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Session Outline

• Examples

◃ Breast Cancer: 70 gene prediction / validation

◃ HIV: markers of disease progression

• Competing Risks Data

• TPC and cause-specific endpoints / Estimation (non-parametric)

• TP I and cause-specific endpoints / Estimation (semi-parametric)

• Illustration / Software
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Example: BC and 70-gene Signature among
Node-negative

Breast Cancer Prediction

• N = 307 women from (5) Euro Centers

• Endpoint(s):

◃ time-until-distant-metastases (next slide)

◃ disease-free-survival

• Predictive measurements:

◃ Clinicopathologic risk assessment

◃ 70-gene Signature

• Goal: validate (added) utility of “signature”

• Buyse et al. (2006) JNCI

116 Biomarkers



117 Biomarkers



118 Biomarkers



Example: Immune markers and disease progression

Multicenter AIDS Cohort Study

• N = 447 men observed to seroconvert

• Endpoint(s):

◃ time-until-AIDS

◃ time-until-death

• Predictive measurements:

◃ CD4, CD8 at “baseline”

◃ CD4, CD8 measured every 6 months

• Goal: evaluate markers as predictors of disease-progression

• Saha and Heagerty (2011)
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Competing Risks Endpoints

• Observed time-until-event, and type of event.

◃ Death, cause = ( BC, other)

• “Derived” time-until-first-event, and type of event

◃ Time until progression or Death (first event, type)

◃ e.g. metastases, death (without metastases first)

◃ e.g. AIDS, death (without AIDS first)

• Representation

◃ (T ∗
i , δi) where δi = 0, 1, 2, . . . , C

◃ δi: censored = 0; types = 1, 2, ... C
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Sensitivity and Specificity for Survival (again!)

Let T denote the survival time, and let N(t) denote the counting

process for the uncensored outcome:

N(t) = 1(T ≤ t)

Possible definitions:

CASE(t) :

⎧
⎨

⎩
Cumulative N(t) = 1

Incident dN(t) = 1

CONTROL(t) :

⎧
⎨

⎩
Static N(t⋆) = 0

Dynamic N(t) = 0

◦ Where t⋆ is a fixed “large” time, t⋆ >> t.
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Sensitivity and Specificity for Cause-specific Survival

Define:

sensitivityC(c, t;d) : P (M > c | T ≤ t; δ = d)

specificityD(c, t) : P (M ≤ c | T > t)

• “Cases” are broken into finer groups based on the type of case.

• e.g. high marker given metastases by time t (d=1)

• e.g. high marker given death w/o metastases by time t (d=2)
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Sensitivity and Specificity for Cause-specific Survival

Example: d=1, 2

Case 1 : Ti ≤ t, δ = 1

Case 2 : Ti ≤ t, δ = 2

Control : Ti > t, δ = [1, 2]

TPC
t (c, 1) = P (M > c | Ti ≤ t, δ = 1)

TPC
t (c, 2) = P (M > c | Ti ≤ t, δ = 2)

FPD
t (c) = P (M > c | Ti > t, δ = [1, 2])

124 Biomarkers



Estimation: Using “local” Cumulative Incidence

• Cause-specific Cumulative Incidence

◃ Cd(t) = P (T ≤ t; δ = d)

◃ Percent of population with event of type d by time t.

• Non-parametric estimation (K&P 1980, p. 168)

Ĉd(t) =
∑

s≤t

Ŝ(s−) · λ̂d(s)
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Estimation: Using “local” Cumulative Incidence

• Cumulative incidence estimator can handle censoring.

• Parallel the estimation of HLP(2000) using:

P (M > c | T ≤ t, δ = d) =
P (M > c, T ≤ t, δ = d)

Cd(t)

numerator =

∫ ∞

c
P (T ≤ t, δ = d | M = m) · P (M = m) dm

=

∫ ∞

c
Cd(t | M = m) · P (M = m) dm
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Estimation: Using “local” Cumulative Incidence

• Use local cause-specific cumulative incidence to estimate

Cd(t | M = m) and use empirical for P (M = m).

• Note:

P (T > t | M = m) = 1−
∑

d

P (T ≤ t, δ = d | M = m)

• Use above to estimate FPD
t (c) such that joint distribution is

proper.
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Software / Illustration

• Software: CRAN package for R called survivalROC – we have

extended this to implement the competing risks calculations. (P.

Saha)

• MACS Data

◃ Baseline (e.g. seroconversion time) values of CD4 and CD8

◃ Linear combination based on Cox regression

◃ Case Type 1 = AIDS

◃ Case Type 2 = death before AIDS

◃ Time for cumulative case status = 5 years
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Review: Sensitivity and Specificity for Survival

Define: Heagerty and Zheng (2005) / Saha and Heagerty (2011)

sensitivityI(c, t) : P [M(t) > c | T=t]

P [M(t) > c | dN(t) = 1]

specificityD(c, t) : P [M(t) ≤ c | T > t]

P [M(t) ≤ c | N(t) = 0]

TP I
t (c) = P [M(t) > c | dN(t)=1]

FPD
t (c) = P [M(t) > c | N(t) = 0]
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Sensitivity and Specificity for Cause-specific Survival

Define:

sensitivityI(c, t;d) : P (M > c | T=t; δ = d)

specificityD(c, t) : P (M ≤ c | T > t)

• “Cases” are broken into finer groups based on the type of case.

• e.g. high marker given metastases at time t (d=1)

• e.g. high marker given death w/o metastases at time t (d=2)
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Sensitivity and Specificity for Cause-specific Survival

Example: d=1, 2

Case 1 : Ti=t, δ = 1

Case 2 : Ti=t, δ = 2

Control : Ti > t, δ = [1, 2]

TP I
t (c, 1) = P (M > c | Ti=t, δ = 1)

TP I
t (c, 2) = P (M > c | Ti=t, δ = 2)

FPD
t (c) = P (M > c | Ti > t, δ = [1, 2])
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Estimation: Hazard as Bridge

A general definition for the cause-specific hazard is

λ(d)(t | Mi) =
P (Ti = t, δi = d | Mi)

P (Ti ≥ t | Mi)

Then using a little algebra yields

P (Mi = m | Ti = t, δi = d) ∝ λ(d)(t | Mi = m)︸ ︷︷ ︸ ·P (Mi = m | Ti ≥ t)︸ ︷︷ ︸
Estimate ⇐= Smooth model + Empirical

Note: direct (easy) generalization of the HZ(2005) methods.

134 Biomarkers



Software / Illustration

• Software: CRAN package for R called risksetROC – we have

extended this to implement the competing risks calculations, and

to handle time-dependent covariates. (P. Saha)

• MACS Data

◃ Longitudinal values of CD4 and CD8

◃ Linear combination based on Cox regression

◃ Case Type 1 = AIDS (n=176)

◃ Case Type 2 = death before AIDS (n=34)

◃ ROC curve, and AUC versus time
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Summary

• Extension of time-dependent ROC methods to competing risks

data.

• Cumulative Cases – uses non-parametric methods based on local

cumulative incidence calculations.

• Incident Cases – uses semi-parametric methods that parallel those

outlined in Heagerty and Zheng (2005).

• Time-dependent markers.
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Motivation: Treatment Prioritization

• Organ transplantation seeks to prioritize limited donor organs by

identifying those subjects who are at risk of death without

intervention (and who would do well if transplanted).

◃ Lung Allocation Score (see Gries et al. 2010)

◃ MELD Score (Model for Endstage Liver Disease)

• The scientific goal is one where over time a good model/marker

would identify those subjects at risk of death (from among those

still at-risk).

• Q: Where do diseased subjects who die rank among those in the

risk set?
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Weighted Mean Rank: Motivation

• Descriptive:

◃ Q: Where does the CASE rank among members of risk set?

◃ Q: If we considered the top 10% of CONTROL marker values

within a risk set then what is the probability that the CASE is

within the top 10%?

• Connection:

◃

AUC(t) = P [Mj > Mk | dNj(t) = 1, Nk(t) = 0]
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Example: PBC and Model(5) Score
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Example: PBC and Model(5) Score
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Case Rank within Risk Set

• Define:

◃ Rank CASE relative to CONTROLS

◃ Controls: R0(t) = {k : Nk(t) = 0 }
◃ Let n0

t = |R0(t)|

M∗(t) = Mj for dNj(t) = 1

A(t) =
1

n0
t

∑

k∈R0(t)

1[M∗(t) > Mk]

A(t) =
[risk set rank of M∗(t) ]− 1

n0
t
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Nonparametric Estimation of AUC(t)

• Multiple cases in a risk set leads to:

◃ Let R1(t) denote j such that dNj(t) = 1

◃ n1
t = |R1(t)|

A(t) =
1

n1
t

∑

j∈R1(t)

1

n0
t

∑

k∈R0(t)

1[Mj > Mk]

• Note that A(t) is a random variable where:

E[A(t)] = P [Mj > Mk | dNj(t) = 1, Nk(t) = 0] = AUCI/D(t)
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Nonparametric Estimation of AUC(t)

• Estimation: – Given that A(t) is a random variable

smoothing, or local averages can be used to estimate AUC(t):

◃ Define a neighborhood of time t based on a sample-size

dependent bandwidth hn.

e.g. Nt(hn) = [t− hn, t+ hn]

◃ Compute a local average:

ÂUC(t) =
1

|Nt(hn)|
∑

tj∈Nt(hn)

A(tj)
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Nonparametric Estimation of AUC(t)

• More generally use a kernel function to obtain a weighted average

◃ Khn(x) is a kernel function with bandwidth hn

• Define the Weighted Mean Rank (WMR) Estimator:

ÂUC(t) =
∑

j

K∗
hn

(tj − t) ·A(tj)

◃ Where K∗ is normalized version of kernel function such that∑
j K

∗
hn

(tj − t) = 1.
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Asymptotic Properties of WMR Estimator

• We can show that the estimator is consistent and asymptotically

normal (CAN).

• Theory uses a U-statistic central limit theorem.

• Variance estimation is obtained based on analytical expressions

that are straight-forward to compute.

• Data-driven bandwidth – we have implemented a jackknike

cross-validation method to estimate the integrated mean squared

error (IMSE) and can choose a bandwidth to minimize this

criterion.
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Comparison of Markers

• A key use of ROC and AUC methods is to compare the prognostic

potential of different markers.

• Data used for comparison is paired: (Mi1,Mi2)

• Using WMR methods we simply compute locally weighted

averages of the difference:

ÂUC1(t) =
∑

j

K∗
hn

(tj − t) ·A1(tj)

ÂUC2(t) =
∑

j

K∗
hn

(tj − t) ·A2(tj)

D̂12(t) =
∑

j

K∗
hn

(tj − t) · [A1(tj)−A2(tj)]
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Additional Comments

• For a baseline marker the C-index can also be estimated as the

global weighted average:

Ĉ =

∫
A(t) · 2f̂(t)Ŝ(t) dt

• We can also directly apply the WMR estimator to time-dependent

covariates, M(t), since the method is based on risk-sets and the

case rank within the riskset.

• Time-dependent Covariate Example:

◃ Cystic Fibrosis Data

◃ FEV1, height, and weight are time-dependent

◃ Compare semi-parametric estimate of HZ(2005) to WMR
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Some Current Extensions

• Recall that one of our motivating questions asked:

◃ Q: How often does the CASE marker rank in the top 10% of

the risk set (or among controls)?

• This concept is directly connected to sensitivity:

TP I/D(p, t) = P [Mj > cp | Tj = t]

E {1[A(t) > (1− p)]} = CASE(t) > (1-p)% of CONTROLS(t)

= TP I/D(p, t)
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Some Current Extensions

• Non-Parametric T̂P
I/D

◃ Select a value of false-positive rate: p

◃ Derive the indicators:

H(t, p) = 1[ A(t) > (1− p) ]

◃ Locally weighted averages to obtain smooth curve in time:

T̂P
I/D
hn

(t, p) =
∑

j

K∗
hn

(t− tj) ·H(t, p)
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Example: PBC and Model(5) Score
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Summary

• The Case rank is a descriptive summary that is clinically

meaningful.

• Using the case-rank provide a basis for non-parametric estimation

of time-dependent accuracy summaries.

• WMR provides non-parametric estimation with analytical

expressions for standard errors.

• Methods extend to allow time-dependent markers.

• Methods extend to estimation of time-dependent sensitivity.
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Summary

Accuracy summary Estimation

ROCI/D
t (p) : vary (M,t) SP, NP

AUC(t) : vary (t) SP, NP

ROC(p) : vary (M) SP, NP

C : global SP, NP
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