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3:30 3:50 pm Break
3:50 5:20 pm 2) The General Linear Model (Walsh)
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12:00 2:00 pm Lunch

2:00 3:30 pm 5) Application: Genomic selection (Rosa)
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Lecture 1:
Intro/refresher in
Matrix Algebra

Bruce Walsh lecture notes
Introduction to Mixed Models
SISG, Seattle
19 — 21 July 2017

Topics

Definitions, dimensionality, addition,
subtraction

Matrix multiplication

Inverses, solving systems of equations
Quadratic products and covariances
The multivariate normal distribution
Eigenstructure

Basic matrix calculations in R

The Singular Value Decompositon (SVD)



Matrices: An array of elements

Vectors: A matrix with either one row or one column.

Usually written in bold lowercase, e.g. a, b, ¢

12
a=[13] b=(2 0 5 21)
47

Column vector Row vector

(3x1) (1x4)

Dimensionality of a matrix: r x ¢ (rows x columns)
think of Railroad Car

General Matrices

Usually written in bold uppercase, e.g. A, C, D

3 1 2 01
C=1(2 5 4 D=3 4
1 1 2 2 9
(3 x3)
Square matrix (3x2)

Dimensionality of a matrix: r x ¢ (rows x columns)
think of Railroad Car

A matrix is defined by a list of its elements.
B has ij-th element B; -- the element in row i
and column |



Addition and Subtraction of Matrices

If two matrices have the same dimension (both are r x ¢,
then matrix addition and subtraction simply follows by
adding (or subtracting) on an element by element basis

Matrix addition: (A+B)ij =A;+B;

Matrix subtraction: (A-B), =A,-B;

Examples: s 0 { 2
A:(l 2) and B=(2 1)

4 2 2 -2
C—A-+—B—(3 3) and D =A-B _(—l l)

Partitioned Matrices

It will often prove useful to divide (or partition) the
elements of a matrix into a matrix whose elements are
itself matrices.

31 2 _',}, 1 2 a b
C=12 5 4| = . —( )
112 2 5 4 4B

1 1 2

L 2 (5 4
a=(3)., b=(1 2), d (1) B (1 2)

One useful partition is to write the matrix as
either a row vector of column vectors or
a column vector of row vectors



3 1 2 r
c_(> 5 1)- (o A column vector whose
1 1 2 13 elements are row vectors
r=(3 1 2)
ra=(2 5 4)
rp=(1 1 2)
3 1 2 A row vector whose
C= 2 5 4 = (CJ Co 'Ca )
L 1 92 elements are column
vectors

Towards Matrix Multiplication: dot products

The dot (or inner) product of two vectors (both of
length n) is defined as follows:

a'b= ia,b::
i=1

Example:

and b=(4 5 7 9)

RV

a'b=1*4+2*5+ 3*7 + 4*9 = 60



Matrices are compact ways to write
systems of equations

S5r1+ 62y +4253 =6
Txy — 315 + by = —9

—r] — To + 623 = 12

The least-squares solution for the linear model

y=p+p0121+ " Pnzn
yields the following system of equations for the f;
o(y,21) = B10%(z1) + Bao(21,220) + -+ + Buo(21, 2n)
o(y,22)= Bo(z1,22) + B20%(23) + -+ Bno(z2,2n)

oY, 2a)= B10(21, 2) + B0 (29, 20) + *+ +B.0%(20)
This can be more compactly written in matrix form as

0%(z1) o(z, 32) .. 0(21,2n) 6 o(y, Zl)

o(z1,22) o0%(22) ... o(z2,2n) Ba B o(y, z)

0(21', Zn) ‘7(22': Zn) .- o? (.zn) .B.n U(y; Zn)
XX B Xy

or, [3 = (XTX)'1 Xy



Matrix Multiplication:

The order in which matrices are multiplied affects
the matrix product, e.g. AB # BA

For the product of two matrices to exist, the matrices
must conform. For AB, the number of columns of A must
equal the number of rows of B.

The matrix C = AB has the same number of rows as A
and the same number of columns as B.

Cirxc) = Aprxk) Biixo)
ij-th element of C is given by

Elements in the
Jth column of B

Cij = 12: Ay By Elements in the ifg
=1 row of matrix A

Outer indices given dimensions of
resulting matrix, with r rows (

and ¢ columns (B / \
rxc _

rxk kxc

\/

Inner indices must match
columns of A = rows of B

Example: Is the product ABCD defined? If so, what
is its dimensionality? Suppose

A3x5 BSx9 C9x6 D6x23

Yes, defined, as inner indices match. Resultis a 3 x 23
matrix (3 rows, 23 columns) 12



More formally, consider the product L = MN

Express the matrix M as a column vector of row vectors

m;
M= ( \ where m; = (Miy My =~ M)
\m./

Likewise express N as a row vector of

ms;

column vectors ::J
N=(n; n, -+ m) where n; = !

The ij-th element of L is the inner product |\
- CJ

of M's row i with N's column j

mlonl mlonz .. ml‘-nb
m2-n1 m2.n2 .. mzanb
L= . :
mrnnl mrnn2 .- mr-nb
13

_[a b e f\ _ (ae+bg af+0bh
AB_<C d) <g h)_(ce+dg cf+dh)

Likewise

__[ae+cf eb+df
BA_(ga+ch gd+dh)

ORDER of multiplication matters! Indeed, consider
Cs,5 Ds,s which gives a 3 x 5 matrix, versus D5 C; s,
which is not defined.



Matrix multiplication in R

> A<-motrix(c(l,2,3,4),nron=2) R ﬂ”S In the m?trlx_ from
> B<-matrix(c(4,5,6,7),nron=2) the list ¢ by 'FI”Ing INn as

> A :

1] [.2] columns, here with 2 rows
[,] 1 3 (nrow=2)
2] 2 4
> B

(.11 [.2] Entering A or B displays what was
[1,] 4 &6 .
23] s 7 entered (always a good thing to check)
> A %% B

[11 [,2] .
[1,] 19 27 The command %*% is the R code

L for the multiplication of two matrices

On your own: What is the matrix resulting from BA?
What is A if nrow=1 or nrow=4 is used?

The Transpose of a Matrix

The transpose of a matrix exchanges the

rows and columns, AT, = A,

Useful identities b
(AB)T = BT AT “ i
(ABC)T=CTBTAT  *7 | )

Inner product = ab =a’; y b, x1

3

Indices match, matrices conform

Dimension of resulting product is 1 X 1 (i.e. a scalar)

b. n
(a;, - a,) ( : ) ~ab=Yap  Notethatb'a = (b'a)’ = a'b

by, 16



Outer product = ab™ = a ,x ,bT (1 x 1y

~.

Resulting product is an n x n matrix

a

a9
i (bl b‘2 e bn )
\an
(I.Jbl GJbQ R (llb,z
asby asbs ... ash,
\anbl anb:? s anbbn

R code for transposition

> t(A)

[,1] [, 2] t(A) = transpose of A
[1,] 1 2
[2,] 3 4

> g<-matrix(c(l,2,3),nron=3) Enter the column vector a
> a

1]

(L1 1

(2] 2

(.1 3 _

> ’c(aE %*% 0 Compute inner product a'a
1]

(1,1 14

> a %*% t(a) Compute outer product aa’

(.11 .21 3]

1,] 1 2 3
[2,] 2 4 6
3 6 9



Solving equations

e The identity matrix |

— Serves the same role as 1 in scalar algebra, e.g.,
a*1=1*a =a, with Al=l1A= A

* The inverse matrix A1 (IF it exists)
_ Defined by AAT =1, A1A = |

— Serves the same role as scalar division
* To solve ax = ¢, multiply both sides by (1/a) to give:
e (1/a)*ax = (1/a)c or (1/a)*a*x = 1*x = x,
® Hence x = (1/a)c
e Tosolve Ax=c¢c, AlAx=A"c
e OrA'Ax =Ix=x=A"c

The Identity Matrix, |

The identity matrix serves the role of the
number 1 in matrix multiplication: Al =A, [A = A

| is a square diagonal matrix, with all diagonal elements
being one, all off-diagonal elements zero.

1 fori=]j

O otherwise

(i1

oo
o =OoO
o0

20



The Identity Matrix in R

diag(k), where k is an integer, return the k x k | matix

> I<-diag(4)
> 1

(.11 2] [,3] 4]
[1,] 1 0 ) 0

[2,] [0} 1 0 0
[3,] 0 0 1 0
[4,] [0} 0 ) 1
> 12 <-diag(2)
> 12

(11 2]
[1,] 1 0
[2,] 0 1

21

The Inverse Matrix, A

For a square matrix A, define its Inverse A, as
the matrix satisfying

ATA =AAT =1

b _ 1 d -~ b
FOPA:(S d) A 1:‘(—0 a)
/

If this quantity (the determinant)
is zero, the inverse does not exist.

22



If det(A) is not zero, A" exists and A is said to be
non-singular. If det(A) = 0, A is singular, and no
unique inverse exists (generalized inverses do)

Generalized inverses, and their uses in solving systems
of equations, are discussed in Appendix 3 of Lynch &
Walsh

A is the typical notation to denote the G-inverse of a
matrix

When a G-inverse is used, provided the system is
consistent, then some of the variables have a family
of solutions (e.g., X, =2, but x, + x5 = 6)

23

Inversion in R

solve(A) computes A

det(A) computes determinant of A

> A Using A entered earlier
(.11 [, 2]

1,] 1 3

2,1 2 4 ]

> solve(A) Compute A
.11 [,2]

[1,] -2 1.5

2,1 1-0.5

> solve(A) ¥*% A
[,1] [,2] Showing that AT A = |

1,] 1 -8.881784e-16
2,] 0 1.000000e+00

det(A : :
E]efg ) Computing determinant of A

24



Homework

Put the following system of equations in matrix
form, and solve using R

3Xq + 4x, + 4 x5 + 6x, =-10
Xy + 2%y - X5 -6%x4= 20
X;+ X, + X3-10x, = 2
2x1 + 9%, + 2x3 - %, =-10

25

Example: solve the OLS foriny = a + Bz, + fz,+ €
B - V'l c o (O’(y, 21) ) V= ( 02(31) O'(Zl, 32) )
U(yazz) U(ZIsZ'Z) az(zZ)
It is more compact to use o(z1,22) = p12 0(21)0(22)

1 oXz) —olz, )
v!i=
0%(z1)0%(z2) (1 — p3,) o*(z)

—0o(z), 22)

(.al) ) . ( 02(2) —a(zl,zz)) (a(.u,zl))
B 02(21)0%(22) (1 — pis) —o(z1, 22) 02(21) oy, z2)




L1 oy, z,) o o(y,2;)
fr=1z (37 [ o2(z) P 0(z1)0(32)]
o 1 O'(y, 32) - ' a(yazl)
b= | e ]

If p;, = 0, these reduce to the two univariate slopes,

131 — O'(y, zl) and ,32 — U(y’z2)

0%(21) 02(23)

Likewise, if p;, = 1, this reduces to a univariate regression,

27

Useful identities
(AT = (AT
(AB)' = B A

For a diagonal matrix D, then det (D), which is also
denoted by IDI, = product of the diagonal elements

Also, the determinant of any square matrix A,

det(A), is simply the product of the eigenvalues A of A,
which statisfy

Ae = \e

If Alis n x n, solutions to A are an n-degree polynomial. e is
the eigenvector associated with A. If any of the roots to the
equation are zero, A" is not defined. In this case, for some
linear combination b, we have Ab = 0.

28



Variance-Covariance matrix

* A very important square matrix is the
variance-covariance matrix V associated with
a vector x of random variables.

* V; = Cov(x;x), so that the i-th diagonal
element of V is the variance of x,, and off
-diagonal elements are covariances

* Vis a symmetric, square matrix

29

The trace

The trace, tr(A) or trace(A), of a square matrix
A is simply the sum of its diagonal elements

The importance of the trace is that it equals
the sum of the eigenvalues of A, tr(A) = X A,

For a covariance matrix V, tr(V) measures the
total amount of variation in the variables

A / tr(V) is the fraction of the total variation
in x contained in the linear combination e,'x, where
e, the i-th principal component of V is also the
i-th eigenvector of V (Ve, = A, e)
30



Eigenstructure in R

eigen(A) returns the eigenvalues and vectors of A

> V<-matrix(c(10,-5,10,-5,20,0,10,0,30), nron=3)

>V

L1 2] 3]
[1,] 1 -5 10
[2,] -5 20 0
[3,] 10 6 30
> eigen(V)
$values

[1] 34.410103 21.117310 4.472587

$vectors
54

PC 1

Trace = 60

PC 1 accounts for 34.4/60 =
57% of all the variation
[,2] [,3]

0.3996151 | 0.2117936 ©.8918807

’]
[2.]|-0.1386580 [-0.9477830 0.2871955 0.400* x; — 0.139*x, + 0.906*x
7| 0.9061356 |-0.2384340 -0.3493816

31

Quadratic and Bilinear Forms

Quadratic product: for A, ,, and X, , 4

TL T
T
x Ax = Zzaijfb‘z‘xj Scalar (1 x 1)

i=1 j=1

Bilinear Form (generalization of quadratic product)

for A, .. a1, b, their bilinear form is b"

A a

Txm ™ ™mxn

bTAa = f: i Aijbia;

i=1 j=1

Note that bTAa =a'ATb

32



Covariance Matrices for
Transformed Variables

What is the variance of the linear combination,
CiXq + CX, + ... + ¢, X ? (note this is a scalar)

n n n
o? (ch) = g2 (Zcixl-) =0 Zcixi ,Z(:j T;
i=1 i=1 J=1
n n n T
=3 Y o(azieia) =3 Y o (wi))

i=1j=1 1=1 j=1
—c'Ve
Likewise, the covariance between two linear combinations
can be expressed as a bilinear form,

o(a’x,b’x) =a’Vb .

Example: Suppose the variances of x;, x,, and x; are
10, 20, and 30. x, and x, have a covariance of -5,
X, and x5 of 10, while x, and x5 are uncorrelated.

What are the variances of the indices

Var(y,) = Var(c,™x) = ¢, Var(x) ¢, = 960
Var(y,) = Var(c,'x) = ¢, Var(x) ¢, = 1200
Covl(y,,y,) = Cov(c,™x, c,'x) = ¢, Var(x) c, = -910

Homework: use R to compute the above values
34



The Multivariate Normal
Distribution (MVN)

Consider the pdf for n independent normal
random variables, the ith of which has mean
w. and variance 0,

p0) = [T 207" exp (- B2

=1
n -1 n ( )2
= (2 —n/2 ; —_ Ti —iu"
(2m) (ll_[la ) oxp ( Z 20?2

This can be expressed more compactly in matrix form

35

Define the covariance matrix V for the vector x of
the n normal random variable by

o2 0 = 0

n
0 o2 = 0 :
v=| 7% 7 V=[] o?
Lo e i=1
0 +++ v o2
Define the mean vector u by gives 'Z;
p=|".
n o i2 . :
Z(mz li) :(X_N)I Vv L (X_M) Ln

2
i=1 U‘L

Hence in matrix from the MVN pdt becomes

-n — 1 T ene
p(x) = (2m)" "2 VI exp | = (x— )T VT (x — )

Notice this holds for any vector u and symmetric positive
-definite matrix V, as |V | > 0. 36



The multivariate normal

e Just as a univariate normal is defined by
its mean and spread, a multivariate
normal is defined by its mean vector u
(also called the centroid) and variance
-covariance matrix V

37

Vector of means p determines location

Spread (geometry) about p determined by V

X4, X, equal variances,

X+, X, equal variances
1 %2 €9 ' uncorrelated

positively correlated

Eigenstructure (the eigenvectors and their corresponding
eigenvalues) determines the geometry of V.

38



Vector of means p determines location

Spread (geometry) about p determined by V

1 | —
X4, X, equal variances, Var(x,) < Var(x,),
negatively correlated uncorrelated

Positive tilt = positive correlations
Negative tilt = negative correlation

No tilt = uncorrelated 2

Eigenstructure of V

The direction of the largest axis of
variation is given by the unit-length

vector €, the 1st eigenvector of V.

A, €1 ,
! The next largest axis of orthogonal

_ (at 90 degrees from) e, is
e ™., given by e,, the 2nd eigenvector

40



Principal components

The principal components (or PCs) of a covariance
matrix define the axes of variation.

— PC1 is the direction (linear combination c'x) that explains
the most variation.

— PC2 is the next largest direction (at 90degree from PC1),
and so on

PC. = ith eigenvector of V

Fraction of variation accounted for by PCi = A, /
trace(V)

If V has a few large eigenvalues, most of the variation
is distributed along a few linear combinations (axis
of variation)

The sinqular value decomposition is the

generalization of this idea to nonsquare matrices
41

Properties of the MVN - |

1) If x is MVN, any subset of the variables in x is also MVN

2) If xis MVN, any linear combination of the
elements of x is also MVN. If x ~ MVN(u,V)

for y=x+a, y is MVN,,(n + a, V)

T
for y=alx= Zaixi, y is N(aTu,aTVa)
k=1

for y= Ax, y is MVN,, (Au,ATVA)

42



Properties of the MVN - |

3) Conditional distributions are also MVN. Partition x
into two components, x; (m dimensional column vector)
and x, ( n-m dimensional column vector)

Vx,x, Vx,x,
x=<;1) n= (Z:) and V=(
T
’ VX1X2 Vx2xz
Xy I x5 is MVN with m-dimensional mean vector
— —1
Hx,|x2 = M1 + VX1X2VX2X2 (X2 - “’2)

and m x m covariance matrix

_ _ —1 T
Vx1|x2 - VX1X1 VXIX2VX2X2 VX1X2

Properties of the MVN - I

4) If x is MVN, the regression of any subset of
x on another subset is linear and homoscedastic

X1 = Mx,|x, T €
= Q4+ Vxixz )zglxg (xg — Nz) +e

Where e is MVN with mean vector 0 and
variance-covariance matrix ~ Vx,|x,

44



11+ Vxaxa Vaox, (X2 — #g) + e

The regression is linear because it is a linear function
of x,

The regression is homoscedastic because the variance-

covariance matrix for e does not depend on the value of
the x’s

_ _ —1 T
VX1|X2 - VX1X1 VX.IXZVX2X2 Vx1x2

All these matrices are constant, and hence

the same for any value of x 45

Example: Regression of Offspring value on Parental values

Assume the vector of offspring value and the values of
both its parents is MVN. Then from the correlations
among (outbred) relatives,

2o Lo 1 h2%/2 h?%/2
ze | ~MMVN | | s |,0%2| h2/2 1 0
24 Lhd h2/2 0 1

Let x1=(2), x2= (zs>

2d

. hio? of 1 0
Vxixi =02, Vxix: = 2 (1 1), VX2,X2=U§<O 1

2

= Mgt Vxixa lexz(xz o u'z) +e

46



Regression of Offspring value on Parental values (cont.)

= 1+ Vi3 Viox, (Xg — o) + €

) h202 (1 0
Vxix: = 0%, Vxix, = 22(1 1), VXz,Xz=0f<0 1

Hence, _ W (1 0 (2~ ps
%o = Hot — (1 1)o, 0 1)\ 20— g +e
h? h?
=#0+?‘(Zs_#s)+?(zd_lld)+8

Where e is normal with mean zero and variance

_ -1 T
VX1|X2 = VX1X1 - Vxl)(2vx2x2 VX1X2

h2o02 1 0\ h202 /(1
2 _ 42 _ 0% ~2 z
o5 =0 5 (1 1)o; (O 1) 5 (1)

4
= o2 (1 —h—)
2 47

Hence, the regression of offspring trait value given
the trait values of its parents is

z, = U, +h?/2(z-n) +h?/2(z-uy) + e
where the residual e is normal with mean zero and
Var(e) = 0,%(1-h%/2)

Similar logic gives the regression of offspring breeding
value on parental breeding value as

A, =u, +(A-u)/2+ (Ag-ug/2 +e
=A/2+ AJ/2 +e

where the residual e is normal with mean zero and
Var(e) = 0,%/2

48



The Singular-Value Decomposition (SVD)

An n x p matrix A can always be decomposed as the product of three matrices: ann x p
diagonal matrix A and two unitary matrices, U which is n x n and V which is p x p. The
resulting singular value decomposition (SVD) of A is given by

Anx P Unx nAnx pVT

pXp

(39.16a)

We have indicated the dimensionality of each matrix to allow the reader to verify that each
matrix multiplication conforms. The diagonal elements Ay.---. A, of A correspond to the
singular values of A and are ordered by decreasing magnitude. Returning to the unitary
matrices U and V, we can write each as a row vector of column vectors,

U= (u. --.w. - -uy,). V= (v v vy) (39.16b)

where u; and v; are n and p-dimensional column vectors (often called the left and right
singular vectors, respectively). Since both U and V are unitary, by definition (Appendix4)
each column vector has length one and are mutually orthogonal (i.e., ifi # j, u,-ujT = V; va =
0). Since A is diagonal, it immediately follows from matrix multiplication that we can write
any elementin A as

Aij = ZAk Wik Vkj (39.16¢)
k=1

where )\ is the kth singular value and s < min(p.n) is the number of non-zero singular
values.

The importance of the singular value decomposition in the analysis of G xE arises from
the Eckart-Young theorem (1938), which relates the best approximation of a matrixby some
lower-rank (say k) matrix with the SVD. Define as our measure of goodness of fit between

a matrix A and a lower rank approximation A as the sum of squared differences over all

elements, ’
D (A — Aiy)?
]
Eckart and Young show that the best fitting approximation Aof rank m < sis given from
the first 1 terms of the singular value decomposition (the rank-m SVD),

Aij = Z)\k Wik Vkcj (39.17a)
k=1

For example, the best rank-2 approximation for the G x E interaction is given by
GE,J ~ /\l ;1 l‘jl + /\2 ;o l'j2 (3917}))
where ); is the ith singular value of the GE matrix, u and v are the associated singular

vectors (see Example 39.3). The fraction of total variation of a matrixaccounted forby taking
the first m terms in its SVD is

m

. s AP N
2y 42 L7 T m
EA"ZjA” N+ A2

50



A data set for soybeans grown in New York (Gauch 1992) gives the
GE matrix as

57 176 —233
—36 —196 233 Where GE; = value for

GE = | —45 -324 369 G i HgNE
i : enotype I in envir.
66 178 —112 ypP J
89 165 —254
InR, the compact SVD (Equation 39.16d) of amatrix X is given by svd( X), returning the SVD
of GE as

0.40 0.21 0.18

—0.41 0.00 091 746.10 0 0 012 064 -0.76
—-0.66  0.12 -0.30 0 131.36 0 0.81 —0.51 —0.30
0.26 —-0.83 0.11 0 0 0.53 0.58 058  0.58

0.41 0.50  0.19

The first singular value accounts for 746.102/(743.26% + 131.36% + 0.532) = 97.0% of the
total variation of GE, while the second singular value accounts for 3.0%, so that together
they account for essentially all of the total variation. The rank-1 SVD approximation of GE is
givenby setting all of the diagonal elements of A except the first entry to zero,

0.40 0.21 0.18
—0.41 0.00  0.91 746.10 0 0 0.12 064 —-0.76
GE, = | -066 012 —-0.30 0 0 0 0.81 —0.51 —-0.30
026 —-0.83 0.11 ( 0 0 l)) ( 0.58  0.58 l).SS)
0.41 0.50  0.19

Similarly, the rank-2 SVD is givenby setting all but the first two singular val ues to zero,
0.40 021  0.18
—0.41  0.00 091 746.10 0 0 0.12 064 -0.76
GE; = | —066 0.12 —0.30 0 131.36 0 0.81 —0.51 —0.30
0.26 —0.83  0.11 ( 0 0 l)) ( 0.58  0.58  0.58 )
0.41 0.50  0.19

For example, the rank-1 SVD approximation for GEj, is
d31Meq, = 746.10*%(-0.66)*0.64 = -315

While the rank-2 SVD approximation is gzjAyei; + gzhsey =
746.10%(-0.66)*0.64 + 131.36* 0.12*(-0.51) = -323

Actual value is -324

Generally, the rank-2 SVD approximation for GE; is

gihey; + 9iphaey, -



Additional R matrix commands

Operator or Description

Function

A*B Element-wise multiplication

A%*% B Matrix multiplication

A %0% B Outer product. AB'

crossprod(A,B) A'B and A'A respectively.

crossprod(A)

t(A) Transpose

diag(x) Creates diagonal matrix with elements of x in the principal diagonal
diag(A) Returns a vector containing the elements of the principal diagonal
diag(k) If k is a scalar, this creates a k x k identity matrix. Go figure.
solve(A, b) Returns vector x in the equation b = Ax (i.e., A"'b)

solve(A) Inverse of A where A is a square matrix.

ginv(A) Moore-Penrose Generalized Inverse of A.

ginv(A) requires loading the MASS package.

y<-eigen(A) ySval are the eigenvalues of A
ySvec are the eigenvectors of A

y<-svd(A) Single value decomposition of A.
yS$d = vector containing the singular values of A
ySu = matrix with columns contain the left singular vectors of A
yS$v = matrix with columns contain the right singular vectors of A 53

Additional R matrix commands (cont)

R <- chol(A) Choleski factorization of A. Returns the upper triangular factor, such that R'R =
A.

y <- qr(A) QR decomposition of A.
yS$qr has an upper triangle that contains the decomposition and a lower
triangle that contains information on the Q decomposition.
ySrank is the rank of A.
ySqraux a vector which contains additional information on Q.
ySpivot contains information on the pivoting strategy used.

cbind(A,B,...) Combine matrices(vectors) horizontally. Returns a matrix.
rbind(A,B,...) Combine matrices(vectors) vertically. Returns a matrix.
rowMeans(A) Returns vector of row means.

rowSums(A) Returns vector of row sums.

colMeans(A) Returns vector of column means.

colSums(A) Returns vector of coumn means.

54



Additional references

* Lynch & Walsh Chapter 8 (intro to
matrices)

e Online notes:
— Appendix 4 (Matrix geometry)
— Appendix 5 (Matrix derivatives)
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Lecture 2:
Linear and Mixed Models

Bruce Walsh lecture notes
Introduction to Mixed Models
SISG, Seattle
19 — 21 July 2017

Quick Review of the Major Points

The general linear model can be written as

y=Xp +e
* y = vector of observed dependent values

e X = Design matrix: observations of the variables in the
assumed linear model

* B = vector of unknown parameters to estimate

e e = vector of residuals (deviation from model fit),
e=y-Xp



y=Xp t+e

Solution to B depends on the covariance structure
(= covariance matrix) of the vector e of residuals

Ordinary least squares (OLS)

e OLS: e ~ MVN(O, o21)
e Residuals are homoscedastic and uncorrelated,

so that we can write the cov matrix of e as Cov(e) = o2l
e the OLS estimate, OLS(B) = (X™X)" XTy

Generalized least squares (GLS)

e GLS: e ~ MVN(Q, V)
* Residuals are heteroscedastic and/or dependent,
e GLS(B) = XTV-1X)" V-1 XTy

BLUE

e Both the OLS and GLS solutions are also
called the Best Linear Unbiased Estimator (or
BLUE for short)

e \Whether the OLS or GLS form is used

depends on the assumed covariance
structure for the residuals

— Special case of Var(e) = 6,21 -- OLS
— All others, i.e., Var(e) = R -- GLS



Linear Models

One tries to explain a dependent variable y as a linear
function of a number of independent (or predictor)
variables.

A multiple regression is a typical linear model,

y:ﬂ+ﬁ1$1+/B2-’E2+"'+Bn$w+e

Here e is the residual, or deviation between the true
value observed and the value predicted by the linear
model.

The (partial) regression coefficients are interpreted
as follows: a unit change in x, while holding all
other variables constant results in a change of 3, in'y

Linear Models

As with a univariate regression (y = a + bx + e), the model
parameters are typically chosen by least squares,

wherein they are chosen to minimize the sum of

squared residuals, X ;2

This unweighted sum of squared residuals assumes
an OLS error structure, so all residuals are equally
weighted (homoscedastic) and uncorrelated

If the residuals differ in variances and/or some are
correlated (GLS conditions), then we need to minimize
the weighted sum eTV-'e, which removes correlations and
gives all residuals equal variance.



Linear Models in Matrix Form

Suppose we have 3 variables in a multiple regression,
with four (y,x) vectors of observations.

Yi = 1+ B1%i1 + Boio + P3xi3 + €;
Inmatrix form, y=XpB+e

Y1 7 1 211 Zp T3 €1

. 1 =z Loy To: €

y = Y2 8= | x = 21 T22 T23 | o — 2
Y3 B 1 31 32 33 €3

Y4 Bs 1 z41 T4 a3 €4

The design matrix X. Details of both the experimental
design and the observed values of the predictor variables
all reside solely in X

Rank of the design matrix

* With n observations and p unknowns, X'isan n x p
matrix, so that X"™Xis p x p

e Thus, at most X can provide unique estimates for up
to p < n parameters

e The rank of X is the number of independent rows of
X. If Xis of full rank, then rank = p

e A parameter is said to be estimable if we can provide
a unique estimate of it. If the rank of X'is k < p, then
exactly k parameters are estimable (some as linear
combinations, e.g. $,-3p5 = 4)

e if det(X™X) = 0, then X is not of full rank

e Number of nonzero eigenvalues of X™X gives the
rank of X.



Experimental design and X

e The structure of X determines not only which
parameters are estimable, but also the expected
sample variances, as Var(p) = k (XTX)"'

e Experimental design determines the structure of X
before an experiment (of course, missing data
almost always means the final X is different form the
proposed X)

 Different criteria used for an optimal design. LetV =
(X™X)'". The idea is to chose a design for X given
the constraints of the experiment that:
— A-optimality: minimizes tr(V)
— D-optimality: minimizes det(V)
— E-optimality: minimizes leading eigenvalue of V

Ordinary Least Squares (OLS)

When the covariance structure of the residuals has a
certain form, we solve for the vector § using OLS

If residuals follow a MVN distribution, OLS = ML solution

If the residuals are homoscedastic and uncorrelated,
o%(e) = 6.2, o(e;e) = 0. Hence, each residual is equally
weighted,

y —XB)" (y — XB)

\_—"

Predicted value of the y's

10

'
Sum of squared ZEQ _oToo (
residuals can (A -
be written as —



Ordinary Least Squares (OLS)
Z =(y—XB)" (y — XB)

Taking (matrix) derivatives shows this is minimized by
T — T
p=XX)"X"y
This is the OLS estimate of the vector §

The variance-covariance estimate for the sample estimates
is .
Vg = (X"X)"

The ij-th element gives the covariance between the
estimates of ; and ;. "

Sample Variances/Covariances

The residual variance can be estimated as

—

of =

1 “~
(A
n — rank(X) ; ‘
The estimated residual variance can be substituted into
T _
Vg =(X"X) "o?

To give an approximation for the sampling variance and
covariances of our estimates.

Confidence intervals follow since the vector of estimates
~ MVN(B, V)



Example: Regression Through the Origin

yi=Bx + ¢
)
S I T

n n
X'X=) a X'y=} mu
i—1 i=1

- () "y 3EE | - () o
1 > (yi — Bi)®
o*(p) =
n—1 d>ox? 1
o2 = — Z(gﬁ - Brzi)? .

Polynomial Regressions

GLM can easily handle any function of the observed
predictor variables, provided the parameters to estimate
are still linear, e.g. Y = a + B,f(x) + ,gx) + ~ + e

Quadratic regression:

yi = a+ B T+ Paz7 + €

1 =z .L%
/a 1 zo .L%

ﬂ - ‘dl x —
B2 ]

1 zn Tn 14



Interaction Effects

Interaction terms (e.g. sex x age) are handled similarly

Vi=a+01Ta+ BT+ B35TiTiz + €

a Iz 212 Z11Zy9
. 1 =z Tog T91To
P
B35 . : :
33 1 Tn1 Tna Tn1Tn2

With x, held constant, a unit change in x, changes y

by B, + B3, (i.e., the slope in x, depends on the current
value of x,)

Likewise, a unit change in x, changes y by f3; + B5x,

The GLM lets you build your
own model!

e Suppose you want a quadratic regression
forced through the origin where the slope of
the quadratic term can vary over the sexes
(pollen vs. seed parents)

Y, = Bix; + Boxi? + Pasix?

® s is an indicator (0/1) variable for the sex (0 =
male, 1 = female).

— Male slope = 8,

— Female slope =, + f3;



Generalized Least Squares (GLS)

Suppose the residuals no longer have the same
variance (i.e., display heteroscedasticity). Clearly
we do not wish to minimize the unweighted sum
of squared residuals, because those residuals with
smaller variance should receive more weight.

Likewise in the event the residuals are correlated,
we also wish to take this into account (i.e., perform
a suitable transformation to remove the correlations)
before minimizing the sum of squares.

Either of the above settings leads to a GLS solution
in place of an OLS solution.

In the GLS setting, the covariance matrix for the
vector e of residuals is written as R where

R, = ole,e)

The linear model becomesy = X + e, cov(e) = R

The GLS solution for f is
-1
b=(X"RX) X'Rly

The variance-covariance of the estimated model
parameters is given by

- -1
Vp =(X"R'X) o2



Model diagnostics

e |t's all about the residuals

e Plot the residuals
— Quick and easy screen for outliers
— Ploty oryhaton e
e Test for normality among estimated residuals
- Q-Q plot
— Wilk-Shapiro test
— If non-normal, try transformations, such as log

OLS, GLS summary

OLS GLS

Assumed distribution

of residuals e~ (0.0%1) e~ (0.V)
Least-squares

estimator of 3 8= (XTX) 1XTy B = (XTV“X) 1XTyv 1y
Var(3) (XTX) o2 (XTVIx) !
Predictedyalues,

vy = X3 X(XTxX) 1 xTy X(XTv1x) 1 xXTvly
Var(¥) X(XTX)1x" 52 X(X'vix)1x?

e

20



Fixed vs. Random Effects

In linear models are are trying to accomplish two goals:
estimation the values of model parameters and estimate
any appropriate variances.

For example, in the simplest regression model,

y = a + px + e, we estimate the values for a and § and
also the variance of e. We, of course, can also
estimate the e, = y. - (o + px,)

Note that o/p are fixed constants are we trying to
estimate (fixed factors or fixed effects), while the

e, values are drawn from some probability distribution
(typically Normal with mean O, variance 02,). The

e, are random effects.

21

This distinction between fixed and random effects is
extremely important in terms of how we analyzed a model.
If a parameter is a fixed constant we wish to estimate,

it is a fixed effect. If a parameter is drawn from

some probability distribution and we are trying to make
inferences on either the distribution and/or specific
realizations from this distribution, it is a random effect.

We generally speak of estimating fixed factors (BLUE) and
predicting random effects (BLUP -- best linear unbiased
Predictor)

“Mixed"” models (MM) contain both fixed and random factors

y=Xb+Zu+e, u ~MVN(Q,R), e ~ MVN(O,52,I)

Key: need to specify covariance structures for MM
22



Random effects models

e |t is often useful to treat certain effects as

random, as opposed to fixed

— Suppose we have k effects. If we treat these as
fixed, we lose k degrees of freedom

— If we assume each of the k realizations are drawn
from a normal with mean zero and unknown
variance, only one degree of freedom lost --- that
for estimating the variance

* We can then predict the values of the k realizations

23

Environmental effects

Consider yield data measured over several years in a
series of plots.

Standard to treat year-to-year variation at a specific

site as being random effects

Often the plot effects (mean value over years) are

also treated as random.

For example, consider plants group in growing

region i, location j within that region, and year

(season) k for that location-region effect

- E=Ri+Lij+eijk

— Typically R can be a fixed effect, while L and e are
random effects, L, ~ N(0,02) and ¢, ~ N(0,02,)

24



Random models

e \With a random model, one is assuming that
all “levels” of a factor are not observed.
Rather, some subset of values are drawn
from some underlying distribution

— For example, year to year variation in rainfall at a
location. Each year is a random sample from the
long-term distribution of rainfall values

— Typically, assume a functional form for this
underlying distribution (e.g., normal with mean 0)
and then use observations to estimate the
distribution parameters (here, the variance)

25

Random models (cont)

e Key feature:

— Only one degree of freedom used (estimate of
the variance)

— Using the fixed effects and the estimated
underlying distribution parameters, one then
predicts the actual realizations of the individual
values (i.e., the year effects)

— Assumption: the covariance structure among the
individual realizations of the realized effects. If
only a variance is assume, this implies they are
independent. If they are assumed to be
correlated, this structure must be estimated.

26



Random models

e Let's go back to treating yearly effects as random

e |f assume these are uncorrelated, only use one
degree of freedom, but makes assumptions about
covariance structure
— Standard: Uncorrelated

— Option: some sort of autocorrelation process, say with a
yearly decay of r (must also be estimated)

e Conversely, could all be treated as fixed, but would
use k degrees of freedom for k years, but no
assumptions on their relationships (covariance
structure)

27

Identifiability

e Recall that a fixed effect is said to be
estimable if we can obtain a unique estimate
for it (either because X is of full rank or when
using a generalized inverse it returns a
unique estimate)

— Lack of estimable arises because the experiment
design confounds effects

e The analogous term for random models is
identifiability

— The variance components have unique estimates

28



The general mixed model

Vector of fixed effects (to be estimated),
e.g., year, sex and age effects

Vector of
observations Incidence matrix for random effects
(phenotypes)
=XB +Zu + e Vector of residual errors
y B (random effects)
Incidgnce Vector of random
matrix for effects, such as
fixed effects individual
Breeding values
(to be estimated)
29
The general mixed model
Vector of fixed effects
Vector of
observations Incidence matrix for random effects
(phenotypes)
y = XB +7Zu+e Vector of residual errors
Incidgnce Vector of random
matrix for effects

fixed effects

Observey, X, Z.
Estimate fixed effects B

Estimate random effects u, e 30



Means & Variances fory = Xp + Zu + e
Means: E(u) = E(e) =0, E(y) = Xp

Variances:

Let R be the covariance matrix for the
residuals. We typically assume R = ¢2_*|

Let G be the covariance matrix for the vector
u of random effects

The covariance matrix for y becomes
V=2GZ"+R
Hence, y ~ MVN (Xp, V)

Mean Xf due to fixed effects

Variance V due to random effects .

Estimating fixed Effects & Predicting
Random Effects

For a mixed model, we observe y, X, and Z

B, u, R, and G are generally unknown

Two complementary estimation issues
(i) Estimation of p and u
B=x"v'x) 'X"v~'y Estimation of fixed effects
BLUE = Best Linear Unbiased Estimator
i=Gz'V™" (y-XB) Prediction of random effects

BLUP = Best Linear Unbiased Predictor
Recall V = ZGZT + R 32



Different statistical models

GLM = general linear model

— OLS ordinary least squares: e ~ MVN(O,cl)

— GLS generalized least squares: e ~ MVN(O,R)

Mixed models

— Both fixed and random effects (beyond the residual)

Mixture models

— A weighted mixture of distributions
Generalized linear models

— Nonlinear functions, non-normality

33

Mixture models

* Under a mixture model, an observation potentially
comes from one of several different distributions, so
that the density function is mt,¢, + 7y, + 7305
— The mixture proportions &; sum to one
— The ¢, represent different distribution, e.g., normal with mean y;

and variance o2

* Mixture models come up in QTL mapping -- an
individual could have QTL genotype QQ, Qg, or qq
— See Lynch & Walsh Chapter 13

* They also come up in codon models of evolution, were a
site may be neutral, deleterious, or advantageous, each
with a different distribution of selection coefficients
— See Walsh & Lynch (volume 2A website), Chapters 10,11

34



Generalized linear models

The Generalized Linear Model (note the ized ending) takes this a step further
by assuming for some monotonic function g, that

Elyil=g (y + Z‘Bk-rik) (2)

k=1
In particular, taking the inverse g ! of the function g returns a linear model, with

9 ' (Elw)) =;L+derik (3)
k=1
The function f with the property that expresses the expected value of the
response variable as a linear function of the predictor variables, i.e.,

f(Elyi])=pn +Z BrTik
k=1

is called the link function of the particular generalized linear model.

Typically assume non-normal distribution for
residuals, e.g., Poisson, binomial, gamma, etc

35



Lecture 3
Overview and Derivation
of the Mixed Model

Guilherme J. M. Rosa
University of Wisconsin-Madison

Introduction to Quantitative Genetics
SISG, Seattle
19 - 21 July 2017

OUTLINE

* General Linear Model (fixed effects)
* Maximum Likelihood Estimation

- Linear Mixed Model

* BLUE and BLUP



General Linear Model
(Fixed Effects Model)

X[3+8

responses / \ residuals

design/incidence overall mean + fixed
matrix (known) effects parameters

iid
£~N(0,I 0°) — & ~N(0,0%)
= Fixed effect: levels included in the study represent

all levels about which inference is to be made. Fixed
effects models: models containing only fixed effects

Example 1

Experiment to compare growth performance of pigs
under two experimental groups (Control and Treatment),
with three replications each.

Model:
Control | Treatment Y =U+0; +e¢
53 61 .
46 66 Yij: weight gain of pig j of
. 57 group i

< W constant; general mean

d;: effect of group i

(_eij residual term .



Matrix Notation

Control | Treatment
53 61
46 66
58 57
'y, 1 [531 [1 1 0]
vo| [46] {1 1 0
vol [58] 11 0 :
v | |61 [1 0 1 61
v, | |66 [1 0 1|t7
ys| [57] |1 0 1]

Alternative Parameterizations

= Equivalent models with
different parameterizations

For example, if the average
weight gain in each group is
expressed as w; = u + 9;, the
model becomes:

Alternatively, the model can be
expressed in terms of the
average weight gain of the
Control (u,) and the difference
on weight gain between the

two groups (T = u, - w):

531

57

46
58
61
66

46
58
61
66

'537

57

T 1
—t e ek e e

===,

—_— = = OO O

— = = OO O

M




Example 2

Flowering time (days, log scale) Genotype
of Brassica napus according to
genotype in specific locus, such 99 | Q9 | QQ
as a candidate gene 34|29 31
37125 | 26
Model: yij =u; + eij 3.2

P
y;;+ flowering time of replication j (j = 1,.., n;) of

genotype i (i = 49, Qq and QQ)
uw;: expected flowering time of plants of genotype i

e;;+ residual (environment and polygenic effects)

A

7

= The expected phenotypic values w;, however, can be
expressed as a function of the additive and dominant

effects

Additive
Dommance

K
Expected !

phenotypic
value

Ha
p= ()2

M3

QQ Qq aq

Expected pheno’rypié value according to the
genotype on a specific locus.



The model can be

written then as: Yy =Hu + XijOc + (1_ | X5 |)(5 + eij

(" w: constant (mid-point flowering time between

homozygous genotypes)

< X;;» indicator variable (genotype), coded as -1, 0 and 1
for genotypes qq, Qq and QQ

a and B: additive and dominance effects

-
vyl [34] [1 -1 0] e,
yo| |37 |1 -1 0 e,
In matrix notation: vol 132] |1 =1 offu1 e,
Y |=129]=|1 0 1l|la|+|e,,
Yol (25 |1 0 1][8] ey,
Y 3.1 1 1 0 €5,
yo| [26] |1 1 0 e

Least-Squares Estimation

iid
e~(0,10°) — ¢~0,0")

An estimate ([3) of the vector  can be obtained by the method of
least-squares, which aims to minimize the residual sum of squares,
given (in matrix notation) by:

RSS=Y(8)* =" =(y-XB)"(y - XP)

Taking the derivatives and equating to zero, it can be shown that

the least-squares estimator of Bis: .
p=X"X)"X"y

2 Itis shown that E[ﬁ] =B and Var[ﬁ] =X"X)"'o’ ”



More on the LS Methodology

The estimator Bo=p=X"X)"X"y is called ordinary least
squares (OLS) estimator, and it is indicated only in situations
with homoscedastic and uncorrelated residuals

If the residual variance is heterogeneous (i.e., Var(g,) =0; =w,0” ),
the residual variance matrix can be expressed as Var(e) = Wa?,
where W is a diagonal matrix with the elements w;, a better

estimator of B is given by: Bors = (X"W-X) ' X"W-ly

which is generally referred to as weighted least squares (WLS)
estimator.

Furthermore, in situations with a general residual variance-
covariance matrix V, including correlated residuals, a
generalized least squares (GLS) estimator B, =(X"V'X)X'V'y
is obtained by minimizing the generalized sum of squares, given

by: GSS=¢"V'g=(y-XB)' V' (y-Xp)

Maximum Likelihood Estimation

Likelihood Function: any function of the model parameters
that is proportional to the density function of the data

Hence, to use a likelihood-based approach for estimating
model parameters, some extra assumptions must be made
regarding the distribution of the data

In the case of the linear model Yy = XP+€ | if the
residuals are assumed normally distributed with mean
vector zero and variance-covariance matrix V,

i.,e. €~MVN(0,V), the response vector y is also
normally distributed, with expectation E[y] = X and

variance Var[y] =V



Maximum Likelihood Estimation

The distribution of y has a density function given by:
. _ 1 _
p(y |B.V) = 2m) ™ | V[ exp{—g(y CXB)'V(y —XB)}

so that the likelihood and the log-likelihood functions
can be expressed respectively as:

L(B, V) | V[ eXp{—%(y—Xﬁ)TV‘l(y—Xﬁ)}
and

1B, V) = oglL(B, V)]~ log | V|~ (y - XB) V"' (y - XP)

Maximum Likelihood Estimation

Assuming V known, the likelihood equations for p are
given by taking the first derivatives of I(B,V) with
respect to p and equating it to zero:

al(st) a Ty7r-1
———=—(y-Xp) V (y-Xp)=0
B op (y-XB) V' (y-XB)
from which the following system of equations is
obtained: oA |
X'V'Xp=X"Vly

The maximum likelihood estimator (MLE) for p is
given then by: A
MLEB)=p=(X'V'X)"'X"Vy



Maximum Likelihood Estimation

If the inverse of X'V'X does not exist, a
generalized inverse (X'V™'X)" can be used to obtain
a solution for the system of likelihood equations:

BO — (XTV_IX)_ XTv—ly

Note: Under normality the MLE coincides with the
GLS estimator discussed previously. Similarly, in
situations in which the matrix V is diagonal, or when
V can be represented as V=10 , the MLE
coincides with the WLS and the OLS estimators,
respectively

Maximum Likelihood Estimation

The expectation and the variance-covariance matrix of the
MLE are given by:

E[B]=E[(X"V'X)"X"V'y]=(X"V'X)" X"V 'E[y] = (X"V'X)" X"V'XB =

Var[f] = Varl (X"V'X)" X"Vy] = (X"V'X) "' X"V 'Vay[V'X(X"V'X)™
=X'VX)'X'VIVVIXX'VIX)" =(X'VX)!

As B is a linear combination of the response vectory, we
have that p~MVN(B,(X'V'X)™"), from which confidence
intervals (regions) and hypothesis testing regarding any
(set of) element(s) of B can be easily obtained

The estimation of variance and covariance parameters will
be discussed later



Maximum Likelihood Estimation

= Note: In the case of the linear model y=Xp+¢ |
with € ~MVN(0,I6°), it can be shown that:

B=X"X)"X"y — B~N@E.(X"X)"0%)

o1 A ~ 1 A
6’ =—(y-XB)' (y-XB)=—lly-XpIP
n n
2
5 ~ o oo (E[g,z]:ﬂc,z)
n n
n 1 X2
32 =s%= &° = _XBI?P — 5% ~ g2 20h
" n—k”y Bl "

Two-stage Analysis of Longitudinal Data
Step 1

Supposed a series of longitudinal data (e.g., repeated
measurements on time) on n individuals. Let y;;
represent the observation j (j = 1,2,...,n)) on individual i
(i=1,2,..,n), and the following quadratic regression of
measurements on time (z;;) for each individual:

2
Yii = Boi + Bz + Bz +€;

where pg;, Py; and p,; are subject-specific regression
parameters, and ¢;; are residual terms, assumed
normally distributed with mean zero and variance o,?

18



In matrix notation such subject-specific regressions
can be expressed as:

Y =Z +¢ ©)

where  Y; =(Yi»¥izo-->¥in, ), B, = (BOi’Bli’BZi)T:
g =(£,,8,,....8, ) ~N(0,I0;) and

1

2
1z, 1z
2
1 z Z:
_ i2 i2
Zi = .
2
1 Zini Zini 19

Under these specifications, it is shown that the least-
squares estimate of B; is:

B, =(Z'Z,)"'Zy,

Note that this is also the maximum likelihood
estimate of B,

Such estimates can be viewed as summary statistics
for the longitudinal data, the same way one could use
area under the curve (AUC), or peak (maximum value
of y;;), or mean response.

20
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Two-stage Analysis of Longitudinal Data
Step 2
Supposed now we are interested on the effect of
some other variables (such as gender, treatment,
year, etc.) on the values of B,
Such effects could be studied using a model as:

ﬁi = WiB T+,

where u; ~ N(0,D), which is an approximation for the
model:

Bi = WiB T+, @)

21

Single-stage Analysis of Longitudinal Data

The two step-analysis described here can be merged
into a single stage approach by substituting (2) in (1):

y.=Z[WL+u ]+¢,
which can be expressed as:
Y. =XB+Zu, +¢,

where X; = ZW,. By concatenating observations from
multiple individuals, we have the following mixed

mocet [ y=Xp+Zu+¢ ]

22

1



Mixed Effects Models

Frequently, linear models contain factors whose levels
represent a random sample of a population of all
possible factor levels

Models containing both fixed and random effects are
called mixed effects models

Linear mixed effects models have been widely used in
analysis of data where responses are clustered around
some random effects, such that there is a natural

dependence between observations in the same cluster

For example, consider repeated measurements taken on
each subject in longitudinal data, or observations taken
on members of the same family in a genetic study

Linear Mixed Effects Model

y=XB+Zu+e

where:

g

y: response vector; observations
B: vector of fixed effects
— u: vector of random effects; u ~ N(O, 6)

X and Z: (known) incidence matrices

_ e residual vector; e ~ N(O, )

12



Linear Mixed Effects Model

Generally, it is assumed that u and e are
independent from each other, such that:

ol =)

Inferences regarding mixed effects models
refer to the estimation of fixed effects, the
prediction of random effects, and the
estimation of variance and covariance
components, which are briefly discussed next

Estimation of Fixed Effects

Let y=XPB+¢ ,6where e=Zu+e

E[£] = E[Zu + €] = ZE[u] + E[e] = 0

Var[g] = Var[Zu + e] = ZVar[u]Z" + Vat[e] = ZGZ" + X

such that ¥ ~MVN(XB,V), where V=ZGZ' +X

Under these circumstances, the MLE for B is:

B=X"V'X)"'X"V'y ~MVNB,(X"V'X) ™)

13



Estimation of Fixed Effects

As G and = are generally unknown, an estimate of V
is used instead such that the estimator becomes:

B — (XT\}—lx)—lXT\‘,—ly

The variance-covariance matrix of ﬁ iS now
approximated by (X"V'X)™!

Note: (X"V™'X)™ is biased downwards as a
consequence of ignoring the variability introduced
by working with estimates of (co)variance
components instead of their true (unknown)
parameter values

Estimation of Fixed Effects

Approximated confidence regions and test statistics
for estimable functions of the type K'pB can be
obtained by using the result:

(K'8") (K'(X'V'X) K)"(K'") _
rank(K) [on-¥p]

where F,_, ; refers to an F-distribution with

¢y =rank(K) degrees of freedom for the numerator,
and ®p degrees of freedom for the denominator,
which is generally calculated from the data using, for
example, the Satterthwaite’s approach

14



Estimation (Prediction) of
Random Effects

In addition to the estimation of fixed effects, very
often in genetics interest is also on prediction of
random effects.

In linear (Gaussian) models such predictions are given
by the conditional expectation of u given the data,
i.e. E[u|y]

Given the model specifications, the joint distribution
of yand uis:
X[ V ZG
0|GZ" G

y

]

Estimation (Prediction) of
Random Effects

From the properties of multivariate normal distribution,

we have that:
E[u|y]=E[u]+Cov[u,y" [Var~'[y](y - E[y])
=GZ'V(y-Xp)=GZ"(ZGZ" +X)"'(y - Xp)

The fixed effects p are typically replaced by their
estimates, so that predictions are made based on the
following expression:

i=GZ"(ZGZ" +X)"'(y - Xp)

15



Mixed Model Equations

The solutions [3 and 1 discussed before require V™'

As V can be of huge dimensions, especially in animal
breeding applications, its inverse is generally
computationally demanding if not unfeasible.

However, Henderson (1950) presented the mixed
model equations (MME) to estimate p and u
simultaneously, without the need for computing V™!

The MME were derived by maximizing (for p and u)
the joint density of y and u, expressed as:

p(y,ulp,G,Z)x |Z 121G V2

Mixed Model Equations

The logarithm of this function is:

¢ =log[p(y,u|B,G, )] *|Z|+|G[+(y -XBp-Zu) 7 (y-Xp-Zu)+u'G'u
=|Z|+|G|+y' 'y -2y 2 XB-2y' ="' Zu
+B' X' Z'XB+2'X 2" Zu+u'Z' L' Zu+u'G'u

The derivatives of / regarding p and u are:

ot X2y -X"2'Xp-X"2"'Zid

—| |Z2'=y-Z"Z'XB-Z"2"'Zia -G

16



Mixed Model Equations

Equating them to zero gives the following system:

XT'Xp+XE'Zi | [XZy
ZX'Xp+ZT'Za+Ga| |ZXy
which can be expressed as:
X'=z'X X'z ] _[X'=y
72'x'X Z'2'Z+G7'||la| [Z'Zy

known as the mixed model equations (MME)

BLUE and BLUP

Using the second part of the MME, we have that:

Z'E'XB+(Z'Z'Z+G Ha=2"T"y
so that: )
i=(Z"'2'2+GHY'Z'2(y - Xp)

It can be shown that this expression is equivalent to:

U=GZ"(ZGZ" +X) ' (y - XPB)

and, more importantly, that 1 is the best linear
unbiased predictor (BLUP) of u

17



BLUE and BLUP

Using this result into the first part of the MME, we
have that:
X'2'Xg+ X2 "Zi = X2y
X'Z'XB+ X'E'ZZ'EZ+ G2 E (y-XB) = X"Z Ty
p=(X"[E'-2'Z(Z'T'Z+G )22 X} X[ -2 Z(Z ' E'Z+G ) ' Z T )y

Similarly, it is shown that this expression is
equivalent fo B=(X"V'X)"'X"Vy, which is the best
linear unbiased estimator (BLUE) of p.

BLUE and BLUP

It is important to note that § and U require
knowledge of 6 and Z. These matrices, however,
are rarely known. This is a problem without an
exact solution using classical methods.

The practical approach is to replace 6 and Z by
their estimates (G and X ) into the MME:

X'ﬁ‘.‘ly
ZX'y

B

u

XX XXz
Z23'X 723'Z+G

18



Estimation of Variance Components

BLUE and BLUP require knowledge of 6 and Z

These matrices, however, are rarely known and
must be estimated

Variance and covariance components estimation:

* Analysis of Variance (ANOVA)
* Maximum likelihood
» Restricted maximum likelihood (REML)

* Bayesian approach (to be discussed later)

19
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Estimation of Fixed Effects

y=Xp+¢

with € =Zu +e, such that Var[e]=ZGZ" +2

= MLE for B :
B=(X"V'X)'X"V'y ~ MVN(B,(X"V'X)™

where V=ZGZ"' +X

Prediction of Random Effects

y ~MVN( [XB

u 0 ||GZ" G

[V G

E[u|y] = E[u]+ Covlu,y" [Var[y](y - E[y])
=GZ'V'(y-XB)=GZ'(ZGZ" +X) ' (y-XB)

Replacing p by its estimate:

1=GZ"(ZGZ" +X) ' (y - Xp)




Mixed Model Equations

XTZ_ly
ZTZ_ly

p

u

X'x'X X'x'7
7Z'y'X 7'x2'72+G™

BLUP and BLUE:

U=(Z"2"'Z+G™")'Z"Z ' (y - XP)

B={X"[Z"-Z"Z(Z"T'Z+G ™)' Z"= "X}
x X' [2 -S'ZZ"='Z+G Y2 Iy

Mixed Models in Animal and
Plant Breeding

Animal/plant breeding programs are based on the
principle that phenotypic observations on related
individuals can provide information about their
underlying genotypic values

The additive component of genetic variation is the
primary determinant of the degree to which
offspring resemble their parents, and therefore
this is usually the component of interest in
artificial selection programs



Mixed Models in Animal and
Plant Breeding

Many statistical methods for analysis of genetic
data are specific (or more appropriate) for
phenotypic measurements obtained from planned
experimental designs and with balanced data sets

While such situations may be possible within
laboratory or greenhouse experimental settings,
data from natural populations and agricultural
species are generally highly unbalanced and
fragmented by numerous kinds of relationships

Animal Model

Culling of data o accommodate conventional statistical
techniques (e.g. ANOVA) may introduce bias and/or lead
to a substantial loss of information

The mixed model methodology allows efficient estimation
of genetic parameters (such as variance components and
heritability) and breeding values while accommodating
extended pedigrees, unequal family sizes, overlapping
generations, sex-limited fraits, assortative mating, and
natural or artificial selection

To illustrate such application of mixed models in breeding
programs, we consider here the so-called Animal Model in
situations with a single trait and a single observation
(including missing values) per individual



Animal Model
The animal model can be described as:
y=Xp+Zu+e

4 y is an (n x 1) vector of observations (phenotypic scores)

B is a (p x 1) vector of fixed effects (e.g. herd-year-
season effects)

u~ N(O, 6) is a (q x 1) vector of breeding values (relative
to all individuals with record or in the pedigree file,
such that q is in general bigger than n)

e ~ N(O, I,0.°) represents residual effects, where o,° is
\. the residual variance

The Matrix A

The matrix 6 describing the covariances among the
random effects (here the breeding values) follows
from standard results for the covariances between
relatives

It is seen that the additive genetic covariance
between two relatives i and i’ is given by 20..07 ,
where 0., is the coefficient of coancestry between
individuals i and i’ , and . is the additive genetic
variance in the base population

Hence, under the animal model, G = AG_ , where A
is the additive genetic (or numerator) relationship
matrix, having elements given by a; =20,



The Matrix A

For each animal i in the pedigree (i = 1, 2,...,n), going from
older to younger animals, compute a; and a;; (j = 1, 2,...,i-1)

as follows:

If both parents (s and d) of animal i are known:

a;; = a; = (a5 + a;9)/2 and @; = 1 + agy/2

If only one parent (e.g. d) of animal i is known:

If parents unknown:

Clij =

g

®

pedigree matrix A

n © =

a;=0andq; =1

n

n

o
n

=q;=q/2andg; =1

Animal Sire Dam
1 - -
2 - -
3 1 2
4 1 -
5 4 3
6 5 2
0 ) ) ) 25
1 ) 0 25 625
i) 1 25 625 563
0 25 1 625 313
25 625 625 1.125 688
625 563 313 688 1.125




Animal Model

In general, in animal/plant breeding interest is
on prediction of breeding values (for selection
of superior individuals), and on estimation of
variance components and functions thereof,
such as heritability

The fixed effects are, in some sense, huisance
factors with no central interest in terms of
inferences, but which need to be taken into
account (i.e., they need to be corrected for
when inferring breeding values)

Animal Model

Since under the animal model G™' = A™'¢;> and

R™' =1,0.7, the mixed model equations can be
expressed as:

X'X X'Z B |_| X'y
Z'X Z'Z+MNM7' || & Z'y
2 2
where A =": =1;1£1 , such that:
Oa
-1
Bl | XX X'Z X'y
i | | Z'X Z'Z+M7 || 2Ty




Conditional on the variance components ratio A, the
BLUP of the breeding values are given then by:

U=(Z"Z+ ") 'Z (y - XP)

These are generally referred to as Estimated Breeding
Values (EBV)

Alternatively, some breeders associations express
their results as Predicted Transmitting Abilities (PTA)
(or Estimated Transmitting Abilities (ETA) or Expected
Progeny Difference (EPD)), which are equal to half the
EBV, representing the portion of an animal’ s breeding
values that is passed to its offspring

The amount of information contained in an animal’ s
genetic evaluation depends on the availability of
its own record, as well as how many (and how close)
relatives it has with phenotypic information

As a measure of amount of information in livestock
genetic evaluations, EBVs are typically reported
with its associated accuracies

Accuracy of predictions is defined as the
correlation between true and estimated breeding
values, ie., I, =p(U;,u,)

Instead of accuracy, some livestock species
genetic evaluations use reliability, which is the
squared correlation of accuracy (riz)



Prediction Accuracy

The calculation of p(U;,u;) requires the diagonal
elements of the inverse of the MME coefficient

matrix, represented as:
-1

(oL olis
CuB Cuu

XX X'Z
Z'X Z'Z+M'

It is shown that the prediction error variance of
EBV U, is given by:

PEV = Var({, -u,) =cl"o’

where c." is the i-th diagonal element of C",
relative to animal i.

Prediction Accuracy

The PEV can be interpreted as the fraction of
additive genetic variance not accounted for by
the prediction

Therefore, PEV can be expressed also as:
PEV = (1-r’)o}

such that C?u0§ =(1 —riz)oi, from which the
reliability is obtained as:

2 uu, 2 2 uu
' =1-c"o./0; =1-Ac;



Animal Model

herd 1
! ; Animal ___ Sire Dam ___ Herd _ Observation
1 - - hl 310
30 04 2 - - hi -
3 - 1 hl 270
4 2 1 h2 350
5 5 - 3 n2 Z
herd 2 )
u
310 1 0 " 1 0 0 0 O]|u,
270| =1 olh‘]+o 01 0 Ofluy|+]|e,
3501 |0 1|84 o 0 0 1 ofu,
Us
\ v J \ - ~~ 7
y = XB + Zu +
Animal Model

Breeding values: u ~ N(0, Aoﬁ) , with

[ 1 0 05 05 025]
0 1 0 0.5 0
A=]05 0 1 025 05
0.5 05 025 1 0.125
1025 0 05 0.125 1

-1

Bl | XX X'Z X'y
i 7'X Z7'7+ x\A‘_l Z'y
o’ 1-h?
A= ? -

10



R Code

y<-matrix(c(310,270,350),nrow=3)
X<-matrix(c(1,1,0,0,0,1),nrow=3)
Z<-matrix(c(1,0,0,0,
A<-matrix(c (1,0,

’

h2<-1/3 # heritability
a=(1-h2)/h2

# crossproducts
XX<-crossprod (X, X) 1
XZ<-t (X) %*% Z 2

=— —> =
ZX<-t (Z) %*% X h o 2 =
ZZ<-crossprod(Z,Z)+ta*solve (A)

# mixed model equations

# coefficient matrix and right hand side
C<-rbind (cbind (XX, XZ) ,cbind (ZX,ZZ))
rhs<-rbind (t (X) %*% y,t(Z) %$*% y)

#solution
theta.hat <- solve(C) %*% rhs

Animal Model

The animal model can be extended to model multiple
(correlated) traits, multiple random effects (such as
maternal effects and common environmental effects),

S S S S S TH oY
w &~ [ N —_ o —

animal model
toy example

,0,0,1,0,0,0,0,0,1,0),nrow=3, byrow = TRUE)
0

Il
w N
\O
S

4.0
0.0
=-4.0

=-2.0

repeated records (e.g. test day models), and so on

Example (Mrode 1996, pp74-76): Weaning weight (kg)

of piglets, progeny of three sows mated to two boars:

Piglet Sire Dam Sex Weight
6 1 2 1 90
7 1 2 2 70
8 1 2 2 63
9 3 4 2 98

10 3 4 1 106
11 3 4 2 60
12 3 4 2 80
13 1 5 1 100
14 1 5 2 85
15 1 5 1 68

1



A linear model with the (fixed) effect of sex, and the
(random) effects of common environment (related to
each litter) and breeding values can be expressed as X:

y=XB+Zu+Wc+e

s
Weight / / \ ~ Residual
Sex Breeding Common
values environment

Assuming that 0. =20, o> =15 and o] = 65, the MME
are as follows:

n T
XX X"Z X'W B X"y
7'X Z'Z+A7'\, 7Z'W u [=| Z'y
WX W'z W'W +1A, ¢ W'y
2 2
o o .
where A, =—=325 and A, =—=43
o, o,
Effects Solutions
Sex
The BLUEs and BLUPs 1 91.493
(inverting the numerator SRS S 73764
relationship matrix) are: Anmals
P ' 1 1.441
2 1.175
3 1.441
4 1.441
5 0.266
6 1.098
7 1.667
8 2.334
9 3.925
10 2.895
11 1.141
12 1.525
13 0.448
14 0.545

' SO L1 U
Environ.
-1.762

Mrode example

SRS ]
'

on
—
N
—
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Bayesian Data Analysis

Inferences using probability models for
quantities we observe and for quantities
about which we wish to learn

Explicit use of probability for quantifying
uncertainty in inferences based on
statistical data analysis

Conditional Probability
(Bayes' Rule)

_P(ANB) _P(A)P(B|A)

PAID) P(B) P(B)



Bayesian Inference

y: observed data; y ~ p(y|0)
©: parameters (all unobserved quantities)

p(6,y) _ p(O)p(y[6)
p(y) p(y)

e POI=PORGO) |

distribution

pB]y) =

sampling

prior distribution

distribution

Prior Distributions

Informative and Noninformative
Proper and Improper

Conjugate and Nonconjugate
Jeffreys' Prior

Maximum Entropy

Reference Prior



Example 1: Binomial Distribution

iid
Data: y,,y,,...,y¥, ~Bin(n,,0) , 6 = Prob(y = 1)
Sampling model: p(y18)= Hp(yl 18) = H( )ey' (1-6)
i=1 i=1 1
o eEYi (1 _ e)n_EYi
Prior: p(@)=Beta(a,b)x0""'(1-0)""

Posterior: p(Bly)x 9“2%—1 (1- e)n+b—zyi_1

0Iy~Beta(a+2yi, n+b—Eyi)

Example 1: Binomial Distribution

6Iy~Beta(a+Eyi, n+b—Eyi)

Features of the posterior distribution:

a+EY1

n+a+b

a+§5m—1

n+a+b-2

o+ )(reo-3)

(n+a+b)Y’(n+a+b+1)

Posterior mean: E[0ly]=

Posterior mode: Mode[01y]=

Posterior variance: Var[0ly]=

percentis, HPD, efc.



Example 1: Binomial Distribution
Setting, for examplea=1and b = 1
Prior: p(0)= Uniform(0,1)

Posterior: p(81y)x 82" (1-0)" 2"

6|y~Beta(1+Eyi, n+1—2yi)

Note that in this case the posterior mode coincides
with the maximum likelihood estimate of ©:

1
Mode[Bly]=— .
61y1=—>y,

Example 2: Normal Distribution

iid

Data: ¥isYas--Ya~NM@,0%)  with known o2

Sampling model: P(y; Iu,0%)=

2

eXp{—zLoz(yi —u)z}

2no

p(ylw.0") =] [p(y; Iu.0%)

i=1

1 1 )
X SXPy ~ (y;—w) }
(2no’*)"? { 2022

1 — 2 1 \ —\2
X ————eXpy——— (Y- - (yi—y)}
(2no?)™? { 207 2022




Example 2: Normal Distribution
Prior (Conjugate): w~N(¢,T°)

1 1 5
P(M) = \/ﬁ eXP{—W(M - ¢) }

Joint posterior:

p(uly) = p(y lm,0°)x p(n)

o

1S
ZOZZ(m—y)}

1
(231:02)11/2 exp{— 252
1

m GXP{—ZLTz(M - ¢)2}

X

Joint posterior (con’r'ed)'

1
p(uly)cexpy— }eXp{— 5
2T

n(y u) (- ¢)}

)

where L (—+—) and Mn:(ny.l.i)

Hence: pnly~N




Multi Parameter Models
y~p(y16,,6,,....0,)
p(6,.8,.....8,1y) ~p(8,.8,,....8 )p(y16,.8,.....8.)

Marginal Posterior Distributions

PO, 1Y) [ p(8,.8,.....0,1y)d6,,,

Marginal Posterior Distributions

Marginalization (i.e. integrals) in multi-dimensional
models can be cumbersome and some times do not
have analytical form

An alternative in this regard: Monte Carlo methods

Monte Carlo integration consists of sampling from
the posterior distribution, and then using such
sampled values to calculate features of interest on
the (joint or marginal) posterior distribution

There are many algorithms that can be used to
sample from a distribution; some are based on
Markov chains, among which the Gibbs sampling is
probably the most popular



Gibbs Sampling
0=(0,.0,,....0,) - p®.10,...,0._,,8. ,....0))

(0) 0) n(0) (0)
0 =(0,8,...,0)

Burn-in & Convergence

eil) | 6(20),920),. N Tinning interval & Lag
f correlations

(D O ) (0)

62 | 91 ’63 e "er Sample size & Monte
. Carlo error

@M1 o 1)
00 10,00",...,0"

Monte Carlo Approximations

After convergence, each sampled vector is a sample
from the joint posterior distribution, and so each
sampled element (scalar) is a sample from the respective
marginal posterior distribution

For each parameter (e.g., 8;) we'll have then a series of
values:

M 2 g? (N)
0,7,0,7,6,”,...,0,

from which features of its distribution (e.g., posterior
mean) can be approximated, for example:

IR IV
E[6, |y15§29i”

=



Monte Carlo Approximations

Other oftfen interesting features used to represent a
marginal posterior distribution are: posterior variance
(or standard deviation), posterior mode or median,
percentiles, highest posterior density (HPD), etc.

Very useful property: If one is interested on the
distribution of a function of the model parameters,
samples from such a distribution can be obtained
simply by applying that specific function to the
sampled values of those parameters

For example, the posterior mean of the heritability

can be obtained as: 1 & o
Blh lyl=— Y~
N+ o, +0,

Marker Assisted Selection

MAS: Use of genetic markers to improve the
efficiency of genetic selection

Basic idea behind of MAS:

* Most traits of economic importance are controlled
by a fairly large number of genes

 Some of these genes, however, with larger effect

* Following the pattern of inheritance of such genes
might assist in selection



MAS Could Help Improve

Low heritability traits
Phenotypes that can be measured on one sex only

Characteristics that are not measurable before
sexual maturity

Traits that are difficult to measured or require
sacrifice

Efficiency of MAS
Size (effect) of QTL

Frequency of favorable allele

Recombination rate between marker(s) and QTL

Modeling Effects at The
QTL Genotype

y=Xp+Wq+Za+e
/

phenotype residual
~N(0,Io2
fixed effects © ( )

(environmental) Polygenic

effects
QTL effects a ~ N(0, Aoj)

10



Modeling Effects at the QTL Genotype

QTL-genotype as a fixed effect: Regression of
phenotypes using QTL genotype probabilities from
segregation analysis (Kinghorn et al. 1993,
Meuwissen and Goddard 1997)

QTL-genotype as a random effect: QTL effect is
modeled as the sum of the two gametic effects
(Fernando and Grossman 1989)

v Go> 0 0
y=Xp+Wv+Za+e, Vvar| a [5f 0 Ac’
& 0 0 Io:

Gametic relationship matrix

Genomic Selection
(Genome-wide Marker Assisted Selection)

As most quantitative traits are influenced by
many genes, tracking a small number of them
using molecular markers will explain only a small
fraction of the total genetic variance

GWMAS, on the other hand, makes use of a very
dense set of markers covering the entire genome,
which potentially explain all genetic variance

11



Genomic Selection

(~ 1. Reference Popula‘rion\ 2. Data Analysis
M - QC and data processing
-~ ™ M = _ Prediction model:
P
H ﬂ ” ” yi=l“+2wijbj+ei

Animals with genotypic and -
\_ Phenotypic information / .

t f 3. Genomic Selection \
Prediction of genetic merit
(" 4 Selected Animals using marker info&ma‘rion
~ .
™ oy ™ @ n Tenn
Young animals

~ Superior animals (selection candidates)
(higher gEBV), selected 2

erlier‘ with higher accur‘acyj \ gEBV, = Ewkjbj /

]

Genomic Selection
(Meuwissen et al., 2001)

Yi=R+ X8 T X8+ X 8, + 6

/

Marker genotypes Genetic effects
P
Genomic EBV: GEBV =x,,g, +X,,&, +...+X;,g, = Exijfgj
i1
= ‘big p small n paradigm’

= Dimension reduction techniques (e.g. SVD
and PLS), and stepwise strategies

= Alternatively, ridge regression, random
effects models, and hierarchical modeling

12



Least Squares

Two-step Procedure:

- Test each marker (chromosome segment) for presence
of QTL and select those with significant effects

- Fit selected markers simultaneously using multiple
regression

* Predict breeding values using fitted regression
(similar to LD- MAS approach with multiple markers)
Problems:

- Over estimation of markers effects due to first-step
(selection)

- Do not capture all QTL

BLUP
p A : ‘ -
y=1u+2ngj+e wi | 111X ly
= / g X1 XX+Iy Xy
g,~N(0,0) y=0./0,

How to choose 03 ?
* Arbitrary; but 05 controls amount of shrinkage

- Alternative: set o§ = 0121 /P, where Gi is an
estimate (prior) of total additive genetic variance

13



Bayes A

p p
y =1u+Engj +e — ylp.g,0.~ N(lu+szgj,IO§)

=l j=1

Prior distributions:

.
g/ lo} ~N(0,07)

2 -2
o, ~% (v.S)

(scaled inverted chi-square distribution with
scale parameter S and v degrees of freedom)

\ o2 ~x7(=2,0)

Bayes B

p p
y =IM+Engj +e — ylp.g,0.~ N(lu+szgj,IO§)

=l j=1
Prior distributions:

p
g;=0 with probability x

g 107 ~N(0,07) with probability (1 - x)

2 -2
o ~ %X (v,S)

o’ ~%2(=2,0
| O X (=2,0)

14



SIMULATION STUDY

Genome: 1000 cM with markers every 1 cM

Markers surrounding each 1 cM region combined
into haplotypes

LD between marker and QTLs due to finite
population size (N, = 100)

Training sample: single generation with 2,000
animals

Test sample: prediction of breeding values of
their progeny based on marker genotypes

SIMULATION STUDY

The parameters of the simulated genetic model

0 1 ‘2 9? | 1(|)0 ™M

11 /
| ¥ I
Map per chromosome? "\’]1 Q MZ Q N{J // MWD Qioo "’}m

Number of chromosomes is the total number of morgans 10

Mutation rate of QTL 25 X 1075

Distribution of additive mutational effects Gamma(1.66; 0.4)

Dominance of QTL effects 0

Mutation rate of marker loci 2.5 X 1073

Population structure
Generations 1-1000 Ideal’, N = 100
Generation 1001 Ideal®, N = 200
Generation 1002 20 half-sib families, N = 2000
Generation 1003 and later Ideal®, N = 2000

Marker genotyping Generations 1001 and later

Phenotypic recording Generations 1001 and 1002

“M, marker position; Q, QTL position.

"Ideal denotes a population structure where the effective size equals the actual population size. This structure
is simulated by giving every male (female) in generation ¢ — 1 an equal probability of becoming the sire (dam)
of animal i in generation ¢, which implies no selection and random mating of males and females.



SIMULATION STUDY

Comparing estimated vs. true breeding values
in generation 1003

rpvesv + SE

brevesy + SE

LS
BLUP
BayesA
BayesB

0.318 = 0.018
0.732 = 0.030
0.798

0.848 + 0.012

0.285 = 0.024
0.896 = 0.045
0.827

0.946 + 0.018

Mean of five replicated simulations, except for BayesA which
is based on one replicate. LS, least squares; BLUP, best linear
unbiased prediction; BayesA, Bayesian method with inverse
chi-square prior distribution; BayesB, Bayesian method where
the prior density of having zero QTL effects was increased;
rvesys correlation between estimated and true breeding val-
ues (equals accuracy of selection); bgygpy, regression of true
on estimated breeding value.

SIMULATION STUDY

Correlations between true and estimated breeding values
when the number of phenotypic records is varied

No. of phenotypic records

500 1000 2200
LS 0.124 0.204 0.318
BLUP 0.579 0.659 0.732
BayesB 0.708 0.787 0.848

Correlations between true and estimated breeding values
when the density of the marker map is varied and

effective population size is 100

Marker spacing (cM)

1 2 4
LS 0.318 0.354 0.363
BLUP 0.732 0.708 0.668
BayesB 0.848 0.810 0.737




SIMULATION STUDY

The correlation between estimated and true breeding values
in generations 1003-1008, where the estimated breeding
values are obtained from the BayesB marker estimates
in generations 1001 and 1002

Generation FIBVEBV
1003 0.848
1004 0.804
1005 0.768
1006 0.758
1007 0.734
1008 0.718

The generations 1004-1008 are obtained in the same way
as 1003 from their parental generations.

Application with Real Data

Predictor
H Predictee
Young

in
©
E
=
<
Y
o
[
[«*]
Ke]
£
=
4

Year of Birth

(VanRaden et al., 2008)



Table 2. Coefficients of determination (R* x 100) for 2008 daughter deviations with 2003 predictions

Genomic prediction Gain from nonlinear genomic
Traditional prediction compared

Trait parent average Linear Nonlinear Difference’ with parent average
Net merit 1 28 28 0 17
Milk yield 28 47 49 2 21
Fat yield 15 42 44 2 29
Protein yield 27 47 47 0 20
Fat percentage 25 55 63 8 38
Protein percentage ) 51 58 7 30
Productive life 17 26 27 1 10

S 23 37 38 1 15
Daughter pregnancy rate 20 30 29 -1 9
Sire calving ease 17 21 22 1 5
Daughter calving ease 14 22 22 0 8
Final score 2 35 36 1 13
Stature 27 49 50 1 23
Strength 16 33 34 1 18
Body depth 17 36 37 1 20
Dairy form 9 29 P} -1 19
Foot angle 13 23 21 -2 8
Rear legs (side view) 10 27 27 0 17
Rear legs (rear view) 11 21 19 -2 8
Rump angle 20 44 43 -1 2
Rump width 19 38 36 -2 17
Fore udder 17 39 40 1 23
Rear udder height 20 35 36 1 16
Udder depth 18 a7 46 -1 28
Udder cleft 18 30 30 0 12
Front teat placement 22 41 42 1 20
Teat length 12 35 34 -1 22
All 19 36 37 1 18
"Nonli minus linear ic prediction.

Model Selection

= Goodness-of-fit vs. Model Complexity
(Bias-variance tradeoff)

Over-reduction Over-fit



Model Selection

= Goodness-of-fit
= likelihood ratio approach (LRT; nested models)

L 2
LRT = _2 ln(L_lJ - X(P] -P2)

2

= Model complexity
= number of free parameters, p (effective number)

Linear (regularized) fitting: y =Sy — p = trace(S)

Model Selection

= Balancing goodness-of-fit and complexity
= Akaike information criterion (AIC):
AIC=2p- ln(L)
= Bayesian information criterion (BIC):

oh Criteri
(or Schwarz Criterion) g1 b n(n)—21n(L)
iid

= If ¢, ~N(0,07) then:

n

€

AIC=2p+ nln(R—SS) and BIC= - RSS+pln(L)

19



or,

.

Ridge Regression

pro =arg;nin{2(y ~Bo - ZXUB ]726 }

A = O (complexity parameter)

N

n p
equivalently: B"*** =argmin 2 (yi —Bo - 2 X;iB; J )
p 1= =

p
subject to: 2 Bl =s
I=

Ridge Regression

Bo=§’=EYi/N

after centering y, and x,'s (1.e., y, -y and x; —X)

RSS(M) =(y-XB)'(y-XB)+AB'B

ﬁridge — (X'X + )\I)—lxvy

2

20



LASSO

2

A N - \
Blasso =arg min 2 y, — B - X:pi | subject to: | |3 | =t
2 0 E i ; J

B J=1

= Estimation picture for the LASSO (left) and Ridge Regression (right)

The solid blue areas are the constraint regions |, |+, |=t (lasso)
and B; +pB; =<t (ridge regression), while the red ellipses are the
contours of the least squares error function.

Predictive Ability

High Bias Low Bias

Low Variance High Variance

Test Sample

Prediction Error

(6002 o +2 214sDH)

/

Training Sample

Low High
Model Complexity

Behavior of test sample and training sample
error as the model complexity is varied

21



Cross-validation

= K-FOLD -

w — _ \
. Testing set
Training set
{y:XB+e [PMSE=iE.(yi—§/i)2
~ — m “~!
-estimate of . -
P B |y-xp

= LEAVE-ONE-OUT (“n-FOLD”)

Bayesian Alternative

P P
y =1u+Engj +e — ylu,g,o; ~N(1u+Engj,Ioz)

—

il =

o

BRR: g;10; ~N(0,07)
Bayes A: g;107 ~N(0,0?), 0} ~%x(v,S)
Bayes B,C: g lk,07 ~mtxN(0,ko?)+(1-m)xN(0,07)

BlLasso: g; |0? ~ N(O,o?), of ~ Exponential(A)

| BX: g;107 ~N(0,0), 0;~X

22



Normal/Independent Distributions

p(g;) = [ p(g;10])p(o} o]

BRR: Normal

Bayes A: Student-t

Bayes B,C: Mixtures

BLasso: Double exponential

—

GBLUP

Regression with genetic effects with
normal distribution with common variance

p
y=lu+ Yy Xg+e with: glo, ~N(0,07)
j=1

Equivalent Model
y=1lp+a+e ,with: al oi ~ N(O,Gﬁz)

—> G is the genomic relationship matrix:

G= (2ipj(1_pj)

i1

X-M)(X-M)'

23



ssGBLUP

Single-step GBLUP: Single mixed model with
all animals (genotyped and non-genotyped)
included, with matrix A replaced by H

0 0

H'=A"+ 1 1
0 G'-A

Preventive and Personalized Medicine

TIRReT

Tereee +

TReree

Training population

Personalized
treatment

New W
patient W e

24



A Comprehensive Genetic Approach for Improving
Prediction of Skin Cancer Risk in Humans

Ana |. Vazquez,*' Gustavo de los Campos,* Yann C. Klimentidis,* Guilherme J. M. Rosa,"

Daniel Gianola,' Nengjun Yi,* and David B. Allison*
*Section on Statistical Genetics, Department of Biostatistics, University of Alabama, Birmingham, Alabama 35294, and
*Department of Animal Sciences, University of Wisconsin, Madison, Wisconsin 53705

Genetics, Vol. 192, 1493-1502 December 2012

= 5,132 subjects from Framingham Heart Study
= Phenotypes measured from 1948 until death
= Genotypes: Affymetrix 500K SNPs

Photo: http://www.framinghamheartstudy.org/

Models

1. No-SNP: standard covariables
2. Covariates + familial relationships
3. Covariates + SNPs (PC or Bayesian LASSO)

5132

Probit B-LASSO POIB,w) = [ {{®(m)P(1-@(m)* ™~}

i=1

j=1 j=1

P P2 P
=Bo+ Y _xiBy+ Y XoiBy  or  mi=PBo+ Yy XiiBy+u;
=1

p(Bo:B1, B2, u,72,\) = [ﬁN(Bz,;{o,T?)]

j=1

[ Exp 72|)\2 j| XG()L2|¢11,(12)
j=

X N(u|0,Ac2)x x 2%(02|S,df),
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Results (ROC, Area Under the Curve)

Models with increasing
Comparison of Models number of SNPs

0.66
0.64
8
0.62 <
0.6 <1
S
0.58
8
0.56 °
8
0.54 o
3
o
0.5 T T T T T T T
Covariates Pedigree PC-SNP 41K-SNP 0 10 20 30 40

Thousand of SNPs



Lecture 6

QTL and Association Mapping
with Mixed Models

Bruce Walsh lecture notes
Introduction to Mixed Models
SISG, Seattle
19 =21 July 2017

QTL & Association mapping

¢ We would like to know both the genomic
locations (map positions) and effects (either
genotypic means or variances) for genes
underlying quantitative trait variation

e QTL mapping

— Using linkage information on a set of known
relatives

* Association mapping

— Using very fine scale LD to map genes in a set of
random individuals from a population



Outline
* Basics of QTL mapping

— Line crosses
* typically fixed effects models

— Outbred populations
e Random effects family models
* General pedigree methods
e High parameter models

— Shrinkage approaches for detecting epistasis
* Association mapping

Inbred Line Cross QTL mapping

* Most powerful design

— Cross two fully inbred lines, look at marker-trait
segregation in the F, (or other, such as F,)
generations

- P1: MMQQ, P2:mmqq

— All F, same genotype/phase: MQ/mq

— Hence, in the F1, all parents have the same
genotype

— At most only two alleles, each with freq 1/2

— ldea: Does the mean trait value of (say) MM
individuals differ from (say) mm

* Different marker genotypes have different mean trait
values



Expected Marker Means

The expected trait mean for marker genotype M,
Is just .
pnt; = ) 1@, Pr(Qr | M)
k=1

For example, if QQ = 2a, Qq = a(1+k), ggq = 0, then in
the F2 of an MMQQ/mmqq cross,

(/l?"”z‘” — Hmm )/2 = (‘1(1 — 2()

e |f the trait mean is significantly different for the
genotypes at a marker locus, it is linked to a QTL

e A small MM-mm difference could be (i) a tightly-linked

QTL of small effect or (ii) loose linkage to a large QTL

Linear Models for QTL Detection

The use of differences in the mean trait value
for different marker genotypes to detect a QTL
and estimate its effects is a use of linear models.

One-way ANOVA.

Value of trait in kth
individual of marker

genotype type i

\
Zik = b+ 7{); + €ik

Effect of marker
genotype i on trait
value



Zik = W+ b + €

Detection: a QTL is linked to the marker if at least
one of the b, is significantly different from zero

Estimation: (QTL effect and position): This requires
relating the b, to the QTL effects and map position

Detecting epistasis

One major advantage of linear models is their
flexibility. To test for epistasis between two QTLs,
use ANOVA with an interaction term

z2=u—+a + b +dir +e€
l/

Effect from marker genotype
at first marker set (can be > 1 loci)

Effect from marker genotype
at second marker set

Interaction between marker genotypes i in 1st
marker set and k in 2nd marker set



Detecting epistasis

z=pu+a + bk +dir + e

* At least one of the a, significantly different from O
---- QTL linked to first marker set

e At least one of the b, significantly different from 0O
---- QTL linked to second marker set

¢ At least one of the d, significantly different from O
---- interactions between QTL in sets 1 and two

Problem: Huge number of potential interaction terms

(order m2, where m = number of markers) .

Model selection

* With (say) 300 markers, we have (potentially) 300
single-marker terms and 300*299/2 = 44,850
epistatic terms

— Hence, a model with up to p= 45,150 possible parameters
— 2P possible submodels = 101369 ouch!

e The issue of Model selection becomes very
important.

e How do we find the best model?
— Stepwise regression approaches

¢ Forward selection (add terms one at a time)
e Backwards selection (delete terms one at a time)

— Try all models, assess best fit

— Mixed-model approaches (Stochastic Search
Variable Selection, or SSVS)



Model Selection

Model Selection: Use some criteria to chose among a
number of candidate models. Weight goodness-of-fit
(L, value of the likelihood at the MLEs) vs. number of
estimated parameters (k)

AIC = Akaike'’s information criterion
AIC = 2k - 2 Ln(L)

BIC = Bayesian information criterion (Schwarz criterion)
BIC = k*In(n)/n - 2 Ln(L)/n
BIC penalizes free parameters more strongly than AIC

Other measures. For these (and AIVC, BIC) smaller
score indicates better model fit y

Model averaging

Model averaging: Generate a composite model by weighting
(averaging) the various models, using AIC, BIC, or other

|dea: Perhaps no “best” model, but several models
all extremely close. Better to report this “distribution”
rather than the best one

One approach is to average the coefficients on the
"best-fitting” models using some scheme to return
a composite model



Supersaturated Models

A problem with many QTL approaches is that there
are far more parameters (p) to estimate than

there are independent samples (n). Case in point:
epistasis

Such supersaturated models arise commonly in
Genomics. How do we deal with them?

One approach is to have all parameters included, but some
are shrunk back (regressed) towards zero by assigning them
a very small posterior variance

Shrinkage estimators

Shrinkage estimates: Rather than adding interaction
terms one at a time, a shrinkage method starts with all
interactions included, and then shrinks most back to zero.

Under a Bayesian analysis, any effect is random. One can
assume the effect for (say) interaction ij is drawn from
a normal with mean zero and variance 0%

Further, the interaction-specific variances are themselves
random variables drawn from a hyperparameter distribution,
such as an inverse chi-square.

One then estimates the hyperparameters and uses these
to predict the variances, with effects with small variances
shrinking back to zero, and effects with large variances
remaining in the model. 14



Whatisa "QTL"

e A detected “QTL" in a mapping experiment
is a region of a chromosome detected by
linkage.

Usually large (typically 10-40 cM)

When further examined, most “large” QTLs
turn out to be a linked collection of locations
with increasingly smaller effects

® The more one localizes, the more subregions
that are found, and the smaller the effect in
each subregion

This is called fractionation

Limitations of QTL mapping

e Poor resolution (~20 cM or greater in most designs
with sample sizes in low to mid 100’s)
— Detected "QTLs" are thus large chromosomal regions

* Fine mapping requires either

— Further crosses (recombinations) involving regions of
interest (i.e., RILs, NILs)
— Enormous sample sizes

e If marker-QTL distance is 0.5cM, require sample sizes
in excess of 3400 to have a 95% chance of 10 (or
more) recombination events in sample

* 10 recombination events allows one to separate
effects that differ by ~ 0.6 SD



Limitations of QTL mapping (cont)

« “Major” QTLs typically fractionate
— QTLs of large effect (accounting for > 10% of the
variance) are routinely discovered.

— However, a large QTL peak in an initial experiment
generally becomes a series of smaller and smaller
peaks upon subsequent fine-mapping.

e The Beavis effect:

— When power for detection is low, marker-trait
associations declared to be statistically significant
significantly overestimate their true effects.

— This effect can be very large (order of magnitude)
when power is low.

Beavis effect is akin to a selection intensity

»
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Outbred populations

* When we move from the simple framework of an
inbred line cross QTL design to a set of parents from
an outbred population, complications arise as the
parents don't all have the same genotypes

— Differences in linkage phase

— Many uninformative as to linkage (varies over
makers)

— Possibility of multiple alleles

* Result: express marker effects in terms of the
variance in trait value it explains, rather than in terms
of mean marker effects

General Pedigree Methods

Random effects (hence, variance component) method
for detecting QTLs in general pedigrees

Genetic effect of
chromosomal region
of interest

Trait value for f ’
individuali > Ri=p+A +A +e;

ZerneiniC vaide
(backaroundc

The model is rerun for each marker
20



zi=p+ Ai + A, + e

The covariance between individuals i and j is thus

Variance Resemblance
explained by between
the region of relatlvgs

interest correction

\ /

D) D)
0(2i,25) = Rij 04 + 20,5 024

;

AN

Fraction of chromosomal

region shared IBD Vari.ance
between individuals i and j. eXP'i';ed by
e
background
polygenes

Assume z is MVN, giving the covariance matrix as

V=Roi+Aoy +10¢
Here

1 fori=j 1 fori=j
Ro={h o2 au={y, i
i for i # j 20;; fori#j

Estimated from marker  Estimated from
data the pedigree

The resulting likelihood function is

1 1 _
0(z| p,0%4,0%,02) = ————m— exp —§(z—u)TV Yz —p)

NCoRN

A significant 6,2 indicates a linked QTL.



Association & LD mapping

Mapping major genes (LD mapping) vs. trying to
Map QTLs (Association mapping)

Idea: Collect random sample of individuals, contrast
trait means over marker genotypes

If a dense enough marker map, likely population level
linkage disequilibrium (LD) between closely-linked
genes

23

Fine-mapping genes

Suppose an allele causing an effect on the trait
arose as a single mutation in a closed population

New mutation arises on
red chromosome

Initially, the new mutation is
largely associated with the
red haplotype

Hence, markers that define the red haplotype are
likely to be associated (i.e. in LD) with the mutant allele

24



Background: Association mapping

e |f one has a very large number of SNPs, then new

mutations (such as those that influence a trait) will be in LD
with very close SNPs for hundreds to thousands of
generations, generating a marker-trait association.

— Association mapping looks over all sets of SNPs for trait
-SNP associations. GWAS = genome-wide association
studies.

— This is also the basis for genomic selection

* Main point from extensive human association studies

— Almost all QTLs have very small effects

— Marker-trait associations do not fully recapture all of the
additive variance in the trait (due to incomplete LD)

— This has been called the “missing heritability problem”
by human geneticists, but not really a problem at all
(more shortly). 25

Association mapping

Marker-trait associations within a population of unrelated
individuals

Very high marker density (~ 100s of markers/cM) required

— Marker density no less than the average track length of
linkage disequilibrium (LD)

Relies on very slow breakdown of initial LD generated by a

new mutation near a marker to generate marker-trait

associations

— LD decays very quickly unless very tight linkage

- Hence, resolution on the scale of LD in the population(s) being
studied (1 ~ 40 kB)

Widely used since mid 1990’s. Mainstay of human

genetics, strong inroads in breeding, evolutionary genetics

Power a function of the genetic variance of a QTL, not its

mean effects e



Manhattan plots

The results for a Genome-wide Association study (or
GWAS) are typically displayed using a Manhattan
plot.

— At each SNP, -In(p), the negative log of the p
value for a significant marker-trait association is
plotted. Values above a threshold indicate
significant effects

— Threshold set by Bonferroni-style multiple
comparisons correction

— With n markers, an overall false-positive rate of p
requires each marker be tested using p/n.

— With n = 10° SNPs, p must exceed 0.01/10° or
108 to have a control of 1% of a false-positive

27
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Population Stratification

When population being sampled actually consists of several distinct
subpopulations we have lumped together, marker alleles may provide
information as to which group an individual belongs. If there are other

risk factors in a group, this can create a false association btw marker
and trait

Example. The Gm marker was thought (for biological reasons) to be
an excellent candidate gene for diabetes in the high-risk population
of Pima Indians in the American Southwest. Initially a very strong
association was observed:

Gm* Total % with diabetes
Present 293 8%
Absent 4,627 29% 29
Gm* Total % with diabetes
Present 293 8%
Absent 4,627 29%

Problem: freq(Gm*) in Caucasians (lower-risk diabetes
Population) is 67%, Gm* rare in full-blooded Pima

The association was re-examined in a population of Pima
that were 7/8th (or more) full heritage:

Gm* Total % with diabetes
Present 17 59%
Absent 1,764 60%

30



Linkage vs. Association

The distinction between linkage and association
is subtle, yet critical

Marker allele M is associated with the trait if
Cov(M,y) ¥ 0

While such associations can arise via linkage, they
can also arise via population structure.

Thus, association DOES NOT imply linkage, and
linkage is not sufficient for association

31

Accounting for population structure

* Three classes of approaches proposed

— 1) Attempts to correct for common pop structure
signal (regression/PC methods)

— 2) Attempts to first assign individuals into
subpopulations and then perform association
mapping in each set (Structure)

— 3) Mixed models that use all of the marker
information (Tassle, EMMA, many others)

* These can also account for cryptic relatedness in the
data set, which also causes false-positives.

32



Regression Approaches

One approach to control for structure is

simply to include a number of markers, outside
of the SNP of interest, chosen because they
are expected to vary over any subpopulations

How might you choose these in a sample? Try
those markers (read STRs) that show the largest
departure from Hardy-Weinberg, as this is expected
in markers that vary the most over subpopulations.

33

Indicator (O / 1) Variable
for SNP genotype k. Typically
k=3,i.e. AA, Aaaa

m

Y=+ Z Bi. My, + Z vi bj +e
k=1 \ = S~

Significant g indicates m unlinked markers Thaf
marker-trait association vary across subpopulations.
b; = marker genotype indicator
SNP marker variable

under consideration

Variations on this theme (eigenstrat) --- use all of the
marker information to extract a set of significant

PCs, which are then included in the model as cofactors
34



Structured Association Mapping

Pritchard and Rosenberg (1999) proposed
Structured Association Mapping, wherein

one assumes k subpopulations (each in Hardy-
Weinberg).

Given a large number of markers, one then attempts
to assign individuals to groups using an MCMC
Bayesian classifier

Once individuals assigned to groups, association mapping
without any correction can occur in each group.

35

Mixed-model approaches

* Mixed models use marker data to
— Account for population structure
— Account for cryptic relatedness

* Three general approaches:

— Treat a single SNP as fixed
e TASSLE, EMMA

— Treat a single SNP as random
* General pedigree method

— Fit all of the SNPs at once as random
e GBLUP 36




Structure plus Kinship Methods

Association mapping in plants offer occurs by first taking
a large collection of lines, some closely related, others
more distantly related. Thus, in addition to this collection
being a series of subpopulations (derivatives from a
number of founding lines), there can also be additional
structure within each subpopulation (groups of more
closely related lines within any particular lineage).

Y=XB+Sa+Qv+Zu+e

Fixed effects in blue, random effects in red

This is a mixed-model approach. The program TASSEL
runs this model. 37

Q-K method
Y=Xp+Sa+Qv+Zu+e

[} = vector of fixed effects

a = SNP effects (fits SNPs one at a time)

v = vector of subpopulation effects (STRUCTURE)
Q; = Prob(individual i in group j). Determined
from STRUCTURE output

u = shared polygenic effects due to kinship.
Cov(u) = var(A)*A, where the relationship matrix
A estimated from marker data matrix K, also called a

GRM - a genomic relationship matrix
38



Which markers to include in K?

* Best approach is to leave out the marker
being tested (and any in LD with it) when
construction the genomic relationship matrix

— LOCO approach - leave out one chromosome
(which the tested marker is linked to)

* Best approach seems to be to use most of
the markers

e Other mixed-model approaches along these
lines

39

Treat Single SNP as random: General Pedigree method

V=Roi+Acy +10;
Here

R~~—{1 for i = j A“—{l fori=j
YT Ry fori£j T YT |20y fori#j

Estimated from marker Estimated from
data the pedigree

The resulting likelihood function is

5 5 o 1 1 : _ :
0(z| p,0%4,0%,0?%) = ————— exp —_—(z—p)TV Lz —p)

/@] 2
A significant 0,7 indicates a linked QTL.
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GBLUP

e The O-K method tests SNPs one at a time,
treating them as fixed effects

* The general pedigree method (slides 24-26)
also tests one marker at a time, treating
them as random effects

e Genomic selection can be though of as
estimating all of the SNP effects at once and
hence can also be used for GWAS

41

BLUP, GBLUP, and GWAS

e Pedigree information gives EXPECTED value
of shared sites (i.e., V2 for full-sibs)
— A matrix in BLUP

— The actual realization of the fraction of shared
genes for a particular pair of relatives can be
rather different, due to sampling variance in
segregation of alleles

— GRM (or K or marker matrix M)

— Hence “identical” relatives can differ significantly
in faction of shared regions

— Dense marker information can account for this
42



The general setting

* Suppose we have n measured individuals (the n x 1
vector y of trait values)

* The n x n relationship matrix A gives the relatedness
among the sampled individuals, where the elements
of A are obtained from the pedigree of measured
individuals

e We may also have p (>> n) SNPs per individual,
where the n x p marker information matrix M
contains the marker data, where M; = score for SNP
j (i.e., 0 for 00, 1 for 10, 2 for 11) in individual i.

Covariance structure of random effects

A critical element specifying the mixed model is the
covariance structure (matrix) of the vector u of
random effects

e Standard form is that Cov(u) = variance component *
matrix of known constants

— This is the case for pedigree data, where u is typically the
vector of breeding values, and the pedigree defines a
relationship matrix A, with Cov(u) = Var(A) * A, the additive
variance times the relationship matrix

— With marker data, the covariance of random effects are
functions of the marker information matrix M.

e If uis the vector of p marker effects, then Cov(u) =
Var(m) * MTM, the marker variance times the covariance
structure of the markers.



Y=XB+Zu+e

Pedigree-based BV estimation: (BLUP)
U, = vector of BVs, Cov(u) = Var(A) A,

Marker-based BV estimation: (GBLUP)
U, = vector of BVs, Cov(u) = Var(m) M™ (n x n)

nx

GWAS: ug, = vector of marker effects,
Cov(u) = Var(m) MMT (p x p)

Genomic selection: predicted vector of breeding values
from marker effects, GBV M_ u

nx1 — nxp < px1*

Note that Cov(GBV) = Var(m) M™ (n x n)

Lots of variations of these general ideas by adding
additional assumptions on covariance structure.

GWAS Model diagnostics
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The "Genomic Control” parameter A

Devlin and Roeder (1999). Basic idea is that association tests (marker
presence/absence vs. trait presence/absence) is typically done with a
standard 2 x 2 x? test.

When population structure is present, the test statistic now follows

a scaled y?, so that if S is the test statistic, then S/A ~ %%, (so S ~
Ax?;) . Hence, population structure should inflate all of the

tests (on average) by a common amount A.

Hence, if we have suitably corrected for population structure, the

estimated inflation factor A among tests should be ~ 1.

A robust estimator for A is offered from the medium
(50% value) of the test statistics, so that for m tests

medium (S1, -+ Sm)
0.456

\ =
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Genomic control A as a diagnostic tool

Presence of population structure will inflate the A
parameter

A value above 1 is considered evidence of additional
structure in the data
— Could be population structure, cryptic relatedness, or both
— Alambda value less that 1.05 is generally considered benign

One issue is that if the true polygenic model holds (lots of
sites of small effect), then a significant fraction will have
inflated p values, and hence an inflated A value.

Hence, often one computes the A following attempts to
remove population structure. If the resulting value is
below 1.05, suggestion that structure has been largely
removed.
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P — P plots

e Another powerful diagnostic tool is the p-p plot.
e [f all tests are drawn from the null, then the
distribution of p values should be uniform.

— There should be a slight excess of tests with very
low p indicating true positives

e This gives a straight line of a log-log plot of
observed (seen) and expected (uniform) p values
with a slight rise near small values

— If the fraction of true positives is high (i.e., many
sites influence the trait), this also bends the p-p

plot
49
a No stratification b Stratification without unusually
differentiated markers
10+ 10—
A few tests
o are significant ol Great excess of
\ Significant tests
= =
3 6] . S 6 N
° ° Z
> >
B 4 g 4
Wal 0O
o} o
24 24
0 T T 1 0 | T 1
0 2 4 6 0 2 4 6
Expected (HogP) Expected (-logP)

Price et al. 2010 Nat Rev Gene 11: 459
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b Stratification without unusually
differentiated markers

Observed (~logP)

10

©
|

o
|

'
|

N
|

¢ Stratification with unusually
differentiated markers

Observed (~logP)

T T
2 -

Expected (-logP)

Great excess of
Significant tests

N

T T
2 - 6

Expected (logP)

As with using A, one should construct p-p following
some approach to correct for structure & relatedness
to see if they look unusual.
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Association mapping (power)

Q/q is the polymorphic site contributing to trait
variation, M/m alleles (at a SNP) used as a marker

Let p be the frequency of M, and assume that
Q only resides on the M background (complete
disequilibrium)

Haloptype Frequency | effect
QM rp a
qM (1-nNp
gm 1-p 0
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Haloptype Frequency | effect
QM rp a
qM (1-nNp
gm 1-p 0

Effect of m

Effect of M

Genetic variation associated with Q = 2(rp)(1-rp)a?
~ 2rpa? when Q rare. Hence, little power if Q rare

Genetic variation associated with marker M is

2p(1-p)(ar)? ~ 2par?

Ratio of marker/true effect variance is ~ r

Hence, if Q rare within the A class, even less power, as M only

captures a fraction of the associated QTL.

Common variants

- freq(Q) moderate
- freq (r) of Q within M haplotypes modest to large

Association mapping is only powerful for common
variants

ar

53

Large effect alleles (a large) can leave small signals.
The fraction of the actual variance accounted for by

the markers is no greater than ~ ave(r), the average
frequency of Q within a haplotype class

Hence, don’t expect to capture all of Var(A) with

markers, esp. when QTL alleles are rare but markers
are common (e.g. common SNPs, p > 0.05)

Low power to detect G x G, G x E interactions
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“How wonderful that we have met with a paradox. Now we
have some hope of making progress” -- Neils Bohr

The case of the missing heritability | |

Infamous figure from Nature on the angst of human geneticists
over the finding that all of their discovered SNPs still accounted for
only a fraction of relative-based heritability estimates of human

disease. 55

* “There is something simultaneously
remarkable and encouraging about the
fact that a centuries-old method
requiring no more than a ruler, a pencil
and (I suppose) a slide rule out
performed, by an order of magnitude,
the fruits of the genomic revolution”

o --Ben Sheldon (2013)
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The “missing heritability” paradox

e A number of GWAS workers noted that the sum of their
significant marker variances was much less (typically
10%) than the additive variance estimated from
biometrical methods

* The “missing heritability” problem was birthed from this
observation.

* Not a paradox at all

— Low power means small effect (i.e. variance) sites are unlikely to
be called as significant, esp. given the high stringency
associated with control of false positives over tens of thousands
of tests

— Further, even if all markers are detected, only a fraction ~ r (the

frequency of the causative site within a marker haplotype class)
of the underlying variance is accounted for.

57



Lecture 7
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Binary and Count Traits
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OUTLINE

* Multiple-trait Model

* Repeatability Model

* Maternal Effects

* Generalized Linear Models



Animal Model

N

responses < M \ residuals

incidence  fixed  breeding
matrices effects values

Ac: 0
u ~MVN 0 , O,

e 0 0 Io’
Mixed Model Equations
X'X X'Z B |_| Xy
7"X ZTZ+/)»A“ i 7"y
o. 1-h?
)\'=0;= hZ

)

BLUP: @i =(Z"Z+AA™)"'ZT(y - XB)



Genetic Correlation

Schematic representation of pleiotropy

Genes affecting
trait y,

Genes affecting
trait y,

Genes affecting both y, and y,

Pleiotropic genes affect both y; and y, resulting in a
genetic correlation between the two traits

In addition to pleiotropy, genetic correlations can be
caused also by linkage disequilibrium (LD) between genes
affecting the different traits. LD however is a
‘temporary’ cause of genetic correlation as recombination
can breakdown LD over the generations

Multiple (Correlated) Traits

Genetic | .
correlation alsaz
’hZ
a1
X, h
1
N /Bz
Y:
] Iez
£ Y

Phenotypic correlation:

> r = hlhzrapaz +ee,r

) Y15Ys £
Environmental p— o

correlation




Multiple (Correlated) Traits

The animal model can be extended for the joint analysis
of multiple traits

Let the model for each of k traits be:
yi=XBi+Za, +e,
where j is an index fo indicate the trait (j = 1, 2,... k).
For the joint analysis of the k trait, the model becomes:
y=XP+Za+e¢

with desigh matrices given by:

X, 0 - 0 Z 0 - 0
Xo 0 X, - 0 7 0 Z, - 0
0 0 - X, 0 0 - Z

Multiple (Correlated) Traits

In this case it is assumed that:

a @ A 0
Var[s]‘[ 0 2@1]

where 6 and X are the genetic and residual variance-
covariance matrices, given by:

2 2 Ce
O-a, O—alaz U O-alak 061 08183 O'elek
2 2 -
Oaa 0, Oy 2‘ Og.¢, o-fz Og,e,
- 1 o a2
Jal“k O-a-_;ak O-ak E &y £28) £

Note: ® represents the direct (Kronecker) product



Multiple (Correlated) Traits

The MME for multi-trait analyses are of the same form
as before, i.e.:

X (' @nX X (3 eIz B
ZE'eDX Z(E'@DZ+G oA |a

_|¥@E " eny
Z(Z '@y

from which the BLUEs and BLUPs of B and a can be
obtained.

Multiple (Correlated) Traits

The dimensionality of multi-trait MME, however, can
become a hurdle for solving it when more than two or
three traits are considered

An alternative for the analysis of multiple fraits is to
use a canonical transformation of the traits, which
consists of transforming the vectors of correlated
traits intfo a new vector of uncorrelated variables

In such case, each transformed variable can be analyzed
independently using standard single trait models, and
subsequently the estimated breeding values are
transformed back to the original scale of measurement



Repeatability Model

Repeatability Model

For the analysis of repeated measurements,
environmental effects can be partitioned into
permanent and temporary effects

In this case, the mixed model, usually called
'repeatability model’, can be written as:

y=XB+Za+Wp+e

where p ~ N(0, I0,?) is the vector of permanent
environmental effects, with each level pertaining to
a common effect to all observations of each animal



Repeatability Model

It is often assumed that a, p, and g, which are
independent from each other

Under these assumptions, the MME becomes:

X'X X'Z X'W B X'y
ZX 7Z2+i,A7" W al=|2Zy
WX  WZ  WW+LI]||p Wy

th ) — 2 /2  — 2 2
with Z,=0,/0; and J,=c}/a;

Repeatability Model

An important definition related to repeated
measurements refers to repeatability (r), which is
given by the intraclass correlation, i.e., the ratio of
the within-individual (or between repeated
measurements) to the phenotypic variances:
o, +0, 0, +0,
r= 2 2, 2. 2
o, 0,+0,+0;,

The repeatability coefficient measures the
correlation between records on the same animal, and
so it is useful for example in the estimation of
producing ability and an animal



Maternal Effects

Maternal Effects

There are some traits of interest in livestock, such
as weaning weight in beef cattle, in which progeny
performance is affected by the dam's ability to
affect the calf's environment, such as in the form
of nourishment through her milk production, the
quantity and quality of which is in part genetically
determined

In such cases, dams contribute to the performance
of their progeny not only through the genes passed
to the progeny (the "direct genetic effects") but
also through their ability to provide a suitable
environment (the “indirect genetic effects")



Maternal Effects

Maternally influenced traits can be analyzed by using
a model as:

y=XB+Za+Km+ Wp+ &

where m is a vector of random maternal genetic
effects, and p is a vector of random maternal
permanent environmental effects

It is assumed that m ~ N(O, Ag,?) and p ~ N(O, Io,?),
and quite often a covariance structure between
direct and maternal additive genetic effects is
considered, assumed equal to Ag,

Computing Strategies

Solving the MME does not necessary require the
inversion of the coefficient matrix C

More computationally convenient alternatives for
solving high dimensional systems of linear equations
include methods based on iteration on the MME, such
as the Jacobi or Gauss-Seidel iteration, and the
“iteration on the data" strategy, which is commonly
used methodology in national genetic evaluations
involving millions of records



Generalized Linear Mixed Models

The models discussed so far assumed a Gaussian
(normal) distribution of the phenotypic traits

Often however phenotypic traits are expressed a a
binary (e.g., pregancy in dairy cattle, or germination
in seeds) or count variable (e.g., litter size in swine,
or fruits in trees)

In such cases the linear (Gaussian) model is not

appropriate, and a generalized linear model (6LM)
approach is necessary

Generalized Linear Mixed Models
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Generalized Linear Mixed Models

GLM can actually model outcomes (response
variables) generated from any distribution from

the exponential family, which includes the normal,

binomial, Poisson and gamma distributions, among
others

The GLM consists of three elements:

1. Probability distribution from the exponential
family.

2. Linear predictor n = Xp

3. Link function g such that E(Y) = p = g!(n).

Generalized Linear Mixed Models

Notice that the Gaussian model is a specific case
of the GLM, with the normal distribution and an
identity link function

In the case of Generalized Linear Mixed Models,
including the applications in animal/plant
breeding, the model is defined as:

1. Probability distribution from the exponential
family.

2. Linear predictor n= Xp + Zu

3. Link function g such that E(Y|u) = u = g'l(n)

1



GLMM in R

GLMM can be implemented in R using the
package Ime4

Ime4, however, assumes independence
between levels of random effects, and as
such it is not suitable for many animal/
plant breeding applications

pedigreemm is an R package that uses Ime4
with a Cholesky decomposition strategy to
overcome this problem

pedigreemm

An R package for fitting generalized linear mixed
models in animal breeding

tye = E[Y|U =u] u~N0.Ac?)

u

u =L — glpyy) =ZL(Lu)+ Xp=Z"u" + Xp

/

A=LL u’~ N0, I57?)

(Harville and Callanan 1989)
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Technical note: An R package for fitting generalized linear
mixed models in animal breeding'

A. 1. Vazquez,** D. M. Bates,i G. J. M. Rosa,* D. Gianola,*}{ and K. A. Weigel*

*Department of Dairy Science, fDepartment of Statistics, and fDepartment of Animal Sciences,
University of Wisconsin, Madison 53706

©2010 American Society of Animal Science. All rights reserved. J. Anim. Sci. 2010. 88:497-504
doi:10.2527 /jas.2009-1952

Data Set 1. Milk production records of 3,397 lactations from first- through fifth-parity Holsteins were avail-
able. These records were from 1,359 cows, daughters of 38 sires in 57 herds. Records are in the milk data set in the
pedigreemm package. The data were downloaded from the USDA site (http://www.aipl.arsusda.gov/). All lactation
records represent cows with at least 100 d in milk, with an average of 347 d. Milk yield ranged from 4,065 to 19,345
kg estimated for 305 d, averaging 11,636 kg. There were 1,314, 1,006, 640, 334, and 103 records for first-, second-,
third-, fourth-, and fifth-lactation animals, respectively. A 5-generation pedigree of the cows with a total of 6,547
animals was used in the analysis (http://www.aipl.arsusda.gov/). The pedigree information is available in the ped-
Cows and pedCowsR pedigree objects also included in the package; the second one is a lighter pedigree (with 70%
of the information on pedCows). The milk production data used in the first 2 examples are described below.

pedigreemm example

13



Lecture 08:
Associate effects models, kin/group
selection, inclusive fitness

Bruce Walsh lecture notes
Introduction to Mixed Models
SISG, Seattle
19 =21 July 2017

Associative effects models

* A very powerful recent development in quantitative genetics
(although the idea dates back to Griffin’s work in the 1960s) is
the notion of direct vs. associative (or social, or indirect genetic)
effects

* This idea unifies kin and group selection, offers models for the
evolution of social (group-level) traits, and shows why selection
can often fail

* The basic idea is that the phenotype of a target individual is a
function of some intrinsic direct value and also the phenotypes
of those individuals with which it interacts.



Direct & Associative effects

e Consider egg production from chickens
raised in cages. Production is a function of
both a chicken’s own genetics and the
environment (her other cage-mates)

— Direct effects = intrinsic egg production
— Associative effects = competitive ability

e Suppose our focal individual (i) interacts with

n-1 others in a group

2 = Pg i+ Z Pj s

» 3
¢

Direct and associative effects
can be antagonistic

e Consider a plant with a trait that allows it to
more efficiently garner resources

e This gives it a high direct effect but a
negative associative effect --- it reduces the
trait values in those individuals with which it
interacts

® Thus, the best performing single plants can
have very low average plot performance



Example 20.1. This point was made in a classic paper by Weibe et al (1976), who examined
yield in mixed- versus single-genotype plots of barley. They observed that genotypes which
yielded well in mixed stands had poorer yield in pure stands, while those genotypes that did
pootly in mixed stands had the highest yield in pure stands. In our frameworle, we could
imagine that lines which do well in mixed stands have both high direct effects and high
negative associative effects, suppressing the phenotypes of their neighbors. When grown in
a pure strand, the high negative associative effects suppress plot yield. Conversely, lines that
perform pootly inmixed strands might have low direct effects but high positive associative
effects, so that the phenotypes of their neighbors are enhanced (or atleast not hindered). When
grown as a pure strand, these high positive associative effects more than compensate for the
low direct effects, increasing yield.

Roots of associative-effects models
trace to maternal effects

* Maternal effects are a classic example of
associative effects (maternal performance).

e Two different approaches to model maternal
effects
— Falconer model: an observed trait value (e.g., litter
size) influences offspring. Trait-based

— Willham model: Maternal performance is a latent
(unobserved) variable, and hence we don't need to
specify it. Variance-component based. We focus on
these models here.



Trait-based vs. variance-
component models

¢ Trait based:

— Trait values of associative effects in group
members are observed

* Variance-component models

— A composite latent (unmeasured) variable
for associative effects is created

Variance components

Mother Offspring

Inferred, not

2 observed

_ Zog =W+ Ay +E +P
Composite T

Maternal Not observed
Maternal Performance

Traits



Trait-based models
Mother Offspring
@ Ad,l Ed,l
9
@ X z = observed value

Zo,1=M+Ad,1+Ed,1+qj z  +W¥. .z +1Pl¢kzm’k

1,1 “m,i 1) “m,j

Maternal
Traits

Decomposition

e Consider the phenotype of a focal individual

e Sum of a direct effect and an associative
effect

e Both of these can have a breeding value and
an environment (residual) deviation

e The breeding values of the direct &
associative effects can be correlated

* This is a multiple-traits problem



n
Zy = ])d.." + E ])".S
N

* i's phenotype z; is the sum of its direct effect (Py))
plus the sum of the associative (or social) effects
(Pg;) from its n-1 group members

pd,lp,
0.

0

zy=PFq ) +F2+PF3+PFg4

Breeding values for direct (A) and
associative (A,) effects

e Can express the phenotype of i in terms of its
direct breeding value (A4;) and the
associative breeding values (A, ) of its group
mates

Zi = WU+ ("4(1; + ]5(1,') + Z (‘45.1' T ];ql)

J#i

2=+ Ag, + Z A, + e, e; = Eq, + Z ESJ

JFi
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Total response

The trait mean equals the mean of the direct effects
plus the means of the associative effects,

fo =pa, +(n—1)ua.

Total response is the sum of the response R} in the direct
breeding values plus the sum of the responses R, in the
associative effects breeding values,

R.=Rq+ (n—1)R,

Total breeding value

The key to predicting response is the
total breeding value of an individual, where

‘4']‘.1' — "4([,-." + (”- — 1 )‘4<

Note that part (A, )
of the total breeding value
of i never appears in its

%1
/\ . phenotype. Must either
As.l Ag |

Aq |

use informative from relatives

or the group to estimate it.
AT 1 =Aq) +3Ag)



h2 and 12

e 12, the analog for h?, is the ratio of the total
breeding value to the individual phenotypic
variance
— 1 = Var(Ay)/Var(z)

e Note that, unlike h?, 2 can exceed one,

e Why? A potentially large fraction of A; never
appears in z, and hence Var(z)
— Var(A;) = Var(Ay) + (n-1)Var(A)
— 12 =Var(Ay) /NVar(z) + (n-1)Var(A)/Var(z)
— =h?+ (n-1)Var(A)/Var(2)

BLUP estimation

e While the total breeding value cannot be
estimated directly from an individual's
phenotype, using an appropriate mixed
model, we can obtain

— BLUPs of Direct breeding values (Ay)
— BLUPs of Associative (or social) BVs (A,)

— REML estimates of 62(Ay), 0%(A), and the
direct-associate effects covariance o(A, A,



This works: Muir's result

® Bill Muir (Purdue University) selection on
six-week weight in Japanese quail over 23
generations using two different schemes
— BLUP selection on estimated direct BV (D)
¢ Denoted by D-BLUP

— BLUP selection on estimated total BV
® Denoted by C-BLUP

120 e
[0 === = total BV T
“_L:Erﬁ 0o o oo~ C
1001 2 =TT O [:* *" H
E CL“:r—"“, 2k - B
.‘E A_—-,.; ﬂi D
g w0 0 g * .
70 o
60 >
5(
1 g | 13 1 19 1T 23
HATCH

Weighted increased under selection using total

BV (C), decreased under selection using
direct BV (D).
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1.
0.
0.
S 0
2 0.
2 -0.
< -0.
-0.
-1.00
-1.25 H
-1.50
1 3 S 7 9 1 515 17 19 21 23
HATCH

Under BLUP selection on direct BV (D), significant
decline in the mean social value, which over-rode
the positive response in the direct value

Under BLUP selection of total BV (C), both increase
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The mixed model

szﬁ'f'zdad'f' Zsas +e

Example: Individuals 1-4 and 5-8 are half sibs
from unrelated families

/ 1 025 025 025 0 0 0 0\
025 1 025 025 0 0 0 0
025 025 1 025 0 0 0 0

025 025 025 1 0 0O 0 0

A=l 0 0 0 0 1 025 025 0.25
0O 0 0 0 025 1 025 025

0O 0 0 0 025 02 1 025

\o 0 0 o0 025 025 02 1 /



Filling out Z,

* Suppose group one contains individuals 1, 2, 5,
6. The resulting values for these individuals
become
—z;=m+ Ay +tAL+tAsHA, T e
-z, =m+Ap+A,+tAs+A, e
—zZs=m+As+A,+tA, +tA, + e
—zg=mtAgtAGtAgtAste

The result Z, and Z incident matrices become

21

Z=X6+Zdad+zsas+e

1 1 Aay 10000000
22 1 Ay 01 000000
2 1 Ags 00100000

) 24 1 Ags 00010000

L XK= A Ags +Za=lg 0001000 T
% 1 Ads 00000100
27 1 Aaz 00000010
\:g) \1) \.4.,,8} 00000001

Group one contains individuals 1,2,5,6; while group two contains 3,4,7,8.

01001100 Ay
(1 000110 0\ (.4.“_3\
00010011 Ags
00100011 A,y
Zs=ly 1000100 ®7|Aa.
11001000 Ags
00110001 Agn
00110010 \4“_8) -



Lots of hidden variation to exploit

e Bergsma et al. (2008) examined four
traits in 14,000 pigs grown in pens of
6-12 animals.

e Heritability for these traits was
estimated in a model without social

effects,
Growth Back fat Muscle Intale
a?( A) 2583 2.83 7.94 41,275
h? 37 0.36 0.25 041

23

Next, amodel was fitallowing forheritable social effects, z = X3+ Zgaq + Za, + Z.c +e, which
gave estimates of

Growth Back fat Muscle Intake
a?(Ag) 1522 2.75 6.68 16,950
h? 0.21 0.35 0.21 0.17
a?(Ag) 51 0.01 0.03 596
a?(Ay) 5,208 3.19 10.35 68,687
T2 0.71 041 0.32 0.70
Here h% = o0?(Aq)/o?(2), while 72 = o2( Ay )/0?(2). h% measures the response potential under

phenotypic selection, while 72 > /3 measures the total genetic potential for improvement under
specialized selection designs.

Growth Baclk fat Muscle Intalee
a?( A) 2583 2.83 7.4 41,275
h? 37 0.36 0.25 041

Hence, for growth and food intake, lots of
additional genetic variation for trait response
lies “hidden” in associative effects.

24



Consequences

* How can we exploit this variation in
breeding?

* What are the consequences for
evolutionary biologists?

* Need to consider selection response
— Has both a direct and associative effects

com pon ent
25
2 = p+ (Ag + Ea) + ) (A + Ey) (20.1b)
FFi
We can write this compactly as
% =+ Ag;, + Z.—lsj +e;. where ¢ = Eg, + ZEsj (20.1c)
3# Jj#F

Since the environmental values have expected value zero, the mean phenotypicvalue in the
group is just
fo = pra, +(n—1)pa, (20.1d)

Furthey, the change in the mean trait value within a group following selection is

total J— Ape =Apa, +(n —1)Apa, (20.1¢)
A Y.,
response :
Associative
Direct response
response
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Example 20.2. Consider a trait in a group of four (unrelated) individuals, where (for illus-
trative purposes) we assume no environmenta values so that Py = Az and P, = A,. The
populationmean is 20, and the four group members have the following breeding values for
direct, associative, and total effects:

Individual Aa A Ar Zj#i As; 2
1 9 -4 -3 4 33
2 5 -1 2 1 26
3 -6 2 0 -2 12
4 -8 3 1 -3 9

Sincen = 4, Ar = Az + 3 A.. The sum Zj#i As; represents the contribution of the
associative effects of the other three individuals to s value. For example, for individual 1,
the contributions from individuals 2 through 4 is -1 + 2 + 3 = 4. From Equation 20.1¢, the
phenotypicvalue we would observe is

,‘,,- = 2() + .-'14,» + Z-‘".Sj
i#

Individual one has the largest direct effect (9) and the largest observed trait value (33). This
individual also has themost unfavorable associative value(-4), and the smallest total breeding
value (-3). Conversely, it has the largest contribution (4) to its trait val ue from the associative
effects of the other group members. Its high trait value is due to this combination of a high
direct effect and a high contrib ution from the associative effects of the other group members.
[ts unfavorable associative effects do notappear inits own phenotype, butrather are expressed
in the trait val ues of the other group members. As a result, its own phenotypicvaueis a poor
predictor of Ar.

Individual Aa Ag Ar Zj;&i Asj 2
1 9 -4 -3 4 33
2 5 -1 2 1 26
3 -6 2 0 -2 12
4 -8 3 1 -3 9

[f the next generation is formed by crossing the two individuals (land 2) with thelargest trait
values, the expected offspringmean is 20 + (-3+2)/2 = 19.5, the mean plus their average total
breeding values. Although the two largest individuals were chosen, the populationmean de-
creases. Conversely, crossing the two smallest individuals gives an expected offs pring mean of
20+ (0+1)/2=20.5, increasing the mean. While the two smallest individuals have the smallest
direct effects, they also have the most favorable associative effects, and hence give a more
favorable response. The greatest expected response occurs by crossing the two individuals (2

and 4) with the largest total breeding val ues, for an expected mean of 20 + (2+1)/2 = 21.5.
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Response: It's about covariances

Selection response is a function of the
covariance between our unit u of selection and
the total breeding value, o(A+, u)

— R=1%0(A;, u)/ ou) (generalized breeder’s Eq.)
The “unit” could be a

— single individual (individual selection)

— The group mean (group selection)

— Some index of these

Members of a group can be

— Unrelated

— Related (kin selection)

All these considerations influence o(A;, u)

29
The covariance between an individual’s phenotype and total breeding value is
(2. Ar,) = rr(p + Ag; + ZAgj +e;. Ag, + (n — 1).43,.)
. J#
General expression
— rr(.—ldi. Ag; +(n — 1).—13i) -+ Z ﬂ'(.-lsj..-ldi + (n — 1).—13,) (20.4a)

s
For now, we assume unrelated group members, in which case the covariances in the sum-
mation are all zero, giving Group members unrelated (r = 0)
a(2 Ar) =a%(Ag) + (n — D)o (A4z AL) (20.41h)

If the direct and associative effects are uncorrelated, this reduces to ourstandard result that
the covariance between an individual’s phenotype and breeding value is just the additive
genetic variance (in this case, of direct effects). By contrast, the variance of the total breeding
value becomes

o*(Ar) = a*[Aq+ (n —1)A,]
= 02(Ag) + 2(n — )a(Ag A) + (n —1)20%(A,) (20.4c)
= a(z Ar) + (n —1) [20(Aa. Ao) + (n — 1)a*(4,)] (20.4d)

Group members unrelated (r = 0) 30



Now consider the ph'enotypic variance,
0 =a? (Pd,. +y PJ) (20.5a)
A

Assuming (for now) that the group members are unrelated, so that o(Py,. P.;) = 0. For a
group of size n Equation 20.5a red uces to

0 = a?(Py) + (n — 1)o*(P,) (20.5b)
=02(Ag)+ (n = 1De?(A) + 02(Eq) + (n — Do?(E.) (20.5¢)
= a2(Ag) + (n — Da?(A,) + a%(e) (20.5d)

where ¢ is given by Equation 20.1c. With the phenotypicvariance in hand, we can define the
heritability of the direct and associative effects as

0*(Aa) and h? =

2 _
hy = o =

(20.6a)
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Example 20.3. Consider a traitin a group of 10 unrelated ind ividuals, with (TP =10,0% =
1, and both direct and agsociative effects have modest heritabilities measured on the scale of
the effect themselves (hd = 0.4, h = 0.3). To simplify matters, assume o(A4. A) = 0.
Applying Equation 20.5b, the res ultmg phenotypicvariance is

02 =03 +9-03 =10+9.1=19

From Equation 20.4¢ the variance in total breeding value becomes

04, =03, + 903, =h}obh +9 - h20%h =4+81.0.3=283,

T
giving T2 = 28.3/18= 157.

Areal world example oflarge potential differences in lzdvexsus T2 is survival days in chickens
(Bljmq et al. 2007b). Ignmmg associative effects gives a heritability % of 6.7%, while when
using amixed model that incorporates associative effects (detailed later in the chapter), the
estimate of 72 was 20%, a threefold increase. Hence, under the conditions in the study, roughly
two-thirds of the heritable variation in the trait arises from interactions between individuals
and is thus hidden from standard analyses which ignore these. As discussed below, this
component is only fully accessible under individual selection if the group includes relatives.
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One of the key results when associative effects are present is that individual selection can
resultin a reversed response, while group selection always results in a positive response
(although it may be far from optimal). These points were clearly made by Griffing (1967)
for the simple case of two interacting, and unrelated, individuals within each group. For
selection on individual phenotype, the response becomes

R=— [0%(Aa) + 0(Aa. Ad)] (20.11a)

7
.
A negative covariance between direct and associative effects reduces the efficiency of se-
lection, and if sufficiently negative, gives a reversed response. This loss of efficiency occurs
because the only information anindividual’s phenotype contains about theirbreeding value
for associative effects is that provided by the covariance between direct and associative
breeding values (which can be negative). Conversely, if we select based on the mean of a
group, we are selecting on both direct and associative effects to improve trait value. For the
case of n = 2, Griffing obtained the expected response as

R—

[2(Aa) + 20 (Aq. As) + 0%(A)] = a*(Ar) (20.11b)

7
20(z) 20 (%)

While groupselection alwaysgive anon-negative response, if the associative effects areweak,
this approach is very 1nefhc1ent1elat1ve to individual selection. For example in the absence
of associative effects, 0%(%) = 72(2)/2, and Equation 20.11b reduces to 70 (4,) )/[V2a(2)], or
1/v/2 = 0.701 of the response under individual selection.

p2v)

Covariances with related
group members

(2. Ar) = ro®(Ar) + (1 =) [0 (Aa) + (n = 1)o(Aa. Ao)]

0?(2) = 0%(Aa) + 0> (Ea) + (n — 1) [0%(A) + 0%(E.)]
+(n—1)r[20(A.. Ag) + (n —2)a2(Ay)]
=a*(2|r=0)+(n—1)r[20(A,. A5) + (n — 2)a*(A,)]

Group nrhe.mbe}.s re‘Iateci‘(r > ()

The response to selection is simply the change in the mean total breeding value, which
(from Chapter 10) is the within-generation change in the phenotypic mean after selection
(the selection differential S) times the slope of the regression of Az on phenotype 2,

po tdr) g o Ar), (20.14)

a2 T,

with the second formulation following from the standard identity that S = 7,7 (Equation
10.6a). Forn = 2and r = 0, we recover Griffin’s result (Equation 20.11a).



Example 20.4.  Muir (2005) estimated variance components for six-week body weight in
Japanese quail (Coturnix cotumix japonica) housed in groups of n = 16 per cage. REML esti-
mates of the genetic variances were 62(A4) = 33.7and 02(A,) = 287, whilea(A4. A,) =
—5.5. Under these values, the predicted response to individual selection in a group of 16
unrelated individuals is

R = —[0*(As) + (n — 1)a(A4 A,) ]:—[33,+1r (—5.5)] = —48.8

T, T,
The strong negative covariance between direct and social (competitive) effects results in an

expected reversed response if directional selection is used, as the positive gain from improve-
mentof direct effects is swamped by the negative effects from the correl ated response in social

values.

The presence of relatives within the group results in some fraction of 7?(AL) being incorpo-
rated into the response under individual selection. Suppose the group of 16 consists of two
half-sib families. In this case, the average relationship is 0.125, and from Equation 20.12d the
resulting covariance between phenotype and total breeding val ues becomes

a(2. Ap) =a(2. Ap |r=10) —1)r [n (A . Az + (n — 1)(72(.43)]
:—48.4+1.) ()12)( +15.2.87) =21.6

Simply by using groups of relatives (as opposed to groups of unrelated individuals) allows

individual selection to give an expected positive response.

Individual selection: Direct vs. Associate response

Here unit of selection u = z, the phenotype of an individual

Ay 2 A, 2
R.— Rat (n—1)R.. where Rg— 2 - )7 and R, 2 - )7 (20.15)
Here
o(Ag2) =0 (.4(,. Aa+ Y Ayt () — 02(A) + r(n — 1) (Ay. A,) (20.15h)
177
while
o(A,. 2) = rr(As. At A+ ,,) — (A A,) + r(n — 1)0%(A,) (20.15¢)
157

Unless (i) A,, A4 correlated OR (ii) group members are
relatives, value of z provides information on Ay, but NOT on
its A, value
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Example 20.6. Consider the response in a family of half-sibs from Example 20.5, where the
expected total response was 15.39 7. What were the contributions from the direct and social
response? Forthe values used in that example,

7(Ag.2) = 02(Ag) + r(n — Do(Ag. A) = 500+ 0.25. 5. (—39.5) = 450.63

and
0(Ae.2) = 0(Ag. A+ r(n — 1)o?(A) = =395+ 0.24- 5- 50 = 23.0

Recalling (for half-sibs) that 02 = 1350.6, Equation 20.15 gives the two components of re-
FponsEse 450.63 23

A r 0 )

DU

Ry= ——7=12.267. and R.= ——7= 0637
4 /13506 V1350.6

Hence, 80% (12.26/ 15.39) of the total response was due to response in direct effects, while
20% was from the response in social effects (5:0.63/ 15.39). Under individual selection on half
sib families, both the mean direct and mean social values improved. By contrast, if group
members are unrelated, then (Example 20.5) (Tg = 1150, while

a(Ag.2) = 02(A,) =500, (A, 2) =0c(A4. A) = —39.5
giving responses of

5 —30.5
_ 0 477 and Rszﬁ
VII50 V1150

—1.1657

~I
I

While the total response in this case was positive, thelarge direct response (1474) was sig-
nificantly offsetby a decrease in the mean social environment (5 - [—1.16] = —5.83), giving
the total response as (1474 - 5.82) 7 = 8.927. The lack of relatedness implies no direct selection
involving 0%(A,), and hence the social breeding val ues only change through their correlation
with the direct val ues, which in this example was negative.
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Maternal effects

2 = Py, + Pm,j (20.16a)

In the absence of inbreeding, r = 1/2 for this group (motheroffspring) with n = 2. From
Equation 20.12¢, the covariance between phenotype and total breeding value (Ar = A +

Am),
oz Ar) = 02(Ag) + (3/2)0 (Ag. A) + (1/2)02 (A,). (20.16b)

while Equation 20.13a gives the phenotypic variance as
a2(2) = 0%(Ag) + 0 (Ag. AL) +02(AL) + 02 (20.16¢)
giving the resulting response to selection as

total p 7 Ar) 0%(Aa) + (3/2)7 (Ag. Am) + (1/2)0° (Am) .

7=
T \/(72(:14)+0'(.-‘1d..-‘18)+ﬂ'2(:18)+0'3

(20.16d)

_0(Aa2) - 0*(Ad) + (1/290(AeAn) - Direct response

R 7(A,,. 2) 7(Ag. Am) + (1/2)0% , Maternal response
m {T_’ o

Group selection

Unit of selection u = group mean

(T(Ari. Z;j) = n(ATi.Z(ATJ. + p,—)) =3 "o (An. Agy) = 02(Ar) > ny;

i=1 i=1 i=1 i=1

_ 02(_47)(1 Y ,-,-j) (20.19)

i#
If group members are unrelated, then

n

n(AT,.. > .:j) = o2(Ar) (20.19b)

=1

which implies o(A7,.7) = 0%(Ar)/n. Hence, group selection actson the totalbreeding value
of an individual, rather than on only part of this as is the case with individual selection (e.g.,
Equation 20.12e). The associative effects contribution to the total breeding value does not
influence the phenotype of the focal individual, but does influence the phenotype of other
group members. Group selection directly targets these effects. If all members have the same
degree of relationship r,

rr(AT,..Z:J-) =a?(Ar)[1+ (n —1)r] (20.19¢)

1=1

Key: group mean always correlated with A; 40



Group selection -- role of relatives

~

1 . . Il —r
a(Ar,.T) = I—}n“)(;l;r J[1+ (n—1)r] = a?(Ar) (r + , )

n

Group of size n, with r = average
relatedness among group members

Note that zbar directly correlated with
A;. Correlation increases if members are
related (r > 0)
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Response under group selection

o(Ap.Z) a?( Ap)r,, )
P (01_ ) ¢ _ : (A1) g
04 (%) o (A1)rn + 02pn
R PO 0.
o(2) Vo2 (Ar)r, + 02p,
1 — | —
P =7+ and p, =p+ —L

1 I

r = genetic correlation

p = environmental correlation among group members



Example 20.7. Consider group selection using Muir’s quail data from Example 20.4. Here
0%(Ay) = 33.7,0%(A,) = 2.87,0(Ayq. A;) = —5.5,n = 16. Muir estimated the residual
variance as 02 = 69.0, while Muir’s model assumed p = 0, giving p,, = 1/n and hence

o2pn, = 69.0/16 = 4.32. Applying Equation 20.4 gives the total additive variance as

o2(Ap) = 0%(Ag) + 2(n — 1)o(Ag, A) + (n — 1)%20%(A,)
=33.7+30-(—5.5) +30% - 2.87 = 2451.7,

while Equation 20.26b gives the response as

o?(Ap)r, _ 2451.7 - ry, _
.= 1= 1
\/0'2(.4]‘)7'” =+ Uz[)n \/24517 “Tp T 4.32
For groups of unrelated individuals, r = 0 and 7, = 0.0625, and the response becomes R=
12.27%. For half- and full-sibs, r,, = 0.297 and 0.531, with responses of 26.97 and 36.07%, a two-
and three-hold increase relative to a group of unrelated individuals.
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Group + kin selection

Unit (_)f sel_ec’uon L=2+9) 2
u = lis an index oy

This index can also be written as

n
L=(1-gx+g) 2z=(1-9g)+gnz
7=1

ol Ar) : g = group selection
o(l)

R = r = kin selection

o(Ar,I) =g+ r+ (n—2)gr] o?(Ar)+(1—g)(1—7) [02(/1(1) +(n—1)o(As, Ad)]
g & r have symmetric roles

Key: Use group + relatives to maximize Cov(u, Ay)
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Consequences: Evolution of fitness

Examining the expected change in mean fitness is straightfoward. Using previous re-
sults, we simply take the trait being followed as individual fitness (2 = ). From Equation
20.1¢, the fitness of individ ual 7 becomes

Wi=p+ Ag + Y Auy + e (20.47a)
i

Ag is the direct breed ing value of fitness, while A, is the social breeding value (how a foca
individual influences the fitness of others in its group). As above, A,, does not contribute
to W;, while .4#] for j # i does. Likewise, as before the total breedingvalue for fitness of an
individ ual is simply

AT, = Ay, + (n—1)A,, (20.47h)

with variance
dHAy) = d*(Ag) + 2(n — Do Ay Ay + (n— 1)20%(A) (20.47¢)

The first term is the classical additive geneticvariance in fitness in the absenceof associative
effects. When interactions are present, there is the potential for substantially more heritable
variation in fitness. Indeed, the total genetic variance in fitness has the potential to exceed
the actual variance in individ ual fitness (02(Ay) > o), as much of the variation is hidden
in interactions with others, which do not appear in one’s individ ual fitness.

Mean fitness can decrease
when associative effects are
strong

Applying Equation 20.12¢ gives the response in terms of the variance components as
1 2 2
Ry = = [0%(Aa) + (n — 1)(1 4+ r)o(Aa. As) +r(n — 1)%6% (AL)] (20.48c¢)

Just as we have seen forother traits, whenr = 0, the possibility of areversed response occurs
if the breed ing value for direct and social effects on fitness are sufficiently negatively corre-
lated. Hence, under rather realistic conditions, individ ual selection can result in a decrease
(and a potentially rather significant one at that) in mean fitness.

If the BVs of direct and associative effects
on fitness are sufficiently negatively-correlated,

can get a reversed response -- fitness goes down
46



[ronically, even though a negative response can occur in the presence of associative
effects, there is actually more total variance potentially available when they are present, as
a?(Ay) = 0%( Ay). However, only a fraction of this may be accessible to mdividual selection,
and this fraction (being a covariance rather than a variance) can be negative. The key for
exploiting the available variance is either selection among groups and/or the presence of
relatives in one’s group of interacting individ uals.

To see this, note from Equation 20.12e that we can express Equation 20.48c as

Ry = % (1'02(.47~] +(1—r) [nz(.»‘ld) +(n —1)a( .44..43)] ) (20.48d)
The term in square bradcets represents the res ponse in a group of non-rel atives. When inter-
actions occur among kin (» > (), then for sufficiently close relatives, the response becomes
positive (mean fitness increases) even if it is negative when r = (0. At the extreme, when
r = 1 (al interactions are among clones), the response in mean fitness is simply o?( A4) /W
and all of the heritable variance in fitness is utilized. Conversely, when interactions occur
among unrel ated individ uals, only a fraction of this genetic potential is exploited. This ob-
servationlead Bipna (2010a) to suggest that when heritable fitness interactions are present,
the key to evolutionary success is interacting with rel atives. The reason for this is dear from
our previous discussions. With interactions among unrelated individ uals, one’s phenotype
(here fitness) provides very little information about their social breeding value. With inter-
acting kin, the breeding values of the kin's sodial effects influences your fitness, and these
are positively correlated (viakinship) with your ownbreedingvalue forsocial effects.
4/

Direct and social effects
responses

Finally, we can decompose the total response in fitness into response from changes in
the mean of the direct effects and response from changes in the mean of the social effects.
Equation 20.15a gives

Ryw =Rwa+(n— 1Ry, (20.49a)

Recalling Equation 20.48a, Equations 20.15b,¢ give these response components as

a?(Aq) +r(n — Do Ag. A)

Rl"’.d = T

(20.40b)

Ry, — A0 A+ # — 1)o*(A,) (20.49¢)
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Altruistic traits: An example of a
reversed response

Example20.16. Haldane (1932) cained the tenm altruisti ctrait to denote abehavior (ortrait)
thathamms an individual, butbenefits others. The classic example are alarm calls — others in
a goup are wamed (increasingly theirfitness), butatsame expense to the individual making
the call (a direct effect decreasing fitness). Note that the increase in an altrustic traitis an
example of a reversed response, as the traitlowers the fitness of the individual that bears it.
Whatare the canditions for such traits to spread? Intenms of ourfitnessmodel wathassociative
effects (Equation 2047a), we can rephrase this as the conditions for the mean value of A, to
increase, which are givenby Equation 20.4%. Fram the definition of altnism, of Ag. A <0,
as perfoming an altruistic act decreases your direct fitness while increasing the fitness of
those in your grou p. Equation 204% shows thatanecessary (butnot sufficient!) candition for
altruism to evolve underindividual selecionis» > (), 1.e,, individuals interact in groups of
relatives.

As painted out by Bijma and Wade (2008), we can view a( A,. A,) as the cost (—¢) for an
altruistic act towards others in your group. Conversely, the altruistic contnbution to you
from others in your groupis (n — 1)a?(As) = 0, which we denote as the benefit i. With
these definiions, from Equation 204% the candition for altruism to evalve underindividual

selectionis just
—c+rb=0. or r=bfe

This is the classic Hamiltow's rule (Hamilton 1963; 1964a,b).

Inclusive Fitness

As Equation 20.47a lllustrates, when heritable interactions are present, the fitness of anindi-
vidual depends on both their own genes as well as the genes in others. Hamilton (1964a,b)
suggested that the focus should shift from individual fitness to what he called inclusive
fitness — that component of fitness influenced only by the alleles carried by the focal in-
divid ual. Hamilton argued that individ uals strive to increase their inclusive, as opposed to
individ ual, fitness (also see Michod and Abugov 1980, Grafen 2006). Fommally, the indusive
fitness of an individual is context-specific, and is defined as individual fitness minus any
contributionto that fitness from the group environment plus the effect of that individ ual on
the fitness of others, weighted by rel atedness. While sounding rather abstract, when placed
in an associative effect framewo e, this definitionis quite dear.

From Equation 20.473, for individual 4, A, is the heritable component of individ ual
fitness 1V; remaining when the sodia contributions from others have been removed. The
focal individual’s social breeding value A,, does not influence their own fitness, but the
social effects of other group members do, with the (heritable) contribution to individual #'s
fitness from individual j being A, . The correlation between thebreeding value A, carried
by 7 and the contribution to #'s fitness from j is their relatedness r;, so that ri; A, is the
predicted value of A, given A,,. Putting these together gives the heritable component (i.e.,
breedingvalue) ofi’s inclusive fitness as

n
Aineti = Aa, + Ag, g = Ag, +r(n—1)A,, (20.51a)
J#
where thelast equality malees our stand ard assumption that all group members are equally

related (which is easily relaxed). The resulting variance in the breeding value for inclusive
fitness becomes

02 Ainet) = 02 Ag) + 2r(n — Do(Ag. Ag) + ri(n — 1)26%( Ay) (20.51Dh)



In the absence of heritable associative effects (0%( A, ) = 0) this simply reduces to theadditive
variance in direct fitness. Importantly, note that the heritable component of incdlusive fitness
is not the same as the total breedingvalue Ay for fitness, as

.4'1'_. = Aiperi + (1 —1r)(n — 1).43‘. (20.51c)

Just as Equation 20.49 decomposed the total response into components from direct and
associative effects, we can similarly decompose the change in mean individ ual fitness into
change inmean inclusive fitness plus the residual response. From Equation 20.51¢

Rw = Bwiina+ (1 —r)(n—1)Rw. (20.52a)

so that total response in fitness is the change in indusive fitness plus any response in the
residual of the mean social value (after the effects of group relatives are absorbed into in-
cusive fitness). From Equation 20.48b, the response in the mean incdusive fitness is given

by

By inet = % (W, Ainat) (20.52h)

where

(W, Ainet) = 0 |+ Ag, + Y Ay + e Ag, +r(n — 1)A,,
i#F
= 0%(Ag) + 2r(n — Do(Ag. Ag) + r3(n — 1)20%(AL) (20.52¢)

Thelast line follows by eval uating the covariance in a similar fashion as done throughout
this chapter. Noteby comparison with Equation 20.51b, that this is simply 0% ( Ainx), yielding

(72( Ainet)

T (20.52d)

R Winel =

Hence (under our simple model), the response in mean inclusive fitness is proportional to
the additive variance in inclusive fitness, so that mean inclusive fitness is non-decreasing.
Why, then, can the mean of mdividual fitness decline despite the continual increase in mean
inclusive fitness? The reason is an even faster decdline in the mean (residual) social value.
Recalling Equation 20.49¢ Equation 20.51abecomes

(I —=r)(n-1)

Rll’ - R\l"jn(‘l = W

(n[ Ag. Ag) +r(n — 1)02(.48]) (20.52¢)

Hence, if the covariance between direct and associative effects is sufficiently negative, any
increase in incdusive fitness is more than countered by the dedline in the mean socdial envi-
ronment. Note that increasingly the relatedness of group members decreases the residual
responsebetween meanindivid ual and incusive fitness, whichin turn increases the chances
that individ ual mean fitness increases.

Key: mean inclusive fitness (unlike individual

fitness) is non-decreasing o
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Estimation of Variance Components

ANOVA Estimation

Consider the data set below, related to
observations of half-sib families of k
unrelated sires. The following model can
be used to represent these data:

Vi =W+s; +¢

Sire

Yn
Yi2

YIn1

Yor | -
Yoo | -

}]2n2

Yxi
Yk2

. Yknk

where y;; represents the phenotypic trait observation
of progeny j (j = 1, 2,.., n) in family i, w is a mean, s; is
an effect common to all animals having sire i, and e; is

a residual term




Estimation of Variance Components
ANOVA Estimation

The sire effect s; is equivalent to the transmitting ability
(which is equal to one-half additive genetic value) of sire
i, as one-half of its genes are (randomly) transmitted to
each of its n; progeny.

The residual terms e; refer to additional genetics
effects (such as the effect of dams) and environmental
components.

ind 5 ind 5
It is assumed that S; ~(0,07) and Ci; ~(0,0;)

From the model settings discussed before we have that
Ely;]=u and VaI{Yij] = 03 + Oi

. R R\
The overall sample mean is given by y.. = ﬁz Yi=n 2
1=l = 1=

k 1 1
where N = 2ni ,and .. =— Yy, are sire-specific means.
1= iJ=

The ANOVA approach consists of an orthogonal
decomposition of the total sum of squares (TSS) into
between classes (or, in our case, sires) and within classes

(or residual) components. The corrected (in terms of the
k n;
general mean) TSS is given by: TSS = EE(YU -y.)’

1=l =1



By adding and subtracting ¥;. within the parentheses, the

TSS can be expressed as:
k

TSS = E E[(yij - yi-) + (yi- - y-- )]2

1=l j=I

= 22(}’11‘ _yi-)z + 22(3’} —?..)2 + 222(}/ij _yi.)(yi_ -y..)

It is seen that the last part of this expression is equal to

zero, so that TSS can be written as two components:
k 1 k 1

8SS=% ¥ (¥.-y.)" and RSS=%%(y;-¥.)
which are the sire and the residual sum of squares,
respectively. The SSS term measures the variation of
each progeny family around the overall mean, while the
RSS term measures the extra variation related to each
observation around its sire average

It can be shown that the expectation of these sums of

squares terms are:

Enf )0§+(k—l)0§ and E[RSS]=(N-k)o’
1

1=

1
E[SSS]:(N-ﬁ

so that the ANOVA estimators of the sire and residual
variance components are given by:

-1
1

6§=(N—§2nf) [SSS-(k-1)62] and O7 = 1

(N -k)

RSS

In the specific case of balanced data, i.e. the same
progeny size for all sires, n. =n=N/k and the ANOVA
estimators become:

1

62=1{————sss—6§ 1

and &2 = RSS
k(n—1)

" nl(k-1)




Estimation of Variance Components

ANOVA approach works well for simple models (such as a
one-way structure) or balanced data (such as data from
designed experiments with no missing data), but they are
not indicated for more complex models and data structures

Other proposed methods: expected mean squares approach
of Henderson (1953), and the minimum norm quadratic
unbiased estimation (Rao 1971a, 1971b), among others.

However, maximum likelihood based methods are currently
the most popular, especially the restricted (or residual)
maximum likelihood (REML) approach, which attempts to
correct for the well-known bias in the classical maximum
likelihood (ML) estimation of variance components. These
two methods are briefly described next.

Estimation of Variance Components
Maximum Likelihood (ML) Estimator

Maximum likelihood estimates of the variance
components can be obtained by maximizing the log-
likelihood L(B,G,X) with respect to each element of
6 and Z, after replacing p by p=(X'V'X)"'X'V'y

Alternatively, 6, Z, and p can be estimated
simultaneously by maximizing their joint log-likelihood
with respect to the variance components and the
fixed effects.



As a simple example of maximum likelihood
estimation of variance components, consider the
balanced case (i.e., constant progeny sizes) half-sib
families data set discussed previously, and the
linear model:

Yij=W+S; +¢;

with the same definitions as before, but with the
additional assumption of normality of both the sire
and the residual effects, i.e.:

ind 1

nd
s, ~N(0,07) and ¢, ~N(0,0;)

In matrix notation, this model can be expressed as:

—yl- -ln— -ln 011 On- —Sl- -el-

y2 1n On 1n 0n SZ e2
= vt . . A

yk 1n 0n 0n ln Sk ek

where ¥, =[Yy ¥io ---Yil' represents the vector of
observations of progeny i (i.e., relative to sire i); 1,
and O, represent n-dimensional column vectors of
"s and O’ s, respectively; and € =[e;,€,....e, 1" s
the vector of residuals associated with progeny i



The vector of observations y=[y, y, ... y.]' has then a
multivariate normal distr. with mean vector p=1,p cmd
variance-covariance matrix given by 1. ®(1,021))+I0’ ,

and its density function (from which the likelihood
function obtained) can be written as:

1
QoM I, ®J, 02 +10- "2

p(y|n,0;,00) =

xexp{—%(y—lNu)Tunof +1,07)" (y—lw}
R e |
0. +n0. o

where J =11 isan (nx n)matrix of I’s, and ® is the
Kronecker product

N (N=k) k

=(2m) 2(0)) 2 (ol+no?)? exp{—;(y—w)

(y-lNu)}

The log-likelihood function can be written then as:

1 k n n(yl 2
2022;(“ ye) ZZ o> +n0’.

By taking the derivatives and setting them to O, the
following solutions are obtained:

!‘1=y0~1 6§= 1

1<u,o:,o:>«-@

log(o?) - g log(o? +no’) -

RSS and & =—|=—=-§’
k(n-1) n

from which ML estimates of the variance components
are obtained, except if 0 <0, in which case the
estimate is set to zero

ML estimates of variance components are biased
downwards as they do not take into account the degrees
of freedom used for estimating the fixed effects



Estimation of Variance Components
Residual Maximum Likelihood (REML) Estimator

Restricted (or residual) maximum likelihood approach
(REML): corrects the bias associated with ML
estimates by taking into account the degrees of
freedom used for estimating the fixed effects

REML maximizes the likelihood function of a set of
error contrasts d = Ly, where L is a[n x (n - p)]
full-rank matrix with columns orthogonal to the
columns of the incidence matrix X

The vector d follows a multivariate normal
distribution with null mean vector and variance-
covariance matrix L'™VL = LT(Z6Z™ + X)L. Note that
the distribution of d does not depend on p.

The residual likelihood function for the variance
components is then:

L(G,X|y) = (2m) " [L'VL["? exp{— %dT (LTVL)‘ld}

Another approach for obtaining the residual
likelihood function for the variance components is
by integrating the fixed effects out of the ‘full’
likelihood function, i.e.:

as illustrated in the following example.



Recall the balanced half-sib families data set, and
its associated likelihood function:

N (N ) k

L(w,0,00) = (2m) 2(07) * (0:+nay) 2
1 n(y. -w’
xeXp{— 622(% yi.) 22 " }

Its residual likelihood is then:

L(0?.07) = [L(1,0Z,02

N (N-k) k

=(2m) 2(0?) 2 (0! +no?l) 2

xexp{ 622(}’1J Vi) }fexp{ Zrl((jz]l+—r$§2

which is equal to:

N (N-k) k

L(c2,00)=(2m) 2(07) * A2

L. _ [ A
- - - - 20—
xeXP{ 20 Z ;: (Y5 =) }eXp{ 2.2 (V. —w) } ]

where )\ =0? +no’.




By taking the derivatives with respect fo A
and 0’ , and by using the invariance property of
maximum likelihood estimators, the following
solutions are obtained:

! sss-47
(k-1)

2= LRSS and &7-
k(n-1)

1
n

(o}

S

which are the REML estimates of the variance
components, except if 62 <0, i.e.if

(k-1)
(n-1)

SSS < RSS

Explicit forms of ML and REML estimators are
often not available for more complex mixed
effects models

ML and REML estimates are then generally
obtained by iterative approaches such as the
expectation-maximization (EM) algorithm and
Newton-Raphson-based procedures




Bayesian MCM
Methods

Table A.1 Continuous distributions
Distribution ~ Notation Parameters Density function Mean, variance, and mode
" 8 ~ U(a,b) boundaries a,b _ E(6) = 228, var(f) = =2l
Uniform 2(6) = U(dla, b) with b > a p(0) = g5, 0 €[ab] no mode "
6 ~ N(p,0?) location _ \ 2 E(8) = p, var(8) = o*
Normal (8) = N(6Ju, o?) scale o > 0 p(0) =z exp (~ 7 (0 - 0)?) mode(8) = u
Multivariate z(;)i(‘l“i(za?u %) symmetric, pos. def., p(8) = (2n)~4/2|B|~1/2 E(f) = p, var(8) = &
normal (implicit dimension ) d x d cov. matrix £ x exp (—3(6 — )T (6 - ) mode(6) = p
E@) =§
6 ~ Gamma(a, ) shape a > 0 — B8° ga-1,-80 - a
Gamma. p(0) = Gamma(f|a, 8) inverse scale 8 > 0 »(6) = l‘%?aa e, 6>0 var(f) = 1
mode(6) = =54, fora>1
E@0) = 2, fora>1
Inverse- 6 ~ Inv-gamma(a, 8) shape a >0 o —8Je ot
gamma »(8) = Inv-gamma(f|a, B) scale >0 () = T%To (+e512, 6>0 var(6) = lu-yha—zf‘a)Z
5 . mode(d) = 57
i 6~x2 (0) = 2m0"/3-1e=0/2, §>0 E(8) = v, var(6) = 2
Chi- v deg. of P 77 e » var v
i-square 2(0) = x2(6) leg. of freedom v >0 5a_me_a{s7(—}iamma(a =48=1 mode(f) = v—2, forv>2
- E(8) = 715, forv > 2
Inverse- 0~ Inv-x? P(O) = Fom-(/341)g=1/20) g5 ¢ R
chi-square p(6) = Inv-x2(6) deg. of freedom v >0 samelulv 7]2nfv_gamma(a —rh=1) var(6) = W.V>4
z 2 mode(6) = ;15
" E(f) = -%;5?
Sealed O~ Tnval(y ) deg. of freedom v >0 p(6) = Gt #g-(12He- 100, 950 v:r()s) i st
chi-square p(8) = Inv-x*(8|v, s%) scale & > 0 same as Inv-gamma(a = §,8 = §s?) mode(8) ;1’%;{‘
" 8~ Expon(8) . p(6) = fe°, §>0 E(6) = }, var(6) = Jr
Exponential p(8) = Expon(6|8) inverse acale f >0 same as Gamma(a = 1, 8) mode(8) = 0
-1
W ~ Wishart, (S) deg. of freedom v p(W) = (2420 TTL T (241))
Wishart p(W) = Wishart, (W|S) symmetric, pos. def. x| S|V W | =k-1/2 E(W)=vS
(implicit dimension k x k) k x k scale matrix § x exp (- $tr(S~1W)), W pos. def.
I W ~ Inv-Wishart, (S~") deg. of freedom v p(W) = (20K 3gkG-0/a T T ("—‘f%))_‘
v';‘l’:;:en p(W) = Inv-Wishart, (W|S~') symmetric, pos. def. x| S|V W|-(vkt1)/2 EW)=(w-k=-1)"'S

(implicit dimension k x k) k x k scale matrix S

x exp (—3tr(SW-1)), W pos. def.

10



Table A.1
Distribution

Continuous distributions continued

Notation

Paraineters

Density function

Mean, variance, and mode

Student-t

0~ t,(,0%)
p(6) = t,(6|p,0%)
ty is short for 2, (0,1)

deg of freedom v > 0
location p
scal:o >0

I 2] O—py2y—(v+1)/2
p6) = FEDE (14 L(452)2) -

E(8) = g, forv>1
var(f) = ;450?, forv>2
mode(8) = p

Multivariate

0~ t,(n,%)
P(6) = t,(6]u, )

deg. of freedom v > 0
location p = (py, .., pg)

d) /2, -
70) = YD |5l

E(0) = p, forv>1

P wraya VIO = 55, forv>2
tudent-¢ AN A symmetric, pos. def. x(14 10 = p)TE-1(0 — p))~v+ de(6) =
(implicit dimension d) d x d scale matciy © 1+ mode(6)
E@) = 335
9 ~ Beta(a, 8) ‘prior sample sizes’ pO) = (SH0°-1 (1 - )8! 9) = i
Beta ) var(8) m{,lm
P(6) = Beta(6]a, 8) a>0,6>0 0e0,1) mode() = ,.‘15‘_2
E(0;) = 3
ad — aj(a0—a;)
Dirichlet 6 ~ Dirichlet(ay,. ., az) ‘prior sample sizes’ po) = %ﬂf’_' gt var(9;) = W:&
P(6) = Dirichlet(Blas,..,a)  a; >0; a9 = Tiaa, 6.0 055, 0 =1 cov(6;,0;) = —;F(—,.;‘m
mode(f;) = r';‘n:—k
Table A.2 Discrete distributions
Distribution  Notation Parameters Density function Mean, variance, and mode
} 6 ~ Poisson()) o PO) = 52 exp(-A) E(0) = A, var(0) = A
Poisson $(6) = Poisson(6]) rate’ .. >0 9=01,2,... mode(8) = [A]
. o E(f) =np
~ Bi 'sample size’ — (™ 1—p)n—o _
Binomial z(a)ilné;::(';)'" ) n (pos. integer) F(’;)= (sl)l’;(. ’ :) var(6) = np(1 -D:
i ‘probability’ p € [0,1) PeSemss mode(6) = |(n + 1)p)
‘sample size’ P P’ E(6;) = np,
Multinomial ¢ Multin(n;py, .., pi) n {pos. integer) 0= (5, 5."..0)P1" =P 3 var(6) = nipy(1 - py)
P(8) = Multin(8n; py, .., pi) 'prob:bilities' pi€[0.1): 0;=0,1,2,...,n; T ,0;=n cov(6;,0;) = —npp;
Y pi=1
« g 5
. . a- 0) =
Negative 8 ~ Neg-bin(a, 8) shape a > 0 »(0) = (J:-Il (5%) (a‘T) E ()0) _B o (f+1)
binomial p(6) = Neg-bin(6|a, ) inverse scale > 0 0=0,1,2,... var(f) = g
‘sample size’ P(nt1 C(a+0)0(n+b-6) E(6) = n-=
M . ) = 2 Yy
Beta- 8 ~ Beta-bin(n, a, ) n (pos. integer) ( A0 atbin) _ M eptatgen
binomial p(0) = Beta-bin(6|n,a,8)  ‘prior sample sizes’ xS, 0=0,1,2,...,n var(6) = n STy
a>0,>0
oo Relationships among
(p) . . .
common distributions
min X, Negative a=8 Beta-binomial
binomial (n, . B)
(n, p) _ Hypergeometric
I 7= &+B (M,N,K)
jA=ni-p) at+f-o —
; n—o e e
4 Binomial|_~~""p = M/N.n= K
(n, p) s
Jr=np Bernoulli
/ @ =np(l-p) p=] (p) T .
s Solid lines: transfor-
[~gEee mations and special
X, TS~
Nu=A cases

Dashed lines: limits

(Leemis, 1986)



Bayesian Inference

y: observed data; y ~ p(y|0)
8: parameters (all unobserved quantities)

p(6,y) _ p(O)p(y[6)
p(y) p(y)

e PO PORI0)]

distribution

p(O|y) =

sampling

prior distribution

distribution

Multi Parameter Models
y~p(yl6,,0,,....0))
p(8,.8,.....8, 1y)<p(8,.8,,....8 )p(y18,.6,.....6,)

Marginal Posterior Distributions

p(0, ly) « fe¢el p(el’GZ""’ep lY)deegel

12



Example: Normal Distribution
iid
DGTG: Y1,YZ’---ayn~N(u302)

Sampling model: p(yn,0%)= HP(Yi ln,0%)

i=1

x (o)™ exp{— 2(1)'2 E(Yi - M)z}

Prior (Jeffreys'): p(u,0”)=(c”)"

Joint posterior:

—(n+ 1 ¢
p(,0” ly) o (o)™ GXP{‘ P2 -mz}
i=1

20° <

2\-(n+2)/2 1 2 — 2
= (o)™ exp{—202 [(n—l)s +n(y-w) ]}

Example: Normal Distribution

Marginal posterior of p:

p!y)= [p,0’ly)do’

o [1+Izilu—;l)ys)2] ’ ~ tn_l(y,s2 /n)

Marginal posterior of o

P’ 1y) = [ p,0® ly)du
—oo 2
o (%) " exp{_(nz_ 12)8 }N Inv -y’ (n-1,s")
o

13



Linear Mixed Models
Data: y=XB+Zu+e ,with ulc’ ~N(0,Ac’)

n/2

Sampling model: p(y!B,u,07) = (0.)

xexp{— 2(1}2 (y-XB-Zu) (y-XB- Zu)}

€

Prior distribution: p(B.0;.0;)=pB)p(c;)p(0;)
(Note: independence was assumed a priori)

Joint posterior distribution:

p(B,u,02,02 ly) = p(y I, u,02)p(ul 6?)p(B,02,02)

(02" (02) " p(B.0%.07)
xexp{—l (v~ XB-Zu)" (y- XB- Zu) + — uTA"lu”
2|0 o

€ u

Marginal Posterior Distributions

Fixed effects vector:

p@Iy)= [ [ [pB.u.0;.0; ly)do;do;du

u ol o

Note that integrating over a vector (e.g., vector u)
implies integrating over each element in that vector, i.e.

pBIY) = [ [...[ [ [pB.u.0%0] ydoldodu,...du,dy,

u; u, u, o, O

Single element of B (e.g. B,):

p@B,1y)=[ [...[p(B1y)B,...dB,dB,

I32 BS ﬁp

14



Marginal Posterior Distributions

Random effects vector:

puly)= [ [ [p®,u.0;.0; y)Ko;do,dp

2 2
B ouoe

Variance components:

po,1y)=[ [ [p(B.u.0}.0; 1y)Mo;dudp

B u o;

p(; 1y)= [ [ [p(B,u.0;,0; 1 y)Xo dudp

2
B u oy

Marginal Posterior Distributions

Marginalization (i.e. integrals) in multi-dimensional
models can be cumbersome and some times do not
have analytical form

An alternative in this regard: Monte Carlo methods

Monte Carlo integration consists of sampling from
the posterior distribution, and then using such
sampled values to calculate features of interest on
the (joint or marginal) posterior distribution

There are many algorithms that can be used to
sample from a distribution; some are based on
Markov chains, among which the Gibbs sampling is
probably the most popular

15



1

Monte Carlo Methods

Any method which solves a problem by generating
a series of random numbers and counting the
incidences that obey specific property(ies)

The method is useful for obtaining numerical
solutions to problems which are too complicated
to solve analytically

The most common application of the Monte Carlo
method is Monte Carlo integration

Y

Monte Carlo Methods

Example: approximating the number m using
a circle inscribed in a square

“
\

Area of circle = 1 r?
Area of square = 4 r?

X2 +y2 = p2

16



Monte Carlo Methods

Example: approximating the number m using
a circle inscribed in a square

Sample x from Uniform(0,1)
Sample y from Uniform(0,1)

Check if point (x,y) is within
the circle, i.e. y?<1-x2

Repeat the process N times
and count how many points (m)
fall within the circle

The ratio 4 x m/N is a Monte X2 + y2 = p2
Carlo approximation for m

Markov Process

Markov process is a stochastic process that satisfies
the Markov property (the memoryless property), i.e.,
predictions for the future of the process can be made
based solely on its present state

o —- n w » [§)] o ~
1 1 1 1 1 )

17



Markov Process

Example: Suppose that weather on any given day can
be classified into two states: sunny (S) or rainy (R)

Suppose also that, based on past experience, we
know that:

Pr(Next day is S | Given today is R) = 0.50 and
Pr(Next day is S | Given today is S) = 0.90

Then, a transition matrix representing the
probabilities of the weather moving from one state
to another state can be expressed as:

S R
_| 09 01 |s
05 05 |R

Markov Process

If the weather is sunny today (time 0), what is the
chance that it will be sunny tomorrow (time 1) as well?
Pr(S; | Sp) = 0.90

What about two days from today?
Pr(S; | Sp) = Pr(S; | S1) x Pr(S; | Sp)
+Pr(S; | RY) x Pr(R; | So)
=09x09+0.1x05=0.86

Using the same approach to forecast weather on n-th
day will approach the following ‘equilibrium’
probabilities as n increases:

Pr(S,) = 0.833 and Pr(R,) = 0.167

18



Gibbs Sampling
0=(0,.0,,....0,) - p®.10,...,0._,,8. ,....0))

(0) 0) n(0) (0)
0 =(0,8,...,0)

Burn-in & Convergence

eil) | 6(20),920),. N Tinning interval & Lag
f correlations

(D O ) (0)

62 | 91 ’63 e "er Sample size & Monte
. Carlo error

@M1 o 1)
00 10,00",...,0"

Monte Carlo Approximations

After convergence, each sampled vector is a sample
from the joint posterior distribution, and so each
sampled element (scalar) is a sample from the respective
marginal posterior distribution

For each parameter (e.g., 8;) we'll have then a series of
values:
@ a2 3 (N)

from which features of its distribution (e.g., posterior
mean) can be approximated, for example:

IR IV
E[6, |y15§29i”

=
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Monte Carlo Approximations

Other oftfen interesting features used to represent a
marginal posterior distribution are: posterior variance
(or standard deviation), posterior mode or median,
percentiles, highest posterior density (HPD), etc.

Very useful property: If one is interested on the
distribution of a function of the model parameters,
samples from such a distribution can be obtained
simply by applying that specific function to the
sampled values of those parameters

For example, the posterior mean of the heritability

can be obtained as: 1 & o
Blh lyl=— Y~
N+ o, +0,

Example: Linear Model

DGTG: y= XB +€, €~ N(O,IO'?)

1
20?7

Sampling model: p(y!B,00) (o)™ GXP{-

Prior distribution: p(B.o>)=pP)p(c.)=(c2)”

Joint posterior distribution:

p(B.o: ly) o p(y IB,02)p(B.0?)
1
20

x (gl) " GXP{— (y-XB)' (y- XB)}

(y-XB)'(y- XB)}

20



Example: Linear Model

Conditional distribution of location parameters:

1
20?

pBlol.y) = GXP{— (y—XB)T(y—XB)}

Recall B=X"X)"'X"y and note that y-Xp=y-Xp+Xp-Xp
such that:

(y-XB)"(y - XP) = (y-XB) - (XB - XB)] [(y - XB)- (XB - XB)]

= |- XB)" (v~ XB)-2(y - XB)" (XB-XB) + (XB - XB)" (XB - XB)]

L J \ J
T T

independent equal to zero

of B

Example: Linear Model

Conditional distribution of location parameters:

1
20

Hence: p(B|0§,y)°<eXp{— (XB—Xﬁ)T(XB—Xﬁ)}

ocexp{— ! <B—r§>TXTX<B—ﬁ>}

2
20,

and so: Blol,y~ N(ﬁ, (XTX)*Cﬁ)

where B=X"X)"X"y

21



Example: Linear Model

Conditional distribution of residual variance:

€

p(ol IB,y) = (ol) ™" exp{—z(ljz (y—XB)T(y—XB)}

Hence: o’ 1B,y ~ Inv—gamma(%, %(y -XB) (y- XB))

®

Bayes linear regression

Rejection Sampling

K f(x) =z p(x), Vx p(x) “target distribution”
/

. K f(x) “envelope”

® Sample x from f(x)
p(x)
Kf(x)

@ Decision: Probability of accepting x: o =

22



Metropolis-Hastings Algorithm

p(x) “target distribution”
|

n(x) “candidate generator”
X" X

O x: current value; sample x™ from n(x), e.g. n(x)~N(x,T2)

@ The chain moves from x to x™ with probability:

p(x)m(x)

o= min[l,
p(x)m(x )

Otherwise the chain remains at the current value

23



