SISCR Module 4 Part I: Introduction Basic Concepts for Binary Biomarkers (Classifiers) and Continuous Biomarkers

Kathleen Kerr, Ph.D. Associate Professor Department of Biostatistics University of Washington

Module Overview

- Part I: Introductory concepts
- Part II: Evaluating Risk Models
- Part III: Evaluating the Incremental Value of New Biomarkers
- Part IV: Some Guidance on Developing Risk Models
- Part V: Prognostic vs. Predictive Biomarkers
- also: R tutorial/demo

Module Overview

- The focus of this module is concepts rather than statistical details
 - we won't be deriving hypothesis tests or distributional results
 - However, we will look at some mathematical expressions as we explore certain concepts

Part I Topics

3

- Motivating and illustrative examples
- True and false positive rates (TPR, FPR)
- Predictive values (PPV, NPV)
- ROC curves and area under the curve (AUC)
- Risk models
- What is "personal risk"?

Part 1 Overview

- Some examples
- To start: 1 marker X is binary (a "test")
- We then move on: 1 marker X is continuous
- Multiple markers X, Y, ..., and risk model P(bad outcome | X, Y, ...)

What is a Marker?

- DEF: a quantitative or qualitative measure that is potentially useful to classify individuals for current or future status
 - current \rightarrow diagnostic marker
 - future \rightarrow prognostic marker
- Includes biomarkers measured in biological specimens
- Includes imaging tests, sensory tests, clinical signs and symptoms, risk factors

What is the purpose of a classifier or risk prediction tool?

- To inform subjects about risk
- To help make medical decisions
 - Most often: identify individuals with high risk high risk individuals have the greatest potential to benefit from an intervention
 - Sometimes: identify individuals with low risk not likely to benefit from an intervention
- To enrich a clinical trial with "high risk" patients

Terminology and Notation

- "case" or "event" is an individual with the (bad) outcome
- "control" or "nonevent" is an individual without the outcome

case	control
D=1	D=0
D	\overline{D}
D	Ν

Terminology and Notation

- X, Y = potential predictors of D (biomarkers, demographic factors, clinical characteristics)
- Often: X is "standard" predictor(s) and Y is a new biomarker under consideration
- risk(X) = r(X) = P(D=1 | X)
 risk(X,Y) = r(X,Y) = P(D=1 | X, Y)
- prevalence = $P(D=1) = \rho$ ("rho")

What is risk(X)?

- risk(x) = P(D=1 | X=x) is the frequency of events/disease among the group with X = x
- "Personal risk" is not completely personal!
 Will return to this at the end of Part I

Example: Coronary Artery Surgery Study (CASS)

- 1465 men undergoing coronary arteriography for suspected coronary heart disease
- Arteriography is the "gold standard" measure of coronary heart disease
 - Evaluates the number and severity of blockages in arteries that supply blood to the heart
- Simple cohort study
- Possible predictor: Exercise stress test (EST)
- Possible predictor: chest pain history (CPH)

Example: EDRN Breast Cancer Biomarkers

- Women with positive mammograms undergo biopsy, the majority turn out to be benign lesions
- Provides motivation to develop serum biomarker to reduce unnecessary biopsies

Example: Pancreatic Cancer Biomarkers

- 141 patients with either pancreatitis (n=51) or pancreatic cancer (n=90)
- Serum samples
- Two candidate markers:
 - A cancer antigen CA-125
 - A carbohydrate antigen CA19-9
- Which marker is better at identifying cancer?
- Is either marker good enough to be useful? Wieand, Gail, James, and James *Biometrika* 1989

Example: Cardiovascular Disease

- Framingham study
- D = CVD event
- Y = high density lipoprotein
- X = demographics, smoking, diabetes, blood pressure, total cholesterol
- n = 3264, n_D=183

Simulated Data

- Artificial data are useful for exploring/illustrating methodology
- Next I introduce artificial datasets that we will use to illustrate some methods
 - Simulated data on DABS website
 - Simulated data from R packages *rmda* (risk model decision analysis) and *BioPET*
 - Normal and MultiNormal biomarker model

Example: Simulated data on DABS website

- n = 10,000, n_D=1017
- Y = continuous, 1-dimensional
- X = continuous, 1-dimensional
- Search "Pepe DABS" or <u>http://research.fhcrc.org/diagnostic-</u> <u>biomarkers-center/</u>
 - "simulated risk reclassification dataset"

Example: Simulated data in R packages

- n = 500, n_D=60
- X = sex, smoking status, Marker1
- Y = Marker2
- These simulated data will not appear in lecture notes, but will appear in software demo

Normal Model with 1 Marker

 Biomarker X Normally distributed in controls and in cases

X ~ N(0,1) in controls X ~ N(μ ,1) in cases $\int_{-2}^{-2} \int_{-1}^{-1} \int_{0}^{-1} \int_{1}^{-2} \int_{3}^{-3}$ Distribution of X when μ =1

Multivariate Normal Model with 2 Markers (Bivariate Normal)

 Biomarkers (X₁, X₂) are bivariate Normally distributed in controls and in cases

 $\vec{X} \sim MVN(\vec{0}, \Sigma)$ in controls

$$X \sim MVN(\vec{\mu}, \Sigma)$$
 in cases

$$\Sigma = \begin{bmatrix} 1 & r \\ r & 1 \end{bmatrix}$$

19

In these examples X_1 and X_2 each have mean (0,0) in controls and mean (1,2) in cases. We can picture marker data in 2-dimensional space.

- Biomarkers (X₁, X₂) are bivariate Normally distributed in controls and in cases
 X ~ MVN(0, Σ) in controls
 X ~ MVN(μ, Σ) in cases
- This data model is useful in research because the logistic regression model holds for each marker and for both markers together.
 logit P(D=1| X₁) is linear in X₁
 logit P(D=1| X₂) is linear in X₂

logit P(D=1| X_1 , X_2) is linear in X_1 and X_2

21

Generalization: Multivariate Normal Model

 Biomarkers (X₁, X₂, ..., X_k) are multivariate Normally distributed in controls and in cases

 $\vec{X} \sim MVN(\vec{0}, \Sigma)$ in controls

 $\vec{X} \sim MVN(\vec{\mu}, \Sigma)$ in cases

 The linear logistic model holds for every subset of markers SISCR 2018, Module 4: Part I

QUANTIFYING CLASSIFICATION ACCURACY (BINARY MARKER OR "TEST")

Terminology

- D = outcome (disease, event)
- Y = marker (test result)

	D=0	D=1
Y=0	true negative	false negative
Y=1	false positive	true positive

Terminology

TPR = true positive rate = P[Y=1|D=1] = sensitivity

FPR = false positive rate = P[Y=1|D=0] = 1-specificity

FNR = false negative rate = P[Y=0|D=1] = 1-TPR

TNR = true negative rate = P[Y=0|D=0] = 1-FPR

Ideal test: FPR=0 and TPR=1

Coronary Artery Surgery Study (CASS)

Coronary Artery Disease

TPR=815/1023=80%

What about Odds Ratios?

- Odds ratios are very popular:
 - Because logistic regression is popular
 - Odds Ratio estimable from case-control study
 - OR≈relative risk for rare outcome

•
$$OR = \frac{TPR(1-FPR)}{FPR(1-TPR)}$$

- Good classification (high TPR and low FPR)
 → large odds ratio
- However, large odds ratio does NOT imply good classification!

Good classification \rightarrow large odds ratio

E.g., TPR=0.8, FPR=0.10 $OR = \frac{0.8 \times 0.9}{0.1 \times 0.2} = 36$

29

Coronary Artery Surgery Study (CASS)

OR is large but classification performance is not exceptional.

Pepe et al, American Journal of Epidemiology 2004;

159:882-890.

large odds ratio does NOT imply good classification!

FIGURE 1. Correspondence between the true-positive fraction (TPF) and the false-positive fraction (FPF) of a binary marker and the odds ratio. Values of (TPF, FPF) that yield the same odds ratio are connected.

- Need to report *both* FPR and TPR
- Collapsing into one number (e.g., OR) is not sufficient
 - important information is lost

Misclassification Rate

- ρ is the prevalence P(D=1)
- only appropriate if the cost of false positives equals the cost of false negatives
- seldom useful or appropriate in biomedical applications

Misclassification Rate

 There are two kinds of wrong decisions and the MR equates these. In order to be clinically relevant we must consider the cost of each kind of error

- ... later today

- FPR, TPR condition on true status (D)
- they address the question: "to what extent does the biomarker reflect true status?"

Predictive Values

Positive predictive value PPV=P(D=1|Y=1) Negative predictive value NPV=P(D=0|Y=0)

- condition on biomarker results (Y)
- address the question: "Given my biomarker value is Y, what is the chance that I have the disease?" This is the question of interest for patients and clinicians when interpreting the result of a biomarker or test

Predictive Values

PPV and NPV are functions of TPR and FPR and the prevalence ρ

$$PPV = \frac{\rho TPR}{\rho TPR + (1 - \rho)FPR}$$
$$NPV = \frac{(1 - \rho)(1 - FPR)}{(1 - \rho)(1 - FPR) + \rho(1 - TPR)}$$

- TPR, FPR are properties of a test, but PPV, NPV are properties of *a* test *in a population*
- For low prevalence conditions, PPV tends to be low, even with very sensitive tests

37

Predictive Values - Example

A serious disease affects 1 in 10,000 in a patient population.

A company markets a screening test as "98% accurate" because both sensitivity and specificity have been estimated to be 98%.

Those who test positive are recommended to undergo an invasive procedure for definitive diagnosis.

Should there be general screening for the patient population?

NPV = ? PPV = ?

False Discovery Rate

False Discovery Rate FDR=P(D=0|Y=1) =1 - PPV

"False Discovery Rate" and "False Positive Rate" sound similar, but they are not the same!

•FPR: among all those who are not diseased, how many were called positive

•FDR: among all those you called positive, how many were not actually diseased.

•We will not use or further discuss FDR further today.

39

CONTINUOUS MARKERS: ROC CURVES

Motivation

• Most biomarkers are continuous

Convention

- Assume larger Y more indicative of disease – otherwise replace Y with -Y
- Formally: P(D=1 | Y) increasing in Y

Receiver Operating Characteristic (ROC) Curve

- generalizes (FPR, TPR) to continuous markers
- considers rules based on thresholds "Y≥c"
 makes sense if P(D=1|Y) increasing in Y
- TPR(c)=P(Y ≥ c | D=1)
- $FPR(c)=P(Y \ge c \mid D=0)$
- ROC(·)={FPR(c), TPR(c) ; c in (-∞,∞)}

Properties of ROC curves

- non-decreasing from (0,0) to (1,1) as threshold decreases from c=∞ to c= -∞
- *ideal* marker has control distribution completely disjoint from case distribution; ROC through (0,1)
- useless marker has ROC equal to 45 degree line
- doesn't depend on scale of Y: invariant to monotone increasing transformations of Y
- puts different markers on a common relevant scale
- · shows entire range of possible performance

Pancreatic cancer biomarkers (Wieand et al 1989)

log(marker concentration)

49

ROC curves for pancreatic cancer biomarkers

- for most fixed FPR, CA-19-9 has the better corresponding TPR
- for most fixed TPR, CA-19-9 has the better corresponding FPR

Summarizing ROC Curves: AUC

- AUC is <u>A</u>rea <u>under ROC curve</u>
- AUC = $_0 \int^1 ROC(t) dt = average(TPR)$ – average is uniform over (0,1)
- commonly used summary of an ROC curve – also called the c-index or c-statistic
- ideal test: AUC=1.0
- useless test: AUC=0.5
- A single number summary of a curve is necessarily a crude summary

AUC: probabilistic interpretation

- P(Y_D > Y_N) for a randomly selected case D and a randomly selected control N
 - Provides an interpretation for AUC beyond "area under ROC curve"
- The AUC is a summary of an ROC curve that is commonly used to compare ROC curves – it is interpretable, but the interpretation also shows that AUC is not clinically meaningful

53

RISK PREDICTION

Risk Model: Huntington's Disease

- Huntington's Disease is caused by the gene HTT on human chromosome 4. There is a CAG segment that is repeated 10-35 times in non-diseased individuals. If the segment is repeated 36-120+ times, a person always* develops Huntington's Disease in middle-age. The genetic abnormality is dominant, meaning one abnormal gene causes disease.
 - *40+ times: always develop HD
 - *36-39 times: might not develop HD (ignoring this small possibility for this example)

Risk Model: Huntington's Disease

- Relevant Population: Individuals with a biological parent who have Huntington's Disease
- Within this population, an individual has a 50% chance of developing HD depending on whether he or she inherited the abnormal or normal version of the gene from the affected parent.
- $P(D) = \frac{1}{2} = \rho$ in this population.

Risk Model: Huntington's Disease

- An individual can choose to have his HTT gene genotyped. Say HTT=0 means 0 copies of abnormal gene; HTT=1 means 1 copy of abnormal gene.
- P(D|HTT=0)=0% ; P(D|HTT=1)=100%.
- The marker HTT *stratifies* the patient population (risk=50%) into the subgroup with 0% risk and the subgroup with 100% risk.

57

Risk model

- risk prediction model gives a risk for a marker value or a combination of markers
- Predicted risks are in the interval [0,1] and interpreted as probabilities
- It is rare that a risk model is definitive like the HD example
 - In fact, because the genetic test for Huntington's Disease is definitive, most people do not even think of it as a risk model

Risk model examples

- Most risk models combine information from multiple risk factors
- E.g., Gail model for breast cancer risk
 - for use in women with no history of breast cancer
 - Estimates 5-year risk of breast cancer based on current age, age at menarche, age at first birth, family history, race.
- E.g., Framingham CHD risk score
 - Estimates risk of CHD based on age, sex, smoking status, total and HDL cholesterol, blood pressure

59

Risk model examples

- E.g. STS risk score for dialysis following cardiac surgery is formed via:
 - STS risk score = $f(\alpha + \beta_1 Age + \beta_2 Surgery Type + \beta_3$ Diabetes + β_4 MI Recent + β_5 Race + β_6 Chronic Lung Disease + β_7 Reoperation + β_8 NYHA Class + β_9 Cardiogenic Shock+ β_{10} Last Serum Creatinine)

What is "personal risk"?

- Recall: risk(x) = P(D=1 | X=x) is the frequency of events among the group with marker values x
- "Personal risk" is not completely personal!
 (next example)

61

What is "personal risk"?

- Suppose the prevalence of D in "Population A" is 1%
 - Without any additional information, the only valid risk prediction instrument is to assign everyone in the population risk=1%
- Suppose we have a marker X that tends to be higher in cases than controls

Distribution of marker X in controls (blue) and cases (red) 62

What is "personal risk"?

- Suppose an individual in Population A has X measured as 1.
- We can calculate his risk(X=1)≈1.6%
 - calculation uses Bayes' rule

Distribution of marker X in controls (blue) and cases (red)

63

What is "personal risk"?

- Suppose the marker acts exactly the same in Population B. The only difference between Populations A and B is that B has prevalence=10%.
- An individual in Population B has X=1. For that individual, his risk is ≈15.5%

Distribution of marker X in controls (blue) and cases (red)

What is "personal risk"?

- "Personal risk" is a term that is prone to be misconstrued
- Risk <u>is personal</u> when calculated based on personal characteristics
- However, <u>personal risk is not completely divorced</u> <u>from population characteristics</u>. The previous example shows that the population (specifically, the population prevalence) affects "personal" risk.

65

What is "personal risk"?

- Occasionally one hears mention of estimating a person's "individual risk" or "true personal risk."
- Frequentist statisticians cannot really claim to do so.
- One might claim John's "true risk" of a heart attack in the next 5 years is 7%. But we can only observe John having or not having a heart attack in the next 5 years. I cannot observe John having a heart attack in 7% of 5-year periods.
- The best I can claim is that "among people with John's characteristics, 7% will have a heart attack in the next 5 years."
 - More than one way to define "people like John."

Summary

- Some example datasets
- FPR, TPR
- PPV, NPV
 - function of FPR, TPR and disease prevalence
- ROC curves
- AUC
 - geometric interpretation as area under curve
 - probability interpretation
- risk model: risk(X)=P(D=1|X)