SISCR Module 4

Part I:

Introduction
Basic Concepts for Binary Biomarkers (Classifiers) and Continuous Biomarkers

Kathleen Kerr, Ph.D.
Associate Professor
Department of Biostatistics
University of Washington

Module Overview

- Part I: Introductory concepts
- Part II: Evaluating Risk Models
- Part III: Evaluating the Incremental Value of New Biomarkers
- Part IV: Some Guidance on Developing Risk Models
- Part V: Prognostic vs. Predictive Biomarkers
- also: R tutorial/demo

Module Overview

- The focus of this module is concepts rather than statistical details
- we won't be deriving hypothesis tests or distributional results
- However, we will look at some mathematical expressions as we explore certain concepts

Part I Topics

- Motivating and illustrative examples
- True and false positive rates (TPR, FPR)
- Predictive values (PPV, NPV)
- ROC curves and area under the curve (AUC)
- Risk models
- What is "personal risk"?

Part 1 Overview

- Some examples
- To start: 1 marker X is binary (a "test")
- We then move on: 1 marker X is continuous
- Multiple markers X, Y, ..., and risk model P(bad outcome | X, Y, ...)

What is a Marker?

- DEF: a quantitative or qualitative measure that is potentially useful to classify individuals for current or future status
- current \rightarrow diagnostic marker
- future \rightarrow prognostic marker
- Includes biomarkers measured in biological specimens
- Includes imaging tests, sensory tests, clinical signs and symptoms, risk factors

What is the purpose of a classifier or risk prediction tool?

- To inform subjects about risk
- To help make medical decisions
- Most often: identify individuals with high risk high risk individuals have the greatest potential to benefit from an intervention
- Sometimes: identify individuals with low risk not likely to benefit from an intervention
- To enrich a clinical trial with "high risk" patients

Terminology and Notation

- "case" or "event" is an individual with the (bad) outcome
- "control" or "nonevent" is an individual without the outcome
case control
$\mathrm{D}=1 \quad \mathrm{D}=0$
D \bar{D}

D
N

Terminology and Notation

- $\mathrm{X}, \mathrm{Y}=$ potential predictors of D (biomarkers, demographic factors, clinical characteristics)
- Often: X is "standard" predictor(s) and Y is a new biomarker under consideration
- $\operatorname{risk}(X)=r(X)=P(D=1 \mid X)$ $-\operatorname{risk}(X, Y)=r(X, Y)=P(D=1 \mid X, Y)$
- prevalence $=P(D=1)=\rho \quad$ ("rho")

What is risk (X) ?

- $\operatorname{risk}(x) \equiv P(D=1 \mid X=x)$ is the frequency of events/disease among the group with $X=x$
- "Personal risk" is not completely personal!
- Will return to this at the end of Part I

Example: Coronary Artery Surgery Study (CASS)

- 1465 men undergoing coronary arteriography for suspected coronary heart disease
- Arteriography is the "gold standard" measure of coronary heart disease
- Evaluates the number and severity of blockages in arteries that supply blood to the heart
- Simple cohort study
- Possible predictor: Exercise stress test (EST)
- Possible predictor: chest pain history (CPH)

Example: EDRN Breast Cancer Biomarkers

- Women with positive mammograms undergo biopsy, the majority turn out to be benign lesions
- Provides motivation to develop serum biomarker to reduce unnecessary biopsies

Example: Pancreatic Cancer Biomarkers

- 141 patients with either pancreatitis ($\mathrm{n}=51$) or pancreatic cancer ($\mathrm{n}=90$)
- Serum samples
- Two candidate markers:
- A cancer antigen CA-125
- A carbohydrate antigen CA19-9
- Which marker is better at identifying cancer?
- Is either marker good enough to be useful?

Wieand, Gail, James, and James Biometrika 1989

Example: Cardiovascular Disease

- Framingham study
- D = CVD event
- $\mathrm{Y}=$ high density lipoprotein
- X = demographics, smoking, diabetes, blood pressure, total cholesterol
- $\mathrm{n}=3264, \mathrm{n}_{\mathrm{D}}=183$

Simulated Data

- Artificial data are useful for exploring/illustrating methodology
- Next I introduce artificial datasets that we will use to illustrate some methods
- Simulated data on DABS website
- Simulated data from R packages rmda (risk model decision analysis) and BioPET
- Normal and MultiNormal biomarker model

Example: Simulated data on DABS website

- $\mathrm{n}=10,000, \mathrm{n}_{\mathrm{D}}=1017$
- $\mathrm{Y}=$ continuous, 1-dimensional
- $\mathrm{X}=$ continuous, 1 -dimensional
- Search "Pepe DABS" or http://research.fhcrc.org/diagnostic-biomarkers-centerl
- "simulated risk reclassification dataset"

Example: Simulated data in R packages

- $\mathrm{n}=500, \mathrm{n}_{\mathrm{D}}=60$
- $\mathrm{X}=$ sex, smoking status, Marker1
- Y = Marker2
- These simulated data will not appear in lecture notes, but will appear in software demo

Normal Model with 1 Marker

- Biomarker X Normally distributed in controls and in cases

$$
\begin{gathered}
X \sim N(0,1) \text { in controls } \\
X \sim N(\mu, 1) \text { in cases }
\end{gathered}
$$

Distribution of X when $\mu=1$

Multivariate Normal Model with 2 Markers (Bivariate Normal)

- Biomarkers $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$ are bivariate Normally distributed in controls and in cases

$$
\begin{gathered}
\vec{X} \sim \operatorname{MVN}(\overrightarrow{0}, \Sigma) \text { in controls } \\
\vec{X} \sim \operatorname{MVN}(\vec{\mu}, \Sigma) \text { in cases } \\
\Sigma=\left[\begin{array}{ll}
1 & r \\
r & 1
\end{array}\right]
\end{gathered}
$$

In these examples X_{1} and X_{2} each have mean (0,0) in controls and mean $(1,2)$ in cases. We can picture marker data in 2-dimensional space.

\approx

20

- Biomarkers ($\mathrm{X}_{1}, \mathrm{X}_{2}$) are bivariate Normally distributed in controls and in cases

$$
\begin{gathered}
\vec{X} \sim M V N(\overrightarrow{0}, \Sigma) \text { in controls } \\
\vec{X} \sim \operatorname{MVN}(\vec{\mu}, \Sigma) \text { in cases }
\end{gathered}
$$

- This data model is useful in research because the logistic regression model holds for each marker and for both markers together. logit $P\left(D=1 \mid X_{1}\right)$ is linear in X_{1} logit $P\left(D=1 \mid X_{2}\right)$ is linear in X_{2} logit $P\left(D=1 \mid X_{1}, X_{2}\right)$ is linear in X_{1} and X_{2}

Generalization: Multivariate Normal Model

- Biomarkers $\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ are multivariate Normally distributed in controls and in cases

$$
\begin{gathered}
\vec{X} \sim \operatorname{MVN}(\overrightarrow{0}, \Sigma) \text { in controls } \\
\vec{X} \sim \operatorname{MVN}(\vec{\mu}, \Sigma) \text { in cases }
\end{gathered}
$$

- The linear logistic model holds for every subset of markers

QUANTIFYING CLASSIFICATION ACCURACY (BINARY MARKER OR "TEST")

Terminology

- $D=$ outcome (disease, event)
- $\mathrm{Y}=$ marker (test result)

Terminology

TPR = true positive rate $=P[Y=1 \mid \mathrm{D}=1]=$ sensitivity

FPR = false positive rate $=P[Y=1 \mid \mathrm{D}=0]=1$-specificity
$F N R=$ false negative rate $=P[Y=0 \mid D=1]=1-T P R$

TNR = true negative rate $=\mathrm{P}[\mathrm{Y}=0 \mid \mathrm{D}=0]=1-\mathrm{FPR}$

Ideal test: $\mathrm{FPR}=0$ and $\mathrm{TPR}=1$

- (FPR, TPR)

cost
Later, we will consider the costs associated with false positives

benefit

Later, we will consider the benefits of identifying a true positive

Coronary Artery Surgery Study (CASS)

Coronary Artery Disease

What about Odds Ratios?

- Odds ratios are very popular:
- Because logistic regression is popular
- Odds Ratio estimable from case-control study
- OR \approx relative risk for rare outcome
- $O R=\frac{T P R(1-F P R)}{F P R(1-T P R)}$
- Good classification (high TPR and low FPR) \rightarrow large odds ratio
- However, large odds ratio does NOT imply good classification!

Good classification \rightarrow large odds ratio

$$
\begin{aligned}
& \text { E.g., } \mathrm{TPR}=0.8, \mathrm{FPR}=0.10 \\
& \qquad O R=\frac{0.8 \times 0.9}{0.1 \times 0.2}=36
\end{aligned}
$$

Coronary Artery Surgery Study (CASS)

OR is large but classification performance is not exceptional.
large odds ratio does NOT imply good classification!

FIGURE 1. Correspondence between the true-positive fraction (TPF) and the false-positive fraction (FPF) of a binary marker and the odds ratio. Values of (TPF, FPF) that yield the same odds ratio are connected.

- Need to report both FPR and TPR

- Collapsing into one number (e.g., OR) is not sufficient
- important information is lost

Misclassification Rate

$$
\begin{aligned}
M R & =\text { error rate }=P(Y \neq D) \\
& =P(Y=0, D=1)+P(Y=1, D=0) \\
& =\rho(1-T P R)+(1-\rho) F P R
\end{aligned}
$$

- ρ is the prevalence $P(D=1)$
- only appropriate if the cost of false positives equals the cost of false negatives
- seldom useful or appropriate in biomedical applications

Misclassification Rate

- There are two kinds of wrong decisions and the MR equates these. In order to be clinically relevant we must consider the cost of each kind of error
- ... later today
- FPR, TPR condition on true status (D)
- they address the question: "to what extent does the biomarker reflect true status?"

Predictive Values

Positive predictive value $P P V=P(D=1 \mid Y=1)$
Negative predictive value $N P V=P(D=0 \mid Y=0)$

- condition on biomarker results (Y)
- address the question: "Given my biomarker value is Y, what is the chance that I have the disease?" This is the question of interest for patients and clinicians when interpreting the result of a biomarker or test

Predictive Values

PPV and NPV are functions of TPR and FPR and the prevalence ρ

$$
\begin{gathered}
P P V=\frac{\rho T P R}{\rho T P R+(1-\rho) F P R} \\
N P V=\frac{(1-\rho)(1-F P R)}{(1-\rho)(1-F P R)+\rho(1-T P R)}
\end{gathered}
$$

- TPR, FPR are properties of a test, but PPV, NPV are properties of a test in a population
- For low prevalence conditions, PPV tends to be low, even with very sensitive tests

Predictive Values - Example

A serious disease affects 1 in 10,000 in a patient population.
A company markets a screening test as " 98% accurate" because both sensitivity and specificity have been estimated to be 98%.
Those who test positive are recommended to undergo an invasive procedure for definitive diagnosis.
Should there be general screening for the patient population?

False Discovery Rate

False Discovery Rate $F D R=P(D=0 \mid Y=1)$

$$
=1-\mathrm{PPV}
$$

"False Discovery Rate" and "False Positive Rate" sound similar, but they are not the same!
-FPR: among all those who are not diseased, how many were called positive
-FDR: among all those you called positive, how many were not actually diseased.
-We will not use or further discuss FDR further today.

Motivation

- Most biomarkers are continuous

Convention

- Assume larger Y more indicative of disease - otherwise replace Y with $-Y$
- Formally: $P(D=1 \mid Y)$ increasing in Y

Receiver Operating Characteristic (ROC) Curve

- generalizes (FPR, TPR) to continuous markers
- considers rules based on thresholds " $\mathrm{Y} \geq \mathrm{c}$ "
- makes sense if $P(D=1 \mid Y)$ increasing in Y
- $\operatorname{TPR}(c)=P(Y \geq c \mid D=1)$
- $\operatorname{FPR}(c)=P(Y \geq c \mid D=0)$
- ROC($\cdot)=\{\operatorname{FPR}(\mathrm{c}), \operatorname{TPR}(\mathrm{c}) ; \mathrm{c}$ in $(-\infty, \infty)\}$

Properties of ROC curves

- non-decreasing from $(0,0)$ to $(1,1)$ as threshold decreases from $c=\infty$ to $c=-\infty$
- ideal marker has control distribution completely disjoint from case distribution; ROC through $(0,1)$
- useless marker has ROC equal to 45 degree line
- doesn't depend on scale of Y : invariant to monotone increasing transformations of Y
- puts different markers on a common relevant scale
- shows entire range of possible performance

Pancreatic cancer biomarkers (Wieand et al 1989)

ROC curves for pancreatic cancer biomarkers
CA-19-9 appears to be the more accurate diagnostic biomarker for pancreatic cancer

- for most fixed FPR, CA-19-9 has the better corresponding TPR
- for most fixed TPR, CA-19-9 has the better corresponding FPR

Summarizing ROC Curves: AUC

- AUC is Area under ROC curve
- $\mathrm{AUC}={ }_{0} \int^{1} \mathrm{ROC}(\mathrm{t}) \mathrm{dt}=$ average (TPR)
- average is uniform over $(0,1)$
- commonly used summary of an ROC curve
- also called the c-index or c-statistic
- ideal test: AUC=1.0
- useless test: AUC=0.5
- A single number summary of a curve is necessarily a crude summary

AUC: probabilistic interpretation

- $P\left(Y_{D}>Y_{N}\right)$ for a randomly selected case D and a randomly selected control N
- Provides an interpretation for AUC beyond "area under ROC curve"
- The AUC is a summary of an ROC curve that is commonly used to compare ROC curves it is interpretable, but the interpretation also shows that AUC is not clinically meaningful

Risk Model: Huntington’s Disease

- Huntington's Disease is caused by the gene HTT on human chromosome 4. There is a CAG segment that is repeated $10-35$ times in non-diseased individuals. If the segment is repeated 36-120+ times, a person always* develops Huntington's Disease in middle-age.
The genetic abnormality is dominant, meaning one abnormal gene causes disease.
- *40+ times: always develop HD
- *36-39 times: might not develop HD (ignoring this small possibility for this example)

Risk Model: Huntington's Disease

- Relevant Population: Individuals with a biological parent who have Huntington's Disease
- Within this population, an individual has a 50% chance of developing HD depending on whether he or she inherited the abnormal or normal version of the gene from the affected parent.
- $P(D)=1 / 2=\rho$ in this population.

Risk Model: Huntington's Disease

- An individual can choose to have his HTT gene genotyped. Say HTT=0 means 0 copies of abnormal gene; HTT=1 means 1 copy of abnormal gene.
- $P(D \mid H T T=0)=0 \% ; P(D \mid H T T=1)=100 \%$.
- The marker HTT stratifies the patient population (risk $=50 \%$) into the subgroup with 0% risk and the subgroup with 100% risk.

Risk model

- risk prediction model - gives a risk for a marker value or a combination of markers
- Predicted risks are in the interval [0,1] and interpreted as probabilities
- It is rare that a risk model is definitive like the HD example
- In fact, because the genetic test for Huntington's Disease is definitive, most people do not even think of it as a risk model

Risk model examples

- Most risk models combine information from multiple risk factors
- E.g., Gail model for breast cancer risk
- for use in women with no history of breast cancer
- Estimates 5-year risk of breast cancer based on current age, age at menarche, age at first birth, family history, race.
- E.g., Framingham CHD risk score
- Estimates risk of CHD based on age, sex, smoking status, total and HDL cholesterol, blood pressure

Risk model examples

- E.g. STS risk score for dialysis following cardiac surgery is formed via:
- STS risk score $=f\left(\alpha+\beta_{1}\right.$ Age $+\beta_{2}$ Surgery Type $+\beta_{3}$

Diabetes $+\beta_{4}$ MI Recent $+\beta_{5}$ Race $+\beta_{6}$ Chronic Lung Disease $+\beta_{7}$ Reoperation $+\beta_{8}$ NYHA Class $+\beta_{9}$ Cardiogenic Shock+ β_{10} Last Serum Creatinine)

What is "personal risk"?

- Recall: $\operatorname{risk}(x) \equiv P(D=1 \mid X=x)$ is the frequency of events among the group with marker values x
- "Personal risk" is not completely personal! - (next example)

What is "personal risk"?

- Suppose the prevalence of D in "Population A" is 1\%
- Without any additional information, the only valid risk prediction instrument is to assign everyone in the population risk=1\%
- Suppose we have a marker X that tends to be higher in cases than controls

What is "personal risk"?

- Suppose an individual in Population A has X measured as 1 .
- We can calculate his $\operatorname{risk}(X=1) \approx 1.6 \%$
- calculation uses Bayes' rule

Distribution of marker X in controls (blue) and cases (red)

What is "personal risk"?

- Suppose the marker acts exactly the same in Population B. The only difference between Populations A and B is that B has prevalence $=10 \%$.
- An individual in Population B has $X=1$. For that individual, his risk is $\approx 15.5 \%$

Distribution of marker X in controls (blue) and cases (red)

What is "personal risk"?

- "Personal risk" is a term that is prone to be misconstrued
- Risk is personal when calculated based on personal characteristics
- However, personal risk is not completely divorced from population characteristics. The previous example shows that the population (specifically, the population prevalence) affects "personal" risk.

What is "personal risk"?

- Occasionally one hears mention of estimating a person's "individual risk" or "true personal risk."
- Frequentist statisticians cannot really claim to do so.
- One might claim John's "true risk" of a heart attack in the next 5 years is 7%. But we can only observe John having or not having a heart attack in the next 5 years. I cannot observe John having a heart attack in 7\% of 5-year periods.
- The best I can claim is that "among people with John's characteristics, 7% will have a heart attack in the next 5 years."
- More than one way to define "people like John."

Summary

- Some example datasets
- FPR, TPR
- PPV, NPV
- function of FPR, TPR and disease prevalence
- ROC curves
- AUC
- geometric interpretation as area under curve
- probability interpretation
- risk model: $\operatorname{risk}(X)=P(D=1 \mid X)$

