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Topics 
•  Definitions, dimensionality, addition,

 subtraction 
•  Matrix multiplication 
•  Inverses, solving systems of equations 
•  Quadratic products and covariances 
•  The multivariate normal distribution 
•  Eigenstructure 
•  Basic matrix calculations in R 
•  The Singular Value Decompositon (SVD) 
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Matrices:  An array of elements 

Vectors:  A matrix with either one row or one column. 

Column vector Row vector 

(3 x 1) (1 x 4) 

 Usually written in bold lowercase, e.g. a, b, c  

Dimensionality of a matrix:  r x c (rows x columns) 
think of Railroad Car 

4 

Square matrix (3 x 2) 

General Matrices 

Usually written in bold uppercase, e.g. A, C, D  

Dimensionality of a matrix:  r x c (rows x columns) 
  think of Railroad Car 

A matrix is defined by a list of its elements. 
 B has ij-th element Bij -- the element in row i 
and column j 
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Addition and Subtraction of Matrices 

If two matrices have the same dimension (both are r x c),  
then matrix addition and subtraction simply follows by  
adding (or subtracting) on an element by element basis 

Matrix addition:   (A+B)ij = A ij + B ij 

Matrix subtraction:   (A-B)ij = A ij - B ij 

Examples: 

-D = A-B 
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Partitioned Matrices 

It will often prove useful to divide (or partition) the  
elements of a matrix into a matrix whose elements are 
itself matrices.  

One useful partition is to write the matrix as 
either a row vector of column vectors or 
a column vector of row vectors 
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A row vector whose  
elements are column  
vectors 

A column vector whose  
elements are row vectors 
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Towards Matrix Multiplication:  dot products 

The dot (or inner) product of two vectors (both of 
length n) is defined as follows: 

 Example: 

 a .b = 1*4 + 2*5 + 3*7 + 4*9 = 60 
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Matrices are compact ways to write
 systems of equations 

10 

yields the following system of equations for the βi 

This can be more compactly written in matrix form as  

XTX XTy β"

or, β =  (XTX)-1 XTy  

The least-squares solution for the linear model 
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Matrix Multiplication: 

The order in which matrices are multiplied affects 
the matrix product, e.g.  AB = BA  

For the product of two matrices to exist, the matrices 
must conform.  For AB, the number of columns of A must 
equal the number of rows of B.  

The matrix C = AB  has the same number of rows as A 
and the same number of columns as B. 

12 

 C(rxc) = A(rxk)  B(kxc)  

Inner indices must match 
columns of A = rows of B  

Outer indices given dimensions of 
resulting matrix, with r rows (A) 
and c columns (B) 

Example:  Is the product ABCD defined?  If so, what 
is its dimensionality?  Suppose 

A3x5 B5x9 C9x6 D6x23 

Yes, defined, as inner indices match.  Result is a 3 x 23 
matrix (3 rows, 23 columns) 
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More formally, consider the product L = MN 

Express the matrix M as a column vector of row vectors 
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Example 

ORDER of multiplication matters!  Indeed, consider 
C3x5 D5x5 which gives a 3 x 5 matrix, versus D5x5 C3x5 ,  
which is not defined. 
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Matrix multiplication in R 
R fills in the matrix from 
the list c by filling in as 
columns, here with 2 rows  
(nrow=2)  

Entering A or B displays what was 
entered (always a good thing to check) 

The command  %*% is the R code 
for the multiplication of two matrices 

On your own:  What is the matrix resulting from BA? 
What is A if nrow=1 or nrow=4 is used? 

16 

The Transpose of a Matrix   
The transpose of a matrix exchanges the  
rows and columns, AT

ij = Aji 

Useful identities 
 (AB)T = BT AT 

 (ABC)T = CT BT AT 

Inner product = aTb = aT
(1 X n) b 

(n X 1) 

Indices match, matrices conform 
Dimension of resulting product is 1 X 1 (i.e. a scalar) 

Note that bTa = (bTa)T = aTb 
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Outer product = abT = a (n X 1) bT 
(1 X n) 

Resulting product is an n x n matrix"

18 

R code for transposition 
 t(A) = transpose of A 

Enter the column vector a 

Compute inner product aTa 

Compute outer product aaT 
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Solving equations 
•  The identity matrix I 

–  Serves the same role as 1 in scalar algebra, e.g.,
 a*1=1*a =a, with AI=IA= A 

•  The inverse matrix A-1 (IF it exists) 
–  Defined by A A-1 = I, A-1A = I 
–  Serves the same role as scalar division 

•  To solve ax = c, multiply both sides by (1/a) to give:  
•  (1/a)*ax = (1/a)c or (1/a)*a*x = 1*x = x,  
•  Hence x = (1/a)c 
•  To solve Ax = c,  A-1Ax = A-1 c 
•  Or A-1Ax  = Ix = x = A-1 c  

20 

The Identity Matrix, I 
The identity matrix serves the role of the 
number 1 in matrix multiplication:  AI =A, IA = A 

I is a square diagonal matrix, with all diagonal elements 
being one, all off-diagonal elements zero."

Iij = "
1 for i = j 

0 otherwise"
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The Identity Matrix in R 
 diag(k), where k is an integer, return the k x k I matix  

22 

The Inverse Matrix, A-1 
For a square matrix A, define its Inverse A-1, as 
the matrix satisfying 
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If det(A) is not zero, A-1 exists and A is said to be 
non-singular.  If det(A) = 0, A is singular, and no 
unique inverse exists (generalized inverses do)"

Generalized inverses, and their uses in solving systems 
of equations, are discussed in Appendix 3 of Lynch &  
Walsh 

A- is the typical notation to denote the G-inverse of a 
matrix 

When a G-inverse is used, provided the system is  
consistent, then some of the variables have a family 
of solutions (e.g., x1 =2, but x2 + x3 = 6)  

24 

Inversion in R 

 det(A) computes determinant of A 

 solve(A) computes A-1 

Using A entered earlier 

Compute A-1 

Showing that A-1 A = I 

Computing determinant of A 
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Homework 
Put the following system of equations in matrix 
form, and solve using R  

3x1 + 4x2 + 4 x3  + 6x4 = -10 
9x1 + 2x2  -   x3   - 6x4 =  20 
  x1 +   x2  +   x3 - 10x4 =  2 
2x1 + 9x2  + 2x3   -  x4 = -10 

Example:  solve the OLS for β in y = α + β1z1 + β2z2 + e 
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If ρ12 = 0, these reduce to the two univariate slopes, 

Likewise, if ρ12 = 1, this reduces to a univariate regression, 

28 

Useful identities "

(AB)-1 = B-1 A-1  

(AT)-1 = (A-1)T 

Also, the determinant of any square matrix A,  
det(A), is simply the product of the eigenvalues λ of A, 
which statisfy 

Ae = λe 
If A is n x n, solutions to λ are an n-degree polynomial. e is
 the eigenvector associated with λ.  If any of the roots to the
 equation are zero, A-1 is not defined. In this case, for some
 linear combination b, we have Ab = 0.   

For a  diagonal matrix D, then det (D), which is also
 denoted by |D|, = product of the diagonal elements 
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Variance-Covariance matrix 

•  A very important square matrix is the
 variance-covariance matrix V associated  with
 a vector x of random variables. 

•  Vij = Cov(xi,xj), so that the i-th diagonal
 element of V is the variance of xi, and off
-diagonal elements are covariances 

•  V is a symmetric, square matrix 
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The trace 
The trace, tr(A) or trace(A), of a square matrix 
A is simply the sum of its diagonal elements 

The importance of the trace is that it equals 

the sum of the eigenvalues of A,  tr(A) = Σ λi 

For a covariance matrix V, tr(V) measures the 
total amount of variation in the variables 

λi / tr(V) is the fraction of the total variation  
in x contained in the linear combination ei

Tx, where 
ei, the i-th principal component of V is also the 
i-th eigenvector of V (Vei = λi ei) 
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Eigenstructure in R 
eigen(A)  returns the eigenvalues and vectors of A 

Trace = 60 

PC 1 accounts for 34.4/60 = 
57% of all the variation 

PC 1 

0.400* x1 – 0.139*x2 + 0.906*x3 
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Quadratic and Bilinear Forms 

Quadratic product: for An x n and xn x 1  

Scalar (1 x 1) 

Bilinear Form  (generalization of quadratic product) 
 for Am x n,  an x 1, bm x1  their bilinear form is  bT

1 x m Am x n an x 1 

Note that bTA a   = aTAT
 b 
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Covariance Matrices for
 Transformed Variables 

What is the variance of the linear combination, 
  c1x1 + c2x2 + … + cnxn ? (note this is a scalar) 

Likewise, the covariance between two linear combinations 
can be expressed as a bilinear form, 
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Example:  Suppose the variances of x1, x2, and x3 are 
10, 20, and 30.  x1 and x2 have a covariance of -5, 
x1 and x3 of 10, while x2 and x3 are uncorrelated.  

What are the variances of the indices 
y1 = x1-2x2+5x3 and  y2 = 6x2-4x3? 

Var(y1) = Var(c1
Tx) = c1

T Var(x) c1 = 960 

Var(y2) = Var(c2
Tx) = c2

T Var(x) c2 = 1200 

Cov(y1,y2) = Cov(c1
Tx, c2

Tx) = c1
T Var(x) c2 = -910 

Homework:  use R to compute the above values 
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The Multivariate Normal
 Distribution (MVN) 

Consider the pdf for n independent normal 
random variables, the ith of which has mean 
µi and variance σ2

i 

This can be expressed more compactly in matrix form 
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Define the covariance matrix V for the vector x of  
the n normal random variable by 

Define the mean vector µ by gives  

Hence in matrix from the MVN pdf becomes 

Notice this holds for any vector µ and symmetric positive
-definite matrix V, as | V | > 0. 
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The multivariate normal 

•  Just as a univariate normal is defined by
 its mean and spread, a multivariate
 normal is defined by its mean vector µ
 (also called the centroid) and variance
-covariance matrix V 
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Vector of means µ determines location 

µ"

Spread (geometry) about  µ determined by V 

µ"

x1, x2 equal variances, 
positively correlated 

x1, x2 equal variances, 
uncorrelated 

Eigenstructure (the eigenvectors and their corresponding 
eigenvalues) determines the geometry of V. 
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Vector of means µ determines location 

µ"

Spread (geometry) about  µ determined by V 

x1, x2 equal variances, 
negatively correlated 

µ"

Var(x1) < Var(x2),  
uncorrelated 

Positive tilt = positive correlations 
Negative tilt = negative correlation 
No tilt = uncorrelated 
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Eigenstructure of V 

µ"

e1 λ1 

e2 λ2 

The direction of the largest axis of  
variation is given by the unit-length  
vector e1,  the 1st eigenvector of V. 

The next largest axis of orthogonal 
(at 90 degrees from) e1,  is 
given by e2, the 2nd eigenvector 
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Principal components  
•  The principal components (or PCs) of a covariance

 matrix define the axes of variation.   
–  PC1 is the direction (linear combination cTx) that explains

 the most variation. 
–  PC2 is the next largest direction (at 90degree  from PC1),

 and so on 

•  PCi = ith eigenvector of V 
•  Fraction of variation accounted for by PCi = λi /

 trace(V) 
•  If V has a few large eigenvalues, most of the variation

 is distributed along a few linear combinations (axis
 of variation) 

•  The singular value decomposition is the
 generalization of this idea to nonsquare matrices 
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 Properties of the MVN - I 

1) If x is MVN,  any subset of the variables in x is also MVN 

2) If  x is MVN,  any linear combination of the  
elements of x  is also MVN.  If x ~ MVN(µ,V)   
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Properties of the MVN - II 

3) Conditional distributions are also MVN.  Partition x 
into two components, x1 (m dimensional column vector) 
and  x2 ( n-m dimensional column vector) 

x1 | x2 is MVN with m-dimensional mean vector 

and m x m covariance matrix 
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Properties of the MVN - III 

4)  If x is MVN, the regression of any subset of  
x  on another subset is linear and homoscedastic  

Where e is MVN with mean vector 0 and 
variance-covariance matrix  
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The regression is linear because it is a linear function 
of x2 

The regression is homoscedastic because the variance- 
covariance matrix for e does not depend on the value of  
the x’s 

All these matrices are constant, and hence 
the same for any value of x 
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Example:  Regression of Offspring value on Parental values 

Assume the vector of offspring value and the values of 
both its parents is MVN.  Then from the correlations 
among (outbred) relatives, 
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Regression of Offspring value on Parental values (cont.) 

Where e is normal with mean zero and variance 

48 

Hence, the regression of offspring trait value given 
the trait values of its parents is 

zo = µo  + h2/2(zs- µs) + h2/2(zd- µd) + e 

where the residual e is normal with mean zero and 
Var(e) = σz

2(1-h4/2) 

Similar logic gives the regression of offspring breeding 
value on parental breeding value as 

Ao = µo  + (As- µs)/2 +  (Ad- µd)/2 + e 
     = As/2 +  Ad/2 + e 

where the residual e is normal with mean zero and 
Var(e) = σA

2/2 
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50 
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A data set for soybeans grown in New York (Gauch 1992) gives the 
GE matrix as 

Where GEij = value for 
Genotype i in envir. j 

52 

For example, the rank-1 SVD approximation for GE32 is 
g31λ1e12 = 746.10*(-0.66)*0.64 = -315   

While the rank-2 SVD approximation is  g31λ2e12 +   g32λ2e22 = 
 746.10*(-0.66)*0.64 + 131.36* 0.12*(-0.51) = -323 

Actual value is -324 

Generally, the rank-2 SVD approximation for GEij is 
gi1λ1e1j +   gi2λ2e2j 
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Additional R matrix commands 

54 

Additional R matrix commands (cont) 
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Additional references 

•  Lynch & Walsh Chapter 8 (intro to
 matrices) 

• Online notes: 
– Appendix 4 (Matrix geometry) 
– Appendix 5 (Matrix derivatives) 
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Quick Review of the Major Points 

The general linear model can be written as 

 y = Xβ + e 
• y = vector of observed dependent values 

• X = Design matrix:  observations of the variables in the  
          assumed linear model 

• β = vector of unknown parameters to estimate 

• e = vector of residuals (deviation from model fit), 
      e = y-X β"



3 

 y = Xβ + e 
Solution to β depends on the covariance structure 
(= covariance matrix) of the vector e of residuals 

•  OLS:  e ~ MVN(0, σ2 I) 
•  Residuals are homoscedastic and uncorrelated, 
   so that we can write the cov matrix of e as Cov(e) = σ2I 
• the OLS estimate, OLS(β) = (XTX)-1 XTy     

Ordinary least squares (OLS) 

•  GLS:  e ~ MVN(0,  V) 
• Residuals are heteroscedastic and/or dependent, 
•  GLS(β) = (XT V-1 X)-1 V-1 XTy  

Generalized least squares (GLS) 

4 

BLUE 

•  Both the OLS and GLS solutions are also
 called the Best Linear Unbiased Estimator (or
 BLUE for short) 

•  Whether the OLS or GLS form is used
 depends on the assumed covariance
 structure for the residuals 
–  Special case of Var(e) = σe

2 I -- OLS 
–  All others, i.e., Var(e) = R -- GLS 
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Linear Models 
One tries to explain a dependent variable y as a linear 
function of a number of independent (or predictor) 
variables. 

A multiple regression is a typical linear model, 

Here e is the residual, or deviation between the true 
value observed and the value predicted by the linear 
model. 

The (partial) regression coefficients are interpreted 
as follows:  a unit change in xi while holding all 
other variables constant results in a change of βi in y  
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Linear Models 

As with a univariate regression (y = a + bx + e), the model 
parameters are typically chosen by least squares, 
wherein they are chosen to minimize the sum  of 
squared residuals, Σ ei

2 

This unweighted sum of squared residuals assumes  
an OLS error structure, so all residuals are equally 
weighted (homoscedastic) and uncorrelated 

If the residuals differ in variances and/or some are 
correlated (GLS conditions), then we need to minimize  
the weighted sum eTV-1e, which removes correlations and 
gives all residuals equal variance. 
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Linear Models in Matrix Form 
Suppose we have 3 variables in a multiple regression, 
with four (y,x) vectors of observations. 

The design matrix X.  Details of both the experimental
 design and the observed values of the predictor variables 
 all reside solely in X 
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Rank of the design matrix 
•  With n observations and p unknowns, X is an n x p

 matrix, so that XTX is p x p 
•  Thus, at most X can provide unique estimates for up

 to p < n parameters 
•  The rank of X is the number of independent rows of

 X.  If X is of full rank, then rank = p 
•  A parameter is said to be estimable if we can provide

 a unique estimate of it.  If the rank of X is k < p, then
 exactly k parameters are estimable (some as linear
 combinations, e.g. β1-3β3 = 4) 

•  if det(XTX) = 0, then X is not of full rank 
•  Number of nonzero eigenvalues of XTX gives the

 rank of X. 
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Experimental design and X 
•  The structure of X determines not only which

 parameters are estimable, but also the expected
 sample variances, as Var(β) = k (XTX)-1 

•  Experimental design determines the structure of X
 before an experiment (of course, missing data
 almost always means the final X is different form the
 proposed X) 

•  Different criteria used for an optimal design.  Let V =
 (XTX)-1 .  The idea is to chose a design for X given
 the constraints of the experiment  that:  
–  A-optimality:  minimizes tr(V) 
–  D-optimality:  minimizes det(V) 
–  E-optimality: minimizes leading eigenvalue of V 
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Ordinary Least Squares (OLS) 
When the covariance structure of the residuals has a 
certain form, we solve for the vector β using OLS 

If the residuals are homoscedastic and uncorrelated, 
σ 2(ei) = σe

2, σ(ei,ej) = 0. Hence, each residual is equally 
weighted,  

Sum of squared 
residuals can 
be written as 

If residuals follow a MVN distribution, OLS = ML solution 
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Ordinary Least Squares (OLS) 

Taking (matrix) derivatives shows this is minimized by 

This is the OLS estimate of the vector β 

The variance-covariance estimate for the sample estimates 
is 

The ij-th element gives the covariance between the 
estimates of βi and βj. 
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Sample Variances/Covariances 
The residual variance can be estimated as 

The estimated residual variance can be substituted into 

To give an approximation for the sampling variance and  
covariances of our estimates. 

Confidence intervals follow since the vector of estimates   
 ~ MVN(β, Vβ) 
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Example:  Regression Through the Origin 
 yi = βxi  + ei  

14 

Polynomial Regressions 
GLM can easily handle any function of the observed 
predictor variables, provided the parameters to estimate 
are still linear, e.g.  Y = α + β1f(x) + β2g(x) + … + e 

Quadratic regression: 
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Interaction Effects 
Interaction terms (e.g. sex x age) are handled similarly 

With x1 held constant, a unit change in x2 changes y 
by β2 + β3x1 (i.e., the slope in x2 depends on the current 
value of x1 ) 

Likewise, a unit change in x1 changes y by β1 + β3x2 
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The GLM lets you build your
 own model! 

•  Suppose you want a quadratic regression
 forced through the origin where the slope of
 the quadratic term can vary over the sexes
 (pollen vs. seed parents) 

•  Yi = β1xi + β2xi
2 + β3sixi

2
 

•  si is an indicator (0/1) variable for the sex (0 =
 male, 1 = female). 
–  Male slope = β2, 
–  Female slope = β2 + β3 
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Generalized Least Squares (GLS) 
Suppose the residuals no longer have the same 
variance (i.e., display heteroscedasticity). Clearly 
we do not wish to minimize the unweighted sum 
of squared residuals, because those residuals with 
smaller variance should receive more weight. 

Likewise in the event the residuals are correlated, 
we also wish to take this into account (i.e., perform 
a suitable transformation to remove the correlations) 
before minimizing the sum of squares. 

Either of the above settings leads to a GLS solution 
in place of an OLS solution. 
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In the GLS setting, the covariance matrix for the 
vector e of residuals is written as  R where  
Rij =   σ(ei,ej) 

The linear model becomes y = Xβ + e, cov(e) = R 

The GLS solution for β is  

The variance-covariance of the estimated model  
parameters is given by 
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Model diagnostics 
•  It’s all about the residuals 
•  Plot the residuals 

–  Quick and easy screen for outliers 
–  Plot y or yhat on e 

•  Test for normality among estimated residuals 
–  Q-Q plot 
–  Wilk-Shapiro test 
–  If non-normal, try transformations, such as log 

20 

OLS, GLS summary 



21 

Fixed vs.  Random Effects 
In linear models are are trying to accomplish two goals: 
estimation the values of model parameters and estimate 
any appropriate variances.   

For example, in the simplest regression model,  
y = α + βx + e, we estimate the values for α and β and  
also the variance of e.  We, of course, can also 
estimate the ei = yi - (α + βxi ) 

Note that α/β are fixed constants are we trying to 
estimate (fixed factors or fixed effects), while the 
ei values are drawn from some probability distribution 
(typically Normal with mean 0, variance σ2

e).  The  
ei  are random effects.  

22 

“Mixed” models (MM) contain both fixed and random factors 

This distinction between fixed and random effects is 
extremely important in terms of how we analyzed a model. 
If a parameter is a fixed constant we wish to estimate, 
it is a fixed effect.  If a parameter is drawn from 
some probability distribution and we are trying to make 
inferences on either the distribution and/or specific  
realizations from this distribution, it is a random effect. 

We generally speak of estimating fixed factors (BLUE) and 
predicting random effects (BLUP -- best linear unbiased 
Predictor) 

 y = Xb + Zu + e,   u  ~MVN(0,R), e ~ MVN(0,σ2
eI) 

Key:  need to specify covariance structures for MM 



23 

Random effects models 

•  It is often useful to treat certain effects as
 random, as opposed to fixed 
–  Suppose we have k effects.  If we treat these as

 fixed, we lose k degrees of freedom 
–  If we assume each of the k realizations are drawn

 from a normal with mean zero and unknown
 variance, only one degree of freedom lost --- that
 for estimating the variance 

•  We can then predict the values of the k realizations 
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Environmental effects 
•  Consider yield data measured over several years in a

 series of plots. 
•  Standard to treat year-to-year variation at a specific

 site as being random effects 
•  Often the plot effects (mean value over years) are

 also treated as random. 
•  For example, consider plants group in growing

 region i, location j within that region, and year
 (season) k for that location-region effect 
–  E = Ri + Lij + eijk 
–  Typically R can be a fixed effect, while L and e are

 random effects, Lik ~ N(0,σ2
L) and eikj ~ N(0,σ2

e) 
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Random models 
•  With a random model, one is assuming that

 all “levels” of a factor are not observed. 
 Rather, some subset of values are drawn
 from some underlying distribution 
–  For example, year to year variation in rainfall at a

 location.  Each year is a random sample from the
 long-term distribution of rainfall values 

–  Typically, assume a functional form for this
 underlying distribution (e.g., normal with mean 0)
 and then use observations to estimate the
 distribution parameters (here, the variance) 
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Random models (cont) 
•  Key feature: 

–  Only one degree of freedom used (estimate of
 the variance) 

–  Using the fixed effects and the estimated
 underlying distribution parameters, one then
 predicts the actual realizations of the individual
 values (i.e., the year effects)  

–  Assumption:  the covariance structure among the
 individual realizations of the realized effects.  If
 only a variance is assume, this implies they are
 independent.  If they are assumed to be
 correlated, this structure must be estimated. 
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Random models 
•  Let’s go back to treating yearly effects as random 
•  If assume these are uncorrelated, only use one

 degree of freedom, but makes assumptions about
 covariance structure 
–  Standard: Uncorrelated 
–  Option:  some sort of autocorrelation process, say with a

 yearly decay of r (must also be estimated) 

•  Conversely, could all be treated as fixed, but would
 use k degrees of freedom for k years, but no
 assumptions on their relationships (covariance
 structure) 
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Identifiability  

•  Recall that a fixed effect is said to be
 estimable if we can obtain a unique estimate
 for it (either because X is of full rank or when
 using a generalized inverse it returns a
 unique estimate) 
–  Lack of estimable arises because the experiment

 design confounds effects 
•  The analogous term for random models is

 identifiability 
–  The variance components have unique estimates 
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y = Xβ + Zu + e 

The general mixed model 

Vector of
 observations
 (phenotypes) 

Vector of fixed effects (to be estimated),  
e.g., year, sex and age effects 

Vector of random
 effects, such as

 individual  
Breeding values 
 (to be estimated) 

Vector of residual errors 
 (random effects) 

Incidence
 matrix for
 fixed effects 

Incidence matrix for random effects 
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y = Xβ + Zu + e 

The general mixed model 

Vector of
 observations
 (phenotypes) 

Vector of random
 effects 

Incidence
 matrix for
 fixed effects 

Vector of fixed effects   

Incidence matrix for random effects 

Vector of residual errors 

Observe y, X, Z. 

Estimate fixed effects β 

Estimate random effects u, e 
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Means:  E(u) = E(e) = 0,  E(y) = Xβ 

Let R be the covariance matrix for the  
residuals.  We typically assume R = σ2

e*I 

Let G be the covariance matrix for the vector 
 u of random effects 

The covariance matrix for y becomes   
      V = ZGZT + R 

Means & Variances for y = Xβ + Zu + e 

Variances: 

Hence, y ~ MVN (Xβ, V) 

Mean Xβ due to fixed effects 
Variance V due to random effects 
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Estimating fixed Effects & Predicting  
Random Effects 

For a mixed model, we observe y, X, and Z 

β, u, R, and G are generally unknown 

Two complementary estimation issues 

(i)  Estimation of β and u 

Estimation of fixed effects 

Prediction of random effects 

BLUE = Best Linear Unbiased Estimator 

BLUP = Best Linear Unbiased Predictor 
Recall V = ZGZT + R 



33 

Different statistical models 
•  GLM = general linear model 

–  OLS ordinary least squares: e ~ MVN(0,cI) 
–  GLS generalized least squares: e ~ MVN(0,R) 

•  Mixed models 
–  Both fixed and random effects (beyond the residual) 

•  Mixture models 
–  A weighted mixture of distributions 

•  Generalized linear models 
–  Nonlinear functions, non-normality 
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Mixture models 
•  Under a mixture model, an observation potentially

 comes from one of several different distributions, so
 that the density function is π1φ1 + π2φ2 + π3φ3 
–  The mixture proportions πi sum to one   
–  The φi represent different distribution, e.g.,  normal with mean µi

 and variance σ2  
•  Mixture models come up in QTL mapping -- an

 individual could have QTL genotype QQ, Qq, or qq 
–  See Lynch & Walsh Chapter 13 

•  They also come up in codon models of evolution, were a
 site may be neutral, deleterious, or advantageous, each
 with a different distribution of selection coefficients 
–  See Walsh & Lynch (volume 2A website), Chapters 10,11 
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Generalized linear models 

Typically assume non-normal distribution for 
residuals, e.g., Poisson, binomial, gamma, etc 
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Lecture 3 
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of the Mixed Model  
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OUTLINE 

•  General Linear Model (fixed effects) 
•  Maximum Likelihood Estimation 
•  Linear Mixed Model 
•  BLUE and BLUP 
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General Linear Model 
(Fixed Effects Model) 

y = Xβ+ ε
responses 

design/incidence 
matrix (known) 

overall mean + fixed 
effects parameters 

residuals 

),0(N~      )I,(N~ 2
iid

i
2

n σε→σ0ε

_ Fixed effect: levels included in the study represent 
all levels about which inference is to be made. Fixed 
effects models: models containing only fixed effects 

Example 1 
Experiment to compare growth performance of pigs 
under two experimental groups (Control and Treatment), 
with three replications each.  

Control Treatment 

53 61 
46 66 
58 57 

Model:  

ijiij ey +δ+µ=

yij: weight gain of pig j of 
group i  

µ: constant; general mean 

δi: effect of group i 

eij: residual term 4 
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Matrix Notation 
Control Treatment 

53 61 
46 66 
58 57 
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Alternative Parameterizations 

For example, if the average 
weight gain in each group is 
expressed as µi = µ + δi, the 
model becomes: ⎥
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53_ Equivalent models with 

different parameterizations 

Alternatively, the model can be 
expressed in terms of the 
average weight gain of the 
Control (µ1) and the difference 
on weight gain between the 
two groups (τ = µ2 - µ1): 
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Flowering time (days, log scale) 
of Brassica napus according to 
genotype in specific locus, such 
as a candidate gene 

Genotype 
qq Qq QQ 
3.4 2.9 3.1 
3.7 2.5 2.6 
3.2 ijiij ey +µ=

yij: flowering time of replication j (j = 1,…, ni) of 
genotype i (i = qq, Qq and QQ) 

µi: expected flowering time of plants of genotype i 

eij: residual (environment and polygenic effects) 

Model:  

Example 2 

7 

_ The expected phenotypic values µi, however, can be 
expressed as a function of the additive and dominant 
effects 

ijiij ey +µ=

Expected phenotypic value according to the 
genotype on a specific locus. 
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The model can be 
written then as: 

µ: constant (mid-point flowering time between 
homozygous genotypes) 

xij: indicator variable (genotype), coded as -1, 0 and 1 
for genotypes qq, Qq and QQ 

α and β: additive and dominance effects 

ijijijij e|)x|1(xy +δ−+α+µ=

In matrix notation: 
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Least-Squares Estimation 

y =Xβ+ ε

ε ~ (0, Inσ
2 )   →    εi ~

iid
(0,σ2 )

(β̂)

RSS= (ε̂i )
2

i=1

n

∑ = ε̂Tε̂ = (y−Xβ̂)T (y−Xβ̂)

An estimate       of the vector β can be obtained by the method of 
least-squares, which aims to minimize the residual sum of squares, 
given (in matrix notation) by: 

β̂ = (XTX)−1XTy

Taking the derivatives and equating to zero, it can be shown that 
the least-squares estimator of β is: 

E[β̂]= β Var[β̂]= (XTX)−1σ2Ü It is shown that                 and    10 
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Var(εi ) = σ i
2 =wiσ

2

Var(ε) =Wσ2

β̂WLS = (X
TW−1X)−1XTW−1y

GSS= εTV−1ε = (y−Xβ)TV−1(y−Xβ)

The estimator                                  is called ordinary least 
squares (OLS) estimator, and it is indicated only in situations 
with homoscedastic and uncorrelated residuals 

If the residual variance is heterogeneous (i.e.,                            ), 
the residual variance matrix can be expressed as                   , 
where W is a diagonal matrix with the elements wi, a better 
estimator of β is given by:  

which is generally referred to as weighted least squares (WLS) 
estimator. 

Furthermore, in situations with a general residual variance-
covariance matrix V, including correlated residuals, a 
generalized least squares (GLS) estimator                                             
is obtained by minimizing the generalized sum of squares, given 
by:  

More on the LS Methodology 

β̂GLS = (X
TV−1X)XTV−1y

β̂OLS = β̂ = (X
TX)−1XTy

Maximum Likelihood Estimation 

Likelihood Function: any function of the model parameters 
that is proportional to the density function of the data  
Hence, to use a likelihood-based approach for estimating 
model parameters, some extra assumptions must be made 
regarding the distribution of the data 
In the case of the linear model                    , if the 
residuals are assumed normally distributed with mean 
vector zero and variance-covariance matrix V, 
i.e.                            , the response vector y is also 
normally distributed, with expectation                     and 
variance   

y =Xβ+ ε

ε ~ MVN(0,V)
Xβy =][E

Vy =][Var
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The distribution of y has a density function given by: 
 

 

so that the likelihood and the log-likelihood functions 
can be expressed respectively as: 

 

 
  and 

⎭
⎬
⎫

⎩
⎨
⎧ −−−π= −−− )()(
2
1exp||)2()V,|(p 1T2/12/n XβyVXβyVβy

⎭
⎬
⎫

⎩
⎨
⎧ −−−∝ −− )()(
2
1exp||)V,(L 1T2/1 XβyVXβyVβ

)()(
2
1||log

2
1)]V,(Llog[)V,(l 1T XβyVXβyVββ −−−−∝= −

Maximum Likelihood Estimation 

Assuming V known, the likelihood equations for β are 
given by taking the first derivatives of l(β,V) with 
respect to β and equating it to zero: 
   
 
                                                                          
  
from which the following system of equations is 
obtained: 
  
 
The maximum likelihood estimator (MLE) for β is 
given then by: 
    

0)()()V,(l 1T =−−
∂
∂

≡
∂

∂ − XβyVXβy
ββ

β

yVXβXVX 1T1T ˆ −− =

yVXXVXββ 1T11T )(ˆ)(MLE −−−==

Maximum Likelihood Estimation 
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If the inverse of               does not exist, a 
generalized inverse                 can be used to obtain 
a solution for the system of likelihood equations: 
 
 
 
Note: Under normality the MLE coincides with the 
GLS estimator discussed previously. Similarly, in 
situations in which the matrix V is diagonal, or when 
V can be represented as               , the MLE   
coincides with the WLS and the OLS estimators, 
respectively 

XVX 1T −

−− )( 1T XVX

yVXXVXβ 1T1T0 )( −−−=

Maximum Likelihood Estimation 

2
nσ= IV

The expectation and the variance-covariance matrix of the 
MLE are given by: 

 

 

 

As     is a linear combination of the response vector y, we 
have that                                    , from which confidence 
intervals (regions) and hypothesis testing regarding any 
(set of) element(s) of β can be easily obtained 

The estimation of variance and covariance parameters will 
be discussed later 

β̂

βXβVXXVXyVXXVXyVXXVXβ ==== −−−−−−−−− 1T11T1T11T1T11T )(][E)(])[(E]ˆ[E

11T11T11T11T

11T11T11T1T11T

)()()(           
)(][Var)(])[(Var]ˆ[Var

−−−−−−−−

−−−−−−−−−

==

==

XVXXVXXVVVXXVX
XVXXVyVXXVXyVXXVXβ

))(,(MVN~ˆ 11T −− XVXββ

Maximum Likelihood Estimation 
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ð  Note: In the case of the linear model                 , 
              with                          , it can be shown that: 

y =Xβ+ ε
ε ~ MVN(0, Iσ2 )

β̂ = (XTX)−1XTy   →    β̂ ~ N(β, (XTX)−1σ2 )

σ̂2 =
1
n
(y−Xβ̂)T (y−Xβ̂) = 1

n
|| y−Xβ̂ ||2

⎟
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⎛ σ
−
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σσ − 22
2

)kn(22
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1ˆ
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2
)kn(222222

−

χ
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−
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−
==σ −βXy

Maximum Likelihood Estimation 

Two-stage Analysis of Longitudinal Data 
Step 1 

yij = β0i +β1izij +β2izij
2 + εij

Supposed a series of longitudinal data (e.g., repeated 
measurements on time) on n individuals. Let yij 
represent the observation j (j = 1,2,…,ni) on individual i 
(i = 1,2,…,n), and the following quadratic regression of 
measurements on time (zij) for each individual: 

 

 

where β0i, β1i and β2i are subject-specific regression 
parameters, and εij are residual terms, assumed 
normally distributed with mean zero and variance σε2 

18 
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yi =Ziβi + εi

yi = (yi1, yi2,…, yini )
T

In matrix notation such subject-specific regressions 
can be expressed as: 

 

 
 
where                                         ,                                  , 
 
                                                              and  εi = (εi1,εi2,…,εini )

T ~ N(0, Iσε
2 )

βi = (β0i,β1i,β2i )
T

Zi =

1 zi1 zi1
2

1 zi2 zi2
2

  
1 zini zini

2

!

"

#
#
#
#
#

$

%

&
&
&
&
&

(1) 
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β̂i = (Zi
TZi )

−1Zi
Tyi

Under these specifications, it is shown that the least-
squares estimate of βi is: 

 

 
 

Note that this is also the maximum likelihood 
estimate of βi 
Such estimates can be viewed as summary statistics 
for the longitudinal data, the same way one could use 
area under the curve (AUC), or peak (maximum value 
of yij), or mean response. 

20 
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β̂i =Wiβ+ui

Two-stage Analysis of Longitudinal Data 
Step 2 

Supposed now we are interested on the effect of 
some other variables (such as gender, treatment, 
year, etc.) on the values of βi 
 
Such effects could be studied using a model as: 
 
 
 
where ui ~ N(0,D), which is an approximation for the 
model: 

βi =Wiβ+ui (2) 
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Single-stage Analysis of Longitudinal Data 

The two step-analysis described here can be merged 
into a single stage approach by substituting (2) in (1): 
 
 
 
which can be expressed as: 
 
 
 
where Xi = ZiWi. By concatenating observations from 
multiple individuals, we have the following mixed 
model:  

y =Xβ+Zu+ ε

yi =Xiβ+Ziui + εi

yi =Zi[Wiβ+ui ]+ εi

22 
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Mixed Effects Models 
Frequently, linear models contain factors whose levels 
represent a random sample of a population of all 
possible factor levels 

Models containing both fixed and random effects are 
called mixed effects models 

Linear mixed effects models have been widely used in 
analysis of data where responses are clustered around 
some random effects, such that there is a natural 
dependence between observations in the same cluster 

For example, consider repeated measurements taken on 
each subject in longitudinal data, or observations taken 
on members of the same family in a genetic study 

Linear Mixed Effects Model 

where: 

 y: response vector; observations 

β: vector of fixed effects 

 u: vector of random effects; u ~ N(0, G) 

 X and Z: (known) incidence matrices 

 e: residual vector; e ~ N(0, Σ) 

eZuXβy ++=
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Linear Mixed Effects Model 
Generally, it is assumed that u and e are 
independent from each other, such that:  

 

 

 

 

Inferences regarding mixed effects models 
refer to the estimation of fixed effects, the 
prediction of random effects, and the 
estimation of variance and covariance 
components, which are briefly discussed next  
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Estimation of Fixed Effects 

))(,(MVN~)(ˆ 11T1T11T −−−−−= XVXβyVXXVXβ

eZuε +=εXβy +=Let                    , where 
 

 

 

 
such that                             , where 
 
Under these circumstances, the MLE for β is:  

0euZeZuε =+=+= ][E][E][E][E

ΣZGZeZuZeZuε +=+=+= TT ][Var][Var][Var][Var

),(MVN~ VXβy ΣZGZV += T
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As G and Σ are generally unknown, an estimate of V 
is used instead such that the estimator becomes: 

 

The variance-covariance matrix of     is now 
approximated by 

Note:                     is biased downwards as a 
consequence of ignoring the variability introduced 
by working with estimates of (co)variance 
components instead of their true (unknown) 
parameter values 

yVXXVXβ 1T11T ˆ)ˆ(ˆ −−−=

β̂
11T )ˆ( −− XVX

11T )ˆ( −− XVX

Estimation of Fixed Effects 

Approximated confidence regions and test statistics 
for estimable functions of the type          can be 
obtained by using the result: 

 

 

 

where             refers to an F-distribution with                            
                       degrees of freedom for the numerator, 
and        degrees of freedom for the denominator, 
which is generally calculated from the data using, for 
example, the Satterthwaite’s approach 
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Estimation of Fixed Effects 
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In addition to the estimation of fixed effects, very 
often in genetics interest is also on prediction of 
random effects.  

In linear (Gaussian) models such predictions are given 
by the conditional expectation of u given the data, 
i.e.            . 

Given the model specifications, the joint distribution 
of y and u is: 

]|[E yu
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Estimation (Prediction) of 
Random Effects 

])[E]([Var][Cov][E]|[E 1T yyyyu,uyu −+= −

)())( 1TT1T XβyΣ(ZGZGZXβyVGZ −+=−= −−

)ˆ()ˆ 1TT βXyΣ(ZGZGZu −+= −

From the properties of multivariate normal distribution, 
we have that: 

 

 

The fixed effects β are typically replaced by their 
estimates, so that predictions are made based on the 
following expression: 

 

Estimation (Prediction) of 
Random Effects 
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Mixed Model Equations 
The solutions    and    discussed before require  
As V can be of huge dimensions, especially in animal 
breeding applications, its inverse is generally 
computationally demanding if not unfeasible.  

However, Henderson (1950) presented the mixed 
model equations (MME) to estimate β and u 
simultaneously, without the need for computing       

The MME were derived by maximizing (for β and u) 
the joint density of y and u, expressed as: 

β̂ û 1−V

p(y,u |β,G,Σ)∝  | Σ |−1/2 |G |−1/2

1−V

×exp −
1
2
(y−Xβ−Zu)TΣ−1(y−Xβ−Zu)− 1

2
uTG−1u

%
&
'

(
)
*

Mixed Model Equations 
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ZuΣyXβΣyyΣyGΣ 1T1T1T 22|||| −−− −−++=

uGuZuΣZuZuΣXβXβΣXβ 1T1TT1TT1TT 2 −−−− ++++

The logarithm of this function is: 
 

 

 

 

The derivatives of    regarding β and u are: 
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Equating them to zero gives the following system: 
 

 

 

which can be expressed as: 

 

 

 

known as the mixed model equations (MME) 
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Mixed Model Equations 

BLUE and BLUP 

Using the second part of the MME, we have that: 
 

so that: 

 

It can be shown that this expression is equivalent to: 

 

and, more importantly, that    is the best linear 
unbiased predictor (BLUP) of u 

yΣZuGZΣZβXΣZ 1T11T1T ˆ)(ˆ −−−− =++

)ˆ()(ˆ 1T111T βXyΣZGZΣZu −+= −−−−

)ˆ()ˆ 1TT βXyΣ(ZGZGZu −+= −

û
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BLUE and BLUP 

yΣXuZΣXβXΣX 1T1T1T ˆˆ −−− =+

yΣXβXyΣZGZΣZZΣXβXΣX 1T1T111T1T1T )ˆ()(ˆ −−−−−−− =−++

yΣZGZΣZZΣΣXXΣZGZΣZZΣΣXβ ])([}])([{ˆ 1T111T11T11T111T11T −−−−−−−−−−−−− +−+−=

Using this result into the first part of the MME, we 
have that: 

 

 

 

Similarly, it is shown that this expression is 
equivalent to                                 , which is the best 
linear unbiased estimator (BLUE) of β. 

 

yVXXVXβ 1T11T )(ˆ −−−=

It is important to note that    and     require 
knowledge of G and Σ. These matrices, however, 
are rarely known. This is a problem without an 
exact solution using classical methods.  

The practical approach is to replace G and Σ by 
their estimates (     and     ) into the MME: 

β̂ û

Ĝ Σ̂
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BLUE and BLUP 
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BLUE and BLUP require knowledge of G and Σ 
These matrices, however, are rarely known and 
must be estimated 
Variance and covariance components estimation: 

•  Analysis of Variance (ANOVA) 

•  Maximum likelihood 

•  Restricted maximum likelihood (REML) 

•  Bayesian approach (to be discussed later) 

Estimation of Variance Components 
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Lecture 4 
BLUP Breeding Values 

Guilherme J. M. Rosa 
University of Wisconsin-Madison 

Introduction to Quantitative Genetics 
SISG, Seattle 
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Linear Mixed Effects Model 

eZuXβy ++=
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Estimation of Fixed Effects 

))(,(MVN~)(ˆ 11T1T11T −−−−−= XVXβyVXXVXβ

eZuε +=

εXβy +=

with                      , such that  
 
è MLE for β :  
 
 

where  

Var[ε]=ZGZT + Σ

ΣZGZV += T
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Prediction of Random Effects 

Replacing β by its estimate: 

])[E]([Var][Cov][E]|[E 1T yyyyu,uyu −+= −

)())( 1TT1T XβyΣ(ZGZGZXβyVGZ −+=−= −−

)ˆ()ˆ 1TT βXyΣ(ZGZGZu −+= −
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Mixed Model Equations 

)ˆ()(ˆ 1T111T βXyΣZGZΣZu −+= −−−−

β̂ = {XT[Σ−1 − Σ−1Z(ZTΣ−1Z+G−1)−1ZTΣ−1]X}−1

× XT[Σ−1 − Σ−1Z(ZTΣ−1Z+G−1)−1ZTΣ−1]y

BLUP and BLUE: 

Animal/plant breeding programs are based on the 
principle that phenotypic observations on related 
individuals can provide information about their 
underlying genotypic values 
 
The additive component of genetic variation is the 
primary determinant of the degree to which 
offspring resemble their parents, and therefore 
this is usually the component of interest in 
artificial selection programs 

Mixed Models in Animal and 
Plant Breeding 
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Many statistical methods for analysis of genetic 
data are specific (or more appropriate) for 
phenotypic measurements obtained from planned 
experimental designs and with balanced data sets 
 
While such situations may be possible within 
laboratory or greenhouse experimental settings, 
data from natural populations and agricultural 
species are generally highly unbalanced and 
fragmented by numerous kinds of relationships 

Mixed Models in Animal and 
Plant Breeding 

Culling of data to accommodate conventional statistical 
techniques (e.g. ANOVA) may introduce bias and/or lead 
to a substantial loss of information 

The mixed model methodology allows efficient estimation 
of genetic parameters (such as variance components and 
heritability) and breeding values while accommodating 
extended pedigrees, unequal family sizes, overlapping 
generations, sex-limited traits, assortative mating, and 
natural or artificial selection 

To illustrate such application of mixed models in breeding 
programs, we consider here the so-called Animal Model in 
situations with a single trait and a single observation 
(including missing values) per individual 

Animal Model 
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The animal model can be described as: 

eZuXβy ++=

y is an (n × 1) vector of observations (phenotypic scores) 
β is a (p × 1) vector of fixed effects (e.g. herd-year-

season effects) 
u ~ N(0, G) is a (q × 1) vector of breeding values (relative 

to all individuals with record or in the pedigree file, 
such that q is in general bigger than n) 

e ~ N(0, Inσe2) represents residual effects, where σe2 is 
the residual variance 

Animal Model 

The Matrix  A 
The matrix G describing the covariances among the 
random effects (here the breeding values) follows 
from standard results for the covariances between 
relatives 

It is seen that the additive genetic covariance 
between two relatives i and i’ is given by             , 
where       is the coefficient of coancestry between 
individuals i and i’, and       is the additive genetic 
variance in the base population 

Hence, under the animal model,                , where A 
is the additive genetic (or numerator) relationship 
matrix, having elements given by 

2
a'ii2 σθ

2
aσ

2
aσ= AG

'ii'ii 2a θ=

'iiθ
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The Matrix  A 

For each animal i in the pedigree (i = 1, 2,…,n), going from 
older to younger animals, compute aii and aij (j = 1, 2,…,i-1) 
as follows: 

If both parents (s and d) of animal i are known: 

 aij = aji = (ajs + ajd)/2 and aii = 1 + asd/2 

If only one parent (e.g. d) of animal i is known: 

 aij = aji = ajd/2 and aii = 1 

If parents unknown: 

 aij = aji = 0 and aii = 1 

Example 

1 2 

4 3 

5 6 

Animal Sire Dam 
1 - - 
2 - - 
3 1 2 
4 1 - 
5 4 3 
6 5 2 

pedigree matrix A 



7 

In general, in animal/plant breeding interest is 
on prediction of breeding values (for selection 
of superior individuals), and on estimation of 
variance components and functions thereof, 
such as heritability 

The fixed effects are, in some sense, nuisance 
factors with no central interest in terms of 
inferences, but which need to be taken into 
account (i.e., they need to be corrected for 
when inferring breeding values) 

Animal Model 

Since under the animal model                        and                    
                  , the mixed model equations can be 
expressed as: 

2
a

11 −−− σ= AG
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Animal Model 
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Conditional on the variance components ratio λ, the 
BLUP of the breeding values are given then by: 
 
 
 
These are generally referred to as Estimated Breeding 
Values (EBV) 
 
Alternatively, some breeders associations express 
their results as Predicted Transmitting Abilities (PTA) 
(or Estimated Transmitting Abilities (ETA) or Expected 
Progeny Difference (EPD)), which are equal to half the 
EBV, representing the portion of an animal’s breeding 
values that is passed to its offspring 

)ˆ()(ˆ T11T βXyZAZZu −λ+= −−

The amount of information contained in an animal’s 
genetic evaluation depends on the availability of 
its own record, as well as how many (and how close) 
relatives it has with phenotypic information 
 
As a measure of amount of information in livestock 
genetic evaluations, EBVs are typically reported 
with its associated accuracies 
 
Accuracy of predictions is defined as the 
correlation between true and estimated breeding 
values, i.e.,                     
 
Instead of accuracy, some livestock species 
genetic evaluations use reliability, which is the 
squared correlation of accuracy (   ) 

)u,û(r iii ρ=

2
ir
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The calculation of               requires the diagonal 
elements of the inverse of the MME coefficient 
matrix, represented as: 

 

 
 
It is shown that the prediction error variance of 
EBV      is given by: 

 

 
where      is the i-th diagonal element of       , 
relative to animal i.  

Prediction Accuracy 
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iû
2
e

uu
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)u,û( iiρ

Prediction Accuracy 

The PEV can be interpreted as the fraction of 
additive genetic variance not accounted for by 
the prediction 
 
Therefore, PEV can be expressed also as: 

 

 

such that                             , from which the 
reliability is obtained as: 
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herd 1 

herd 2 

Animal Model 
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Breeding values:                        , with 

Animal Model 
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R Code 
y<-matrix(c(310,270,350),nrow=3) 
X<-matrix(c(1,1,0,0,0,1),nrow=3) 
Z<-matrix(c(1,0,0,0,0,0,0,1,0,0,0,0,0,1,0),nrow=3, byrow = TRUE) 
A<-matrix(c(1,0,0.5,0.5,0.25, 
            0,1,0,0.5,0, 
            0.5,0,1,0.25,0.5, 
            0.5,0.5,0.25,1,0.125, 
            0.25,0,0.5,0.125,1),nrow=5) 
 
h2<-1/3 # heritability 
a=(1-h2)/h2 
 
# crossproducts 
XX<-crossprod(X,X) 
XZ<-t(X) %*% Z 
ZX<-t(Z) %*% X 
ZZ<-crossprod(Z,Z)+a*solve(A) 
 
# mixed model equations 
# coefficient matrix and right hand side 
C<-rbind(cbind(XX,XZ),cbind(ZX,ZZ)) 
rhs<-rbind(t(X) %*% y,t(Z) %*% y) 
 
#solution 
theta.hat <- solve(C) %*% rhs 

animal model 
toy example 

The animal model can be extended to model multiple 
(correlated) traits, multiple random effects (such as 
maternal effects and common environmental effects), 
repeated records (e.g. test day models), and so on 

Example (Mrode 1996, pp74-76): Weaning weight (kg) 
of piglets, progeny of three sows mated to two boars: 

Animal Model 
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A linear model with the  (fixed) effect of sex, and the 
(random) effects of common environment (related to 
each litter) and breeding values can be expressed as X: 

 

 

 

Assuming that            ,              and            , the MME 
are as follows: 

 

 

 

where                         and 
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The BLUEs and BLUPs 
(inverting the numerator 
relationship matrix) are: 

Mrode example 
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OUTLINE 

•  Bayesian Analysis and MCMC 
•  Marker Assisted Selection 
•  Genomic Selection 
•  Models & Techniques 
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Bayesian Data Analysis 

Inferences using probability models for 
quantities we observe and for quantities 
about which we wish to learn 
 
Explicit use of probability for quantifying 
uncertainty in inferences based on 
statistical data analysis 

Conditional Probability 
(Bayes’ Rule) 

Ω
A B 

)B(P
)A|B(P)A(P

)B(P
)BA(P)B|A(P =

∩
=
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y: observed data; y ~ p(y|θ) 
θ: parameters (all unobserved quantities) 

)y(p
)|y(p)(p

)y(p
)y,(p)y|(p θθ
=

θ
=θ

)|y(p)(p)y|(p θθ∝θ
posterior 

distribution 
sampling 

distribution prior 
distribution 

Bayesian Inference 

Prior Distributions 

Informative and Noninformative 

Proper and Improper 

Conjugate and Nonconjugate 

Jeffreys’ Prior 

Maximum Entropy 

Reference Prior 
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Example 1: Binomial Distribution 

y1, y2,…, yn ~
iid
Bin(ni,θ)

p(y | θ) = p(yi | θ) = 1
yi

"

#
$$

%

&
''θ

yi (1−θ)1−yi

i=1

n

∏
i=1

n

∏

           ∝θ yi∑ (1−θ)n− yi∑

Data:                                       , θ = Prob(y = 1) 
 
Sampling model: 
 
 

Prior:  
 
Posterior:  

p(θ) = Beta(a, b)∝θa−1(1−θ)b−1

p(θ | y)∝θa+ yi−1∑ (1−θ)n+b− yi−1∑

θ | y ~ Beta a + yi∑ ,  n+ b− yi∑( )

Example 1: Binomial Distribution 

Posterior mean: 

    Posterior mode: 

        Posterior variance: 

            percentis, HPD, etc. 

Mode[θ | y]=
a + yi −∑ 1
n+ a + b− 2

θ | y ~ Beta a + yi∑ ,  n+ b− yi∑( )

E[θ | y]=
a + yi∑
n+ a + b

Features of the posterior distribution: 

Var[θ | y]=
a + yi∑( ) n+ b− yi∑( )
(n+ a + b)2(n+ a + b+1)
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Example 1: Binomial Distribution 
Setting, for example a = 1 and b = 1: 
 
Prior:  
 
Posterior:  
 
 
 
 
Note that in this case the posterior mode coincides 
with the maximum likelihood estimate of θ: 

Mode[θ | y]= 1
n

yi∑

p(θ) =Uniform(0,1)

p(θ | y)∝θ yi−1∑ (1−θ)n− yi∑

θ | y ~ Beta 1+ yi∑ ,  n+1− yi∑( )

Example 2: Normal Distribution 

y1, y2,…, yn ~
iid
N(µ,σ2 )Data:                                     , with known σ2 

 
Sampling model: p(yi |µ,σ

2 ) = 1
2πσ2

exp −
1
2σ2 (yi −µ)
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Example 2: Normal Distribution 
Prior (Conjugate): 

p(µ) = 1
2πτ2

exp −
1
2τ2

(µ − φ)2
%
&
'

(
)
*

Joint posterior: 

µ ~ N(φ, τ2 )

∝
1
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1
2σ2 n(y −µ)
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)
*
+

p(µ | y)∝ p(y |µ,σ2 )× p(µ)

Joint posterior (cont’ed): 

p(µ | y)∝ exp −
1
2σ2 n(y −µ)
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Marginal Posterior Distributions 

p(θ1 | y)∝ p(θ1,θ2,…,θp | y)dθθ≠θ1θ≠θ1
∫

Multi Parameter Models 

y ~ p(y | θ1,θ2,…,θp )

p(θ1,θ2,…,θp | y) ~ p(θ1,θ2,…,θp )p(y | θ1,θ2,…,θp )

Marginal Posterior Distributions 
Marginalization (i.e. integrals) in multi-dimensional 
models can be cumbersome and some times do not 
have analytical form 
 
An alternative in this regard: Monte Carlo methods 
 
Monte Carlo integration consists of sampling from 
the posterior distribution, and then using such 
sampled values to calculate features of interest on 
the (joint or marginal) posterior distribution 
 
There are many algorithms that can be used to 
sample from a distribution; some are based on 
Markov chains, among which the Gibbs sampling is 
probably the most popular 
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Gibbs Sampling 

Burn-in & Convergence 

Tinning interval & Lag 
correlations 

Sample size & Monte 
Carlo error 

θ(0) = (θ1
(0),θ2

(0),…,θr
(0) )

θ1
(1) | θ2

(0),θ3
(0),…,θr

(0)

θ2
(1) | θ1

(1),θ3
(0),…,θr

(0)

θr
(1) | θ2

(1),θ3
(1),…,θr−1

(1)
! 

p(θi | θ1,…,θi−1,θi+1,…,θr )θ = (θ1,θ2,…,θr )

Monte Carlo Approximations 
After convergence, each sampled vector is a sample 
from the joint posterior distribution, and so each 
sampled element (scalar) is a sample from the respective 
marginal posterior distribution 
 
For each parameter (e.g., θ1) we’ll have then a series of 
values: 
 
 
from which features of its distribution (e.g., posterior 
mean) can be approximated, for example: 

θ1
(1),θ1

(2),θ1
(3),…,θ1

(N)

E[θ1 | y]≅
1
N

θ1
( j)

j=1

N

∑
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Monte Carlo Approximations 
Other often interesting features used to represent a 
marginal posterior distribution are: posterior variance 
(or standard deviation), posterior mode or median, 
percentiles, highest posterior density (HPD), etc. 
 
Very useful property: If one is interested on the 
distribution of a function of the model parameters, 
samples from such a distribution can be obtained 
simply by applying that specific function to the 
sampled values of those parameters 
 
For example, the posterior mean of the heritability 
can be obtained as: 

E[h2 | y]≅ 1
N

σu
( j)

σu
( j) +σε

( j)
j=1

N

∑

MAS: Use of genetic markers to improve the 
efficiency of genetic selection 

Basic idea behind of MAS: 

•  Most traits of economic importance are controlled 
by a fairly large number of genes 

•  Some of these genes, however, with larger effect 

•  Following the pattern of inheritance of such genes 
might assist in selection 

Marker Assisted Selection 
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MAS Could Help Improve 
Low heritability traits  
Phenotypes that can be measured on one sex only 

Characteristics that are not measurable before 
sexual maturity 

Traits that are difficult to measured or require 
sacrifice 

Size (effect) of QTL 
Frequency of favorable allele 

Recombination rate between marker(s) and QTL 

Efficiency of MAS 

y = Xβ+Wq+Za + ε

a ~ N(0,Aσa
2 )

phenotype 

fixed effects 
(environmental) 

QTL effects 

Polygenic 
effects 

residual 
ε ~ N(0, Iσε

2 )

Modeling Effects at The 
QTL Genotype 
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QTL-genotype as a fixed effect: Regression of 
phenotypes using QTL genotype probabilities from 
segregation analysis  (Kinghorn et al. 1993, 
Meuwissen and Goddard 1997) 

QTL-genotype as a random effect: QTL effect is 
modeled as the sum of the two gametic effects 
(Fernando and Grossman 1989)  

Modeling Effects at the QTL Genotype 

y = Xβ+Wv+Za + ε , Var
v
a
ε

"

#

$
$
$

%

&

'
'
'
=

Gvσv
2 0 0

0 Aσa
2 0

0 0 Iσε
2

"

#

$
$
$
$

%

&

'
'
'
'

Gametic relationship matrix 

As most quantitative traits are influenced by 
many genes, tracking a small number of them 
using molecular markers will explain only a small 
fraction of the total genetic variance 
 
GWMAS, on the other hand, makes use of a very 
dense set of markers covering the entire genome, 
which potentially explain all genetic variance 

Genomic Selection 
(Genome-wide Marker Assisted Selection) 
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1. Reference Population 

3. Genomic Selection 

2. Data Analysis 

4. Selected Animals 

Animals with genotypic and 
phenotypic information 

-  QC and data processing 
-  Prediction model: 

Young animals 
(selection candidates) 

Prediction of genetic merit 
using marker information 

Superior animals  
(higher gEBV), selected 

earlier with higher accuracy 

yi = µ + wijb j
j=1

p

∑ + ei

gEBVk = wkjb̂ j
j=1

p

∑

Genomic Selection 

(Meuwissen et al., 2001) 

Genetic effects 

yi = µ + xi1g1 + xi2g2 +...+ xipgp + ei

Marker genotypes 

ð  ‘big p small n paradigm’  
ð  Dimension reduction techniques (e.g. SVD 

and PLS), and stepwise strategies 
ð  Alternatively, ridge regression, random 

effects models, and hierarchical modeling  

Genomic Selection 

GEBV = xi1ĝ1 + xi2ĝ2 +...+ xipĝp = xijĝ j
j=1

p

∑Genomic EBV: 
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Two-step Procedure: 
    Test each marker (chromosome segment) for presence 

of QTL and select those with significant effects 
    Fit selected markers simultaneously using multiple 

regression 
    Predict breeding values using fitted regression 

(similar to LD- MAS approach with multiple markers) 

Problems: 
    Over estimation of markers effects due to first-step 

(selection) 
    Do not capture all QTL 

Least Squares 

gj ~ N(0,σ0
2 )

BLUP 

µ̂

ĝ

!

"
#
#

$

%
&
&
=

1'1 1'X
X'1 X'X+ Iγ

!

"
#
#

$

%
&
&

−1
1'y
X'y

!

"

#
#

$

%

&
&

γ = σe
2 /σ0

2

How to choose       ? 
    Arbitrary; but        controls amount of shrinkage  

    Alternative: set                    , where       is an  
     estimate (prior) of total additive genetic variance  

2
0σ

2
0σ

2
uσp/2u

2
0 σ=σ

y =1µ + X jg j
j=1

p

∑ + e
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Bayes A 

y =1µ + X jg j
j=1

p

∑ + e y |µ,g j,σe
2 ~ N(1µ + X jg j

j=1

p

∑ , Iσe
2 )

gj |σ j
2 ~ N(0,σ j

2 )

σ j
2 ~ χ−2 (ν,S)
(scaled inverted chi-square distribution with 
scale parameter S and ν degrees of freedom) 

σe
2 ~ χ−2 (−2,0)

Prior distributions: 

Bayes B 

y =1µ + X jg j
j=1

p

∑ + e y |µ,g j,σe
2 ~ N(1µ + X jg j

j=1

p

∑ , Iσe
2 )

Prior distributions: 

σe
2 ~ χ−2 (−2,0)

gj = 0
gj |σ j

2 ~ N(0,σ j
2 )

with probability π 
with probability (1 - π) 

σ j
2 ~ χ−2 (ν,S)
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SIMULATION STUDY 

Genome: 1000 cM with markers every 1 cM 
Markers surrounding each 1 cM region combined 
into haplotypes 
LD between marker and QTLs due to finite 
population size (Ne = 100) 
Training sample: single generation with 2,000 
animals 
Test sample: prediction of breeding values of 
their progeny based on marker genotypes 

SIMULATION STUDY 
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SIMULATION STUDY 

SIMULATION STUDY 
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SIMULATION STUDY 

Application with Real Data 
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(VanRaden et al., 2008) 
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ð  Goodness-of-fit  vs.  Model Complexity 
(Bias-variance tradeoff) 

Over-reduction Over-fit 

Model Selection 
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ð  Goodness-of-fit  
 ▪  likelihood ratio approach (LRT; nested models) 

 

 

 
ð  Model complexity 

 ▪  number of free parameters, p (effective number) 

 

2
)pp(

2

1
21

~
L
Lln2LRT −χ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

Syy =ˆ )(tracep S=Linear (regularized) fitting: 

Model Selection 

ð  Balancing goodness-of-fit and complexity 

 ▪  Akaike information criterion (AIC): 

 

 ▪  Bayesian information criterion (BIC): 
        (or Schwarz Criterion) 

( )Llnp2AIC −=

( )Lln2)nln(pBIC −=

( )LlnpRSS1BIC 2
e

+
σ

=⎟
⎠

⎞
⎜
⎝

⎛+=
n
RSSlnnp2AIC

),0(N~e 2
e

iid

i σF If                       then: 

and 

Model Selection 
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Ridge Regression 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

βλ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β−β−= ∑∑ ∑

== =

p

1j

2
j

N

1i

2p

1j
jij0i

ridge xyminargˆ
β

β

∑

∑ ∑

=

= =

≤β

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β−β−=

p

1j

2
j

N

1i

2p

1j
jij0i

ridge

s  :subject to                             

,xyminargˆ   :lyequivalent or,
β

β

λ ≥ 0 (complexity parameter) 

)xx and yy (i.e., s'x and y centeringafter 
N/yyˆ

iiii

i0

−−

==β ∑

RSS(λ) = (y−Xβ)'(y−Xβ)+ λβ 'β

Ridge Regression 

β̂ridge = (X 'X+ λI)−1X 'y
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LASSO 

∑∑ ∑
== =

≤β⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β−β−=

p

1j
j

N

1i

2p

1j
jij0i

lasso t ||  :subject to  ,xyminargˆ
β

β

The solid blue areas are the constraint regions                   (lasso) 
and                (ridge regression), while the red ellipses are the 

contours of the least squares error function. 

t|||| 21 ≤β+β
22

2
2
1 t≤β+β

▪ Estimation picture for the LASSO (left) and Ridge Regression (right) 

Predictive Ability 

Behavior of test sample and training sample 
error as the model complexity is varied 

(H
astie et al 2009) 
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Cross-validation 

ð  K-FOLD 

 

 

 

 

 

 

ð  LEAVE-ONE-OUT (“n-FOLD”) 

Training set 
Testing set 

Bayesian Alternative 

y =1µ + X jg j
j=1

p

∑ + e y |µ,g j,σe
2 ~ N(1µ + X jg j

j=1

p

∑ , Iσe
2 )

gj |σ0
2 ~ N(0,σ0

2 )BRR: 

Bayes A: 

Bayes B,C: 

BLasso: 

BX: 

gj |σ j
2 ~ N(0,σ j

2 ),   σ j
2 ~ χ−2 (ν,S)

gj | k,σ j
2 ~ π×N(0, kσ j

2 )+ (1− π)×N(0,σ j
2 )

gj |σ j
2 ~ N(0,σ j

2 ),   σ j
2 ~ Exponential(λ)

gj |σ j
2 ~ N(0,σ j

2 ),   σ j
2 ~ X
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Normal/Independent Distributions 

p(gj) = p(gj |σ j
2 )p(σ j

2 )
σ j
2
∫ dσ j

2

BRR: Normal 

Bayes A: Student-t 

Bayes B,C: Mixtures 

BLasso: Double exponential 

GBLUP 

gj |σg
2 ~ N(0,σg

2 )y =1µ + X jg j
j=1

p

∑ + e , with: 

Regression with genetic effects with 
normal distribution with common variance 

a |σa
2 ~ N(0,Gσa

2 )y =1µ + a+ e , with: 

Equivalent Model 

G is the genomic relationship matrix: 

G = 2 pj(1− pj)
j=1

p

∑
#

$
%%

&

'
((

−1

(X−M)(X−M)'
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ssGBLUP 

Single-step GBLUP: Single mixed model with 
all animals (genotyped and non-genotyped) 
included, with matrix A replaced by H 

H−1 =A−1 +
0 0
0 G−1 −A22

−1

"

#
$
$

%

&
'
'

Preventive and Personalized Medicine 

Training population 

Prediction 
Model 

New 
patient 

Personalized 
treatment 
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_  5,132 subjects from Framingham Heart Study 

_  Phenotypes measured from 1948 until death 

_  Genotypes: Affymetrix 500K SNPs 

Photo: http://www.framinghamheartstudy.org/ 

Probit B-LASSO 

or 

1.  No-SNP: standard covariables 
2.  Covariates + familial relationships 
3.  Covariates + SNPs (PC or Bayesian LASSO) 

Models 
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Results (ROC, Area Under the Curve) 

Comparison of Models 
Models with increasing 

number of SNPs 
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Lecture 6 
QTL and Association Mapping

 with Mixed Models 

Bruce Walsh lecture notes 
Introduction to Mixed Models 

SISG, Seattle 
19 – 21 July 2017 
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QTL & Association mapping 
•  We would like to know both the genomic

 locations (map positions) and effects (either
 genotypic means or variances) for genes
 underlying quantitative trait variation 

•  QTL mapping 
–  Using linkage information on a set of known

 relatives 
•  Association mapping 

–  Using very fine scale LD to map genes in a set of
 random individuals from a population 
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Outline 
•  Basics of QTL mapping   

–  Line crosses 
•  typically fixed effects models 

–  Outbred populations 
•  Random effects family models 
•  General pedigree methods 

•  High parameter models 
–  Shrinkage approaches for detecting epistasis 

•  Association mapping 
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Inbred Line Cross QTL mapping 
•  Most powerful design 

–  Cross two fully inbred lines, look at marker-trait
 segregation in the F2 (or other, such as Fn)
 generations 

–  P1: MMQQ, P2:mmqq 
–  All F1 same genotype/phase: MQ/mq 
–  Hence, in the F1, all parents have the same

 genotype 
–  At most only two alleles, each with freq 1/2 
–  Idea:  Does the mean trait value of (say) MM

 individuals differ from (say) mm 
•  Different marker genotypes have different mean trait

 values 
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Expected Marker Means 
The expected trait mean for marker genotype Mj 
is just 

For example, if QQ = 2a, Qq = a(1+k), qq = 0, then in  
the F2 of an MMQQ/mmqq cross, 

• If the trait mean is significantly different for the 
genotypes at a marker locus, it is linked to a QTL 

• A small MM-mm difference could be (i) a tightly-linked 
  QTL of small effect or (ii) loose linkage to a large QTL   
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Linear Models for QTL Detection 
The use of differences in the mean trait value 
for different marker genotypes to detect a QTL  
and estimate its effects is a use of linear models. 

One-way ANOVA. 
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Detection:  a  QTL is linked to the marker if at least  
one of the bi is significantly different from zero 

Estimation: (QTL effect and position):  This requires 
relating the bi to the QTL effects and map position  
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Detecting epistasis 
One major advantage of linear models is their 
flexibility.  To test for epistasis between two QTLs, 
use  ANOVA with an interaction term 
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Detecting epistasis 

• At least one of the ai significantly different from 0 
 ---- QTL linked to first marker set 

• At least one of the  bk significantly different from 0 
 ---- QTL linked to second marker set 

• At least one of the  dik significantly different from 0 
 ---- interactions between QTL in sets 1 and two 

Problem:  Huge number of potential interaction terms 
(order m2, where m = number of markers) 
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Model selection 
•  With (say) 300 markers, we have (potentially) 300

 single-marker terms and 300*299/2 = 44,850
 epistatic terms  
–  Hence, a model with up to p= 45,150 possible parameters 
–  2p possible submodels = 1013,600 ouch! 

•  The issue of Model selection becomes very
 important. 

•  How do we find the best model? 
–  Stepwise regression approaches 

•  Forward selection (add terms one at a time) 
•  Backwards selection (delete terms one at a time) 

–  Try all models, assess best fit 
–  Mixed-model approaches (Stochastic Search

 Variable Selection, or SSVS)   
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Model Selection 

Model Selection: Use some criteria to chose  among a  
number of candidate models.  Weight goodness-of-fit  
(L, value of the likelihood at the MLEs) vs.  number of  
estimated parameters (k) 

AIC = Akaike’s information criterion  
AIC = 2k - 2 Ln(L) 

BIC = Bayesian information criterion (Schwarz criterion) 
   BIC = k*ln(n)/n - 2 Ln(L)/n 
BIC penalizes free parameters more strongly than AIC 

Other measures.  For these (and AIVC, BIC) smaller 
score indicates better model fit 

12 

Model averaging 
Model averaging:  Generate a composite model by weighting 
(averaging) the various models, using AIC, BIC, or other 

Idea:  Perhaps no “best” model, but several models 
all extremely close.  Better to report this “distribution” 
rather than the best one 

One approach is to average the coefficients on the 
“best-fitting” models using some scheme to return 
a composite model 
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Supersaturated Models 

A problem with many QTL approaches is that there 
are far more parameters (p) to estimate than  
there are independent samples (n). Case in point:   
epistasis 

Such supersaturated models arise commonly in 
Genomics. How do we deal with them? 

One approach is to have all parameters included, but some  
are shrunk back (regressed) towards zero by assigning them  
a very small posterior variance 
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Shrinkage estimators 
Shrinkage estimates:   Rather than adding interaction   
terms one at a time, a shrinkage method starts with all 
interactions included, and then shrinks most back to zero.  

Under a Bayesian analysis, any effect is random.  One can 
assume the effect for (say) interaction ij  is drawn from  
a normal with mean zero and variance σ2

ij 

Further, the interaction-specific variances are themselves  
random variables drawn from a hyperparameter distribution,  
such as an inverse chi-square.   

One then estimates the hyperparameters and  uses these  
to predict the variances, with effects with  small variances  
shrinking back to zero, and effects with large variances  
remaining in the model.    
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What is a “QTL” 
•  A detected “QTL” in a mapping experiment

 is a region of a chromosome detected by
 linkage. 

•  Usually large (typically 10-40 cM) 
•  When further examined, most “large” QTLs

 turn out to be a linked collection of locations
 with increasingly smaller effects 

•  The more one localizes, the more subregions
 that are found, and the smaller the effect in
 each subregion 

•  This is called fractionation 
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Limitations of QTL mapping 
•  Poor resolution (~20 cM or greater in most designs

 with sample sizes in low to mid 100’s) 
–  Detected “QTLs” are thus large chromosomal regions 

•  Fine mapping requires either 
–  Further crosses (recombinations) involving regions of

 interest (i.e., RILs, NILs) 
–  Enormous sample sizes   

•  If marker-QTL distance is 0.5cM, require sample sizes
 in excess of 3400  to have a 95% chance of 10 (or
 more) recombination events in sample 

• 10 recombination events allows one to separate
 effects that differ by ~ 0.6 SD 
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•  “Major” QTLs typically fractionate  
–  QTLs of large effect (accounting for  > 10% of the

 variance) are routinely discovered. 
–  However, a large QTL peak in an initial experiment

 generally becomes a series of smaller and smaller
 peaks upon subsequent fine-mapping. 

•  The Beavis effect: 
–  When power for detection is low, marker-trait

 associations declared to be statistically significant
 significantly overestimate  their true effects. 

–  This effect can be very large (order of magnitude)
 when power is low. 

Limitations of QTL mapping (cont) 
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Beavis effect is akin to a selection intensity 
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Outbred populations 
•  When we move from the simple framework of an

 inbred line cross QTL design to a set of parents from
 an outbred population, complications arise as the
 parents don’t all have the same genotypes 
–  Differences in linkage phase 
–  Many uninformative as to linkage (varies over

 makers) 
–  Possibility of multiple alleles 

•  Result: express marker effects in terms of the
 variance in trait value it explains, rather than in terms
 of mean marker effects 
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General Pedigree Methods 
Random effects (hence, variance component) method 
for detecting QTLs in general pedigrees 

The model is rerun for each marker 
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The covariance between individuals i and j is thus 

Fraction of chromosomal
 region shared IBD 

between individuals i and j. 

Resemblance
 between
 relatives

 correction 

Variance
 explained by
 the region of

 interest 

Variance
 explained by

 the
 background
 polygenes 
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Assume z is MVN, giving the covariance matrix as 

A significant σA
2 indicates a linked QTL. 
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Association & LD mapping 

Mapping major genes (LD mapping) vs. trying to 
Map QTLs (Association mapping) 

Idea:  Collect random sample of individuals, contrast 
trait means over marker genotypes 

If a dense enough marker map, likely population level 
linkage disequilibrium (LD) between closely-linked  
genes 
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Fine-mapping genes 

Suppose an allele causing an effect on the trait 
arose as a single mutation in a closed population 

New mutation arises on  
red chromosome 

Initially, the new mutation is 
largely associated with the 
red haplotype 

Hence, markers that define the red haplotype are 
likely to be associated (i.e. in LD) with the mutant allele 
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Background:  Association mapping 
•  If one has a very large number of SNPs, then new

 mutations (such as those that influence a trait) will be in LD
 with very close SNPs for hundreds to thousands of
 generations, generating a marker-trait association. 
–  Association mapping looks over all sets of SNPs for trait

-SNP associations.  GWAS = genome-wide association
 studies. 

–  This is also the basis for genomic selection 
•  Main point from extensive human association studies 

–  Almost all QTLs have very small effects 
–  Marker-trait associations do not fully recapture all of the

 additive variance in the trait (due to incomplete LD) 
–  This has been called the “missing heritability problem”

 by human geneticists, but not really a problem at all
 (more shortly). 
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Association mapping 
•  Marker-trait associations within a population of unrelated

 individuals 
•  Very high marker density (~ 100s of markers/cM) required 

–  Marker density no less than the average track length of
 linkage disequilibrium (LD) 

•  Relies on very slow breakdown of initial LD generated by a
 new mutation near a marker to generate marker-trait
 associations 
–  LD decays very quickly unless very tight linkage 
–  Hence, resolution on the scale of LD in the population(s) being

 studied ( 1 ~ 40 kB) 

•  Widely used since mid 1990’s.  Mainstay of human
 genetics, strong inroads in breeding, evolutionary genetics 

•  Power a function of the genetic variance of a QTL, not its
 mean effects 



Manhattan plots 
•  The results for a Genome-wide Association study (or

 GWAS) are typically displayed using a Manhattan
 plot. 
–  At each SNP, -ln(p), the negative log of the p

 value for a significant marker-trait association is
 plotted. Values above a threshold indicate
 significant effects 

–  Threshold set by Bonferroni-style multiple
 comparisons correction 

–  With n markers, an overall false-positive rate of p
 requires each marker be tested using p/n. 

–  With n = 106 SNPs,  p must exceed 0.01/106 or
 10-8 to have a control of 1% of a false-positive   

27 
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Gm+ Total % with diabetes 

Present 293 8% 

Absent 4,627 29% 

When population being sampled actually consists of  several distinct
 subpopulations we have lumped together, marker alleles may provide
 information as to which group an individual belongs.  If there are other
 risk factors in a group, this can create a false association btw marker
 and trait 

Example.  The Gm marker was thought (for biological reasons) to be
 an excellent candidate gene for  diabetes in the high-risk population
 of Pima Indians in the American Southwest.  Initially a very strong
 association was observed: 

Population Stratification 
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Gm+ Total % with diabetes 

Present 293 8% 

Absent 4,627 29% 

Problem:  freq(Gm+) in Caucasians (lower-risk diabetes 
Population) is 67%, Gm+ rare in full-blooded Pima 

Gm+ Total % with diabetes 

Present 17 59% 

Absent 1,764 60% 

The association was re-examined in a population of Pima 
that were 7/8th (or more) full heritage: 
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Linkage vs. Association 
The distinction between linkage and association 
is subtle, yet critical     

Marker allele M is associated with the trait if 

Cov(M,y) = 0   

While such associations can arise via linkage, they 
can also arise via population structure. 

Thus, association DOES NOT imply linkage, and
 linkage is not sufficient for association 

Accounting for population structure 

•  Three classes of approaches proposed 
–  1) Attempts to correct for common pop structure

 signal (regression/PC methods)  
–  2) Attempts to first assign individuals into

 subpopulations and then perform association
 mapping in each set (Structure) 

–  3) Mixed models that use all of the marker
 information (Tassle, EMMA, many others) 

•  These can also account for cryptic relatedness in the
 data set, which also causes false-positives. 

32 
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Regression Approaches 

One approach to control for structure is 
simply to include a number of markers, outside 
of the SNP of interest, chosen because they 
are expected to vary over any subpopulations 

How might you choose these in a sample?  Try 
those markers (read STRs) that show the largest 
departure from Hardy-Weinberg, as this is expected 
in markers that vary the most over subpopulations. 
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Variations on this theme (eigenstrat) --- use all of the  
marker information to extract a set of significant 
PCs, which are then included in the model as cofactors 
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Structured Association Mapping 

Pritchard and Rosenberg (1999) proposed 
Structured Association Mapping, wherein 
one assumes k subpopulations (each in Hardy- 
Weinberg). 

Given a large number of markers, one then attempts 
to assign individuals to groups using an MCMC  
Bayesian classifier  

Once individuals assigned to groups, association mapping 
without any correction can occur in each group. 

Mixed-model approaches 

• Mixed models use marker data to  
– Account for population structure 
– Account for cryptic relatedness 

•  Three general approaches: 
– Treat a single SNP as fixed 

• TASSLE, EMMA 

– Treat a single SNP as random 
• General pedigree method 

– Fit all of the SNPs at once as random 
• GBLUP 36 
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 Structure plus Kinship Methods 
Association mapping in plants offer occurs by first taking  
a large  collection of lines, some closely related, others  
more distantly related.  Thus, in addition to this collection  
being a series of subpopulations (derivatives from a  
number of founding lines), there can also be additional  
structure within each subpopulation (groups of more  
closely related lines within any particular  lineage).  

Y = Xβ + Sa + Qv + Zu + e 

Fixed effects in blue, random effects in red 

This is a mixed-model approach. The program TASSEL 
runs this model.  
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 Q-K method 

Y = Xβ + Sa + Qv + Zu + e 

 β = vector of fixed effects 

 a = SNP effects  (fits SNPs one at a time) 

 v = vector of subpopulation effects (STRUCTURE) 
Qij = Prob(individual i in group j).  Determined 
from STRUCTURE output 

u = shared polygenic effects due to kinship.   
Cov(u) = var(A)*A, where the relationship matrix 
A estimated from marker data matrix K, also called a 
GRM – a genomic relationship matrix 



Which markers to include in K? 

•  Best approach is to leave out the marker
 being tested (and any in LD with it) when
 construction the genomic relationship matrix 
–  LOCO approach – leave out one chromosome

 (which the tested marker is linked to) 

•  Best approach seems to be to use most of
 the markers 

•  Other mixed-model approaches along these
 lines  
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Treat Single SNP as random:  General Pedigree  method 

A significant σA
2 indicates a linked QTL. 



GBLUP 
•  The Q-K method tests SNPs one at a time,

 treating them as fixed effects 
•  The general pedigree method (slides 24-26)

 also tests one marker at a time, treating
 them as random effects 

•  Genomic selection can be though of as
 estimating all of the SNP effects at once and
 hence can also be used for GWAS 
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BLUP, GBLUP, and GWAS 

•  Pedigree information gives EXPECTED value 
of shared sites (i.e., ½ for full-sibs) 
–  A matrix in BLUP 
–  The actual realization of the fraction of shared 

genes for a particular pair of relatives can be 
rather different, due to sampling variance in 
segregation of alleles 

–  GRM (or K or marker matrix M)  
–  Hence “identical” relatives can differ significantly 

in faction of shared regions 
–  Dense marker information can account for this 

42 



The general setting 

•  Suppose we have n measured individuals (the n x 1
 vector y of trait values)  

•  The n x n relationship matrix A gives the relatedness
 among the sampled individuals, where the elements
 of A are obtained from the pedigree of measured
 individuals 

•  We may also have p (>> n) SNPs per individual,
 where the n x p marker information matrix M
 contains the marker data, where Mij = score  for SNP
 j (i.e., 0 for 00, 1 for 10, 2 for 11) in individual i.  

Covariance structure of random effects 

•  A critical element specifying the mixed model is the
 covariance structure (matrix) of the vector u of
 random effects 

•  Standard form is that Cov(u) = variance component *
 matrix of known constants 
–  This is the case for pedigree data, where u is typically the

 vector of breeding values, and the pedigree defines a
 relationship matrix A, with Cov(u) = Var(A) * A, the additive
 variance times the relationship matrix 

–  With marker data,  the covariance of random effects are
 functions of the marker information matrix M.   

•  If u is the vector of p marker effects, then Cov(u) =
 Var(m) * MTM, the marker variance times the covariance
 structure of the markers. 



Y = Xβ + Zu + e 

Pedigree-based BV estimation:  (BLUP)   
unx1 = vector of BVs, Cov(u) = Var(A) Anxn 

Marker-based BV estimation:  (GBLUP) 
unx1 = vector of BVs, Cov(u)  = Var(m) MTM (n x n) 

GWAS:  upx1 = vector of marker effects, 
Cov(u)  = Var(m) MMT  (p x p) 

Genomic selection: predicted vector of breeding values  
from marker effects, GBVnx1 = Mnxpupx1.  
Note that Cov(GBV)  = Var(m) MTM (n x n)  

Lots of variations of these general ideas by adding 
additional assumptions on covariance structure. 

GWAS Model diagnostics 
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The “Genomic Control” parameter λ$

Devlin and Roeder (1999).  Basic idea is that association tests (marker
 presence/absence vs. trait presence/absence) is typically done with a
 standard 2 x 2 χ2 test. 

When population structure is present, the test statistic now follows
 a scaled χ2, so that if S is the test statistic, then S/λ ~ χ2

1  (so S ~
 λχ2

1) .  Hence, population structure should inflate all of the 
tests (on average) by a common amount λ. 

A robust estimator for λ is offered from the medium 
(50% value) of the test statistics, so that for m tests 

Hence, if we have suitably corrected for population structure, the 
estimated inflation factor λ among tests should be ~ 1. 

Genomic control λ as a diagnostic tool 

•  Presence of population structure will inflate the λ
 parameter 

•  A value above 1 is considered evidence of additional
 structure in the data 
–  Could be population structure, cryptic relatedness, or both 
–  A lambda value less that 1.05 is generally considered benign 

•  One issue is that if the true polygenic model holds (lots of
 sites of small effect), then a significant fraction will have
 inflated p values, and hence an inflated λ value. 

•  Hence, often one computes the λ following attempts to
 remove population structure.  If the resulting value is
 below 1.05, suggestion that structure has been largely
 removed. 
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P – P plots 

•  Another powerful diagnostic tool is the p-p plot. 
•  If all tests are drawn from the null, then the

 distribution of p values should be uniform. 
–  There should be a slight excess of tests with very

 low p indicating true positives 
•  This gives a straight line of a log-log plot of

 observed (seen) and expected (uniform) p values
 with a slight rise near small values 
–  If the fraction of true positives is high (i.e., many

 sites influence the trait), this also bends the p-p
 plot 
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A few tests 
are significant Great excess of 

Significant tests 

Price et al. 2010 Nat Rev Gene 11: 459 
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Great excess of 
Significant tests 

As with using λ, one should construct p-p following  
some approach to correct for structure & relatedness 
to see if they look unusual.  
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Association mapping (power) 
Q/q is the polymorphic site contributing to trait 
variation, M/m alleles (at a SNP) used as a marker 

Let p be the frequency of M, and assume that 
Q only resides on the M background (complete 
disequilibrium) 

Haloptype Frequency effect 

QM rp a 

qM (1-r)p 0 

qm 1-p 0 
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Haloptype Frequency effect 

QM rp a 

qM (1-r)p 0 

qm 1-p 0 

Genetic variation associated with Q = 2(rp)(1-rp)a2  

~ 2rpa2  when Q rare. Hence, little power if Q rare 

Genetic variation associated with marker M is 
2p(1-p)(ar)2 ~ 2pa2r2  

Effect of m = 0 

Effect of M = ar  

Ratio of marker/true effect variance is ~ r 

Hence, if Q rare within the A class, even less power, as M only 
captures a fraction of the associated QTL. 

54 

Common variants 
•  Association mapping is only powerful for common

 variants   
–  freq(Q) moderate 
–  freq (r) of Q within M haplotypes modest to large 

•  Large effect alleles (a large) can leave small signals. 
•  The fraction of the actual variance accounted for by

 the markers is no greater than ~ ave(r), the average
 frequency of Q within a haplotype class 

•  Hence, don’t expect to capture all of Var(A) with
 markers, esp. when QTL alleles are rare but markers
 are common (e.g. common SNPs, p > 0.05) 

•  Low power to detect G x G, G x E interactions 
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“How wonderful that we have met with a paradox.  Now we
 have some hope of making progress”   -- Neils Bohr 

Infamous figure from Nature on the angst of human geneticists
 over the finding that all of their discovered SNPs still accounted for
 only a fraction of relative-based heritability estimates of human
 disease.  

•  “There is something simultaneously
 remarkable and encouraging about the
 fact that a centuries-old method
 requiring no more than a ruler, a pencil
 and (I suppose) a slide rule out
 performed, by an order of magnitude,
 the fruits of the genomic revolution”  

•          --Ben Sheldon (2013) 
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The “missing heritability” paradox 
•  A number of GWAS workers noted that the sum of their

 significant marker variances was much less (typically
 10%) than the additive variance estimated from
 biometrical methods 

•  The “missing heritability” problem was birthed from this
 observation. 

•  Not a paradox at all 
–  Low power means small effect (i.e. variance) sites are unlikely to

 be called as significant, esp. given the high stringency
 associated with control of false positives over tens of thousands
 of tests 

–  Further, even if all markers are detected, only a fraction ~ r (the
 frequency of the causative site within a marker haplotype class)
 of the underlying variance is accounted for. 
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Lecture 7 
Multi-Trait Models,  

Binary and Count Traits 

Guilherme J. M. Rosa 
University of Wisconsin-Madison 

Introduction to Quantitative Genetics 
SISG, Seattle 

19 – 21 July 2017 

OUTLINE 

•  Multiple-trait Model 
•  Repeatability Model 
•  Maternal Effects 
•  Generalized Linear Models 
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Genetic Correlation 
Schematic representation of pleiotropy 

•  Pleiotropic genes affect both y1 and y2 resulting in a 
genetic correlation between the two traits 

•  In addition to pleiotropy, genetic correlations can be 
caused also by linkage disequilibrium (LD) between genes 
affecting the different traits. LD however is a 
‘temporary’ cause of genetic correlation as recombination 
can breakdown LD over the generations 

Genes affecting 
trait y1 

Genes affecting 
trait y2 

Genes affecting both y1 and y2 

ry1,y2 = h1h2ra1,a2 + e1e2rε1,ε2

X1 

y1 
β1 β2 

y2 

a1 a2 

ε1 ε2 

X2 h2 h1 

e2 e1 

ra1,a2

r
ε1,ε2

Multiple (Correlated) Traits 
Genetic 

correlation 

Environmental 
correlation 

h j = h j
2

e j =1− h j

Phenotypic correlation: 
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Multiple (Correlated) Traits 
The animal model can be extended for the joint analysis 
of multiple traits 
Let the model for each of k traits be: 
 
 
where j is an index to indicate the trait (j = 1, 2,…,k).  
For the joint analysis of the k trait, the model becomes: 
 
 
with design matrices given by: 

y j =X jβ j +Z ja j + ε j

y =Xβ+Za+ ε

X =

X1 0  0
0 X2  0
   
0 0  Xk
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Multiple (Correlated) Traits 
In this case it is assumed that: 
 
 
 
 
where G and Σ are the genetic and residual variance-
covariance matrices, given by: 
 
 
 
 
 
 
Note: ⊗ represents the direct (Kronecker) product 
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Multiple (Correlated) Traits 

The MME for multi-trait analyses are of the same form 
as before, i.e.: 
 
 
 
 
 
 
 
 
from which the BLUEs and BLUPs of β and a can be 
obtained. 

Multiple (Correlated) Traits 

The dimensionality of multi-trait MME, however, can 
become a hurdle for solving it when more than two or 
three traits are considered 
 
An alternative for the analysis of multiple traits is to 
use a canonical transformation of the traits, which 
consists of transforming the vectors of correlated 
traits into a new vector of uncorrelated variables 
 
In such case, each transformed variable can be analyzed 
independently using standard single trait models, and 
subsequently the estimated breeding values are 
transformed back to the original scale of measurement 
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Repeatability Model 

Repeatability Model 

For the analysis of repeated measurements, 
environmental effects can be partitioned into 
permanent and temporary effects 
 
In this case, the mixed model, usually called 
‘repeatability model’, can be written as: 
 
 
 
where p ~ N(0, Iσp

2) is the vector of permanent 
environmental effects, with each level pertaining to 
a common effect to all observations of each animal 
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Repeatability Model 

It is often assumed that a, p, and ε, which are 
independent from each other 
 
Under these assumptions, the MME becomes: 
 
 
 
 
 
 
with                   and 

Repeatability Model 
An important definition related to repeated 
measurements refers to repeatability (r), which is 
given by the intraclass correlation, i.e., the ratio of 
the within-individual (or between repeated 
measurements) to the phenotypic variances: 
 
  
 
 
The repeatability coefficient measures the 
correlation between records on the same animal, and 
so it is useful for example in the estimation of 
producing ability and an animal 
  

r =
σa
2 +σp

2

σy
2 =

σa
2 +σp

2

σa
2 +σp

2 +σε
2
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Maternal Effects 

Maternal Effects 
There are some traits of interest in livestock, such 
as weaning weight in beef cattle, in which progeny 
performance is affected by the dam’s ability to 
affect the calf’s environment, such as in the form 
of nourishment through her milk production, the 
quantity and quality of which is in part genetically 
determined 
 
In such cases, dams contribute to the performance 
of their progeny not only through the genes passed 
to the progeny (the “direct genetic effects”) but 
also through their ability to provide a suitable 
environment (the “indirect genetic effects”) 
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Maternal Effects 
Maternally influenced traits can be analyzed by using 
a model as: 
 
 
 
where m is a vector of random maternal genetic 
effects, and p is a vector of random maternal 
permanent environmental effects 
 
It is assumed that m ~ N(0, Aσm

2) and p ~ N(0, Iσp
2), 

and quite often a covariance structure between 
direct and maternal additive genetic effects is 
considered, assumed equal to Aσa,m 
 

Computing Strategies 

Solving the MME does not necessary require the 
inversion of the coefficient matrix C 
 
More computationally convenient alternatives for 
solving high dimensional systems of linear equations 
include methods based on iteration on the MME, such 
as the Jacobi or Gauss-Seidel iteration, and the 
“iteration on the data” strategy, which is commonly 
used methodology in national genetic evaluations 
involving millions of records 
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Generalized Linear Mixed Models 

The models discussed so far assumed a Gaussian 
(normal) distribution of the phenotypic traits 
 
Often however phenotypic traits are expressed a a 
binary (e.g., pregancy in dairy cattle, or germination 
in seeds) or count variable (e.g., litter size in swine, 
or fruits in trees) 
 
In such cases the linear (Gaussian) model is not 
appropriate, and a generalized linear model (GLM) 
approach is necessary 

Generalized Linear Mixed Models 
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Generalized Linear Mixed Models 

GLM can actually model outcomes (response 
variables) generated from any distribution from 
the exponential family, which includes the normal, 
binomial, Poisson and gamma distributions, among 
others 
 
The GLM consists of three elements: 

1.  Probability distribution from the exponential 
family. 

2.  Linear predictor η = Xβ 
3.  Link function g such that E(Y) = µ = g-1(η).  

Generalized Linear Mixed Models 

Notice that the Gaussian model is a specific case 
of the GLM, with the normal distribution and an 
identity link function 
 
In the case of Generalized Linear Mixed Models, 
including the applications in animal/plant 
breeding, the model is defined as:  

1.  Probability distribution from the exponential 
family. 

2.  Linear predictor η = Xβ + Zu 
3.  Link function g such that E(Y|u) = µ = g-1(η) 



12 

GLMM in R 

GLMM can be implemented in R using the 
package lme4 
 
lme4, however, assumes independence 
between levels of random effects, and as 
such it is not suitable for many animal/
plant breeding applications 
 
pedigreemm is an R package that uses lme4 
with a Cholesky decomposition strategy to 
overcome this problem 

(Harville and Callanan 1989) 

pedigreemm 
An R package for fitting generalized linear mixed 
models in animal breeding 
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pedigreemm example 
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Associative effects models 
•  A very powerful recent development in quantitative genetics 

(although the idea dates back to Griffin’s work in the 1960s) is 
the notion of direct vs. associative (or social, or indirect genetic) 
effects 

•  This idea unifies kin and group selection, offers models for the 
evolution of social (group-level) traits, and shows why selection 
can often fail 

•  The basic idea is that the phenotype of a target individual is a 
function of some intrinsic direct value and also the phenotypes 
of those individuals with which it interacts. 
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Direct & Associative effects 
•  Consider egg production from chickens 

raised in cages.  Production is a function of 
both a chicken’s own genetics and the 
environment (her other cage-mates) 
–  Direct effects = intrinsic egg production 
–  Associative effects = competitive ability 

•  Suppose our focal individual (i) interacts with 
n-1 others in a group 
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Direct and associative effects 
can be antagonistic 

•  Consider a plant with a trait that allows it to 
more efficiently garner resources 

•  This gives it a high direct effect but a 
negative associative effect --- it reduces the 
trait values in those individuals with which it 
interacts 

•  Thus, the best performing single plants can 
have very low average plot performance 
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Roots of associative-effects models 
trace to maternal effects 

•  Maternal effects are a classic example of 
associative effects (maternal performance). 

•  Two different approaches to model maternal 
effects 
–  Falconer model:  an observed trait value (e.g., litter 

size) influences offspring.  Trait-based 
–  Willham model:  Maternal performance is a latent 

(unobserved) variable, and hence we don’t need to 
specify it.  Variance-component based.  We focus on 
these models here. 
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Trait-based vs. variance-
component models 

•  Trait based: 
– Trait values of associative effects in group 

members are observed 

•  Variance-component models 
– A composite latent (unmeasured) variable 

for associative effects is created 

8 

zm,i

Mother

zo,1zm,j

zm,k

Offspring

Ad,1 Ed,1

Pm,1

Maternal
Traits

Composite
Maternal

Performance

zo,1 = µ + Ad,1 + Ed,1 + Pm,1 

Variance components 

Not observed 

Inferred, not 
observed 
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zm,i

Mother

zo,1zm,j

zm,k

Offspring

Ad,1 Ed,1
Ψ1i

Ψ1j

Ψ1k

zo,1 = µ + Ad,1 + Ed,1 + Ψ1,i zm,i + Ψ1,j zm,j + Ψ1,k zm,k Maternal
Traits

Trait-based models 

z = observed value 
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Decomposition 

•  Consider the phenotype of a focal individual 
•  Sum of a direct effect and an associative 

effect 
•  Both of these can have a breeding value and 

an environment (residual) deviation 
•  The breeding values of the direct & 

associative effects can be correlated 
•  This is a multiple-traits problem 
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•  i’s phenotype zi is the sum of its direct effect (Pd,i) 
plus the sum of the associative (or social) effects 
(Ps,j) from its n-1 group members 
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Breeding values for direct (Ad) and 
associative (As) effects 

•  Can express the phenotype of i in terms of its 
direct breeding value (Ad,i) and the 
associative breeding values (As,j) of its group 
mates 
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Total response 

Total response is the sum of the response Rd in the direct 
breeding values plus the sum of the responses Rs in the 
associative effects breeding values, 

The trait mean equals the mean of the direct effects 
plus the means of the  associative effects, 
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Total breeding value 

Note that part (As,i) 
of the total breeding value  
of i never appears in its  
phenotype.  Must either 
use informative from relatives  
or the group to estimate it. 

The key to predicting response is the  
total breeding value of an individual, where 
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h2 and τ2 

•   τ2, the analog for h2, is the ratio of the total 
breeding value to the individual phenotypic 
variance 
–   τ2 = Var(AT)/Var(z) 

•  Note that, unlike h2, τ2 can exceed one, 
•  Why? A potentially large fraction of AT never 

appears in z, and hence Var(z) 
–  Var(AT) = Var(Ad) + (n-1)Var(As) 
–    τ2  = Var(Ad) /Var(z) + (n-1)Var(As)/Var(z) 
–    = h2 + (n-1)Var(As)/Var(z) 
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BLUP estimation  

•  While the total breeding value cannot be 
estimated directly from an individual’s 
phenotype, using an appropriate mixed 
model, we can obtain 
– BLUPs of Direct breeding values (Ad) 
– BLUPs of Associative (or social) BVs (As) 
– REML estimates of σ2(Ad), σ2(As), and the 

direct-associate effects covariance σ(Ad ,As) 
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This works: Muir’s result 
•  Bill Muir (Purdue University) selection on 

six-week weight in Japanese quail over 23 
generations using two different schemes 
– BLUP selection on estimated direct BV (D) 

• Denoted by D-BLUP 
– BLUP selection on estimated total BV 

• Denoted by C-BLUP 

18 

= total BV 

Weighted increased under selection using total 
BV (C), decreased under selection using  
direct BV (D). 

C

D
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Under BLUP selection on direct BV (D), significant  
decline in the mean social value, which over-rode 
the positive response in the direct value 

Under BLUP selection of total BV (C), both increase 

C 

D 
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The mixed model 

Example: Individuals 1-4 and 5-8 are half sibs 
from unrelated families 
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Filling out Zs 

•  Suppose group one contains individuals 1, 2, 5, 
6.  The resulting values for these individuals 
become 
–  z1 = m + Ad1 + As2 + As5 + As6 + e 
–  z2 = m + Ad2 + As1 + As5 + As6 + e 
–  z5 = m + Ad5 + As1 + As2 + As6 + e 
–  z6 = m + Ad6 + As1 + As2 + As5 + e 
–  The result Zd and Zs incident matrices become 
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Group one contains individuals 1,2,5,6; while group two contains 3,4,7,8. 
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Lots of hidden variation to exploit 
•  Bergsma et al. (2008) examined four 

traits in 14,000 pigs grown in pens of 
6-12 animals. 

• Heritability for these traits was 
estimated in a model without social 
effects, 
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Hence, for growth and food intake, lots of  
additional genetic variation for trait response 
lies “hidden” in associative effects. 
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Consequences 

• How can we exploit this variation in 
breeding? 

• What are the consequences for 
evolutionary biologists? 

• Need to consider selection response 
– Has both a direct and associative effects 

component 
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Direct 
response 

Associative 
response 

total 
response 
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Response:  It’s about covariances 
•  Selection response is a function of the 

covariance between our unit u of selection and 
the total breeding value, σ(AT, u) 
–  R = i * σ(AT, u) / σ(u)  (generalized breeder’s Eq.) 

•  The “unit” could be a  
–  single individual (individual selection) 
–  The group mean (group selection) 
–  Some index of these 

•  Members of a group can be 
–  Unrelated 
–  Related (kin selection) 

•  All these considerations influence σ(AT, u) 
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Group members unrelated (r = 0) 

General expression 

Group members unrelated (r = 0) 
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Covariances with related 
group members 

Group members related (r > 0) 
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Individual selection:  Direct vs. Associate response 

Here unit of selection u = z, the phenotype of an individual 

Unless (i) As, Ad correlated OR (ii) group members are
 relatives, value of z provides information on Ad, but NOT on
 its As value 
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Maternal effects 

Direct response 

Maternal response 

total 
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Group selection 
Unit of selection u = group mean 

Key:  group mean always correlated with AT 



41 

Group selection -- role of relatives 

Group of size n, with r = average  
relatedness among group members 

Note that zbar directly correlated with 
AT.  Correlation increases if members are 
related (r > 0)   
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Response under group selection 

 r = genetic correlation 
 ρ = environmental correlation among group members 
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Group + kin selection 

g & r have symmetric roles 

 g = group selection 
 r = kin selection 

Key:  Use group + relatives to maximize Cov(u, AT) 

Unit of selection 
u = I is an index 
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Consequences:  Evolution of fitness 

46 

Mean fitness can decrease 
when associative effects are 

strong 

If the BVs of direct and associative effects 
on fitness are sufficiently negatively-correlated, 
can get a reversed response -- fitness goes down 
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Direct and social effects 
responses 
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Altruistic traits:  An example of a 
reversed response 
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Key:  mean inclusive fitness (unlike individual 
fitness) is non-decreasing 
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Estimation of Variance Components 

Consider the data set below, related to 
observations of half-sib families of k 
unrelated sires. The following model can 
be used to represent these data: 

ijiij esy ++µ=

where yij represents the phenotypic trait observation 
of progeny j (j = 1, 2,…, ni) in family i, µ is a mean, si is 
an effect common to all animals having sire i, and eij is 
a residual term  

yk2 … y22 y12 

Sire 

! 

y21 

2 

… 

… 
… 

! ! 

yk1 y11 

k 1 

kkny2n2
y

1n1
y

ANOVA Estimation 
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Estimation of Variance Components 
ANOVA Estimation 

The sire effect si is equivalent to the transmitting ability 
(which is equal to one-half additive genetic value) of sire 
i, as one-half of its genes are (randomly) transmitted to 
each of its ni progeny.  
 
The residual terms eij refer to additional genetics 
effects (such as the effect of dams) and environmental 
components.  
 
It is assumed that                       and      ),0(~s 2

s

ind

i σ ),0(~e 2
e

ind

ij σ

From the model settings discussed before we have that                  

                                      and  
 
The overall sample mean is given by 
 
where               , and                       are sire-specific means. 
 

The ANOVA approach consists of an orthogonal 
decomposition of the total sum of squares (TSS) into 
between classes (or, in our case, sires) and within classes 
(or residual) components. The corrected (in terms of the  

general mean) TSS is given by: 
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By adding and subtracting      within the parentheses, the 
TSS can be expressed as: 

•iy

It is seen that the last part of this expression is equal to 
zero, so that TSS can be written as two components: 

which are the sire and the residual sum of squares, 
respectively. The SSS term measures the variation of 
each progeny family around the overall mean, while the 
RSS term measures the extra variation related to each 
observation around its sire average 
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It can be shown that the expectation of these sums of 
squares terms are: 

so that the ANOVA estimators of the sire and residual 
variance components are given by: 

In the specific case of balanced data, i.e. the same 
progeny size for all sires,                        and the ANOVA 
estimators become: 
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ANOVA approach works well for simple models (such as a 
one-way structure) or balanced data (such as data from 
designed experiments with no missing data), but they are 
not indicated for more complex models and data structures 

Other proposed methods: expected mean squares approach 
of Henderson (1953), and the minimum norm quadratic 
unbiased estimation (Rao 1971a, 1971b), among others. 

However, maximum likelihood based methods are currently 
the most popular, especially the restricted (or residual) 
maximum likelihood (REML) approach, which attempts to 
correct for the well-known bias in the classical maximum 
likelihood (ML) estimation of variance components. These 
two methods are briefly described next. 

Estimation of Variance Components 

Maximum likelihood estimates of the variance 
components can be obtained by maximizing the log-
likelihood                  with respect to each element of 
G and Σ, after replacing β by 

Alternatively, G, Σ, and β can be estimated 
simultaneously by maximizing their joint log-likelihood 
with respect to the variance components and the 
fixed effects. 

),(L ΣG,β
yVXXVXβ 1T11T )(ˆ −−−=

Estimation of Variance Components 
Maximum Likelihood (ML) Estimator 
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As a simple example of maximum likelihood 
estimation of variance components, consider the 
balanced case (i.e., constant progeny sizes) half-sib 
families data set discussed previously, and the 
linear model: 

 

 

with the same definitions as before, but with the 
additional assumption of normality of both the sire 
and the residual effects, i.e.: 

and 

In matrix notation, this model can be expressed as: 
 

 

 

 

 

 

where            represents the vector of 
observations of progeny i (i.e., relative to sire i); 1n 
and 0n represent n-dimensional column vectors of 
1’s and 0’s, respectively; and                          d  is 
the vector of residuals associated with progeny i 
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The vector of observations                      has then a 
multivariate normal distr. with mean vector         and 
variance-covariance matrix given by                           , 
and its density function (from which the likelihood 
function obtained) can be written as: 

 

 

 

 

 

where                 is an (n × n) matrix of 1’s, and ⊗ is the 
Kronecker product 
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The log-likelihood function can be written then as: 
 

 

By taking the derivatives and setting them to 0, the 
following solutions are obtained: 

 

 

from which ML estimates of the variance components 
are  obtained,  except  if         , in  which  case  the 
estimate is set to zero 

ML estimates of variance components are biased 
downwards as they do not take into account the degrees 
of freedom used for estimating the fixed effects 
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Restricted (or residual) maximum likelihood approach 
(REML): corrects the bias associated with ML 
estimates by taking into account the degrees of 
freedom used for estimating the fixed effects 

REML maximizes the likelihood function of a set of 
error contrasts d = LTy, where  L  is  a [n x (n – p)] 
full-rank matrix with columns orthogonal to the 
columns of the incidence matrix X 
The vector d follows a multivariate normal 
distribution with null mean vector and variance-
covariance matrix LTVL = LT(ZGZT + Σ)L. Note that 
the distribution of d does not depend on β.  

Estimation of Variance Components 
Residual Maximum Likelihood (REML) Estimator 

The residual likelihood function for the variance 
components is then: 

 

 

 

Another approach for obtaining the residual 
likelihood function for the variance components is 
by integrating the fixed effects out of the ‘full’ 
likelihood function, i.e.: 
 

 

as illustrated in the following example. 
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Recall the balanced half-sib families data set, and 
its associated likelihood function: 
 
 
 
 
 
Its residual likelihood is then: 
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By taking the derivatives with respect to λ 
and    , and by using the invariance property of 
maximum likelihood estimators, the following 
solutions are obtained: 

 

 

 

 

which are the REML estimates of the variance 
components, except if            , i.e. if   

2
eσ

and RSS
)1n(k

1ˆ 2e −
=σ ⎥

⎦

⎤
⎢
⎣

⎡
σ−

−
=σ 2

e
2
s ˆSSS

)1k(
1

n
1ˆ

0ˆ 2s <σ

RSS
)1n(k
)1k(SSS

−
−

<

Explicit forms of ML and REML estimators are 
often not available for more complex mixed 
effects models 

ML and REML estimates are then generally 
obtained by iterative approaches such as the 
expectation-maximization (EM) algorithm and 
Newton-Raphson-based procedures 
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Bayesian MCMC 
Methods 
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Relationships among 
common distributions 

Solid lines: transfor-
mations and special 
cases 

Dashed lines: limits 

(Leemis, 1986) 
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y: observed data; y ~ p(y|θ) 
θ: parameters (all unobserved quantities) 

)y(p
)|y(p)(p

)y(p
)y,(p)y|(p θθ
=

θ
=θ

)|y(p)(p)y|(p θθ∝θ
posterior 

distribution 
sampling 

distribution prior 
distribution 

Bayesian Inference 

Marginal Posterior Distributions 

p(θ1 | y)∝ p(θ1,θ2,…,θp | y)dθθ≠θ1θ≠θ1
∫

Multi Parameter Models 

y ~ p(y | θ1,θ2,…,θp )

p(θ1,θ2,…,θp | y)∝ p(θ1,θ2,…,θp )p(y | θ1,θ2,…,θp )
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Example: Normal Distribution 
y1, y2,…, yn ~

iid
N(µ,σ2 )Data: 

 
Sampling model: 
 
 
 
 
Prior (Jeffreys’):  
 
Joint posterior: 

∝ (σ2 )−n/2 exp −
1
2σ2 (yi −µ)

2
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n

∑
%
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'

(
)
*

p(µ,σ2 ) = (σ2 )−1

p(µ,σ2 | y)∝ (σ2 )−(n+2)/2 exp −
1
2σ2 (yi −µ)

2
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n
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= (σ2 )−(n+2)/2 exp −
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2σ2 (n−1)s

2 + n(y −µ)2#$ %&
'
(
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*
+
,

p(y |µ,σ2 ) = p(yi |µ,σ
2 )
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∏

Example: Normal Distribution 
Marginal posterior of μ: 

p(µ | y) = p(µ,σ2 | y)dσ2

0

∞

∫

∝ (σ2 )−(n+2)/2 exp −
(n−1)s2

2σ2

$
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'
(
)
~ Inv− χ2 (n−1,s2 )

∝ 1+ n(µ − y)
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2
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2 / n)

p(σ2 | y) = p(µ,σ2 | y)dµ
−∞

∞

∫

Marginal posterior of σ2: 
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Linear Mixed Models 
y =Xβ+Zu+ εData:                          , with 

 
Sampling model: 
 
 
 
Prior distribution: 
         (Note: independence was assumed a priori) 

Joint posterior distribution: 

p(y |β,u,σε
2 )∝ (σε

2 )−n/2

p(β,σu
2,σε

2 ) = p(β)p(σu
2 )p(σε

2 )

u |σu
2 ~ N(0,Aσu

2 )
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Marginal Posterior Distributions 

Fixed effects vector: 
 
 
 
Note that integrating over a vector (e.g., vector u) 
implies integrating over each element in that vector, i.e. 
 
 
 
 
Single element of β (e.g. β1): 

p(β | y) = p(β,u,σu
2,σε

2 | y)
σε
2
∫

σu
2
∫

u
∫ dσε

2dσu
2du

p(β | y) = … p(β,u,σu
2,σε

2 | y)
σε
2
∫

σu
2
∫

uq

∫
u2

∫
u1

∫ dσε
2dσu

2duq…du2du1

p(β1 | y) = … p(β | y)
βp

∫
β3

∫
β2

∫ dβp…dβ3dβ2
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Marginal Posterior Distributions 

Random effects vector: 
 
 
 
 
Variance components: 

p(u | y) = p(β,u,σu
2,σε

2 | y)
σε
2
∫

σu
2
∫

β

∫ dσε
2dσu

2dβ

p(σu
2 | y) = p(β,u,σu

2,σε
2 | y)

σε
2
∫

u
∫

β

∫ dσε
2dudβ

p(σε
2 | y) = p(β,u,σu

2,σε
2 | y)

σu
2
∫

u
∫

β

∫ dσu
2dudβ

Marginal Posterior Distributions 
Marginalization (i.e. integrals) in multi-dimensional 
models can be cumbersome and some times do not 
have analytical form 
 
An alternative in this regard: Monte Carlo methods 
 
Monte Carlo integration consists of sampling from 
the posterior distribution, and then using such 
sampled values to calculate features of interest on 
the (joint or marginal) posterior distribution 
 
There are many algorithms that can be used to 
sample from a distribution; some are based on 
Markov chains, among which the Gibbs sampling is 
probably the most popular 
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Monte Carlo Methods 

Any method which solves a problem by generating 
a series of random numbers and counting the 
incidences that obey specific property(ies) 
The method is useful for obtaining numerical 
solutions to problems which are too complicated 
to solve analytically 
The most common application of the Monte Carlo 
method is Monte Carlo integration 

Monte Carlo Methods 
Example: approximating the number π using 

a circle inscribed in a square 

r = 1 

Area of circle = π r2 
Area of square = 4 r2 

x2 + y2 = r2 
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x2 + y2 = r2 

Monte Carlo Methods 
Example: approximating the number π using 

a circle inscribed in a square 

Sample x from Uniform(0,1) 

Sample y from Uniform(0,1) 

Check if point (x,y) is within 
the circle, i.e.  y2 < 1 – x2 

Repeat the process N times 
and count how many points (m) 
fall within the circle 

The ratio 4 x m/N is a Monte 
Carlo approximation for π 

Markov Process 
Markov process is a stochastic process that satisfies 
the Markov property (the memoryless property), i.e., 
predictions for the future of the process can be made 
based solely on its present state 

0 

1 
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0 2 4 6 8 10 
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Markov Process 
Example: Suppose that weather on any given day can 

be classified into two states: sunny (S) or rainy (R) 
Suppose also that, based on past experience, we 
know that: 

Pr(Next day is S | Given today is R) = 0.50  and 
Pr(Next day is S | Given today is S) = 0.90 

Then, a transition matrix representing the 
probabilities of the weather moving from one state 
to another state can be expressed as: 

P = 0.9 0.1
0.5 0.5

!

"
#

$

%
&

S       R 
S 
 
R 

Markov Process 
If the weather is sunny today (time 0), what is the 
chance that it will be sunny tomorrow (time 1) as well? 

Pr(S1 | S0) = 0.90 
What about two days from today? 

Pr(S2 | S0) = Pr(S2 | S1) x Pr(S1 | S0)  
+ Pr(S2 | R1) x Pr(R1 | S0) 
= 0.9 x 0.9 + 0.1 x 0.5 = 0.86 

Using the same approach to forecast weather on n-th 
day will approach the following 'equilibrium' 
probabilities as n increases: 

Pr(Sn) = 0.833 and Pr(Rn) = 0.167 
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Gibbs Sampling 

Burn-in & Convergence 

Tinning interval & Lag 
correlations 

Sample size & Monte 
Carlo error 

θ(0) = (θ1
(0),θ2

(0),…,θr
(0) )

θ1
(1) | θ2

(0),θ3
(0),…,θr

(0)

θ2
(1) | θ1

(1),θ3
(0),…,θr

(0)

θr
(1) | θ2

(1),θ3
(1),…,θr−1

(1)
! 

p(θi | θ1,…,θi−1,θi+1,…,θr )θ = (θ1,θ2,…,θr )

Monte Carlo Approximations 
After convergence, each sampled vector is a sample 
from the joint posterior distribution, and so each 
sampled element (scalar) is a sample from the respective 
marginal posterior distribution 
 
For each parameter (e.g., θ1) we’ll have then a series of 
values: 
 
 
from which features of its distribution (e.g., posterior 
mean) can be approximated, for example: 

θ1
(1),θ1

(2),θ1
(3),…,θ1

(N)

E[θ1 | y]≅
1
N

θ1
( j)

j=1

N

∑
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Monte Carlo Approximations 
Other often interesting features used to represent a 
marginal posterior distribution are: posterior variance 
(or standard deviation), posterior mode or median, 
percentiles, highest posterior density (HPD), etc. 
 
Very useful property: If one is interested on the 
distribution of a function of the model parameters, 
samples from such a distribution can be obtained 
simply by applying that specific function to the 
sampled values of those parameters 
 
For example, the posterior mean of the heritability 
can be obtained as: 

E[h2 | y]≅ 1
N

σu
( j)

σu
( j) +σε

( j)
j=1

N

∑

Example: Linear Model 

Data: 
 
Sampling model: 
 
 
Prior distribution: 
 

Joint posterior distribution: 

p(y |β,σe
2 )∝ (σe

2 )−n/2 exp −
1
2σe

2 (y−Xβ)
T (y−Xβ)

%
&
'

(
)
*

p(β,σe
2 ) = p(β)p(σe

2 )∝ (σe
2 )−1

p(β,σe
2 | y)∝ p(y |β,σe

2 )p(β,σe
2 )

∝ (σe
2 )−(n+2)/2 exp −

1
2σe

2 (y−Xβ)
T (y−Xβ)

%
&
'

(
)
*

y =Xβ+ e,   e ~ N(0, Iσe
2 )
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Example: Linear Model 
Conditional distribution of location parameters: 

p(β |σe
2, y)∝ exp −

1
2σe

2 (y−Xβ)
T (y−Xβ)

%
&
'

(
)
*

β̂ = (XTX)−1XTy

(y−Xβ)T (y−Xβ) = (y−Xβ̂)− (Xβ−Xβ̂)#
$

%
&
T
(y−Xβ̂)− (Xβ−Xβ̂)#
$

%
&

= (y−Xβ̂)T (y−Xβ̂)− 2(y−Xβ̂)T (Xβ−Xβ̂)+ (Xβ−Xβ̂)T (Xβ−Xβ̂)#
$

%
&

y−Xβ = y−Xβ̂+Xβ̂ −XβRecall                         and note that 
 
such that: 

independent 
of β 

equal to zero 

Example: Linear Model 

Conditional distribution of location parameters: 

p(β |σe
2, y)∝ exp −

1
2σe

2 (Xβ−Xβ̂)T (Xβ−Xβ̂)
%
&
'

(
)
*

                 ∝ exp −
1

2σe
2 (β− β̂)TXTX(β− β̂)

%
&
'

(
)
*

β̂ = (XTX)−1XTy

Hence: 
 
 
 
 
 
and so: 
 
where 

β |σe
2, y ~ N β̂,  (XTX)−1σe

2( )
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Example: Linear Model 

Conditional distribution of residual variance: 
 
 
 
 
 
Hence: 

p(σe
2 |β, y)∝ (σe

2 )−(n+2)/2 exp −
1
2σe

2 (y−Xβ)
T (y−Xβ)

%
&
'

(
)
*

σe
2 |β, y ~ Inv-gamma n

2
,  1

2
(y−Xβ)T (y−Xβ)

$

%
&

'

(
)

Bayes linear regression 

Rejection Sampling 

x  ),x(p)x(f K ∀≥ p(x) “target distribution” 

K f(x) “envelope” 

� Sample x from f(x) 
� Decision: Probability of accepting x: 

)x(Kf
)x(p

=α

x 
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Metropolis-Hastings Algorithm 

p(x) “target distribution” 

π(x) “candidate generator” 

� x: current value; sample x* from π(x), e.g. π(x)~N(x,τ2) 
� The chain moves from x to x* with probability: 

     

 

    Otherwise the chain remains at the current value 

α =min 1, p(x
*)π(x)

p(x)π(x*)
#

$
%

&

'
(

x x* 


