1398236 0.1603797 0.8160231  0.4144869
exp8.5-12.0 0.0324914 1.0330250 0.2563862 0.1267282  0.8991555
expl2.54 -0.0774111  0.9255093 0.3964677  -0.1952520 0.8451957
afe20-27.5 0.5275548 1.6947832 0.1539622 3.4265217 0.0006114
afe27.5 - 35 1.1070376 3.0253827 0.1653356 6.6956992  0.0000000
afe35+ 1.9740626 7.1998671 0.1942464 10.1626701  0.0000000
yfel910-1914  -0.2148112 0.8066937 0.1515491  -1.4174361 0.1563555
yfel915-1919  -0.5297679 0.5887416 0.1766843 -2.9983870 0.0027141
yfel920-1925 -1.1456390 0.3180206 0.1502442  -7.6251795 0.0000000

SISCR 2018: Module 17: Survival
Observational B. McKnight
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COX REGRESSION MODEL
A(t) = Ao(t)ePrxat+Bixk

Interpretation of ef1 in general:

"Relative risk (or hazard ratio) associated with a one unit higher
value of x1, holding x>, ..., Xk constant".

A(t) for x1 + 1 Ag(t)ePfrixat1)+-+Bkxk
A(t) for x1: Ag(t)ePrxit+Bixk

ratio: efixat+l-x1) = b1

SISCR 2018: Module 17: Survival
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COX REGRESSION MODEL

« ePlisthe RR associated with a one-unit difference of
X, holding other x’s and t constant.

* Some functional form is required for how the hazard
function at each t depends on x,...x,.

* No functional form is required for how the hazard at
each x,...x, depends on t, since A,(t) can be any
function.

* The time scale for t is the variable that is adjusted
for the most finely/thoroughly.

SISCR 2018: Module 17: Survival
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WELSH NICKEL REFINERS
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OUTLINE

* Choice of the time scale for analysis

* Left entry into observation (left truncation)

3a-15

» Cox models including interaction with time variables/

time-dependent coefficients

SISCR 2018: Module 17: Survival
Observational B. McKnight
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OBSERVATION STARTING LATE

e Should not include subjects in risk sets before they
are under observation:

— Other subjects “just like” them who died before
their entry time are not observed

— Falsely inflates the numbers at risk in early risk
sets

— Biases cause-specific hazard estimation
— Can bias Cox model estimation

SISCR 2018: Module 17: Survival
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OBSERVATION STARTING LATE

Solution: “Left enter” subjects at time when active
follow-up starts

— Subjects only contribute to risk sets where their
event could have been observed

— They are only in the denominator if we could have
seen them in the numerator

SISCR 2018: Module 17: Survival
Observational B. McKnight
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WELSH NICKEL REFINERS
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NASAL CANCER
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OTHER CAUSES

Other Cause of Death
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coef  exp(coef) se(coef) Pr(>|z|)
exposedTRUE  0.8000334  2.225615 0.1860041 4.301159 1.7e-05
coef  exp(coef) se(coef) z Pr(>|z|)
exp0.5 - 4.0 0.6111674 1.842581 0.2123734 2.877796 0.0040046
exp4.5 - 8.0 1.0952795 2.990018 0.2838639 3.858467 0.0001141
exp8.5-12.0 1.2880174  3.625591 0.3739070 3.444754 0.0005716
expl2.5+ 1.4327121 4.190048 0.4791166 2.990321 0.0027868
afe20-27.5 0.7604881 2.139320 0.3081636 2.467806 0.0135944
afe27.5 - 35 0.8670846  2.379962 0.3281099 2.642665 0.0082256
afe35+ 0.7982183  2.221579 0.4224336 1.889571 0.0588154
yfel910-1914  0.4358460 1.546271 0.2724801 1.599552 0.1096981
yfel915-1919  0.1753274 1.191636 0.3775109 0.464430 0.6423397
yfel920-1925  0.6547157 1.924505 0.2991155 2.188839 0.0286086

SISCR 2018: Module 17: Survival
Observational B. McKnight
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NASAL CANCER TFE

coef  exp(coef) se(coef) z  Pr(>|z])

exposedTRUE  1.540408 4.666495 0.3503185 4.397165 1.1e-05
coef  exp(coef) se(coef) z Pr(>|z|)
exp0.5 - 4.0 0.8958359 2.449382 0.4044464 2.2149680 0.0267623
exp4.5 - 8.0 1.1991717 3.317368 0.4727052 2.5368277 0.0111862
exp8.5-12.0 2.3214816 10.190761 0.5173928 4.4868842 0.0000072
expl2.5+ 2.8655920 17.559445 0.5727364 5.0033346 0.0000006
afe20-27.5 1.4721869 4.358757 0.7527320 1.9557917  0.0504897
afe27.5 - 35 2.1770312 8.820082 0.7601145 2.8640834 0.0041822
afe35+ 3.6025888 36.693104 0.7886401 4.5681026 0.0000049
yfel910-1914 1.0373701 2.821786 0.3798834 2.7307593 0.0063189
yfel915-1919  1.1291520 3.093033 0.5130845 2.2007137 0.0277563
yfel920-1925 0.0166965 1.016837 0.5257787 0.0317558 0.9746668

OTHER CAUSE OF DEATH TFE

SISCR 2018: Module 17: Survival
Observational B. McKnight
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coef  exp(coef) se(coef) z Pr(>|z|)

exposedTRUE  0.2164895 1.24171 0.0966131 2.240788 0.0250398
coef  exp(coef) se(coef) z Pr(>|z|)

exp0.5 - 4.0 0.1685250  1.183558 0.1106070 1.5236376  0.1275993
exp4.5 - 8.0 0.2360561 1.266245 0.1602288 1.4732445 0.1406851
exp8.5-12.0 0.0585201 1.060266 0.2564181 0.2282213  0.8194742
expl2.5+ 0.0245456  1.024849 0.3964995 0.0619059 0.9506378
afe20-27.5 0.5704774 1.769111 0.1545876 3.6903186 0.0002240
afe27.5 - 35 1.1656136 3.207891 0.1665088 7.0003136  0.0000000
afe35+ 2.0835886  8.033245 0.1957375 10.6448086 0.0000000
yfel910-1914  0.2087081 1.232085 0.1540413 1.3548842 0.1754544
yfel1915-1919  0.2329453 1.262312 0.1788233 1.3026563 0.1926921
yfel1920-1925 0.1024386 1.107869  0.1529133 0.6699127 0.5029135

SISCR 2018: Module 17: Survival
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CHOOSING A TIME SCALE

 What time scale makes the most sense for the Welsh
Nickel Refiners study?

SISCR 2018: Module 17: Survival

Observational B. McKnight 3a-27
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CHOOSING A TIME SCALE

e Cardiovascular Health Study
— NHLBI cohort of older Americans (65+)
— Many baseline demographic and health measures.

— Follow-up for more than 20 years for a large
number of health conditions.

* What is the best time scale: age or time since
baseline?

OUTLINE

* Choice of the time scale for analysis
» Left entry into observation (left truncation)

* Cox models including interaction with time
variables/time-dependent coefficients



TIME INTERACTIONS

So far, most of our Cox models have assumed that
the hazard ratio is constant over time

It’s possible to incorporate interaction terms with
functions of time to allow the HR to depend on time.

Requires a hypothesized functional form for f(t).

SISCR 2018: Module 17: Survival
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TIME INTERACTIONS

One way the hazard ratio can depend on time:
interaction with a function of time

A(t|x) = )\O(t)e.31X+,32X*f(t)

Here the hazard ratio depends on time through the
interaction term

AltIx+1) = Ao(t)ePrOtrD+Ba0x+1)*f(t)
Atlx) = )\O(t)eﬁl(XHﬁz(X)*J‘(t)
HR(t) = eB1+B2f(t)

Commonly used functions are:

f(t) =t, f(t) = log(t), and f(t) = S(¢).

SISCR 2018: Module 17: Survival
Observational B. McKnight



TIME INTERACTIONS

Non-Proportional Hazards Non-Parallel Log Hazards

hazard
log hazard

time time

SISCR 2018: Module 17: Survival 33-33
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NASAL CANCER TIME INTERACTION

coef  exp(coef) se(coef) z  Pr(>|z|)
exposedTRUE 1540408  4.666495 0.3503185 4.397165 1.1e-05

coef exp(coef)  se(coef) Pr(>|z])

exposedTRUE  1.0613334  2.890222 5.161871 0.2056102 0.8370954
tt(exposed) 0.1290554  1.137753 1.388229 0.0929641 0.9259321

N

SISCR 2018: Module 17: Survival 33-34
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NASAL CANCER

Nasal Cancer Death
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ESTIMATING THE HR AS A FUNCTION OF TIME

In exploratory analyses, may be of interest to
estimate how the hazard ratio varies over time

Estimate based on ratio of kernel-smoothed hazard
estimates can be very variable

Better choice is based on smoothed Schoenfeld
residuals

Can be thought of as an estimate of a time-
dependent coefficient of a fixed variable

SISCR 2018: Module 17: Survival
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ESTIMATING THE HR AS A FUNCTION OF TIME

Another way for the hazard ratio to depend on time: time-dependent
coefficients.

A(t) = Ag(t)ePx

Here the hazard ratio depends on time through the time-dependent
coefficient B(t)

Beta(t) for exposedTRUE

AtIx+1) = Ag(t)ePDix+1)
hazard ratio = eB®+1)=B(t)x — oB(t)

Estimated hazard ratio can be an arbitrary function of time ef(®),

SISCR 2018: Module 17: Survival

Observational B. McKnight 3a-37

NASAL HR ESTIMATE
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EXAMPLE

Real et al. 2016, “Survival Predictors in Liver Transplantation:
Time-Varying Effect of Red blood Cell Transfusion”,
Transplantation Proceedings, 48, 3303.

543 consecutive patients, 2006-2014, retrospectively
Preoperative

— Age, sex, Model for End-Stage Liver Disease score, primary
diagnosis, cold ischemia time, international normalized
ratio, serum albumin, hemoglobin levels

Intraoperative

— Norepinephrine, blood loss, red blood cell transfusions
surgical time

SISCR 2018  Module 17
Survival Observational S.May 3b-1

RESULTS

Only significant independent predictors:

Red blood cell transfusion, HR=1.16 (1.04-1.29)
Sex, HR=1.71 (1.10-2.65)

Non-proportionality

— “multivariate Cox regression model was
subsequently upgraded by adding a time-varying
interaction between red blood cell transfusion and
time since liver transplantation”

SISCR 2018  Module 17
Survival Observational S.May 3b 2
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RESULTS

Table 3. Multivariate Cox Regression (Time-Varying Interaction
With RBC Transfusion Not Included)

Variable HR 95% ClI P Value
Age (y) 1.02 1.00-1.04 .061
Female sex® 1.71 1.10-2.65 .016
Intraoperative RBC (units) 1.16 1.04-1.29 .005
Intraoperative blood loss (L) 0.90 0.79-1.03 135
Intraoperative norepinephrine (mg) 1.02 0.97-1.07 .508
Surgical time (h) 1.19 0.95-1.48 125

Abbreviations as in Tables 1 and 2.
*P < .05.

SISCR 2018  Module 17
Survival Observational S.May 3b-3

RESULTS

Table 4. Multivariate Cox Regression Including the Time-Varying
Interaction With RBC Transfusion

Variable HR 95% Cl P Value
Age (y) 1.02 1.00-1.04 .077
Female sex 1.66 1.07-2.56 .024
Intraoperative RBC (units) 1.25 1.12-1.40 .000
Intraoperative blood loss (L) 0.91 0.80-1.03 .147
Intraoperative norepinephrine (mg) 1.01 0.96-1.06 .803
Surgical time (h) 1.20 0.96-1.49 .105

Time-varying interaction with intraoperative 0.98 0.97-0.99 .001
RBC transfusion

Abbreviations: as in Tables 1 and 2.

SISCR 2018  Module 17
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RESULTS

Table 5. Time-Varying Effect of RBC Transfusion on Patient

Survival
Time Since LT HR 95% ClI P Value
3 mo 1.14 1.020-1.257 .015
6 mo 1.12 1.003-1.240 .033
1y 1.11 0.986-1.225 .070
2y 1.09 0.968-1.210 132
3y 1.08 0.958-1.202 .183
Abbreviations: LT, liver transplantation; others as in Tables 1 and 2.
SISCR 2018  Module 17
Survival Observational S.May 3b-5
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SESSION 4a: SOME OBSERVATIONAL
DATA BIASES AND HOW TO CORRECT
THEM

Module 17: Survival Analysis for Observational Data
Summer Institute in Statistics for Clinical Research
University of Washington
July, 2018

Susanne May, Ph.D.

OUTLINE

Immortal-time bias

— Examples: Oscar winners, Valganciclovir Tx in
Glioblastoma, Stanford Heart Transplant Program

— Simulation
— Correction using time-dependent covariates
Index event bias

— Examples: Regular aspirin use and Ml in subjects with
ACS, BMI and outcome in PCl-treated subjects

— Correction using adjustment
More on TDCs if time

SISCR 2018 Module 17 4a .
Survival Observational S. May

7/15/2018



EXAMPLE

Does winning an Oscar confer a survival advantage?

Redelmeier and Singh (2001) sampled 762 Oscar acting nominees from
the beginning of the Oscars to 2001.

Background: Social status is an important predictor of poor health. Most
studies of this issue have focused on the lower echelons of society.

Objective: To determine whether the increase in status from winning an
academy award is associated with long-term mortality among actors and
actresses.

Design: Retrospective cohort analysis.
Setting: Academy of Motion Picture Arts and Sciences.

Redelmeier DA, Singh SM. Annals of Internal Medicine. 2001 May

15;134(10):955.)

SISCR 2018  Module 17
Survival Observational S. May 4a-3

EXAMPLE

Participants: All actors and actresses ever nominated for an
academy award in a leading or a supporting role were
identified (n=762). For each, another cast member of the
same sex who was in the same film and was born in the same
era was identified (n=887).

Measurements: Life expectancy and all-cause mortality rates.

Compared censored data on age at death between winners
and non-winning nominees and winners and controls.
Actors included only once, category based on highest
achievement (winner, nominee, or control)

SISCR 2018 Module 17
Survival Observational S. May 4a-4
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SURVIVAL OF OSCAR WINNERS

Results: All 1649 performers were analyzed; the median
duration of follow-up time from birth was 66 years, and 772
deaths occurred (primarily from ischemic heart disease and
malignant disease). Life expectancy was 3.9 years longer for
Academy Award winners than for other, less recognized
performers (79.7 vs. 75.8 years; P = 0.003).

This difference was equal to a 28% relative reduction in death
rates (95% Cl, 10% to 42%).

Adjustment for birth year, sex, and ethnicity yielded similar
results, as did adjustments for birth country, possible name
change, age at release of first film, and total films in career.

SISCR 2018  Module 17
Survival Observational S. May 4a-5

SURVIVAL OF OSCAR WINNERS

Results (continued): Additional wins were associated with a
22% relative reduction in death rates (Cl, 5% to 35%), whereas
additional films and additional nominations were not
associated with a significant reduction in death rates.

Conclusion: The association of high status with increased
longevity that prevails in the public also extends to celebrities,
contributes to a large survival advantage, and is partially
explained by factors related to success.

SISCR 2018 Module 17
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RESULTS

* Setting time zero as birth, compared risk of death
after adjustment in Cox models:

* Conclusion: winning may promote survival.
* |s there a bias?

SISCR 2018  Module 17
Survival Observational S. May

4a -

RESULTS

e Setting time zero as birth, compared risk of death
after adjustment in Cox models:

e Conclusion: winning may promote survival.
* Isthere a bias?
* Yes! (There are two...)

SISCR 2018 Module 17
Survival Observational S. May

4a -
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IMMORTAL TIME BIAS

* Winners given credit for survival as winners before
they won. Winning can’t possibly have contributed
to this portion of their survival.

* Reverse causality: Those who live longer have more
chance to become winners.

SISCR 2018  Module 17
Survival Observational S. May

4a-9

IMMORTAL TIME BIAS

Bias that occurs when definition of cohort,
or of comparison groups, depends on event
that occurs after the start of follow-up

Subjects not “at risk” (of death) before
group defining event occurs

It’s easy to fall in that trap once the data are available.

SISCR 2018  Module 17
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SURVIVAL OF OSCAR WINNERS

Acknowledgement in the original article

The authors thank Susan Campbell for data entry; Robert
Tibshirani and Jerry Lawless for statistical insights; and Peter
Austin, Ahmed Bayoumi, Chaim Bell, Victor Fuchs, David
Juurlink, David Naylor, Miriam Shuchman, Leonard Syme, and
John-Paul Szalai for commenting on drafts of this manuscript.

Note on Acknowledgements....
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SESSION 4b: SOME OBSERVATIONAL
DATA BIASES AND HOW TO CORRECT
THEM

Module 17: Survival Analysis for Observational Data

Summer Institute in Statistics for Clinical Research
University of Washington
July, 2018

Barbara McKnight, Ph.D.

OUTLINE

Immortal-time bias

— Examples: Valganciclovir Tx in Glioblastoma, Stanford
Heart Transplant Program

— Simulation
— Correction using time-dependent covariates
Index event bias

— Examples: Regular aspirin use and Ml in subjects with
ACS, BMI and outcome in PCl-treated subjects

— Correction using adjustment
More on TDCs if time

SISCR 2018: Module 17: Survival
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OUTLINE

* Immortal-time bias

— Examples: Valganciclovir Tx in Glioblastoma,
Stanford Heart Transplant Program

— Simulation
— Correction using time-dependent covariates
* Index event bias

— Examples: Regular aspirin use and Ml in subjects with
ACS, BMI and outcome in PCl-treated subjects

— Correction using adjustment
* More on TDCs if time

RECENT CLINICAL EXAMPLE

* Survival in Patients with Glioblastoma Receiving
Valganciclovir

(séderberg-Nauclér et al. (2013) NEJM 369(10):985-986.)

* Observational Hazard ratios for death, controls to
treated with Valganciclovir (anti-CMV) (all P <.0001):

— Any treatment after diagnosis: HR = 2.59
— At least 6 months treatment after diagnosis: HR = 3.20

— At least 6 months treatment after diagnosis and then
continuous treatment beyond diagnosis:HR = 5.52

* Problem: Glioblastoma raplidly lethal and subjects had to
survive to be treated!




IMMORTAL TIME BIAS

e Suissa S. Immortal time bias in observational studies of drug
effects. Pharmacoepidem Drug Safe. 2007 Mar 1:16(3):241—
249.

* When exposed time is counted incorrectly as an exposed
person or not counted as at risk, while surviving until
exposure occurs.

— Diabetics, use of statins and outcome of starting insulin
therapy

— Heart-failure hospital patients, prescription for beta-
blockers, and outcome of readmission to hospital

SISCR 2018: Module 17: Survival
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OLDER EXAMPLES

 Survival of “responders” vs “non-responders” in
Cancer clinical trials.

* Hormone use in cohort with Benign Breast Disease
and Breast cancer risk

» Effectiveness of Heart Transplant in prolonging
survival

SISCR 2018: Module 17: Survival
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DATA ANALYSIS EXAMPLE

* Early days of Stanford Heart Transplant program

— Subjects admitted to program when heart
condition was sufficiently severe

— Donor heart was sought

— Some patients received heart

— Some died before a suitable heart could be found
e Question: did heart transplant prolong survival?

STANFORD

* Without covariables

* Naive model examines survival as a function of
whether subject received a heart transplant

e Subjects who lived long enough to receive a
transplant lived longer:

HR 25% 97.5%
Wrong: Fixed 0.27 0.17 0.43




STANFORD

* With correct model for time-dependent transplant
status:

HR 25% 975 %
Correct: Time-dependent 1.14 0.63 2.05

* No evidence prior transplant influences mortality

IMMORTAL TIME BIAS

* Subject spends some time under observation for
outcome before “exposure” occurs

e Subject is not given credit for survival as a non-
exposed person until exposure occurs

— In some bad analyses, the time prior to exposure
is omitted (left entry at exposure time)

— In others, the subject is counted as exposed
before exposure occurs

* In both cases, bias is toward making exposure appear
to be associated with longer survival



OUTLINE

Immortal-time bias

— Examples: Valganciclovir Tx in Glioblastoma, Stanford
Heart Transplant Program

— Simulation
— Correction using time-dependent covariates
Index event bias

— Examples: Regular aspirin use and Ml in subjects with
ACS, BMI and outcome in PCl-treated subjects

— Correction using adjustment
More on TDCs if time

BIAS SIMULATION

Exposure times and survival times generated
independently (exposure HR = 1)

Mean survival time for those who were exposed
before death: 80.7

Mean survival time for those who were not exposed
before death: 18.3

REASON: Those who lived long enough to be
exposed, lived longer



Subject

Subject

10

10

OBSERVED DATA PICTURE

® Exposure Time

50 100

Observation Time

SISCR 2018: Module 17: Survival

T
150

Observational B. McKnight

Observational B. McKnight 4b-13
.
<
Py ]
Py ]
Py ]
- .
_— °
| °
.
® Exposure Time
T T T
50 100 150
Observation Time
SISCR 2018: Module 17: Survival ab- 14



SIMULATION

Previous plots were of a subset of one of the simulated
data sets

No association between exposure and survival (HR =1)
1000 replications of sample size 100
Compare three analysis strategies

— Ordinary Cox model counting any subject exposed
before death as exposed

— Cox model left entering exposed subjects when they
are exposed.

— Cox model with appropriate TDC

SIMULATION

* Ordinary Cox model counting any subject exposed
before death as exposed:
* All coefficients negative, indicating protective effect of
exposure.
* Cox model with left entry at exposure time for
exposed observations:
* All coefficients negative.

mean coefficient (log HR)  Pr[Reject Ho]

ordinary -1.8027810 1.000
left-enter -0.9468022 0.939




OUTLINE

* Immortal-time bias

— Examples: Valganciclovir Tx in Glioblastoma, Stanford
Heart Transplant Program

— Simulation

— Correction using time-dependent covariates
* Index event bias

— Examples: Regular aspirin use and Ml in subjects with
ACS, BMI and outcome in PCl-treated subjects

— Correction using adjustment
* More on TDCs if time

OPERATIONALIZING SOLUTION

* Time-dependent exposure variable!

* Let subject be categorized as not exposed at times
before exposure occurs, and let exposure status
change when exposure has occurred



TIME DEPENDENT EXPOSURE

Let the time-dependent binary prior exposure variable be:

£y = 1 exposed prior to time t
x(t) = 0 Otherwise '

Then the model is

A(E) = Ao (t)ePX®

ePis the hazard ratio associated with prior exposure

SISCR 2018: Module 17: Survival 4b- 19
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TIME-DEPENDENT EXPOSURE

T
exposed

t
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EARLIER
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T
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LATER

T
exposed

t
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WHY IT WORKS

* Exposed subject contributes survival to risk sets as
unexposed before s/he is exposed

* Exposed subject contributes survival to risk sets as
exposed after s/he is exposed until censoring or
death

* Exposed subject contributes death to risk set as
exposed when s/he dies

SISCR 2018: Module 17: Survival 4b- 24
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SIMULATION

Compare to correct time-dependent exposure model:

mean coefficient (log HR)  Pr[Reject Ho]

ordinary -1.8027810 1.000
left-enter -0.9468022 0.939
correct -0.0059659 0.048

TDC model correctly estimates HR near one (log HR near zero)
and correctly rejects H, only 5% of the time.

SISCR 2018: Module 17: Survival
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HOW TO DO IT

* Divide exposed subjects’ information into two
records:

* The first record starts at time zero (or entry into
observation), has exposure coded as unexposed, and
removes the subject from risk sets (as if censored) at
the time of exposure.

* The second record left enters at the time of
exposure, has exposure coded as exposed, and
follows subjects until s/he dies or is truly censored.

SISCR 2018: Module 17: Survival
Observational B. McKnight
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OUTLINE

Immortal-time bias

— Examples: Valganciclovir Tx in Glioblastoma, Stanford
Heart Transplant Program

— Simulation
— Correction using time-dependent covariates
Index event bias

— Examples: Regular aspirin use and Ml in subjects
with ACS, BMI and outcome in PCl-treated subjects

— Correction using adjustment
More on TDCs if time

SISCR 2018: Module 17: Survival
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INDEX EVENT BIAS

* Example: Rich et al (2010) studied 66,443 Acute Coronary
Syndrome (ACS) patients who participated in
thrombolysis or MI RCTs

* Baseline trial information about prior “regular” aspirin
use at least one week before presentation was available

* Recall there is strong evidence that regular aspirin use
prevents ischemic events, but in this population the
opposite was true.

Rich JD, Cannon CP, Murphy SA, Qin J, Giugliano RP, Braunwald E. Journal of
the American College of Cardiology (2010) Oct 19; 56(17):1376—1385.

SISCR 2018: Module 17: Survival
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EXAMPLE

* In this population, prior regular aspirin use was
positively associated with:

— Recurrent Ml: adjusted HR=1.24 (95% Cl: 1.12 -
1.37)

— Composite ACS event of MlI, ischemia requiring
hospitalization, urgent revascularization, or
stroke: Adjusted HR = 1.08, (95% CI: 1.03-1.13)

OBESITY EXAMPLE

* Gruberg et al (2002) studied BMI category and
subsequent Ml in a case series of 9633 patients who
underwent percutaneous coronary intervention.

* Overweight and obesity are known to be related to
the risk of Ml

* In this population, adjusted comparison of
overweight and obese patients to normal weight
patients: HR =.96, (95% CI: .94 - .98)

Gruberg L. et al Journal of the American College of Cardiology. (2002)
20;39(4):578-584.




INDEX EVENT BIAS

Why?
Subjects with a prior (“Index”) clinical event are not
representative of the population.

Risk factors for the outcome that may be
independent of exposure in the general population
are much less likely to be independent in a
population who have experienced the index event.

All risk factors for both the index event and the
outcome are potential confounders.

COLLIDER BIAS

BMI Aspirin

Ml

Both low/normal BMI and Aspirin use reduce the
risk of M.



COLLIDER BIAS

BMI L Aspirin

Ml

There is no reason to expect that aspirin use influences BMI,
so a study of BMI and MI would likely refrain from
adjusting for aspirin use.

COLLIDER BIAS

BIVI[ sccveverceerescenneecennnns Aspirin

Mi

Because BMI and aspirin use are both causally related to Ml,
they will often not be independent of each other in those
who have suffered an M.



SUFFICIENT CAUSE MODEL

No aspirin

Aspirin

No aspirin

Aspirin

Population distribution (independent)

Overweight Normal weight
A4 A4
1 1

Probability of Ml during time period

Overweight Normal weight
.005 .005
.005 .001

SUFFICIENT CAUSE MODEL

No aspirin

Aspirin

No aspirin

Aspirin

Distribution among cases

Overweight Normal weight
43 43
A1 .02

Expected among cases if independent

Overweight Normal weight
47 .40
.07 .06

OR=0.2
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38



INDEPENDENT CAUSE MODEL

No aspirin

Aspirin

No aspirin (.1)
Aspirin (.05)

Population distribution (independent)

Overweight Normal weight
A4 A4
1 1

Probability of Ml during time period

Overweight (.04)

Normal weight (.01)

.004

.001

.002

.0005

INDEPENDENT CAUSE MODEL

No aspirin

Aspirin

No aspirin

Aspirin

Distribution among cases

Overweight Normal weight
71 .18
.09 .02

Expected among cases if independent

Overweight Normal weight
71 .18
.09 .02

OR=1.0

39

40



No aspirin

Aspirin

No aspirin (.1)
Aspirin (.05)

No aspirin

Aspirin

No aspirin

Aspirin

SYNERGY MODEL

Population distribution (independent)

Overweight Normal weight
A4 A4
1 1

Probability of Ml during time period

Overweight (.04)

Normal weight (.01)

.006

.001

.002

.0005

SYNERGY MODEL

Distribution among cases

Overweight Normal weight
.79 13
.07 .02

Expected among cases if independent

Overweight Normal weight
.78 .14
.07 .01

41

OR=1.25
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ANTAGONISM MODEL

No aspirin

Aspirin

No aspirin (.1)
Aspirin (.05)

Population distribution (independent)

Overweight Normal weight
A4 A4
1 1

Probability of Ml during time period

Overweight (.04)

Normal weight (.01)

.0025

.001

.002

.0005

ANTAGONISM MODEL

No aspirin

Aspirin

No aspirin

Aspirin

Distribution among cases

Overweight Normal weight
.60 .24
12 .03

Expected among cases if independent

Overweight Normal weight
.62 .23
A1 .04

43

OR=0.62

44



IMPLICATION FOR ANALYSIS

When evaluating a risk factor for the index event for its
association with outcome, need to consider all risk
factors for the index event for adjustment, even if they
are independent of the risk factor under study in the
population.

In the example, Gruberg et al. adjusted for age, gender,
diabetes, hypertension, previous PCl, smoking,
saphenous vein graft intervention, and left ventricular
ejection fraction (LVEF), but neglected other CVD risk
factors (not thought to be associated with BMI) such as
LDL cholesterol levels .
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OUTLINE

* Immortal-time bias

— Examples: Oscar winners, Valganciclovir Tx in
Glioblastoma, Stanford Heart Transplant Program

— Simulation
— Correction using time-dependent covariates

* |Index event bias

— Examples: Regular aspirin use and Ml in subjects with
ACS, BMI and outcome in PCl-treated subjects

— Correction using adjustment
* More on TDCs if time
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OTHER TDC POSSIBILITIES (IF TIME)

More than one change in status:

Let A(t) be the hazard for stroke:

£ = 1 First Episode Atrial Fibrillation by t
xaF1(t) = 0 Otherwise

(t) = 1 Second Episode Atrial Fibrillation by t
XAF2U=1 0 Otherwise
)\(t) = )\0(t)eﬁleFl(t)‘*‘BZXAFz(t)
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TWO CHANGES

T
change2

change 1

t
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OTHER POSSIBILITIES

A change in numerical value of a continuous variable.

Examples:

X(t) = most recently recorded value of fasting insulin at time t.

Xx(t) = cumulative recorded exposure to radon at time t.

A(t) = Ao (t)ePX®

4b- 50

SISCR 2018: Module 17: Survival
Observational B. McKnight



PRIMARY BILIARY CIRRHOSIS

* 312 patients in RCT of d-penacillamine

* Some biomarkers were measured repeatedly over
time

e Compare influence of baseline measures on survival

(non-time-dependent model) to influence of most
recent measure (time-dependent model) on survival.

SISCR 2018: Module 17: Survival
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PRIMARY BILIARY CIRRHOSIS

X = bilirubin (mg/dl) measured at baseline
X(t) = most recently measured bilirubin (mg/dl) at day t.

Baseline model:

A(t) = Ag(t)ePX

Time-dependent model:
A(t) = Ao(t)eP ™

SISCR 2018: Module 17: Survival
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PRIMARY BILIARY CIRRHOSIS

Baseline model:

coef exp(coef) se(coef) z Pr(>|z|)
log(bili) 0.9890831 2.688768 0.0783597 12.62235 0

Time-dependent model:

coef exp(coef) se(coef) z Pr(>|z|)
log(bili) 1.370255 3.936355 0.0949917 14.425 0
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OTHER POSSIBILITIES

* Time-interaction with time-dependent exposure
variable like prior heart transplant

SISCR 2018: Module 17: Survival
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TO WATCH OUT FOR

* Make sure subjects give credit to the appropriate
group (covariate value) if exposure changes over
time using time-dependent covariates

* Inindex event studies, adjust for all available risk
factors for the index event if you believe they
influence outcome, even if you don’t think they are
associated with exposure.



