Pathway \& Network Analysis of Omics Data: Networks in Biology

Ali Shojaie
Department of Biostatistics
University of Washington
faculty.washington.edu/ashojaie

Summer Institute for Statistical Genetics - 2017

Why Study Networks?

- Components of biological systems, e.g. genes, proteins, metabolites, interact with each other to carry out different functions in the cell.
- Examples of such interactions include signaling, regulation and interactions between proteins.
- We cannot understand the function and behavior of biological systems by studying individual components $(2+2 \neq 4!)$.
- Networks provide an efficient representation of complex reaction in the cells, as well as basis for mathematical/statistical models for the study of these systems.

Stas
Networks in Biology
Network Inference
Statistical Models for Network Analysis
Networks in Biology: Gene Regulatory Interactions A GENE REGULATORY NETWORK

Networks in Biology

Network Inference
Statistical Models for Network Analysis

But Do Networks Matter?

- They Do!
- Recent studies have linked changes in gene/protein networks with many human diseases.

Systems Biology and Emerging Technologies

Gene Networks and microRNAs Implicated in Aggressive Prostate Cancer

Liang Wang, ${ }^{1}$ Hui Tang, ${ }^{2}$ Venugopal Thayanithy, ${ }^{3}$ Subbaya Subramanian, ${ }^{3}$ Ann L. Oberg, ${ }^{2}$ Julie M. Cunningham, ${ }^{1}$ James R. Cerhan, ${ }^{2}$ Clifford J. Steer, ${ }^{4}$ and Stephen N. Thibodeau ${ }^{1}$
${ }^{1}$ Departments of Laboratory Medicine and Pathology and ${ }^{2}$ Health Sciences Research, Mayo Clinic, Rochester, Minnesota; and
Departments of ${ }^{3}$ Laboratory Medicine and Pathology, ${ }^{4}$ Medicine, and Genetics, Cell Biology, and Development, University of
Minnesota, Minneapolis, Minnesota

But Do Networks Matter?

Estrogen-Regulated Gene Networks in Human Breast Cancer Cells: Involvement of E2F1 in the Regulation of Cell Proliferation

Joshua D. Stender, Jonna Frasor, Barry Komm, Ken C. N. Chang, W. Lee Kraus, and Benita S. Katzenellenbogen
Departments of Biochemistry (J.D.S.) and Molecular and Integrative Physiology (J.F., B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3704; Women's Health and Musculoskeletal Biology (B.K., K.C.N.C.), Wyeth Research, Collegeville, Pennsylvania 19426; and Department of Molecular Biology and Genetics (W.L.K.), Cornell University, Ithaca, New York 14853-4203

But Do Networks Matter?

A Transcriptional Signature and Common Gene Networks Link Cancer with Lipid Metabolism and Diverse Human Diseases

Heather A. Hirsch, ${ }^{1,7}$ Dimitrios Iliopoulos, ${ }^{1,7}$ Amita Joshi, ${ }^{1,7}$ Yong Zhang, ${ }^{2}$ Savina A. Jaeger, ${ }^{3}$ Martha Bulyk, ${ }^{3,4,5}$
Philip N. Tsichlis, ${ }^{6}$ X. Shirley Liu, ${ }^{2}$ and Kevin Struh ${ }^{11, *}$
${ }^{1}$ Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
${ }^{2}$ Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115, USA
${ }^{3}$ Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
${ }^{4}$ Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
${ }^{5}$ Harvard/MIT Division of Health Sciences and Technology (HST), Harvard Medical School, Boston, MA 02115, USA
${ }^{6}$ Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
${ }^{7}$ These authors contributed equally to this work
*Correspondence: kevin@hms.harvard.edu
DOI 10.1016/j.ccr.2010.01.022

But Do Networks Matter?

And, incorporating the knowledge of networks improves our ability to find causes of complex diseases.

Network-based classification of breast cancer metastasis


```
    1 Bioinformatics Program, University of California San Diego, La Jolla,CA, USA, 2 Department of Bioengineering, University of California San Diego, La Jolla, CA, USA,
    3 Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea and }\mp@subsup{}{}{4}\mathrm{ Cancer Genetics Program, Moores Cancer
Center, University of California San Diego, La Jolla, CA, USA
5}\mathrm{ These authors contributed equally to this work
* Corresponding author. Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA. Tel.: + }1858822\mathrm{ 4558; Fax: + 1858534 5722;
E-mail: trey@bioeng.ucsd.edu
```


Why Do We Need Network Inference?

- Despite progress, our knowledge of interactions in the genome is limited.
- The entire genome is a vast landscape, and experiments for discovering networks are very expensive
- From a statistical point of view, network estimation is related to estimation of covariance matrices, which has many independent applications in statistical inference and prediction (more about this later)
- Finally, and perhaps most importantly, gene and protein networks are dynamic and changes in these networks have been attributed to complex diseases.

Networks: A Short Premier

- A network is a collection of nodes V and edges E.
- We assume there are p nodes in the network, and that the nodes correspond to random variables $X_{1}, \ldots X_{p}$.
- Edges in the network can be directed $X \rightarrow Y$ or undirected $X-Y$.

- In all these example, the nodes are $V=\{1,2,3\}$.
- The edges are:

$$
\begin{aligned}
& E_{1}=\{1-2,2-3\} \\
& E_{2}=\{1 \rightarrow 3,3 \rightarrow 2\} \\
& E_{3}=\{1-2,1 \rightarrow 3\}
\end{aligned}
$$

Networks: A Short Premier

- A convenient way to represent the edges of the network is to use an adjacency matrix A
- A matrix is a rectangular array of data (similar to a table)
- Values in each entry are shown by indeces of row and column

$$
A=\left[\begin{array}{ccc}
. & \mathbf{x} & \cdot \\
. & \cdot & \cdot \\
. & . & \cdot
\end{array}\right] \text { Here, } \mathbf{x} \text { is in row } 1 \text { and column } 2
$$

- Adjacency matrix is a square matrix, which has a 1 if there is an edge from a node in one row to a node in another column, and 0 otherwise
- For undirected edges, we add a 1 in both directions

$$
A=\left[\begin{array}{lll}
0 & \mathbf{1} & 0 \\
\mathbf{1} & 0 & \mathbf{1} \\
0 & \mathbf{1} & 0
\end{array}\right] A=\left[\begin{array}{lll}
0 & 0 & \mathbf{1} \\
0 & 0 & 0 \\
0 & \mathbf{1} & 0
\end{array}\right] A=\left[\begin{array}{lll}
0 & \mathbf{1} & \mathbf{1} \\
\mathbf{1} & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

What Do Edges in Biological Networks Mean?

- In gene regulatory networks, an edge from gene i to gene j often means that i affects the expression of j; i.e. as i 's expression changes, we expect that expression of j to increase/decrease.
- In protein-protein interaction networks, an edge between proteins i and j often means that the two proteins bind together and form a protein complex. Therefore, we expect that these proteins are generated at similar rates.
- In metabolic networks, an edge between compound i and j often means that the two compounds are involved in the same reaction, meaning that they are generated at relative rates.
- Thus, edges represent some type of association among genes, proteins or metabolites, defined generally to include linear or nonlinear associations; more later....

Statistical Models for Biological Networks

- We use the framework of graphical models
- In this setting, nodes correspond to "random variables"
- In other words, each node of the network represents one of the variables in the study
- In gene regulatory networks, nodes \equiv genes
- In PPI networks, nodes \equiv proteins
- In metabolic networks, nodes \equiv metabolites
- In practice, we observe n measurements of each of the variables (genes/proteins/ metabolites) for say different individuals, and want to determine which variables are connected, or use their connection for statistical analysis

An Overview of Methods for Network Inference

Network Inference Methods Can be categorized into two general classes:

- Methods based on marginal measures of association:
- Co-expression Networks (uses linear measures of association)
- Methods based on mutual information (can accommodate non-linear associations)
- Methods based on conditional measures of association:
- Methods assuming (multivariate) normality (glasso, etc)
- Generalizations to allow for nonlinear dependencies (nonparanormal, etc)

Our Plan

In the remainder of this module, we will cover the following topics

- Methods for reconstructing undirected networks
- Co-expression Networks (WGCNA)
- ARACNE
- Conditional Independence Graphs
- Gaussian Observations (glasso, etc)
- Non-Gaussian and Non-Linear Data (nonparanormal, etc)
- Methods for reconstructing directed networks
- Bayesian Networks (basic concepts, reconstruction algorithm)
- Reconstructing directed networks from time-course data (dynamic Bayesian networks)
- Reconstructing directed networks from perturbation screens
- Topology-based pathway enrichment analysis

An Overview of Network Reconstruction Methods

Network reconstruction methods can be categorized into two general classes:

- Methods based on marginal measures of association:
- Co-expression Networks (uses linear measures of association)
- Methods based on mutual information (can accommodate non-linear associations)
- Methods based on conditional measures of association:
- Methods assuming multivariate normality/normality
- Generalizations to allow for nonlinear dependencies

$$
\begin{array}{cl}
\text { Marginal Association Networks } & \text { WGCNA } \\
\text { Conditional Independence Networks } & \text { ARACNE }
\end{array}
$$

Co-Expression/Correlation Networks

- This is the simplest (and most-widely used!!) method for estimating networks; it assumes that edges correspond to large correlation magnitudes
- Let $r(i, j)$ be correlation between X_{i} and X_{j}; we claim an edge between i and j if $|r(i, j)|>\tau$.
- Correlation is a simple measure of linear association between two random variables.
- Here, τ is a user-specified threshold, and is the tuning parameter for this method.
- By construction, this is an undirected network (correlation is symmetric).

Marginal Association Networks WGCNA
 Conditional Independence Networks ARACNE
 Limitations of Co-Expression Networks

- The estimation is highly dependent on the choice of τ.
- They may not correctly detect the edges in biological networks: two genes/proteins can have high correlations, even if they don't interact with each other!
- Correlation is a measure of linear association, but many biological relationships are nonlinear

Limitations of Co-Expression Networks

- The estimation is highly dependent on the choice of τ.
- We can instead test $H_{0}: r_{x y}=0$
- A commonly used test is given by the Fisher transformation

$$
Z=\frac{1}{2} \ln \left(\frac{1+r}{1-r}\right)=\operatorname{artanh}(r) \sim_{H_{0}} N\left(0, \frac{1}{\sqrt{n-3}}\right)
$$

- Alternatively, we can work with "weighted" co-expression networks

Marginal Association Networks	WGCNA
Conditional Independence Networks	ARACNE

Choice of Parameters

- By changing the tuning parameters, adjacency functions behave similar to hard thresholding

- Power and sigmoid adjacency functions lead to similar results if the parameters are chosen to achieve scale-free topology
- We focus on power adjacency function

Choice of Parameters

- Using $\beta \approx 6$ gives a scale free network

Software

- Implemented in the R-package WGCNA
install.packages('WGCNA',lib=NULL,repos='http://cran.us.r-project.org')
- Main estimation function
adjacency (datExpr,
selectCols = NULL,
type = "unsigned",
power = if (type=="distance") 1 else 6,
corFnc = "cor", corOptions = "use = 'p'",
distFnc = "dist", distOptions = "method = 'euclidean'")
- To determine the power so that the network has scale-free distribution, need to search for multiple powers

Limitations of Co-Expression Networks

- Correlation is a measure of linear association, but many biological relationships are nonlinear
- We can use other measures of association, for instance, Spearman correlation or Kendal's τ.
- These methods define correlation between two variables, based on the ranking of observations, and not their exact values
- They can better capture non-linear associations
- We can instead use mutual information; this has been used in many algorithm, including ARACNE

ARACNE: Algorithm for the Reconstruction of Accurate

 Cellular NEtworks ${ }^{2}$1. Identifies statistically significant gene-gene co-regulation based on mutual information
2. It then eliminates indirect relationships in which two genes are co-regulated through one or more intermediates

[^0]

Marginal Association Networks WGCNA
Conditional Independence Networks ARACNE

Data Processing Inequality (DPI)

$$
I(A, C) \leq \min [I(A, B), I(B, C)]
$$

where

$$
I\left(g_{i}, g_{j}\right)=\log P\left(g_{i}, g_{j}\right) / P\left(g_{i}\right) P\left(g_{j}\right)
$$

- Look at every triplet and remove the weakest link
- Need to estimate marginal and joint (pairwise) probabilities (using Gaussian Kernel)

Algorithm Details

- Starts with a network where each triplet of genes is connected by an edge.
- The algorithm then examines each gene triplet for which all pairwise MIs are greater than a cut-off and removes the edge with the smallest value based on DPI.
- Each triplet is analyzed irrespectively of whether its edges have been selected for removal by prior DPI applications to different triplets.
- The least of the three MIs can come from indirect interactions only, and checking against the DPI may identify gene pairs that are not independent but still do not interact.

Rationale and Guarantees

- If MIs can be estimated with no errors, then ARACNE reconstructs the underlying interaction network exactly, provided this network is a tree and has only pairwise interactions.
- The maximum MI spanning tree is a subnetwork of the network built by ARACNE.

Rationale and Guarantees

Theorem. Let $\pi_{i k}$ be the set of nodes forming the shortest path in the network between nodes i and k. Then, if MIs can be estimated without errors, ARACNE reconstructs an interaction network without false positives edges, provided: (a) the network consists only of pairwise interactions, (b) for each $j \in \pi_{i k}, I_{i j} \geq I_{i k}$.

Further, ARACNE does not produce any false negatives, and the network reconstruction is exact iff (c) for each directly connected pair $i j$ and for any other node k, we have $I_{i j}>\min \left[I_{i k}, I_{j k}\right]$.

Performance on Synthetic Data

$$
\begin{aligned}
\text { Marginal Association Networks } & \text { WGCNA } \\
\text { Conditional Independence Networks } & \text { ARACNE }
\end{aligned}
$$

Application: B-lymphocytes Expression Data

- MYC (proto-oncogene) subnetwork (2063 genes)
- 29 of the 56 (51.8%) predicted first neighbors biochemically validated as targets of the MYC transcription factor.
- New candidate targets were identified, 12 experimentally validated.
- 11 proved to be true targets.
- The candidate targets that have not been validated are possibly also correct.

Software

- Implemented in the R-package minet:
source("http://bioconductor.org/biocLite.R")
biocLite("minet")
- Main estimation function aracne (mim, eps=0)
- mim: mutual information matrix mim <- build.mim(syn.data, estimator="spearman")
- eps: threshold for setting an edge to zero, prior to searching over triplets

Limitations of Co-Expression Networks

- The estimation is highly dependent on the choice of τ
- They may not correctly detect the edges in biological networks: two genes/proteins can have high correlations, even if they don't interact with each other!

Limitations of Co-Expression Networks

- The estimation is highly dependent on the choice of τ
- They may not correctly detect the edges in biological networks: two genes/proteins can have high correlations, even if they don't interact with each other!

(c) Ali Shojaie

Limitations of Co-Expression Networks

- The estimation is highly dependent on the choice of τ
- They may not correctly detect the edges in biological networks: two genes/proteins can have high correlations, even if they don't interact with each other!

Limitations of Co-Expression Networks

- The estimation is highly dependent on the choice of τ
- They may not correctly detect the edges in biological networks: two genes/proteins can have high correlations, even if they don't interact with each other!

(C)Ali Shojaie

[^1]
Partial Correlation

- Partial correlation measures the correlation between i and j after the effect of the other variables are removed.
- In our example, this means that we would be taking into account that the "information" was passed through mutual friends, and not directly.
- This gives a more direct connection to biological networks; in PPI networks: if protein A binds with B and C, but B and C don't bind, then the correlation between B and C will be removed once conditioned on A.
- Mathematically, the partial correlation between X_{i} and X_{j} given X_{k} is given by:

$$
\rho_{i j \cdot k} \equiv \rho\left(X_{i}, X_{j} \mid X_{k}\right)=\frac{\rho_{i j}-\rho_{i k} \rho_{j k}}{\sqrt{1-\rho_{i k}^{2}} \sqrt{1-\rho_{j k}^{2}}}
$$

```
            Marginal Association Networks Partial Correlation
                                    Conditional Independence Networks Gaussian Graphical Models
```


Partial Correlation

- Partial correlation is also symmetric
- Partial correlation is also a number between -1 and 1
- In partial correlation networks, we draw an edge between X and Y, if the partial correlation between them is large
- Calculation of partial correlation is more difficult
- Again, we can determine this using testing, however, we need a larger sample size
- New statistical methods have been proposed in the past couple of years to make this possible...(active area of research)

Marginal Association Networks
Partial Correlation
Conditional Independence Networks
Gaussian Graphical Models

A larger example

- A network with 10 nodes and 20 edges
- $n=100$ observations
- Estimation using correlation \& partial correlation (20 edges)

Partial Correlation for Gaussian Random Variables

- It turns out, we can calculate the partial correlation between X_{i} and X_{j} given all other variables, by calculating the inverse of the empirical covariance matrix S.
- In other words, the (i, j) entry in Σ^{-1} gives the partial correlation between X_{i} and X_{j} given all other variables $X_{\backslash i, j}$.
- Now suppose the variables are connected by a graph G, then if $X \sim N(0, \Sigma)$, the nonzero entries in the inverse covariance matrix correspond to the edges of $G:(i, j) \in E$ iff $\Sigma_{i j}^{-1} \neq 0$

Partial Correlation for Gaussian Random Variables

(a)

(c)

(b)

(d)

$$
\left(\begin{array}{lll}
- & x & 0 \\
x & - & x \\
0 & x & -
\end{array}\right) \quad\left(\begin{array}{cccc}
- & x & x & 0 \\
x & - & x & 0 \\
x & x & - & 0 \\
0 & 0 & 0 & -
\end{array}\right)
$$

$$
\left(\begin{array}{llll}
- & x & 0 & x \\
x & - & x & 0 \\
0 & x & - & x \\
x & 0 & x & -
\end{array}\right) \quad\left(\begin{array}{cccc}
- & 0 & 0 & x \\
0 & - & x & 0 \\
0 & x & - & x \\
x & 0 & x & -
\end{array}\right)
$$

Estimation

Therefore, to estimate the edges in the graph G,

- First, calculate the empirical covariance matrix of the observations $S=1 /(n-1) X^{\top} X($ remember X is $n \times p)$.
- Then, find the inverse of S. Non-zero values of this matrix determine where there are edges in the network.
- This seems pretty simple, however, in practice this may not work that well, even if the sample size is very large!!

True Graph

Est Graph


```
Conditional Independence Networks

\section*{Difficulties in HD}
- A number of problems arise in high dimensional settings, especially when \(p \gg n\).
- First, \(S\) is not invertible if \(p>n\) !
- Even if \(p<n\), but \(n\) is not very large, we may still get poor estimates, and we may get more false positives and false negatives.

True Graph


Est Graph
(2)
(1)


\section*{Estimation in High Dimensions - Method 1}
- A number of methods have been proposed for estimation of conditional independence graphs from Gaussian observations in high dimensions.
- The main idea in most of these methods is to use a regularization penalty, like the lasso.
- The idea in the first method, called neighborhood selection, is to estimate the graph by fitting a penalized regression of each variable on all other variables.
- In other words, we solve, for \(j=1, \ldots, p\)
\[
\left\|X_{j}-\sum_{k \neq j} X_{k} \beta_{k}\right\|^{2}+\lambda \sum_{k \neq j}\left|\beta_{k}\right|
\]
- The final estimate of the graph is obtained by getting all of the edges fond from these individual regression problems.

\section*{Estimation in High Dimensions - Method 2}
- In the second approach, called graphical lasso, we directly estimate the inverse covariance matrix by maximizing the \(\ell_{1}\) penalized log likelihood
- It is easy to see that, the log likelihood function of (mean 0) Gaussian random variables can be written as
\[
\log \operatorname{det}(\Theta)-\operatorname{tr}(S \Theta)
\]
where \(\Theta\) is the \(p \times p\) inverse covariance matrix (also known as precision matrix).
- Therefore, we can estimate \(\Theta\) by maximizing the penalized log-likelihood objective function
\[
\log \operatorname{det}(\Theta)-\operatorname{tr}(S \Theta)-\lambda\|\Theta\|_{1},
\]
- Here, logdet gives the logarithm of determinant of matrix; tr gives the trace of the matrix, or some of its diagonal values; and \(\lambda\) is the tuning parameter.

\section*{Comparing the Two Approaches}
- It turns out that the neighborhood selection approach is an approximation to the graphical lasso problem:
- Consider regression of \(X_{j}\) on \(X_{k}, j \neq k\)
- Then the regression coefficient for neighborhood selection is related to the \(j, k\) element of \(\Theta\) :
\[
\beta_{k}=-\frac{\Theta_{j k}}{\Theta_{j j}}
\]
- A main difficulty with the neighborhood selection approach is that the resulting graph is not necessarily symmetric.
- To deal with this, we can take the union or intersection of edges from regressing \(X_{k}\) on \(X_{k}\) and \(X_{j}\) on \(X_{k}\); however, this is an ad hoc solution.
- On the other hand, neighborhood selection is computationally more efficient, and may gives better estimates.

\section*{A Real Example}
- Flow cytometry allows us to obtain measurements of proteins in individual cells, and hence facilitates obtaining datasets with large sample sizes.
- Sachs et al (2003) conducted an experiment and gathered data on \(p=11\) proteins measured on \(n=7466\) cells


SISG: Pathway \& Networks


Partial Correlation
Gaussian Graphical Models

\section*{Choice of tuning parameter}
- Unlike supervised learning, choosing the right \(\lambda\) is very difficult in this case.
- As the previous example shows, as \(\lambda\) gets larger, we get sparser graphs.
- However, there is no systematic way of choosing the right \(\lambda\).
- A number of methods have been proposed, based on the idea of trying to control the false positives, but this is still the topic of ongoing research.
- One option for choosing \(\lambda\) controls the probability of falsely connecting disconnected components at level \(\alpha\) (Banerjee et al, 2008). When variables are standardized, this gives:
\[
\lambda(\alpha)=\frac{t_{n-2}\left(\alpha / 2 p^{2}\right)}{\sqrt{n-2+t_{n-2}\left(\alpha / 2 p^{2}\right)}}
\]
where \(t_{n-2}(\alpha)\) is the \((100-\alpha) \%\) quantile of \(t\)-distribution with \(n-2\) d.f.

\section*{Some Comments}
- The penalized estimation methods discussed above allow estimation of graphical models in the \(p \gg n\) settings, e.g. when \(p\) is in 1000's and \(n\) is in 100's.
- However, both of these methods, and most other methods for estimation of conditional independence networks, work when the network is sparse.
- Sparsity means that there are not many edges in the network, and the network is far from fully connected.
- Good news is that biological networks are believed to be "sparse". However, all of these concepts are theoretical and it is difficult to assess how things work on real networks.

\section*{Computation}
- As we saw previously, the neighborhood selection problem is an approximation to the graphical lasso problem.
- It turns out that this relationship can be used for solving the graphical lasso problem efficiently.
- The idea is to turn the problem into iterating over \(P\) regression problems, one for each column of the precision matrix.
- This results in a very efficient algorithm for solving this problem, and in practice, we can solve problems with \(p\) in 1000's and \(n\) in 100's in a few minutes.
- The algorithm, as well as the approximation for the neighborhood selection problem, is implemented in the R-package glasso.
- In practice, it is often better to use the empirical correlation matrix

\section*{An Example in R}
- Download the empirical covariance matrix from http://www-stat.stanford.edu/~tibs/ElemStatLearn/
- Install the R-package glasso
library (glasso)
\#\#Read the covariance matrix
sachs <- as.matrix(read.table("sachscov.txt"))
dim(sachs)
\#\#glasso
est. 1 <- glasso(s=sachs, rho=5, approx=FALSE, penalize.diagonal=FALSE)
\#\#neighborhood selection
est. 2 <- glasso(s=sachs, rho=5, approx=TRUE, penalize.diagonal=FALSE)

\section*{Exercise}
- Estimate the graph from the previous example with different values of tuning parameter (Note: this is denoted by rho in the code).
- Try the estimation with and without setting penalize.diagonal=FALSE. What do you see?
- Try the estimation with the empirical correlation matrix instead (you may find the function cov2cor() useful). What do you see?

\section*{Marginal Association Networks \\ Conditional Independence Networks \\ \section*{Marginal vs Conditional Associations}}
- Partial correlations provide a better representation of edges in biological networks.
- Computationally, estimating the conditional independence graph is almost as costly as estimating the co-expression network (we can obtain a good approximation using the neighborhood selection approach at similar computational cost).
- Estimation and inference using marginal associations can be done with much smaller samples
- The most important difference, however, is the idea of conditioning! Partial correlation works if we condition on the right set of variables. Marginal associations on the other hand, is independent of conditioning.

\section*{Final Thoughts}
- Estimation of graphical models is an important but challenging problem.
- The appropriate method depends on the design of experiment, available data and sample size
- Choosing the tuning parameter is a challenging problem in both cases
- It is often difficult to validate the estimates; however, in case of biological networks, we can compare our findings with known interactions from literature.

\title{
Pathway \& Network Analysis of Omics Data: Undirected Graphical Models - II
}

\author{
Ali Shojaie \\ Department of Biostatistics \\ University of Washington \\ faculty.washington.edu/ashojaie
}

Summer Institute for Statistical Genetics - 2017
(C) Ali Shojaie

SISG: Pathway \& Networks
Extending Gaussian Graphical Models
Graphical Models for Other Distributions
Flexible Estimation fo Graphical Models

\section*{Non-linear associations}
- Recall that correlation is a measure of linear dependence, this is also true about partial correlation.
- However, many real-world associations are non-linear
- Therefore, (partial) correlation may miss non-linear associations among variables
- Mutual information-based methods (ARACNE etc) try to address this issue
- calculating conditional mutual information is computationally expensive
- ARACNE's solution for removing indirect associations is ad-hoc

\section*{Linearity and Normality}
- Need methods for estimation of graphical models with non-linear associations
- Interestingly, assuming linear associations is closely related to multivariate normality (MVN):
- MVN \(\Rightarrow\) linear relationships
- linear dependencies (+ extra mild assumptions) \(\Rightarrow \mathrm{MVN}^{1}\)
- Both of these are strong assumptions and may not hold in real-world applications!

\footnotetext{
\({ }^{1}\) Khatri \& Rao (1976) \& Fisk (1970)
(C)Ali Shojaie

SISG: Pathway \& Networks
}

\section*{Our Plan}
- We will start by discussing the general notion of conditional independence graphs (aka Markov Random Fields)
- We will then discuss three classes of models:
- Transformation-based and robust methods for handling non-Gaussianity
- Parametric graphical models with non-Gaussian variables
- Semi- and non-parametric approaches for flexible estimation of graphical models

\section*{Conditional Independence Graphs}
- In case of Gaussian variables, \(\Theta_{j k}=0\) implies that \(X_{j}\) and \(X_{k}\) are conditionally independent.
- Conditional dependence is a general notion that defines the class of conditional independent graphs (CIG). In CIG,
- \(X \Perp Y \mid Z\) iff \(P(X=x, Y=y \mid Z=z)=P(X=x \mid Z=z) P(Y=y \mid Z=z)\)
- If \(X\) and \(Y\) are neighbors \((X-Y)\), they are conditionally dependent
- \(X\) is conditionally independent of all other nodes, given neighbors(X): \(Z \notin\) neighbors(X), then \(X \Perp Z \mid\) neighbors(X)

\section*{Nonparanormal (Gaussian Copula) Models}
- Suppose \(X \nsim N(0, \Sigma)\), but there exists monotone functions \(f_{j}, j=1, \ldots p\) such that \(\left[f_{1}\left(X_{1}\right), \ldots f_{p}\left(X_{p}\right)\right] \sim N(0, \Sigma)\)
- We say that \(X\) has a nonparanormal distribution \(X \sim \operatorname{NPN}_{p}(f, \Sigma)\).
- \(f\) and \(\Sigma\) are parameters of the distribution, and need to be estimated from data.
- For continuous distributions, the nonparanormal family is equivalent to the Gaussian copula family
- To estimate the nonparanomal network:
i) transform the data: \(\left[f_{1}\left(X_{1}\right), \ldots f_{p}\left(X_{p}\right)\right]\)
ii) estimate the network of the transformed data (e.g. calculate the empirical covariance matrix of the transformed data, and apply glasso or neighborhood selection)

\section*{A Related Procedure}
- Liu et al (2012) and Xue \& Zou (2012) proposed a closely related idea using rank-based correlation
- Let \(r_{j}^{i}\) be the rank of \(x_{j}^{i}\) among \(x_{j}^{1}, \ldots, x_{j}^{n}\) and \(\bar{r}_{j}=(n+1) / 2\) be the average rank
- Calculate Spearman's \(\rho\) or Kendall's \(\tau\)
\[
\begin{gathered}
\hat{\rho}_{j k}=\frac{\sum_{i=1}^{n}\left(r_{j}^{i}-\bar{r}_{j}\right)\left(r_{k}^{i}-\bar{r}_{k}\right)}{\sqrt{\sum_{i=1}^{n}\left(r_{j}^{i}-\bar{r}_{j}\right)^{2} \sum_{i=1}^{n}\left(r_{k}^{i}-\bar{r}_{k}\right)^{2}}} \\
\hat{\tau}_{j k}=\frac{2}{n(n-1)} \sum_{1 \leq i<i^{\prime} \leq n} \operatorname{sign}\left(\left(x_{j}^{i}-x_{j}^{i^{\prime}}\right)\left(x_{k}^{i}-x_{k}^{i^{\prime}}\right)\right)
\end{gathered}
\]
- If \(X \sim N P N_{p}(f, \Sigma)\), then \(\Sigma_{j k}=2 \sin \left(\rho_{j k} \pi / 6\right)=\sin \left(\tau_{j k} \pi / 2\right)\)
- Therefore, we can estimate \(\Sigma^{-1}\) by plugging in rank-based correlations into graphical lasso (R-package huge)

\section*{A Real Data Example}
- Protein cytometry data for cell signaling (Sachs et al, 2005)
- Transform the data using Gaussian copula (Liu et al, 2009), giving marginal normality
- Pairwise relationships seem non-linear

- Shapiro-Wilk test rejects multivariate normality:
\[
p<2 \times 10^{-16}
\]

\section*{Graphical Models for Discrete Random Variables}
- In many cases, biological data are not Gaussian: SNPs, RNAseq, etc
- Need to estimate CIG for other distributions: binomial, poisson, etc
- Unfortunately, for these distribution, the problem does not have a closed-form!
- A special case, which is computationally more tractable, is the class of pairwise MRFs

\section*{Pairwise Markov Random Fields}
- The idea of pairwise MRFs is to "assume" that only two-way interactions among variables exist
- The pairwise MRF associated with the graph \(G\) over the random vector \(X\) is the family of probability distributions \(P(X)\) that can be written as
\[
P(X) \propto \exp \sum_{(j, k) \in E} \phi_{j k}\left(x_{j}, x_{k}\right)
\]
- For each edge \((j, k) \in E, \phi_{j k}\) is called the edge potential function
- For discrete random variables, any MRF can be transformed to an MRF with pairwise interactions by introducing additional variables (Wainwright \& Jordan, 2008)

\section*{Graphical Models for Binary Random Variables}
- Suppose \(X_{1}, \ldots, X_{p}\) are binary random variables, corresponding ot e.g. SNPs, or DNA methylation
- A special case of discrete graphical models is the Ising model for binary random variables
\[
P_{\theta}(x)=\frac{1}{Z(\theta)} \exp \left\{\sum_{(j, k) \in E} \theta_{j k} x_{j} x_{k}\right\}
\]
- A pairwise MRF for binary data, with \(\phi_{j k}\left(x_{j}, x_{k}\right)=\theta_{j k} x_{j} x_{k}\)
- \(x^{i} \in\{-1,+1\}^{p}\)
- The partition function \(Z(\theta)\) ensures that distribution sums to 1
- \((j, k) \in E\) iff \(\theta_{j k} \neq 0\) !

\section*{Graphical Models for Binary Random Variables}
- We can consider a neighborhood selection \({ }^{2}\) approach with an \(\ell_{1}\) penalty to find the neighborhood of each node \(N(j)=\{k \in V:(j, k) \in E\}\)
- For \(j=1, \ldots, p\), need to solve (after some algebra)
\[
\begin{aligned}
& \min _{\theta}\left\{n^{-1} \sum_{i=1}^{n}\left[f\left(\theta ; x^{i}\right)-\sum_{k \in-j} \theta_{j k} x_{j}^{i} x_{k}^{i}+\lambda\left\|\theta_{-j}\right\|_{1}\right]\right\} \\
& -f(\theta ; x)=\log \left\{\exp \left(\sum_{k \in-j} \theta_{j k} x_{k}\right)+\exp \left(-\sum_{k \in-j} \theta_{j k} x_{k}\right)\right\}
\end{aligned}
\]
- It turns out this is equivalent to solving \(p\) penalized logistic regression problems, which is rather easy (R-package glmnet)

\footnotetext{
\({ }^{2}\) Ravikumar et al (2010)
(C)Ali Shojaie
}

\section*{Other Non-Gaussian Distributions}
- Assume a pairwise graphical model
\[
P(X) \propto \exp \left\{\sum_{j \in V} \theta_{j} \phi_{j}\left(X_{j}\right)+\sum_{(j, k) \in E} \theta_{j k} \phi_{j k}\left(X_{j}, X_{k}\right)\right\}
\]
- Then, similar to the Ising model, graphical models can be learned for other members of the exponential family
- Poisson graphical models (for e.g. RNAseq), Multinomial graphical models, etc
- All of these can be learned using a neighborhood selection approach, using the glmnet package \({ }^{3}\)
- We can even learn networks with multiple types of nodes (gene expression, SNPs, and CNVs) \({ }^{4}\)

\footnotetext{
\({ }^{3}\) Yang et al (2012)
\({ }^{4}\) Yang et al (2014), Chen et al (2015)
(C)Ali Shojaie

SISG: Pathway \& Networks

\section*{A General Approach for Estimation of Graphical Models}
}
- Consider \(n\) iid observations from a \(p\)-dimensional random vector \(x=\left(X_{1}, \ldots, X_{p}\right) \sim \mathcal{P}\)
- Consider the (undirected) graph \(G=(V, E)\) with vertices \(V=\{1, \ldots, p\}\)
- Want to estimate edges \(E \subset V \times V\) that satisfy \(\forall j \in V, \exists N(j)\) such that:
\(p_{j}\left(X_{j} \mid\left\{X_{k}, k \neq j\right\}\right)=p_{j}\left(X_{j} \mid\left\{X_{k}: k \in N(j)\right\}\right)=p_{j}\left(X_{j} \mid\left\{X_{k}:(k, j) \in E\right\}\right)\)
- \(N(j)\) is the minimal set of variables on which the conditional densities depend

\section*{Estimating Conditional Independencies}

Question: how to condition?
- Approach 1: Estimate the joint density \(f\left(X_{1}, \ldots, X_{p}\right)\); then get the conditionals \(f_{j}\left(X_{j} \mid X_{-j}\right)\)
- Efficient, coherent
- Computationally challenging
- Restrictive: how many joint distributions do you know?
- Hard to check if assumptions hold!
- Approach 2: Estimate the conditionals directly \(f_{j}\left(X_{j} \mid X_{-j}\right)\)
- Computationally easy
- Leads to easy \& flexible models (regression)!
- May not be efficient or coherent

\section*{A Semi-parametric Approach}
- Consider additive non-linear relationships (additive model):
\[
X_{j} \mid X_{-j}=\sum_{k \neq j} f_{j k}\left(X_{k}\right)+\varepsilon
\]
- Then if \(f_{j k}\left(X_{k}\right)=f_{k j}\left(X_{j}\right)=0\), we conclude that \(X_{j}\) and \(X_{k}\) are conditionally independent, given the other variables
- In other words, we assume that conditional distributions and conditional means depend on the same set of variables
- We then use a semi-parametric approach for estimating the conditional dependencies

\section*{SpaCE JAM \({ }^{5}\)}
- Sparse Conditional Estimation with Jointly Additive Models (SpaCE JAM) \(\underset{f_{j k} \in \mathcal{F}}{\operatorname{minimize}} \frac{1}{2 n} \sum_{j=1}^{p}\left\|\vec{x}_{j}-\sum_{k \neq j} f_{j k}\left(\vec{x}_{k}\right)\right\|_{2}^{2}+\lambda \sum_{k>j}\left(\left\|f_{j k}\left(\vec{x}_{k}\right)\right\|_{2}^{2}+\left\|f_{k j}\left(\vec{x}_{j}\right)\right\|_{2}^{2}\right)^{1 / 2}\)
- \(f_{j k}\left(\vec{x}_{k}\right)=\Psi_{j k} \beta_{j k}\)
- \(\Psi_{j k}\) is a \(n \times r\) matrix of basis functions for \(f_{j k}\)
- \(\beta_{j k}\) is an \(r\)-vector of coefficients
- The standardized group lasso penalty for functions \(\left\|f_{j k}\right\|_{2}\)
- This is a convex problem, and block coordinate descent converges to the global minimum

\footnotetext{
\({ }^{5}\) Voorman et al (2014) Biometrika, R-package spacejam (C)Ali Shojaie

SISG: Pathway \& Networks
}

\section*{SpaCE JAM}

Estimating \(f_{j k}\) and \(f_{k j}\) seems redundant...



but necessary for non-linear functions

\section*{Other Flexible Procedures}
- Forest density estimation (Liu et al, 2011) assumes that underlying graph is a forest, and estimates the bivariate densities non-parametrically.
- Graphical random forests (Fellinghauer et al, 2013) uses random forests to flexibly model conditional means
- They consider conditional dependencies through conditional mean
- They allow for general random variables, discrete or continuous
- Use a random forest to estimate \(E\left[X_{j} \mid X_{j}\right]\) non-parametrically
- Theoretical properties have not yet been justified



\section*{Estimation of Cell Signaling Network}


\section*{Summary - I}
- Multivariate normality \& linear conditional relationships are strong assumptions that may not hold in practice
- Marginal transformations (and rank-based methods) also assume linear relationships in the transformed scale
- Estimation of graphical models for general non-Gaussian distributions is a difficult problem, and often requires additional assumptions (pairwise interactions, dependency via conditional means etc)

\section*{Summary - II}
- Assuming pairwise interactions, graphical models for members of the exponential family can be estimated efficiently
- This idea can also be extended to graphs with multiple node types, however, the pairwise graphical model becomes restrictive in that setting
- Considering conditional means and additive models is a tractable alternative with good empirical and theoretical properties
- GraFo uses random forests to solve this problem
- SpaCE JAM applies a standardized group lasso penalty to enforce "symmetry" in terms of edge selection

\title{
Pathway \& Network Analysis of Omics Data: Bayesian Networks - Basic Concepts
}

\author{
Ali Shojaie \\ Department of Biostatistics \\ University of Washington \\ faculty.washington.edu/ashojaie
}

Summer Institute for Statistical Genetics - 2017
(c)Ali Shojaie
```

Introduction
Probability Distribution over DAGs
Conditional Independence in DAGs

```

\section*{Bayesian Networks}
- Bayesian networks are a special class of graphical models defined on directed acyclic graphs.
- Directed acyclic graphs (DAGs) are defined as graphs that:
i) only have directed edges, i.e. if \(A_{i j} \neq 0, A_{j i}=0\);
ii) there are no cycles in the network.
- Bayesian networks are widely used to model causal relationships between variables.
- Note that correlation \(\neq\) causation!
- Therefore, we (usually) cannot estimate Bayesian networks from (partial) correlations
Introduction
Probability Distribution over DAGs
Conditional Independence in DAGs

\section*{Why Bayesian Networks?}

Many biological networks include directed edges:
- In gene regulatory networks, protein products of transcription factors can alter the expression of target genes, but the target genes (usually) don't have a direct effect on the expression of transcription factors


\section*{Why Bayesian Networks?}

Many biological networks include directed edges:
- In cell signaling networks, the signal from the cell's environment is transducted into the cell, and results e.g. in (global) changes in gene expression, but gene expression may not affect the environmental factors

```

Probability Distribution over DAGs
Conditional Independence in DAGs

```

\section*{Why Bayesian Networks?}

Many biological networks include directed edges:
- Biochemical reactions in metabolic networks, may not reversible, and in that case, one metabolite may affect the other, but the relationship is ont reciprocated

```

Introduction
Probability Distribution over DAGs Conditional Independence in DAGs

```

\section*{Why Bayesian Networks?}

However, biological networks may not be DAGs:
- Gene regulatory networks, signaling networks and metabolic networks, may all contain feedback loops (positive/negative)

which make estimation even more difficult!

\section*{What's the Difference?}
- Bayesian networks are widely used to model causal relationships between variables.
- Undirected networks (e.g. GGM) provide information about associations among variables; while this greatly helps in the study of biological systems, in some cases, they are not enough (e.g. drug development).
- The main difference is of course the direction of the edges; however, it turns out that there are also some differences in terms of structure/skeleton of the network (more on this later).
- We can estimate undirected networks from observational data, i.e. steady-state gene expression data, but usually they are not enough for estimation of directed networks
- Finally, estimation of directed networks is often much more difficult

\section*{Why is estimation more difficult?}
- Estimation of Bayesian networks requires estimating both the skeleton of the network (i.e. whether there is an edge between \(i\) and \(j\) ) and also the direction of the edges.
- While estimation of skeleton is possible, direction of edges cannot be in general learned from observational data, no matter how many samples we have (this is referred to as observational equivalence). Consider this simple graph:

- Then, no matter what \(n\) is, we cannot distinguish between \(X_{1} \rightarrow X_{2}\) and \(X_{2} \rightarrow X_{1}\), so basically what we see is:


\section*{Outline}
- Basics of Bayesian networks, including
- directed acyclic graphs (DAGs)
- conditional independence in DAGs, d-separation, and moral graphs
- probability distributions over DAGs
- structural equation models (SEM)
- additional topics (faithfulness, Markov equivalence, ...)
- Estimation of Bayesian networks from observational data
- Estimation of Bayesian networks from perturbation and time-course data

\section*{Probability Distribution over DAGs Conditional Independence in DAGs \\ Directed Graphs: Some Terminology}
- nodes in directed networks represent random variables; we denote the set of nodes by \(V\)
- edges are directed, and represent causal relationships among variables; we denote the set of edges by \(E\)
- The parents of node \(j\) are \(\{k: k \rightarrow j\}\), we denote this by \(\mathrm{pa}_{j}\) or pa(j)
- The children of node \(j\) are \(\{k: j \rightarrow k\}\)
- Two vertices connected by an edge are called adjacent
\[
\begin{aligned}
& \text { Introduction } \\
& \text { Probability Distribution over DAGs } \\
& \text { Conditional Independence in DAGs }
\end{aligned}
\]

\section*{Directed Graphs: Some Terminology}

- \(\mathrm{pa}(1)=\emptyset, \mathrm{pa}(2)=1, \mathrm{pa}(3)=\mathrm{pa}(4)=\{2\}, \mathrm{pa}(5)=\{3,4\}\)
- What are children of \(\{1, \ldots 5\}\) ?

\section*{Introduction Probability Distribution over DAGs Conditional Independence in DAGs \\ Directed Graphs: Some Terminology}
- A path between two nodes \(i\) and \(j\) is a sequence of distinct adjacent nodes:
- e.g. \(i \leftarrow k_{1} \rightarrow k_{2} \rightarrow k_{3} \leftarrow j\)
- In a DAG with \(p\) nodes, there cannot be a path longer than p-1 (why?)
- There can be multiple paths between two nodes
- \(i\) is an ancestor of \(j\) if there is a directed path of length \(\geq 1\) from \(i\) to \(j: i \rightarrow \cdots \rightarrow j\) (or if \(i=j\) )
- If \(i\) is an ancestor of \(j\), then \(j\) is said to be a descendant of \(i\)
\[
\begin{aligned}
& \text { Introduction } \\
& \text { Probability Distribution over DAGs } \\
& \text { Conditional Independence in DAGs }
\end{aligned}
\]

\section*{Directed Graphs: Some Terminology}

- What are paths between \(1 \& 4,3 \& 4,2 \& 6\) ?
- What are ancestors of \(\{1, \ldots 5\}\) ?
```

Introduction
Probability Distribution over DAGs
Conditional Independence in DAGs

```

\section*{Directed Graphs: Some Terminology}

An important concept in DAGs is that of colliders (aka "inverted forks" ):
- \(k\) is a collider on a path between \(i\) and \(j\) if it is a not an end-point of the path, and the path is of the form
\[
i \ldots \rightarrow k \leftarrow \ldots j
\]
- \(k\) is an non-collider if it is not an end-point, and is not a collider on a path:
- \(i \ldots \leftarrow k \leftarrow \ldots j\)
- \(i \ldots \rightarrow k \rightarrow \ldots j\)
- \(i \ldots \leftarrow k \rightarrow \ldots j\)
- Note: colliders and non-colliders are defined w.r.t. paths; a collider in one path can be a non-collider in another!
```

Introduction
Probability Distribution over DAGs
Conditional Independence in DAGs

```

\section*{Directed Graphs: Some Terminology}

- What are the colliders on paths between \(1 \& 4,3 \& 4,2 \& 6\) ?
- What are the non-colliders on paths between \(1 \& 4,3 \& 4,2 \& 6\) ?

\section*{Factorization of Probability Distributions over DAGs}
- First, note that for any set of random variables, not necessarily on a DAG, we can write:
\[
\begin{aligned}
P\left(X_{1}, X_{2}, X_{3}\right) & =P\left(X_{1} \mid X_{2}, X_{3}\right) P\left(X_{2} \mid X_{3}\right) P\left(X_{3}\right) \\
& =P\left(X_{3} \mid X_{1}, X_{2}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{1}\right) \\
& =\cdots
\end{aligned}
\]
- Now, consider this simple DAG

- Then, the probability distribution can be factorized as
\[
P\left(X_{1}, X_{2}, X_{3}\right)=P\left(X_{3} \mid X_{2}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{1}\right)
\]

\section*{Factorization of Probability Distributions over DAGs}
- In general, for any set of random variables on a DAG \(G=(V, E)\), and for any probability distribution \(P\) (Markov relative to \(G\) ) we have
\[
P(V)=\prod_{j \in V} P\left(X_{j} \mid \mathrm{pa}_{j}\right)
\]
- Compare this with the general probability decomposition
\[
P(V)=\prod_{j \in V} P\left(X_{j} \mid X_{1}, \ldots, X_{j-1}\right)
\]
- This means that on DAGs we have
\[
P\left(X_{j} \mid X_{1}, \ldots, X_{j-1}\right)=P\left(X_{j} \mid \text { pa }_{j}\right)
\]
- In other words, the probability distribution for each variable depends only on its parents
\begin{tabular}{|c|c|}
\hline Probability Distribution over DAGs Conditional Independence in DAGs & d-separation Structural Equation Models \\
\hline Independence (unconditional) & \\
\hline
\end{tabular}
- Recall the following (equivalent) characterizations of independence, \(X \Perp Y\) :
- \(P(X=x, Y=y)=P(X=x) P(Y=y)\)
- \(P(X=x \mid Y=y)=P(X=x)\) (is symmetric)
- Intuitively, if \(X \Perp Y\) then knowledge of \(X\) provides no information about \(Y\).
- These can be generalized for vectors.
- If \(X\) and \(Y\) are jointly Gaussian \(X \Perp Y\) iff \(\operatorname{Corr}(X, Y)=0\).
- If \(X\) and \(Y\) are binary, \(X \Perp Y\) iff \(\log O R(X, Y)=0\).

Probability Distribution over DAGs Moral Graphs
Conditional Independence in DAGs Structural Equation Models

\section*{Conditional Independence}
- Conditional independence \(X \Perp Y \mid Z\) has similar characterizations:
i) \(P(X=x, Y=y \mid Z=z)=P(X=x \mid Z=z) P(Y=y \mid Z=z)\)
ii) \(P(X=x \mid Y=y, Z=z)=P(X=x \mid Z=z)\) (is symmetric)
- We also have,
\[
P(X=x, Y=y, Z=z)=\frac{P(X=x, Z=z) P(Y=y, Z=z)}{P(Z=z)} .
\]
- Intuitively, if \(X \Perp Y\) then if \(Z\) is known, knowledge of \(X\) provides no information about \(Y\).
- These can be generalized for vectors.
\begin{tabular}{|c|c|}
\hline  &  \\
\hline Conditional Independence & \\
\hline
\end{tabular}
- If \(X \& Y\) are binary, \(X \Perp Y \mid Z\) iff \(\log O R(X, Y \mid Z)=0\)
- This is the coefficient in logistic regression of (say) \(Y\) on \(X, Z\).
- If \(X \& Y\) are jointly Gaussian, \(X \Perp Y \mid Z\) iff \(\operatorname{Corr}(X, Y \mid Z)=0\).
- This is the coefficient in linear regression of (say) \(Y\) on \(X, Z\).
\[
\begin{array}{lll}
\hline & \text { Introduction } & \text { d-separation } \\
\text { Probability Distribution over DAGs } & \text { Moral Graphs } \\
\text { Conditional Independence in DAGs } & \text { Structural Equation Models }
\end{array}
\]

\section*{The Toy Example, Revisited}

- Recall that \(P\left(X_{1}, X_{2}, X_{3}\right)=P\left(X_{3} \mid X_{2}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{1}\right)\)
- This implies that \(X_{3} \Perp X_{1} \mid X_{2}\) (by (i))
- However, this is not always the case on DAGs!
- How can we read conditional independence relations from the graph?
- We can do this using a concept called d-separation?
\begin{tabular}{lll} 
& Introduction & d-separation \\
Probability Distribution over DAGs & Moral Graphs \\
Conditional Independence in DAGs & Structural Equation Models
\end{tabular}

An example from genetics
Consider an example from population genetics:

- We have genetic information for Mother, Father, Daughter and Son in form of dominant/recessive genotype (A/a) for a single gene
- Then each individual can have one of three states: AA, aa, Aa
```

 Introduction d-separation
 Probability Distribution over DAGs Moral Graphs
 Conditional Independence in DAGs Structural Equation Models
    ```

\section*{An example from genetics}

Consider an example from population genetics:

- Now, it is natural to assume that given the parents' genetic information, the genotypes of Son and Daughter are independent \(\Rightarrow S \Perp D \mid\{M, F\}\)

An example from genetics
Consider an example from population genetics:

- Also, one can assume independence among genotypes of \(M\) and \(F \Rightarrow M \Perp F\)
- However, if we know that e.g. Son has Aa, and Mother has aa, then Father should have \(A a\) or \(A A \Rightarrow \neq \nVdash F \mid S\)
\begin{tabular}{rll}
\hline & Introduction & d-separation \\
Probability Distribution over DAGs & Moral Graphs \\
Conditional Independence in DAGs & Structural Equation Models
\end{tabular}

\section*{d-separation}

A path \(\pi\) is said to be d-separated (or blocked) by a set of nodes \(Z\), iff
1. \(\pi\) includes a chain \(i \rightarrow m \rightarrow j\) or a fork \(i \leftarrow m \rightarrow j\) such that the middle note is in \(Z\), or
2. \(\pi\) contains a collider (or inverted fork) \(i \rightarrow m \leftarrow j\) such that neither the middle node \(m\) nor its descendants are NOT in \(Z\).
How is this used?
- If \(i\) and \(j\) are d-separated given \(Z\), then \(X_{i} \Perp X_{j} \mid Z\) for any probability distribution \(P\) factorizing according to \(G\)
- If \(i\) and \(j\) are d-separated given \(\emptyset\), then \(X_{i} \Perp X_{j}\) for any probability distribution \(P\) factorizing according to \(G\)
\begin{tabular}{ll} 
& Introduction \\
Probability Distribution over DAGs & d-separation \\
Moral Graphs \\
Conditional Independence in DAGs & Structural Equation Models
\end{tabular}

\section*{Genetics example, revisited}

Consider an example from population genetics:

- \(\{M, F\}\) block all paths from \(S\) to \(D \Rightarrow D \Perp S \mid\{M, F\}\)
- Is \(M \Perp F\) ?
- Is \(M \Perp F|\{S, D\},|S|\),\(D ?\)
\begin{tabular}{lll} 
& Introduction & d-separation \\
Probability Distribution over DAGs & Moral Graphs \\
Conditional Independence in DAGs & Structural Equation Models
\end{tabular}

\section*{Moral Graphs}
- Reading conditional independence relations from DAGs can be difficult
- An alternative approach is to use a modified version of the network, called the moral graph of DAG
- To get the moral graph \(\tilde{G}\) of \(G\)
- join ("marry") common parents of each node
- remove all the directions
- Then, \(X_{i} \Perp X_{j} \mid Z\) iff \(Z\) separates \(i\) and \(j\) in \(\tilde{G}\)

```

 Introduction d-separation
 Probability Distribution over DAGs Moral Graphs
 Conditional Independence in DAGs Structural Equation Models
    ```

\section*{Genetics example, revisited (again)}

Consider an example from population genetics:

- Is \(S \Perp D \mid\{M, F\}\)
- Is \(M \Perp F\) ?
- Is \(M \Perp F|\{S, D\},|S|\),\(D ?\)

What are conditional independence relations in this graph?

```

 Introduction d-separation
 Probability Distribution over DAGs Moral Graphs
Conditional Independence in DAGs Structural Equation Models

```

\section*{A More Complex Example}

What are conditional independence relations in this graph?

\begin{tabular}{|c|c|}
\hline Probability Distribution over DAGs
Conditional Independence in DAGs & \begin{tabular}{l}
d-separation \\
Moral Graph \\
Structural Equation Model
\end{tabular} \\
\hline Structural Equation Models & \\
\hline
\end{tabular}
- A popular way to represent causal relationships on DAGs is via structural equation models
\[
X_{j}=f_{j}\left(p a_{j}, \gamma_{j}\right), \quad j=1, \ldots, p
\]
- \(f_{j}\) can be in general any function relating \(j\) to its parents
- \(\gamma_{j}\) 's represent the independent component of \(j\) th variable (i.e. the part that doesn't depend on \(\mathrm{pa}_{j}\)
- For Gaussian random variables, \(f_{i}\) is linear
\[
X_{j}=\sum_{j^{\prime} \in p a_{j}} \rho_{j j^{\prime}} X_{j^{\prime}}+\gamma_{j}, \quad j=1, \ldots, p
\]
- here, \(\rho_{j j^{\prime}}\) denotes the magnitude of effect of \(j^{\prime}\) on \(j\), or their partial correlation

\section*{A Toy Example}


Assuming normality we can write:
\[
\begin{aligned}
& X_{1}=\gamma_{1} \\
& X_{2}=\rho_{12} X_{1}+\gamma_{2}=\rho_{12} \gamma_{1}+\gamma_{2} \\
& X_{3}=\rho_{23} X_{2}+\gamma_{3}=\rho_{23} \rho_{12} \gamma_{1}+\rho_{23} \gamma_{2}+\gamma_{3}
\end{aligned}
\]

For non-Gaussian variables, these equations will involve non-linear relationships.
```

 Introduction

Pathway \& Network Analysis of Omics Data: Bayesian Networks - Estimation from
 Observational Data

Ali Shojaie
Department of Biostatistics
University of Washington faculty.washington.edu/ashojaie

Summer Institute for Statistical Genetics - 2017
(c) Ali Shojaie

Introduction
 PC Algorithm
 ion Methods
 Summary
 Estimation of DAGs in Biological Settings

- Estimation of DAGs is (in general) computationally very hard (in fact, it's NP-hard): there are $\sim 2^{p^{2}}$ DAGs with p nodes!
- Three different types of biological data can be used for estimation of directed graphs:
i) observational data: steady-state data, or data comparing normal \& cancer cells
ii) time-course data: time-course gene expression data
iii) perturbation data: data from knockouts experiments
- This lecture, we will cover (i), next lecture we will cover (ii) and (iii)

Estimation of DAGs from Observational Data

Algorithms for estimation of DAGs can be broadly categorized into two groups:

- constraint-based methods
- often based on tests for $\mathrm{Cl} \&$ provide theoretical guarantees
- PC algorithm, Grow-Shrink
- score \& search methods
- They assign a "score" to each estimated graph (e.g. based on likelihood, Bayes factor, AIC etc)
- Then do a (greedy) search to find the best scoring graph
- Hill Climbing algorithm
- "hybrid" methods
- Usually first find the Markov blanket (e.g. the moral graph)
- Then perform a search in a restricted space
- Max-Min Hill Climbing algorithm

Constraint-Based Methods

- Need a conditional independence test (to test if $X \Perp Y \mid Z$)
- For Gaussian data, we can use partial correlation (or the Fisher's Z-transformation of it)
- For Binary data, we can use logOR
- In general, we can use conditional mutual information
- The idea is to see if there exists a set S, for each pair of nodes j, j^{\prime}, such that $X_{j} \Perp X_{j^{\prime}} \mid S$
- S can have 0 to p-2 members! usually stop at some $k \ll p$
- I.e., for each pair of variables (all $\binom{p}{2}$ of them), we need to look at all possible subsets of remaining variables!!
- Recall that conditional independence is symmetric \Rightarrow undirected graph!!
- So, these methods find the structure/skeleton of the DAG (will talk about direction later)
Introduction

PC Algorithm \quad| Structure Learning |
| :--- |
| Other Estimation Methods |
| Summary |\quad Markov Equivalence and PCDAGs

PC Algorithm (Spirtes et al, 1993)

- One of the first algorithms for learning structure of DAGs
- Efficient implementations that allow for learning DAG structures with p up to ~ 1000
- R-package pcalg (Kalisch \& Buhlmann, 2007)
- The algorithm starts with a complete graph (i.e. a fully connected graph)
- Then for each pair of nodes j, j^{\prime} it finds a separating set, S such that $X_{j} \Perp X_{j^{\prime}} \mid S$
- If a set is found, then remove the edge, otherwise, $j-j^{\prime}$

Start with a complete undirected graph, and set $i=0$ Repeat

- For each $j \in V$
- For each $j^{\prime} \in \operatorname{ne}(j)$
- Determine if $\exists S \subset \operatorname{ne}(j) \backslash\left\{j^{\prime}\right\}$ with $|S|=i$
- Test for Cl : is $X_{j} \Perp X_{j^{\prime}} \mid S$?
- If such an S exists, then set $S_{j j^{\prime}}=S$, remove $j-j^{\prime}$ edge
- $i=i+1$

Until \mid ne $(j) \mid<i$ for all j

Example

$$
\begin{array}{ll}
i=0 & S_{1,2}=\emptyset \\
& S_{1,4}=\emptyset \\
i=1 & S_{3,4}=\{2\} \\
i=2 & S_{1,5}=\{3,4\} \\
& S_{2,5}=\{3,4\} \\
i=3 & \text { STOP }\left(\mid \text { ne }_{j} \mid<3 \forall j\right)
\end{array}
$$

Introduction
PC Algorithm

Structure Learning
Markov Equivalence and PCDAGs

Analysis of Protein Flow Cytometry using pcalg

```
> dat <- read.table('sachs.data')
> p <- ncol(dat)
> n <- nrow(dat)
## define independence test (partial correlations)
> indepTest <- gaussCItest
## define sufficient statistics
> suffStat <- list(C=cor(dat), n=n)
## estimate CPDAG
> pc.fit <- pc(suffStat, indepTest, p, alpha=0.1, verbose=FALSE)
> plot(pc.fit, main='PC Algorithm')
```

- Need to determine the type of Cl test (indepTest), and sufficient statistics (suffStat)
- Also need to choose α (alpha), the probability of false positive for selecting edges.
- Larger values of α allow more edges (not adjusted for multiple comparisons)
- The algorithm works faster when α is small

But wait, where did the directions come from? And why are only some of the edges directed?
Introduction
PC Algorithm
Other Estimation Methods
Summary

Structure Learning
Markov Equivalence and PCDAGs

Markov Equivalence

Consider the following 4 graphs

Which graphs satisfy $X_{1} \Perp X_{3} \mid X_{2}$?

Consider the following 4 graphs

In the first 3 graphs, $X_{1} \Perp X_{3} \mid X_{2}$?
Two graphs that imply the same Cl relationships via d-separation are called Markov equivalent
Introduction
PC Algorithm

Structure Learning
Markov Equivalence and PCDAGs

Representation of Markov Equivalence

- Markov equivalent graphs correspond to the same probability distribution and cannot be distinguished from each other based on observations!
- Therefore, the direction of edges that correspond to Markov equivalent graphs cannot be determined
- We show these edges using undirected edges in the graph
- The resulting graph is a CPDAG (completed partially directed acyclic graph), and is really the best we can do!

Introduction			
PC Algorithm	Structure Learning		
Other Estimation Methods			
Summary		\quad	Markov Equivalence and PCDAGs
:---			

Finding Partial Directions in DAGs

- Partial directions in DAGs can be determined from unmarried colliders:
- For each unmarried collider $i-k-j$
- If $k \notin S_{i j}$, orient $i-k-j$ as $i \rightarrow k \leftarrow j$
- In addition to the above rule
- Orient each remaining unmarried collider $i \rightarrow k-j$ as $i \rightarrow k \rightarrow j$
- If $i \rightarrow k \rightarrow j$ and $i-j$ then orient as $i \rightarrow j$
- If $i-m-j$ and $i \rightarrow k \leftarrow j$ are unmarried colliders and $m-k$, then orient as $m \rightarrow k$

The bnlearn package

- There are a number of R -packages for learning the structure of DAGs, including pclag, bnlearn, deal
- bnlearn implements a number of estimation methods, both constraint-based and search-based:
- constraint-based:
- Grow-Shrink (GS);
- Incremental Association Markov Blanket (IAMB);
- Fast Incremental Association (Fast-IAMB);
- Interleaved Incremental Association (Inter-IAMB);
- the following score-based structure learning algorithms:
- Hill Climbing (HC);
- Tabu Search (Tabu);
- the following hybrid structure learning algorithms:
- Max-Min Hill Climbing (MMHC);
- General 2-Phase Restricted Maximization (RSMAX2);

Analysis of Protein Flow Cytometry using bnlearn

```
> dag1
    Bayesian network learned via Constraint-based methods
    model:
            [partially directed graph]
    nodes: 11
    arcs: 26
            undirected arcs: 3
            directed arcs: 23
    average markov blanket size: 6.00
    average neighbourhood size: 4.73
    average branching factor: 2.09
    learning algorithm: Grow-Shrink
    conditional independence test: Pearson's Linear Correlation
    alpha threshold: 0.01
    tests used in the learning procedure: 2029
    optimized: TRUE
```


The two graphs are quite different
> compare(dag1,dag3)
\$tp
[1] 9
\$fp
[1] 26
\$fn
[1] 17

- The estimated graphs are quite different
- The constrained-based methods seem to have more similarities (at least in terms of structure)
- The estimate from HC has more edges; we can change e.g. the score, but cannot directly control the sparsity

Introduction	
PC Algorithm	The bnlearn package
Other Estimation Methods	Penalized Likelihood Estimation
Summary	

Penalized Likelihood Estimation of DAGs

- Recall that structural equation models can be used to represent causal relationships (and probability distributions) on DAGs

$$
X_{i}=f_{i}\left(\mathrm{pa}_{i}, \gamma_{i}\right), \quad i=1, \cdots, p
$$

- And, for Gaussian random variables, we can write

$$
X_{i}=\sum_{j \in \mathrm{pa}_{i}} \rho_{j i} X_{j}+\gamma_{i}, \quad i=1, \cdots, p
$$

Thus $X=\Lambda \gamma$ where

$$
\Lambda=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\rho_{12} & 1 & 0 \\
\rho_{12} \rho_{23} & \rho_{23} & 1
\end{array}\right)
$$

- It turns out that $\Lambda=(I-A)^{-1}$, where A is the weighted adjacency matrix of the DAG ${ }^{1}$
- Thus, for Gaussian random variables, if we know the ordering of the variables (which is a BIG assumption!)
after some math...
we can estimate the adjacency matrix of DAGs, by minimizing the log-likelihood as a function of A :

$$
\hat{A}=\underset{A \in \mathcal{A}}{\arg \min }\left\{\operatorname{tr}\left[(I-A)^{\top}(I-A) S\right]\right\}
$$

[^2]

- In high dimensions, we can solve a penalized version of this problem, e.g. by adding a lasso penalty $\lambda \sum_{i<j}\left|A_{i j}\right|$
- It turns out that, the problem can be reformulated as $(p-1)$ lasso problems, where we regress each variable, on those appearing earlier in the ordering:

$$
\hat{A}_{k, 1: k-1}=\underset{\theta \in \mathbb{R}^{k-1}}{\arg \min }\left\{n^{-1}\left\|X_{1: k-1} \theta-X_{, k}\right\|_{2}^{2}+\lambda \sum_{j=1}^{k-1}\left|\theta_{j}\right| w_{j}\right\}
$$

- As in glasso, λ is a tuning parameter that controls the amount of sparsity; $\lambda=\frac{2}{\sqrt{n}} Z_{\alpha /\left(2 p^{2}\right)}$ controls a false positive probability at level α

Computational Complexity

- Compared to pcalg, this method runs much faster: $\sim n p^{2}$ operations vs $\sim p^{q}$ (q is the max degree)
- Can be easily implemented in R as $p-1$ regressions using glmnet. A more general version is available in the spacejam package, which also includes estimation for non-Gaussian data

Simulations

- Settings:
$p=50,100,200$
$n=100$
Total number of edges in the network $=n$
100 repetitions
- Performance Criteria

1. Matthew's Correlation Coefficient (MCC): ranges between -1 (worst fit) and 1 (best fit), similar to F_{1}
2. Structural Hamming Distance (SHD): sum of false positive and false negatives
3. True positive and false positive rates

- Tuning parameter for both PC-Algorithm and penalized likelihood method based on false positive error α

Introduction PC Algorithm Other Estimation Methods

The bnlearn package
Summary
Penalized Likelihood Estimation

Random Ordering of Variables

Regulatory Network of E-Coli

- Regulatory network of E-coli with $p=49$ genes (7 TFs)
- Want to identify regulatory interactions among TFs and regulated genes

> Introduction
> PC Algorithm
> Other Estimation Methods
> Summary

Summary

- Estimation of DAGs from observational data is both conceptually and computationally difficult
- Constraint-based and search-based algorithms become slow in high dimensions
- Also, may not be able to distinguish DAGs from observational data (Markov equivalence)
- Efficient penalized likelihood methods can estimate DAGs if the ordering is known
- Efficient implementations in R available for most methods
- Different methods need different tuning parameters...

Estimation of Gene Regulator Networks

- Using steady-state gene expression data:
- undirected association graphs: Graphical lasso (glasso), ARACNE, ...
- DAGs or CPDAGs: PC-Algorithm, ...
- Using time-course gene expression data
- Dynamic Bayesian networks
- Granger causality
- Using perturbation screens, obtained by "perturbing" the biological system, often in the form of knockout or knockdown experiments, where in each experiment one or more genes are perturbed.
- Model-based approaches: Nested Effect Models (NEM), methods of causal inference
- Heuristic approaches: e.g. Pinna et al (2010),

Gene Regulatory Networks

Consider a simple regulatory network, with two transcription factors and one gene:

- g_{1} : Inducer
- g_{2} : Inhibitor
- g_{3} : Regulated Gene

Gene Regulatory Networks

The temporal expressions patterns of g_{1}, g_{2} and g_{3} may look like:

Estimation from Time Course Data	Introduction
Network Estimation from Perturbation Data	Truncating Lasso Penalty
Summary	Lasso w Adaptive Thresholding

Gene Regulatory Networks

The temporal expressions patterns of g_{1}, g_{2} and g_{3} may look like:

[^3]
Estimation of Gene Regulatory Networks from Time-Course Data

- The goal is Discover interactions among genes from time-course data
- This is achieved by observing the patterns of expressions over time
- A suitable framework for inferring such mechanisms is Granger causality:
- the idea is to see if changes in expression of gene X are predictive of those in Y
- this model is closely related to the Dynamic Bayesian Networks (DBNs)
- can handle self-regulatory effects and feedback loops
Granger Causality

Granger CaUSality \begin{tabular}{c}
Estimation from Time Course Data

Introduction

Truncating Lasso Penalty

Lasso w Adaptive Thresholding
\end{tabular}

Granger Causality
Granger Causality
Granger Causality

```
            Estimation from Time Course Data Introduction
Network Estimation from Perturbation Data Truncating Lasso Penalty
    Summary Lasso w Adaptive Thresholding
```


Granger Causality

- A time series X is said to be Granger-causal for Y if past values of X provide statistically significant information about future values of Y
- This is traditionally checked using a series of F-tests, on lagged values of X
- Granger causality \neq causality: Granger causality is about prediction and does not imply true causal effects
- Recent work extends this framework beyond Gaussian random variables
- We focus on extension of this idea to high dimensional settings, which we refer to as Network Granger Causality

Introduction Summary Lasso w Adaptive Thresholding

Network Granger Causality: Illustration

p variables observed over T time points

Network Granger Causality: Illustration

p variables observed over T time points

Network Granger Causality: Definition

- X_{1}, \ldots, X_{p} stochastic processes and $\mathbf{X}^{t}=\left(X_{1}^{t}, \ldots, X_{p}^{t}\right)^{\top}$
- Network Granger Causality Model:

$$
\mathbf{X}^{T}=A^{1} \mathbf{X}^{T-1}+\cdots+A^{d} \mathbf{X}^{T-d}+\varepsilon^{T}
$$

- X_{j}^{T-t} is Granger-causal for X_{i}^{T} if $A_{i, j}^{t} \neq 0$.
- DAG with $(d+1) \times p$ variables
- alternatively, a vector autoregressive model of order d (VAR(d)) with p variables.
- Often $d \ll T$, but not known:
- usually, d is "guessed", and is set to $d=1$ (especially in applications of DBN), which can result in loss of information
- the alternative is to include all previous time points (set $d=T-1$) but that would result in too many variables
- Recent work has focused on simultaneous estimation of d and network.

Previous work on NGC in high dimensional settings

- The concept of Granger causality has been used in discovering gene regulatory interactions by Fujita et al (2007) and Mukhopadhyay and Chatterjee (2007)
- A number of recent work have considered penalized regression models for estimation of Granger-causal models:
- lasso regression used in Arnold et al (2007) in a financial application
- group lasso used in Lozano et al (2009) for grouping effects over time
- truncating lasso Shojaie \& Michailidis (2010) to estimate d and network simultaneously
- lasso w adaptive thresholding used in Shojaie, Basu \& Michailidis (2012) for improved estimation of d and network

Truncating Lasso Penalty

1
\mathcal{X}^{t} : data at time t

$$
\begin{gathered}
\underset{\theta^{t} \in \mathbb{R}^{p}}{\arg \min } n^{-1}\left\|\mathcal{X}_{i}^{T}-\sum_{t=1}^{d} \mathcal{X}^{T-t} \theta^{t}\right\|_{2}^{2}+\lambda \sum_{t=1}^{d} \Psi^{t} \sum_{j=1}^{p}\left|\theta_{j}^{t}\right| w_{j}^{t} \\
\Psi^{1}=1, \quad \Psi^{t}=M^{l\left\{\left\|A^{(t-1)}\right\|_{0}<p^{2} \beta /(T-t)\right\}}, t \geq 2
\end{gathered}
$$

where M is a large constant, and β is the user-specified false negative rate (FNR).

- Can use the following value of λ that controls a version of false positive rate (FPR) at the level α :

$$
\lambda(\alpha)=2 n^{-1 / 2} Z_{\frac{\alpha}{2 d p^{2}}}^{*}
$$

- This method assumes that influences decay over time
${ }^{1}$ Shojaie \& Michailidis (2010)

Estimation from Time Course Data Introduction
Network Estimation from Perturbation Data Truncating Lasso Penalty
Summary Lasso w Adaptive Thresholding

An Illustrative Example


```
    Estimation from Time Course Data Introduction
Network Estimation from Perturbation Data Truncating Lasso Penalty
    Summary Lasso w Adaptive Thresholding
```


Non-decaying Granger-causal effects

Estimation from Time Course Data
 Network Estimation from Perturbation Data Summary Lasso w Adaptive Thresholding

 Regulatory Network of T-Cell Activation

 Regulatory Network of T-Cell Activation}

- Data from Rangel et al (2004) on activation of T-cells
- $p=58$ genes, $n=44$ samples, and $T=10$ time points
- Goal is to estimate the regulatory interactions

Estimation from Time Course Data Introduction Network Estimation from Perturbation Data Truncating Lasso Penalty Summary Lasso w Adaptive Thresholding Adjacency Matrices of Estimated Networks					
		$\begin{array}{ccc} & & \\ \vdots & \\ . & .\end{array}$	ALASSO ${ }^{\text {c }}$ \% ${ }^{\text {T-2 }}$		
			TALASSO		
			THLASSO		
(c)Ali Shojaie		SISG: Pathway	Networks		29

Estim CDKA	Estimation from Time Course Data Network Estimation from Perturbation Data Summary ted Regulatory Netwo Alasso: edges= 96 TAlass	Introduction Truncating Lasso Penalty Lasso w Adaptive Thresholding	
	Alasso Alasso (96) TAlasso 99 Thlasso 35	TAlasso Thlasso - - (101) - 102 (79)	
(C) Ali Shojaie	SISG: Pathw	Networks	30

Adaptively Thresholded Lasso Estimate: Main Idea

- Logic: Lasso is in general biased, and cannot achieve structure and norm consistency simultaneously
- In short, the idea is to start with lasso estimates, and then remove "small" values from the adjacency matrix
- Consider two levels of thresholding, one for each element of adjacency matrix, and the second for whole adjacency matrices at a given time point

Method Details

(i) Obtain the regular lasso estimate $\tilde{A}^{t}\left(\lambda_{n}\right)$ by solving

$$
\underset{\theta^{t} \in \mathbb{R}^{p}}{\arg \min } n^{-1}\left\|\mathcal{X}_{i}^{T}-\sum_{t=1}^{d} \mathcal{X}^{T-t} \theta^{t}\right\|_{2}^{2}+\lambda \sum_{t=1}^{T-1} \sum_{j=1}^{p}\left|\theta_{j}^{t}\right| w_{j}^{t}
$$

(ii) Let $\psi^{t}=\exp \left(M 1_{\left\{\left\|\tilde{A}^{t}\right\|_{0}<p^{2} \beta /(T-1)\right\}}\right)$, and define the thresholded estimate:

$$
\left.\hat{A}_{i j}^{t}=\tilde{A}_{i j}^{t} \mathbf{1}_{\left\{\left|\tilde{A}_{i j}^{t}\right| \geq \tau \psi t\right.}\right\}
$$

Here M is a large constant and τ is tuning parameter for thresholding.
(iii) Estimate the order of the time series by setting

$$
\hat{d}=\max _{t}\left\{t:\left\|\hat{A}^{t}\right\|_{0} \geq p^{2} \beta /(T-1)\right\}
$$

Comments

- Benefits:
- The optimization problem is convex, and can be solved efficiently.
- Does not require structural assumptions (no decay assumption)
- Drawbacks:
- Requires more tuning parameters
- Can be less efficient than truncating lasso if the decay assumption holds
- The tuning parameters can be chosen so that the method has desirable performance
- Penalized methods implemented in the R package ngc

Estimation from Time Course Data	Introduction
Network Estimation from Perturbation Data	Nested Effect Models
Summary	The RIPE Algorithm

Data from Perturbation Screens

- Steady-state data are easy to obtain, but only represent association among genes and hence have insufficient informational content
- Perturbation data provide direct evidence on causal directions, but are expensive to obtain. This becomes more complicated if perturbing a particular gene is lethal.
- Data is obtained by knockout or knockdown experiments on one or more genes at a time. The data then measures the effect of the experiments on other genes in the network.

Data from Perturbation Screens

- In practice, due to limited sample size, the perturbation data are often discretized: genes are categorized as up/down regulated or active/inactive.

- The discretized perturbation data
(i) do not provide enough information to construct the structure of regulatory networks.
(ii) provide enough information to determine causal (topological) ordering(s) of nodes.

Estimation from Time Course Data Introduction
Network Estimation from Perturbation Data Nested Effect Models
Summary The RIPE Algorithm

Methods for Estimation of Regulatory Networks from Perturbation Data

- Nested Effect Model (NEM): defines a probability distribution for perturbed (knockout) genes, and estimates the networks using a Bayesian framework
- Heuristic approaches: start with the network of significant effects of genes on all other genes (based on the perturbation data) and try to trim this network using features of observed networks
- Causal inference methods: in particular, using the intervention calculus (Pearl, 2000) which describes the joint probability distribution of random variables in the setting of experiments

Nested Effect Models

- Motivated by RNAi experiments: few knocked-out genes (called S genes), and many affected genes (called E genes)

- Assumes that each S gene affect few E genes
- More importantly, assumes that each E genes is only affected by one S gene
- The network of S gens is arbitrary, but there is no association among E genes (condition on S genes)
- Considers the setting where S genes are (potentially) not observable, but E genes are observed
- The goal is to learn the relationship among S genes, based on the patterns of E genes, which is a difficult problem!

Nested Effect Models

- Works with discretized data: there is either an effect (1) from knocking out of S_{i} on E_{j} or not (0)
- Assumes there are positive and negative control samples
- Allows for presence of false positives and false negatives in the discretized data

Nested Effect Models

- In the simplest form (a) a chain with 3 nodes is assumed, and the model tries to learn the relationship between S genes based on the E genes that are affected by each perturbation (b)
- The matrix Φ is the influence matrix discussed before
- To simplify computation, the task of structure learning is broken down into triplets of S genes

Estimation from Time Course Data
Introduction
Nested Effect Models
The RIPE Algorithm

Nested Effect Models

- Reconstruction of network of S genes is performed by first clustering the E genes into groups with similar patterns
- It is then decided whether a cluster is up-stream or down-stream the other one based on the patterns of effects (subset relationships)

Nested Effect Models

```
> library(nem)
> data("BoutrosRNAi2002")
> disc <- nem.discretize(D=BoutrosRNAiExpression,neg=1:4,pos=5:8)
> res <- nem(D=disc$dat,para=disc$para,inference="search")
nem(D, ...)
D data matrix with experiments in the columns (binary or continuous)
```

- R package nem implements the original NEM model, as well as some of its extensions
- The package works well for up to $\sim 100 S$ genes (though very slow), but may not work for larger experiments

Estimation from Time Course Data	Introduction
Network Estimation from Perturbation Data	Nested Effect Models
Summary	The RIPE Algorithm

The RIPE Algorithm ${ }^{2}$

[^4]
The RIPE Algorithm

RIPE integrates two sources of data, from perturbation screens and steady-state expression profiles, to give better estimates of regulatory networks
I) Use perturbation data to determine causal ordering(s) among nodes
II) For each ordering from step (I), use steady-state gene expression data to estimate the structure of the graph
III) Use model averaging to construct a consensus graph

Estimation from Time Course Data Network Estimation from Perturbation Data Summary

The RIPE Algorithm

Step I) Determining Causal Orderings

- First, obtain the influence graph P from the perturbation data (this can be done many different ways: p -value cutoff/fold-change cutoff etc)

$$
\begin{array}{rll}
\hline \text { Estimation from Time Course Data } & \text { Introduction } \\
\text { Network Estimation from Perturbation Data } & \text { Nested Effect Models } \\
\text { Summary } & \text { The RIPE Algorithm }
\end{array}
$$

Step I) Determining Causal Orderings

- First, obtain the influence graph P from the perturbation data (this can be done many different ways: p-value cutoff/fold-change cutoff etc)
- In absence of noise, the influence graph is obtained from the original graph by connecting node i to j if there is a directed path from i to j

(C) Ali Shojaie

SISG: Pathway \& Networks

Estimation from Time Course Data
Network Estimation from Perturbation Data
Summary

Introduction
Nested Effect Models
The RIPE Algorithm

Step I) Determining Causal Orderings

- First, obtain the influence graph P from the perturbation data (this can be done many different ways: p -value cutoff/fold-change cutoff etc)
- In absence of noise, the influence graph is obtained from the original graph by connecting node i to j if there is a directed path from i to j
- In practice, the influence graph will likely include false positive and false negative edges.

$$
\begin{aligned}
\text { Estimation from Time Course Data } & \text { Introduction } \\
\text { Network Estimation from Perturbation Data } & \text { Nested Effect Models } \\
\text { Summary } & \text { The RIPE Algorithm }
\end{aligned}
$$

Step I) Determining Causal Orderings

- Create a hyper-graph of strong connected components (SCC), where each node is a collection of ≥ 1 nodes that cannot be further ordered (i.e. there is a cycle).
- Find an ordering (topological sorting) of the SCC graph (note, this is by construction a DAG) using Depth First Search algorithm (DFS).
- Find all possible orderings of each connected component (using
 backtracking algorithm of Knuth, or Monte Carlo DFS MC-DFS)
- Given a topological ordering of nodes, the nodes of the graph can be rearranged to form a DAG
- For each ordering, estimate (the structure of) one DAG using the penalized likelihood method of the previous lecture, (by solving $p-1$ lasso regression problems):

$$
\hat{A}_{k, 1: k-1}=\underset{\theta \in \mathbb{R}^{k-1}}{\arg \min }\left\{n^{-1}\left\|X_{1: k-1} \theta-X_{, k}\right\|_{2}^{2}+\lambda \sum_{j=1}^{k-1}\left|\theta_{j}\right| w_{j}\right\}
$$

Estimation from Time Course Data Introduction
 $\begin{aligned} \text { Network Estimation from Perturbation Data } & \text { Nested Effect Models } \\ \text { Summary } & \text { The RIPE Algorithm }\end{aligned}$
 Step III) Building a Consensus Graph

Histogram of Negative penalized log-Likelihoods

- For each ordering, the estimated graph is a DAG
- However, the true graph may include cycles. Also, results from one ordering may be inaccurate (noise...).

- Solution: average over edges with the best scores:

$$
\hat{A}_{i, j}^{c}=\frac{1}{|Q|} \sum_{k \in Q} \mathbf{1}_{\left\{\left|A_{i, j}^{k}\right|>0\right\}} \quad \hat{E}=\left\{(i, j): \hat{A}_{i, j}^{c} \geq \tau\right\}
$$

- L_{q} : lower q th quantile of (penalized) negative log-likelihoods
- $Q=\left\{o \in \mathcal{O}: \ell(o) \leq L_{q}\right\}$ set of orderings for these likelihoods


```
                                    Estimation from Time Course Data Introduction
Network Estimation from Perturbation Data Nested Effect Models
Summary The RIPE Algorithm
```


Data Generation

Perturbation data: Adjacency matrices of true and noisy influence graphs

Steady-state expression data: generated $n=50$ Gaussian observations according to the true DAG.

How Many Orderings?

For $P_{3}, 3,962$ orderings are found using backtracking.


```
Natimation from Time Course Data
    Summary
    Introduction
```


A More Complicated Example: DREAM-4 Challenge

- The DREAM project (Dialogue for Reverse Engineering Assessments and Methods) is an attempt to construct realistic regulatory networks
- DREAM-4 challenge had multiple competitions, including reverse engineering 5 networks of size 100 selected from true regulatory components of yeast and E-coli.
- The perturbation data is simulated based on the true network (using coupled ODE)
- Two types of perturbation data are available: knockout and knockdown experiments
- Pinna et al (PINNA) was the winner of the high dimensional reconstruction challenge (on networks of size 100)


```
        Estimation from Time Course Data
Network Estimation from Perturbation Data
                                    Introduction
                                    Nested Effect Models
                                    The RIPE Algorithm
```


Example of estimated modules

Largest cyclic component in DREAM1 network

When the perturbation data includes cycles, the consensus graph will be cyclic.

Estimated Graph

Estimation from Time Course Data Introduction
Network Estimation from Perturbation Data Nested Effect Models
Summary The RIPE Algorithm

Network of Yeast Transcription Factors

- 269-node corresponding to known yeast TF's $(p=269)$
- Perturbation data: knockout experiments from Hu et al (2007, Nat Genetics)
- Steady-state expression data: $n=200$ day-to-day variation samples of yeast (publicly available), not really iid!
- Used 10,000 orderings
- To evaluate: use available data on yeast regulatory network, which is (most likely) incomplete. Therefore, "false positives" may be true edges

Network of Yeast Transcription Factors

- Significance of true positives (TP), in comparison to the BioGrid network
- Histograms show number of TP's in random networks of equal sizes

(C) Ali Shojaie

Estimation from Time Course Data	Introduction
Network Estimation from Perturbation Data	Nested Effect Models
Summary	The RIPE Algorithm

Summary The RIPE Algorithm
Extension: $k \ll p$

- In many biological experiments, perturbation screens are only run on a subset of genes (k out of p)
- If perturbation is available on TFs, the RIPE algorithm can be modified to estimate the network

RIPE Performance in yeast regulatory network (6051 genes)
TP =134, |E|=10014 (p-value<0.001)

Summary

- Estimation of regulatory networks is difficult! In addition to need for causal inference, the presence of feedback loops, and the small sample size of biological experiments hinder estimation of directed regulatory networks
- Available data differ in informational content and available sample size (and hence noise level)
- Time-course and perturbation data offer greater potential for learning the structure of DAGs; however, they also introduce new challenges.
- Computational complexity is a bottleneck of many proposed methods, many existing methods are approximations of the biology, or make strong assumptions
- This is an active area of research, with many methods being developed and implemented...

Introduction
 Pathway Impact Analysis Network-Based Gene Set Analysis
 Pathway \& Network Analysis of Omics Data: Network-Based Pathway Enrichment Analysis

Ali Shojaie
Department of Biostatistics
University of Washington faculty.washington.edu/ashojaie

Summer Institute for Statistical Genetics - 2017

Issues of Interest

- Incorporate the network information
- Consider changes in the gene (protein, metabolite) expressions
- Consider changes in the network structure
- Test the "effect" of pre-specified subnetwork/pathway, sharing common biological function, chromosomal location etc
- A general framework for inference in complex experiments

```
Introduction Pathway Impact Analysis
Network-Based Gene Set Analysis
```


Recap: Gene Set Enrichment Analysis

Subramanian et al. (2005) proposed gene set enrichment analysis (GSEA); Efron \& Tibshirani (2007) formalized the GSEA approach, and proposed a more efficient test statistic

- Test the significance of a priori defined gene sets
- Preserve the correlation among genes in the gene set
- Based on a competitive null hypothesis, where activity of each pathway is compared with other pathways, often using a permutation test
- Competitive tests of enrichment assume that a small number of genes have differential activity, and are very sensitive to the choice of gene sets, they also problem with
- Self-contained tests address these issues, but may be less efficient or sensitive to model assumptions (Goemen \& Buhlmann (2007), Ackermann \& Strimmer (2009))

```
                                    Introduction
                                    Pathway Impact Analysis
Network-Based Gene Set Analysis
```


Signaling Pathway Impact Analysis (SPIA)

- Combines classical overrepresentation analysis (ORA) with measure of perturbation of a given pathway under a given condition
- A bootstrap procedure is used to assess the significance of the observed pathway perturbation (difficult to extend to comparison of >2 conditions)
- Currently not applicable to all pathways (more later)
- Models each pathway separately (ignores connections among pathways)
- Implemented in the Bioconductor package SPIA

```
Introduction
Pathway Impact Analysis
Network-Based Gene Set Analysis
```


The SPIA Methodology

SPIA combines two types of evidence
(i) the overrepresentation of $D E$ genes in a given pathway

- measured by the p -value for the given number of $D E$ genes $P_{\text {NDE }}=P\left(X \geq N_{D E} \mid H_{0}\right)$

Introduction

Pathway Impact Analysis
Network-Based Gene Set Analysis

The SPIA Methodology

SPIA combines two types of evidence
(ii) the abnormal perturbation of the pathway

- the perturbation for each gene in the pathway is defined as $P F\left(g_{i}\right)=\Delta E\left(g_{i}\right)+\sum_{j=1}^{p} \beta_{i j} \frac{P F\left(g_{j}\right)}{N_{D S}\left(g_{j}\right)}$
- $\operatorname{PF}\left(g_{i}\right)$ is the perturbation factor of gene i (not known)
- $\beta_{i j}$ is the magnitude of effect of gene j on gene i; currently, beta $_{i j}=1$ if $j \rightarrow i$
- $\Delta E\left(g_{i}\right)$ is the fold change in expression of gene i
- $N_{D S}\left(g_{j}\right)$ is the number of downstream genes from gene j

The SPIA Methodology

- The accumulated activity of each gene can then be calculated as $A C C\left(g_{i}\right)=B \cdot(I-B)^{-1} \Delta E$
- B is the normalized matrix of $\beta^{\prime} s: B_{i j}=\beta_{i j} / N_{D S}\left(g_{j}\right)$
- ΔE is the vector of fold changes
- Requires B to be invertible; would not work otherwise
- The total accumulated perturbation of the pathway is then given by $t_{A}=\sum_{i} A C C\left(g_{i}\right)$
- The p -value for pathway perturbation is given by $P_{\text {PERT }}=P\left(T_{A} \geq t_{A} \mid H_{0}\right)$, which is calculated using a bootstrap approach

The SPIA Methodology

The SPIA Methodology

SPIA combines two types of evidence

- The final p-value for each pathway is calculated based on the p -values from parts (i) and (ii):
- $P_{G}(i)=c_{i}-c_{i} \ln \left(c_{i}\right)$
- $c_{i}=P_{\text {NDE }}(i) P_{P E R T}(i)$

An Example in R: Data on Colorectal Cancer

```
data(colorectalcancer)
#pathway analysis using SPIA
#use nB=2000 or higher for more accurate results
#uses older version of KEGG signaling pathways graphs
res <- spia(de=DE_Colorectal, all=ALL_Colorectal, organism="hsa", beta=NULL,
    nB=2000, plots=FALSE, verbose=TRUE, combine="fisher")
#now combine pNDE and pPERT using the normal inversion method without
#running spia function again
res$pG=combfunc(res$pNDE,res$pPERT,combine="norminv")
res$pGFdr=p.adjust(res$pG,"fdr")
res$pGFWER=p.adjust(res$pG,"bonferroni")
plotP(res,threshold=0.05)
#highlight the colorectal cancer pathway in green
points(I(-log(pPERT)) ~I(-log(pNDE)), data=res[res$ID=="05210",],col="green",
    pch=19,cex=1.5)
```


The SPIA Methodology

SPIA two-way evidence plot

Network-Based Gene Set Analysis (NetGSA)

- Combines the ideas of gene set analysis methods, and network-based single gene analysis
- Generalizes SPIA, to allow for more complex experiments \& incorporate interactions among pathways
- Assesses the overall behavior of arbitrary subnetworks (pathways): changes in gene expression \& network structure
- Uses latent variables to model the interaction between genes defined by the network
- Uses mixed linear models for inference in complex data
- Computationally challenging for large networks (e.g. not applicable to whole genome sequencing data) unless, pathways separated (similar to SPIA)

Problem Setup

- Gene (protein/metabolite) expression data for K experimental conditions and J_{k} time points
- Network information (partially) available in the form of a directed weighted graph $G=(V, E)$, with vertex set V corresponding to the genes/proteins/metabolites and edge set E capturing their associations
- Network edges can be directed $j \rightarrow k$ or undirected $j \leftrightarrow k$
- Edges defines the effect of nodes on their immediate neighbors; the weight associated with each edge corresponds to the value of partial correlation
- Represent the network by its adjacency matrix $A: A_{j k} \neq 0$ iff $k \rightarrow j \&$ for undirected edges, $A_{j k}=A_{k j}$
- Pathways defined a priori based on common biological functions, etc

$$
\text { The Latent Variable Model: Main Idea } \begin{gathered}
\text { Pathway Impact Anaction } \\
\text { Network-Based Gene Set Analysis }
\end{gathered} \begin{gathered}
\text { Modeling Network Interactions } \\
\text { The NetGSA model } \\
\text { Uncertainty in Network Information }
\end{gathered}
$$

Thus $X=\Lambda \gamma$ where

$$
\Lambda=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\rho_{12} & 1 & 0 \\
\rho_{12} \rho_{23} & \rho_{23} & 1
\end{array}\right)
$$

Modeling Network Interactions
The NetGSA model
Uncertainty in Network Information

The Latent Variable Model

- Let Y be the i th sample in the expression data
- Let $Y=X+\varepsilon$, with signal X and noise $\varepsilon \sim N_{p}\left(0, \sigma_{\varepsilon}^{2} l_{p}\right)$
- The influence matrix \wedge measures the propagated effect of genes on each other through the network, and can be calculated based on the adjacency matrix A
- Using $X=\Lambda \gamma$, we get

$$
Y=\Lambda \gamma+\varepsilon, \quad \Rightarrow \quad Y \sim N_{p}\left(\Lambda \mu, \sigma_{\gamma}^{2} \Lambda \Lambda^{\prime}+\sigma_{\varepsilon}^{2} I_{p}\right)
$$

where $\gamma \sim N_{p}\left(\mu, \sigma_{\gamma}^{2} I_{p}\right)$ are latent variables

$\begin{aligned} & \text { Introduction } \text { Modeling Network Interactions } \\ & \text { Pathway Impact Analysis }\end{aligned} \quad \begin{aligned} & \text { The NetGSA model } \\ & \text { Network-Based Gene Set Analysis }\end{aligned} \quad$ Uncertainty in Network Information
 Mixed Linear Model Representation

Rearranging the expression matrix into $n p$-vector \mathbf{Y}, we can write

$$
\mathbf{Y}=\boldsymbol{\Psi} \boldsymbol{\beta}+\boldsymbol{\Pi} \gamma+\varepsilon
$$

where $\boldsymbol{\beta}$ and γ are fixed and random effect parameters and

$$
\varepsilon \sim N_{n p}\left(\mathbf{0}, R\left(\theta_{\varepsilon}\right)\right), \quad \gamma \sim N_{n p}\left(\mathbf{0}, \sigma_{\gamma}^{2} \mathbf{I}_{\mathbf{n p}}\right)
$$

- Temporal Correlation incorporated through R

In general, the design matrices, Ψ and Π depend on the experimental settings (similar to ANOVA), and are functions of Λ

Estimation of MLM Parameters

MLE for β :

$$
\hat{\beta}=\left(\Psi^{\prime} \hat{W}^{-1} \Psi\right)^{-1} \Psi^{\prime} \hat{W}^{-1} \mathbf{Y}
$$

where $W=\sigma_{\gamma}^{2} \Pi \Pi^{\prime}+R$.
$\hat{\beta}$ depends on estimates of σ_{γ}^{2} and θ_{ε}^{2} (estimated using restricted maximum likelihood (REML)).

Introduction Pathway Impact Analysis	Modeling Network Interactions The NetGSA model		
Network-Based Gene Set Analysis		\quad	Uncertainty in Network Information
:---			

- Let ℓ be a contrast vector (a linear combination of fixed effects), and consider the test:

$$
H_{0}: \ell \beta=0 \quad \text { vs. } \quad H_{1}: \ell \beta \neq 0
$$

- Use t-test to test the significance of each hypothesis separately

$$
T=\frac{\ell \hat{\beta}}{\sqrt{\ell \hat{C} \ell^{\prime}}}
$$

where $C=\left(\Psi^{\prime} W^{-1} \Psi\right)^{-1}$

- Under the null hypothesis, T is approximately t-distributed with degrees of freedom that needs to be estimated

Introduction	Modeling Network Interactions
Pathway Impact Analysis	The NetGSA model
Network-Based Gene Set Analysis	Uncertainty in Network Information

"Optimal" Choice of Contrast Vector

- One intuitive choice is to use the indicator vector for the members of pathway \mathbf{b}, but this only reflects changes in the mean vector
- Need to de-couple the effect of each subnetwork from other nodes

- Can be shown that $(\mathbf{b} \wedge \cdot \mathbf{b}) \gamma$ is not affected by nodes outside b, but includes the effects of nodes in \mathbf{b} on each other
- In the case-control case, the optimal contrast vector is:

$$
\ell^{*}=\left(-\mathbf{b} \cdot \mathbf{b} \Lambda^{c}, \mathbf{b} \cdot \mathbf{b} \Lambda^{T}\right)
$$

```
                                    Introduction Modeling Network Interactions
                                    The NetGSA model
                    Pathway Impact Analysis
                                    Network-Based Gene Set Analysis Uncertainty in Network Information
```


"Optimal" Choice of Contrast Vector

$$
\Lambda=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\rho_{12} & 1 & 0 \\
\rho_{12} \rho_{23} & \rho_{23} & 1
\end{array}\right)
$$

Consider the set, $\mathbf{b}=(0,1,1)$; then

$$
(\mathbf{b} \wedge)=\left(\rho_{12}+\rho_{12} \rho_{23}, 1+\rho_{23}, 1\right)
$$

On the other hand,

$$
(\mathbf{b} \wedge \cdot \mathbf{b})=\left(0,1+\rho_{23}, 1\right)
$$

Introduction	Modeling Network Interactions
Pathway Impact Analysis	The NetGSA model
Network-Based Gene Set Analysis	Uncertainty in Network Information

Yeast Galactose Utilization Pathway

Ideker et al (2001) data on yeast Galactose Utilization Pathway

- Gene expression data for 2 experimental conditions: (gal+) and (gal-)
- Gene-gene and protein-gene interactions as well as association weights found from previous studies
- Q: which pathways respond to the change in growth medium?
- Data:
- gene expression data for 343 genes
- 419 interactions found from previous studies and integration with protein expression (association among genes also available)
- Results:
- GSEA finds Galactose Utilization Pathway significant
- NetGSA finds several other pathways with biologically meaningful functions related to survival of yeast cells in gal-

Introduction Modeling Network Interactions
 Pathway Impact Analysis
 The NetGSA model
 Network-Based Gene Set Analysis Uncertainty in Network Information
 Environmental Stress Response in Yeast

Gene expression data on Yeast Environmental Stress Response (ESR) (Gasch et al., 2000)

- 3 combinations of experimental factor, heat shock and osmotic changes (sorbitol), over 3 time points
- Temporal correlation
- Network correlation
- Q: Which pathways indicate response to environmental stress
- in different experimental conditions
- over time

Introduction	Modeling Network Interactions
Pathway Impact Analysis	The NetGSA model
Network-Based Gene Set Analysis	Uncertainty in Network Information

Model and Results

- Model: Let j and k be indices for time and levels of sorbitol

$$
\mathbb{E} Y_{11}=\Lambda \mu, \quad \mathbb{E} Y_{j k}=\Lambda\left(\mu+\alpha_{j}+\delta_{k}\right) \quad j, k=2,3
$$

- Temporal correlation is modeled directly via R (as $A R(1)$ process)
- Results:
- ~ 3000 genes,
- 47 pathways showed significant changes of expression
- 24 pathways showed changes over time
- 29 pathways showed changes in response to different sorbitol levels
- 12 pathways showed both types of changes
- Significant pathways overlap with the gene functions recognized by Gasch et al.

vay a vetwork

Introduction
Modeling Network Interactions
The NetGSA model
Uncertainty in Network Information

Expression Profiles

Average Standardized Expression Levels of Pathways

- Induced and Suppressed Pathways
- Can observe the transient patterns of expressions as predicted by Gasch et al.

Effect of Noise In Network Information

- Let \tilde{A} be observed network information, and A be the truth.
- It can be shown that, if $\|\tilde{A}-A\|$ is small then, NetGSA still works (is asymptotically most powerful unbiased test)

| Introduction
 Pathway Impact Analysis
 Network-Based Gene Set Analysis |
| :---: | | Modeling Network Interactions |
| :--- |
| The NetGSA model |
| Uncertainty in Network Information |

Targeted metabolic profiling of bladder cancer (BCa) (Putluri et al., 2012)

- 58 bladder cancer and adjacent benign samples
- Pathways information obtained from KEGG

- Varying number of identified metabolites per pathway (3-15)
- Q: Which pathways show differential activity in BCa ?

Introduction	Modeling Network Interactions
Pathway Impact Analysis	The NetGSA model
Network-Based Gene Set Analysis	Uncertainty in Network Information

Metabolic Profiling in BCa

- 63 metabolites identified, mapped to 70 pathways
- 27 pathways with at least 3 members

- Existing methods may not work well...

Pathway Imparoduction Analysis Network-Based Gene Set Analysis	Modeling Network Interactions The NetGSA model Uncertainty in Network Information
Significant Pathways	

Introduction Pathway Impact Analysis	Modeling Network Interactions The NetGSA model		
Network-Based Gene Set Analysis		\quad	Uncertainty in Network Information
:---			
Rackage netosa			

- Basic usage:

$$
\operatorname{NetGSA}(A, x, y, B)
$$

- A: a list of $p \times p$ weighted adjacency matrices, e.g. for condition 1 and 2 (e.g. normal vs cancer), to allow for changes in the network
- B: a $K \times P$ 0-1 matrix of pathway membership: $B_{k, j}=1$ if gene/protein/metabolite j in pathway k
- Output: test statistics and p-values for each pathway
- In the current version, only two conditions are supported (e.g. cancer vs. normal); extension for multiple conditions will be released (hopefully) soon
- The code above takes weighted A as input. The package includes functions that allow you to enter a (partial) edge list as input, and estimate A for the case of undirected networks

[^0]: ${ }^{2}$ ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context, Margolin et al, BMC Bioinfo, 2006

[^1]: Marginal Association Networks
 Partial Correlation
 Conditional Independence Networks Gaussian Graphical Models

[^2]: ${ }^{1}$ Shojaie \& Michailidis (2010)

[^3]: Estimation from Time Course Data
 Network Estimation from Perturbation Data
 Network Estimation from Perturbation Data

 ## Introduction

 Truncating Lasso Penalty
 Lasso w Adaptive Thresholding

[^4]: ${ }^{2}$ Regulatory Network Inference from joint Perturbation and Expression data (Shojaie et al, 2014), package ripe on github

