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Pathway	and	Network	Analysis	
•  High-throughput	gene/c/genomic	technologies	enable	

comprehensive	monitoring	of	a	biological	system	

•  Analysis	of	high-throughput	data	typically	yields	a	list	of	
differen/ally	expressed	genes,	proteins,	metabolites…	
–  Typically	provides	lists	of	single	genes,	etc.	
–  Will	use	“genes”	throughout,	but	using	interchangeably	mostly	

•  This	list	oTen	fails	to	provide	mechanis/c	insights	into	the	
underlying	biology	of	the	condi/on	being	studied	

•  How	to	extract	meaning	from	a	long	list	of	differen/ally	
expressed	genes	à	pathway/network	analysis	
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What	makes	an	airplane	fly?	

Chas'	Stainless	Steel,	Mark	Thompson's	Airplane	Parts,	About	1000	Pounds	
of	Stainless	Steel	Wire,	and	Gagosian's	Beverly	Hills	Space		

From	components	to	networks	
	A	biological	func/on	is	a	result	of	many	interac/ng	
molecules	and	cannot	be	aXributed	to	just	a	single	
molecule.	
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Pathway	and	Network	Analysis	
•  One	approach:	simplify	analysis	by	grouping	long	
lists	of	individual	genes	into	smaller	sets	of	
related	genesreduces	the	complexity	of	analysis.	
–  a	large	number	of	knowledge	bases	developed	to	help	
with	this	task	

•  Knowledge	bases	
–  	describe	biological	processes,	components,	or	
structures	in	which	individual	genes	\are	known	to	be	
involved	in	

–  how	and	where	gene	products	interact	with	each	
other	

Pathway	and	Network	Analysis	

•  Analysis	at	the	func/onal	level	is	appealing	for	
two	reasons:	
– First,	grouping	thousands	of	genes	by	the	
pathways	they	are	involved	in	reduces	the	
complexity	to	just	several	hundred	pathways	for	
the	experiment	

– Second,	iden/fying	ac/ve	pathways	that	differ	
between	two	condi/ons	can	have	more	
explanatory	power	than	a	simple	list	of	genes	
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Pathway	and	Network	Analysis	

•  What	kinds	of	data	is	used	for	such	analysis?	
– Gene	expression	data	
•  Microarrays	
•  RNA-seq	

– Proteomic	data	
– Metabolomics	data	
– Single	nucleo/de		
	polymorphisms	(SNPs)	
– ….	

Pathway	and	Network	Analysis	

•  What	kinds	of	
ques/ons	can	we	
ask/answer	with	
these	
approaches?	
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Pathway	and	Network	Analysis	
•  The	term	“pathway	analysis”	gets	used	oTen,	and	
oTen	in	different	ways	
–  applied	to	the	analysis	of	Gene	Ontology	(GO)	terms	(also	
referred	to	as	a	“gene	set”)	

–  physical	interac/on	networks	(e.g.,	protein–protein	
interac/ons)	

–  kine/c	simula/on	of	pathways	
–  steady-state	pathway	analysis	(e.g.,	flux-balance	analysis)	
–  inference	of	pathways	from	expression	and	sequence	data	

•  May	or	may	not	actually	describe	biological	pathways	

Pathway	and	Network	Analysis	

•  For	the	first	part	of	this	module,	we	will	focus	
on	methods	that	exploit	pathway	knowledge	
in	public	repositories	rather	than	on	methods	
that	infer	pathways	from	molecular	
measurements	
– Use	repositories	such	as	GO	or	Kyoto	Encyclopedia	
of	Genes	and	Genomes	(KEGG)	

	à	knowledge	base–driven	pathway	analysis	
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A	History	of	Pathway	Analysis	
Approaches	

•  Over	a	decade	of	development	of	pathway	
analysis	approaches	

•  Can	be	roughly	divided	into	three	genera/ons:	
– 1st:	Over-Representa/on	Analysis	(ORA)	
Approaches	

– 2nd	:	Func/onal	Class	Scoring	(FCS)	Approaches	
– 3rd	:	Pathway	Topology	(PT)-Based	Approaches	

Khatri	P,	Sirota	M,	BuXe	AJ.	Ten	years	of	pathway	analysis:	current	approaches		
and	outstanding	challenges.	PLoS	Comput	Biol.	2012;8(2):e1002375.	

•  The	data	generated	by	an	experiment	using	a	high-throughput	technology	(e.g.,	microarray,	
proteomics,	metabolomics),	along	with	func/onal	annota/ons	(pathway	database)	of	the	
corresponding	genome,	are	input	to	virtually	all	pathway	analysis	methods.		

•  ORA	methods	require	that	the	input	is	a	list	of	differen/ally	expressed	genes	
•  FCS	methods	use	the	en/re	data	matrix	as	input	
•  PT-based	methods	addi/onally	u/lize	the	number	and	type	of	interac/ons	between	gene	products,	

which	may	or	may	not	be	a	part	of	a	pathway	database.	
•  The	result	of	every	pathway	analysis	method	is	a	list	of	significant	pathways	in	the	condi/on	under	

study.		
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Over-Representa/on	Analysis	(ORA)	
Approaches	

•  Earliest	methods	à	over-representa/on	
analysis	(ORA)	

•  Sta/s/cally	evaluates	the	frac/on	of	genes	in	
a	par/cular	pathway	found	among	the	set	of	
genes	showing	changes	in	expression	

•  It	is	also	referred	to	as	“2×2	table	method”	in	
the	literature		

Over-Representa/on	Analysis	(ORA)	
•  Uses	one	or	more	varia/ons	of	the	following	strategy:	
–  First,	an	input	list	is	created	using	a	certain	threshold	or	
criteria	
•  For	example,	may	choose	genes	that	are	differen/ally	over-	or	
under-expressed	in	a	given	condi/on	at	a	false	discovery	rate	
(FDR)	of	5%	

–  Then,	for	each	pathway,	input	genes	that	are	part	of	the	
pathway	are	counted	

–  This	process	is	repeated	for	an	appropriate	background	list	
of	genes		
•  (e.g.,	all	genes	measured	on	a	microarray)	

–  Next,	every	pathway	is	tested	for	over-	or	under-
representa/on	in	the	list	of	input	genes	
•  The	most	commonly	used	tests	are	based	on	the	hypergeometric,	
chi-square,	or	binomial	distribu/on	
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Khatri	P,	Sirota	M,	BuXe	AJ.	Ten	years	of	pathway	analysis:	current	approaches		
and	outstanding	challenges.	PLoS	Comput	Biol.	2012;8(2):e1002375.	

Limita/ons	of	ORA	Approaches	
•  First,	the	different	sta/s/cs	used	by	ORA	are	independent	

of	the	measured	changes	
–  (e.g.,	hypergeometric	distribu/on,	binomial	distribu/on,	chi-
square	distribu/on,	etc.)		

•  Tests	consider	the	number	of	genes	alone	but	ignore	any	
values	associated	with	them		
–  such	as	probe	intensi/es	

•  By	discarding	this	data,	ORA	treats	each	gene	equally	
–  Informa/on	about	the	extent	of	regula/on	(e.g.,	fold-changes,	
significance	of	a	change,	etc.)	can	be	useful	in	assigning	
different	weights	to	input	genes/pathways	

–  This	can	provide	more	informa/on	
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Limita/ons	of	ORA	Approaches	
•  Second,	ORA	typically	uses	only	the	most	
significant	genes	and	discards	the	others	
–  input	list	of	genes	is	usually	obtained	using	an	
arbitrary	threshold	(e.g.,	genes	with	fold-change	and/
or	p-values)		

•  Marginally	less	significant	genes	are	missed,	
resul/ng	in	informa/on	loss		
–  (e.g.,	fold-change	=	1.999	or	p-value	=	0.051)		
– A	few	methods	avoiding	thresholds	

•  They	use	an	itera/ve	approach	that	adds	one	gene	at	a	/me	
to	find	a	set	of	genes	for	which	a	pathway	is	most	significant	

Limita/ons	of	ORA	Approaches	
•  Third,	ORA	assumes	that	each	gene	is	independent	of	the	other	

genes	

•  However,	biology	is	a	complex	web	of	interac/ons	between	gene	
products	that	cons/tute	different	pathways	
–  One	goal	might	be	to	gain	insights	into	how	interac/ons	between	gene	

products	are	manifested	as	changes	in	expression		
–  A	strategy	that	assumes	the	genes	are	independent	is	significantly	

limited	in	its	ability	to	provide	insights		

•  Furthermore,	assuming	independence	between	genes	amounts	to	
“compe//ve	null	hypothesis”	tes/ng	(more	later),	which	ignores	
the	correla/on	structure	between	genes	
–  the	es/mated	significance	of	a	pathway	may	be	biased	or	incorrect	
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Limita/ons	of	ORA	Approaches	
•  Fourth,	ORA	assumes	that	each	pathway	is	independent	of	

other	pathways	à	NOT	TRUE!	

•  Examples	of	dependence:	
–  GO	defines	a	biological	process	as	a	series	of	events	
accomplished	by	one	or	more	ordered	assemblies	of	molecular	
func/ons	

–  The	cell	cycle	pathway	in	KEGG	where	the	presence	of	a	growth	
factor	ac/vates	the	MAPK	signaling	pathway		
•  This,	in	turn,	ac/vates	the	cell	cycle	pathway	

•  No	ORA	methods	account	for	this	dependence	between	
molecular	func/ons	in	GO	and	signaling	pathways	in	KEGG	

Func/onal	Class	Scoring	(FCS)	
Approaches	

•  The	hypothesis	of	funcGonal	class	scoring	(FCS)	is	
that	although	large	changes	in	individual	genes	
can	have	significant	effects	on	pathways,	weaker	
but	coordinated	changes	in	sets	of	funcGonally	
related	genes	(i.e.,	pathways)	can	also	have	
significant	effects	

•  With	few	excep/ons,	all	FCS	methods	use	a	
varia/on	of	a	general	framework	that	consists	of	
the	following	three	steps.	
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Step	1	
•  First,	a	gene-level	sta/s/c	is	computed	using	the	
molecular	measurements	from	an	experiment	
–  Involves	compu/ng	differen/al	expression	of	
individual	genes	or	proteins	

•  Sta/s/cs	currently	used	at	gene-level	include	
correla/on	of	molecular	measurements	with	
phenotype	
– ANOVA		
– Q-sta/s/c		
–  signal-to-noise	ra/o		
–  t-test		
–  Z-score	

Step	1	
•  Choice	of	a	gene-level	sta/s/c	generally	has	a	
negligible	effect	on	the	iden/fica/on	of	
significantly	enriched	gene	sets		
– However,	when	there	are	few	biological	replicates,	a	
regularized	sta/s/c	may	be	beXer	

•  Untransformed	gene-level	sta/s/cs	can	fail	to	
iden/fy	pathways	with	up-	and	down-regulated	
genes	
–  In	this	case,	transforma/on	of	gene-level	sta/s/cs	
(e.g.,	absolute	values,	squared	values,	ranks,	etc.)	is	
beXer	
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Step	2	
•  Second,	the	gene-level	sta/s/cs	for	all	genes	in	a	
pathway	are	aggregated	into	a	single	pathway-
level	sta/s/c		
–  can	be	mul/variate	and	account	for	
interdependencies	among	genes	

–  can	be	univariate	and	disregard	interdependencies	
among	genes	

•  The	pathway-level	sta/s/cs	used	include:	
–  Kolmogorov-Smirnov	sta/s/c		
–  sum,	mean,	or	median	of	gene-level	sta/s/c		
– Wilcoxon	rank	sum		
– maxmean	sta/s/c		

Step	2	
•  Irrespec/ve	of	its	type,	the	power	of	a	pathway-
level	sta/s/c	depends	on	
–  the	propor/on	of	differen/ally	expressed	genes	in	a	
pathway	

–  the	size	of	the	pathway	
–  the	amount	of	correla/on	between	genes	in	the	
pathway	

•  Univariate	sta/s/cs	show	more	power	at	
stringent	cutoffs	when	applied	to	real	biological	
data,	and	equal	power	as	mul/variate	sta/s/cs	at	
less	stringent	cutoffs	
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Step	3	
•  Assessing	the	sta/s/cal	significance	of	the	pathway-level	sta/s/c	

•  When	compu/ng	sta/s/cal	significance,	the	null	hypothesis	tested	
by	current	pathway	analysis	approaches	can	be	broadly	divided	into	
two	categories:		
–  i)	compe//ve	null	hypothesis		
–  ii)	self-contained	null	hypothesis	

•  A	self-contained	null	hypothesis	permutes	class	labels	(i.e.,	
phenotypes)	for	each	sample	and	compares	the	set	of	genes	in	a	
given	pathway	with	itself,	while	ignoring	the	genes	that	are	not	in	
the	pathway		

•  A	compe//ve	null	hypothesis	permutes	gene	labels	for	each	
pathway,	and	compares	the	set	of	genes	in	the	pathway	with	a	set	
of	genes	that	are	not	in	the	pathway	

Khatri	P,	Sirota	M,	BuXe	AJ.	Ten	years	of	pathway	analysis:	current	approaches		
and	outstanding	challenges.	PLoS	Comput	Biol.	2012;8(2):e1002375.	
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Advantages	of	FCS	Methods	
FCS	methods	address	three	limita/ons	of	ORA	

1.  Don’t	require	an	arbitrary	threshold	for	dividing	expression	data	
into	significant	and	non-significant	pools.		

	Rather,	FCS	methods	use	all	available	molecular	measurements	for	
pathway	analysis.		

2.  While	ORA	completely	ignores	molecular	measurements	when	
iden/fying	significant	pathways,	FCS	methods	use	this	informa/on	
in	order	to	detect	coordinated	changes	in	the	expression	of	genes	
in	the	same	pathway	

3.  By	considering	the	coordinated	changes	in	gene	expression,	FCS	
methods	account	for	dependence	between	genes	in	a	pathway	

Limita/ons	of	FCS	Methods	
•  First,	similar	to	ORA,	FCS	analyzes	each	pathway	
independently	
–  Because	a	gene	can	func/on	in	more	than	one	pathway,	
meaning	that	pathways	can	cross	and	overlap	

–  Consequently,	in	an	experiment,	while	one	pathway	may	
be	affected	in	an	experiment,	one	may	observe	other	
pathways	being	significantly	affected	due	to	the	set	of	
overlapping	genes	

•  Such	a	phenomenon	is	very	common	when	using	the	
GO	terms	to	define	pathways	due	to	the	hierarchical	
nature	of	the	GO	
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Limita/ons	of	FCS	Methods	
•  Second,	many	FCS	methods	use	changes	in	gene	expression	to	rank	

genes	in	a	given	pathway,	and	discard	the	changes	from	further	
analysis	
–  For	instance,	assume	that	two	genes	in	a	pathway,	A	and	B,	are	

changing	by	2-fold	and	20-fold,	respec/vely		
–  As	long	as	they	both	have	the	same	respec/ve	ranks	in	comparison	

with	other	genes	in	the	pathway,	most	FCS	methods	will	treat	them	
equally,	although	the	gene	with	the	higher	fold-change	should	
probably	get	more	weight	

•  Importantly,	however,	considering	only	the	ranks	of	genes	is	also	
advantageous,	as	it	is	more	robust	to	outliers.		
–  A	notable	excep/on	to	this	scenario	is	approaches	that	use	gene-level	

sta/s/cs	(e.g.,	t-sta/s/c)	to	compute	pathway-level	scores.		
–  For	example,	an	FCS	method	that	computes	a	pathway-level	sta/s/c	

as	a	sum	or	mean	of	the	gene-level	sta/s/c	accounts	for	a	rela/ve	
difference	in	measurements	(e.g.,	Category,	SAFE).	

Pathway	Topology	(PT)-Based	
Approaches	

•  A	large	number	of	publicly	available	pathway	knowledge	bases	
provide	informa/on	beyond	simple	lists	of	genes	for	each	pathway	
–  KEGG	
–  MetaCyc	
–  Reactome	
–  RegulonDB	
–  STKE	
–  BioCarta	
–  PantherDB	
–  ….	

•  Unlike	GO	and	MSigDB,	these	knowledge	bases	also	provide	
informa/on	about	gene	products	that	interact	with	each	other	in	a	
given	pathway,	how	they	interact	(e.g.,	ac/va/on,	inhibi/on,	etc.),	
and	where	they	interact	(e.g.,	cytoplasm,	nucleus,	etc.)	
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Pathway	Topology	(PT)-Based	
Approaches	

•  ORA	and	FCS	methods	consider	only	the	number	of	genes	
in	a	pathway	or	gene	coexpression	to	iden/fy	significant	
pathways,	and	ignore	the	addi/onal	informa/on	available	
from	these	knowledge	bases	
–  Even	if	the	pathways	are	completely	redrawn	with	new	links	
between	the	genes,	as	long	as	they	contain	the	same	set	of	
genes,	ORA	and	FCS	will	produce	the	same	results		

•  Pathway	topology	(PT)-based	methods	have	been	
developed	to	use	the	addi/onal	informa/on		
–  PT-based	methods	are	essen/ally	the	same	as	FCS	methods	in	
that	they	perform	the	same	three	steps	as	FCS	methods		

–  The	key	difference	between	the	two	is	the	use	of	pathway	
topology	to	compute	gene-level	sta/s/cs	

Pathway	Topology	(PT)-Based	
Approaches	

•  Rahnenfuhrer	et	al.	proposed	ScorePAGE,	which	
computes	similarity	between	each	pair	of	genes	
in	a	pathway	(e.g.,	correla/on,	covariance,	etc.)	
–  similarity	measurement	between	each	pair	of	genes	is	
analogous	to	gene-level	sta/s/cs	in	FCS	methods		

–  averaged	to	compute	a	pathway-level	score	

•  Instead	of	giving	equal	weight	to	all	pairwise	
similari/es,	ScorePAGE	divides	the	pairwise	
similari/es	by	the	number	of	reac/ons	needed	to	
connect	two	genes	in	a	given	pathway	
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Pathway	Topology	(PT)-Based	
Approaches	

•  Impact	factor	(IF)	analysis	
–  IF	considers	the	structure	and	dynamics	of	an	en/re	pathway	by	

incorpora/ng	a	number	of	important	biological	factors,	including	
changes	in	gene	expression,	types	of	interac/ons,	and	the	posi/ons	of	
genes	in	a	pathway	

	Ali	will	talk	more	about	these	approaches	in	detail!!!	

IF	Analysis	

•  Briefly…	
–  Models	a	signaling	pathway	as	a	graph,	where	nodes	represent	
genes	and	edges	represent	interac/ons	between	them	

–  Defines	a	gene-level	sta/s/c,	called	perturba/on	factor	(PF)	of	a	
gene,	as	a	sum	of	its	measured	change	in	expression	and	a	
linear	func/on	of	the	perturba/on	factors	of	all	genes	in	a	
pathway	

–  Because	the	PF	of	each	gene	is	defined	by	a	linear	equa/on,	the	
en/re	pathway	is	defined	as	a	linear	system	
•  addresses	loops	in	the	pathways	

–  The	IF	of	a	pathway	(pathway-level	sta/s/c)	is	defined	as	a	sum	
of	PF	of	all	genes	in	a	pathway	
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Pathway	Topology	(PT)-Based	
Approaches	

•  FCS	methods	that	use	correla/ons	among	
genes	implicitly	assume	that	the	underlying	
network,	as	defined	by	the	correla/on	
structure,	does	not	change	as	the	
experimental	condi/ons	change	

•  This	assump/on	may	be	inaccurate	à	PT	
approaches	improve	on	this	

Pathway	Topology	(PT)-Based	
Approaches	

•  NetGSA	accounts	for	the	the	change	in	correla/on	as	
well	as	the	change	in	network	structure	as	
experimental	condi/ons	change	
–  like	IF	analysis,	models	gene	expression	as	a	linear	func/on	
of	other	genes	in	the	network	

•  it	differs	from	IF	in	two	aspects	
–  First,	it	accounts	for	a	gene's	baseline	expression	by	
represen/ng	it	as	a	latent	variable	in	the	model	

–  Second,	it	requires	that	the	pathways	be	represented	as	
directed	acyclic	graphs	DAGs	
•  If	a	pathway	contains	cycles,	NetGSA	requires	addi/onal	latent	
variables	affec/ng	the	nodes	in	the	cycle.		

•  In	contrast,	IF	analysis	does	not	impose	any	constraint	on	the	
structure	of	a	pathway	
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Limita/ons	of	PT-based	Approaches	

•  True	pathway	topology	is	dependent	on	the	type	of	cell	
due	to	cell-specific	gene	expression	profiles	and	condi/on	
being	studied	
–  informa/on	is	rarely	available		
–  fragmented	in	knowledge	bases	if	available	
–  As	annota/ons	improve,	these	approaches	are	expected	to	
become	more	useful	

•  Inability	to	model	dynamic	states	of	a	system		

•  Inability	to	consider	interac/ons	between	pathways	due	to	
weak	inter-pathway	links	to	account	for	interdependence	
between	pathways	

Khatri	P,	Sirota	M,	BuXe	AJ.	Ten	years	of	pathway	analysis:	current	approaches		
and	outstanding	challenges.	PLoS	Comput	Biol.	2012;8(2):e1002375.	
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Outstanding	Challenges	

•  Broad	Categories:		
1.  annota/on	challenges		
2.  methodological	challenges		

	

Outstanding	Challenges	

•  Next	genera/on	approaches	will	require	
improvement	of	the	exis/ng	annota/ons	
– necessary	to	create	accurate,	high	resolu/on	
knowledge	bases	with	detailed	condi/on-,	/ssue-,	
and	cell-specific	func/ons	of	each	gene	
•  PharmGKB	….	

–  these	knowledge	bases	will	allow	inves/gators	to	
model	an	organism's	biology	as	a	dynamic	system,	
and	will	help	predict	changes	in	the	system	due	to	
factors	such	as	muta/ons	or	environmental	
changes	
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Annota/on	Challenges	

•  Low	resolu/on	knowledge	bases	
•  Incomplete	and	inaccurate	annota/ons	
•  Missing	condi/on-	and	cell-specific	
informa/on	

Green	arrows	represent	abundantly	available	informa/on,	and	red	arrows	represent	missing	and/or	incomplete	
informa/on.	The	ul/mate	goal	of	pathway	analysis	is	to	analyze	a	biological	system	as	a	large,	single	network.	However,	
the	links	between	smaller	individual	pathways	are	not	yet	well	known.	Furthermore,	the	effects	of	a	SNP	on	a	given	
pathway	are	also	missing	from	current	knowledge	bases.	While	some	pathways	are	known	to	be	related	to	a	few	
diseases,	it	is	not	clear	whether	the	changes	in	pathways	are	the	cause	for	those	diseases	or	the	downstream	effects	of	
the	diseases.	
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Low	Resolu/on	Knowledge	Bases	
•  Knowledge	bases	not	as	high	resolu/on	as	
technologies	
–  using	RNA-seq,	more	than	90%	of	the	human	genome	is	
es/mated	to	be	alterna/vely	spliced	

–  mul/ple	transcripts	from	the	same	gene	may	have	related,	
dis/nct,	or	even	opposing	func/ons			

–  GWAS	have	iden/fied	a	large	number	of	SNPs	that	may	be	
involved	in	different	condi/ons	and	diseases.		

–  However,	current	knowledge	bases	only	specify	which	
genes	are	ac/ve	in	a	given	pathway		

–  Essen/al	that	they	also	begin	specifying	other	informa/on,	
such	as	transcripts	that	are	ac/ve	in	a	given	pathway	or	
how	a	given	SNP	affects	a	pathway	

Low	Resolu/on	Knowledge	Bases	
•  Because	of	these	low	resolu/on	knowledge	bases,	every	

available	pathway	analysis	tool	first	maps	the	input	to	a	
non-redundant	namespace,	typically	an	Entrez	Gene	ID	
–  this	type	of	mapping	is	advantageous,	although	it	can	be	non-
trivial,	as	it	allows	the	exis/ng	pathway	analysis	approaches	to	
be	independent	of	the	technology	used	in	the	experiment	

–  However,	mapping	in	this	way	also	results	in	the	loss	of	
important	informa/on	that	may	have	been	provided	because	a	
specific	technology	was	used	
•  XRN2a,	a	variant	of	gene	XRN2,	is	expressed	in	several	human	/ssues,	
whereas	another	variant	of	the	same	gene,	XRN2b,	is	mainly	
expressed	in	blood	leukocytes	

•  Although	RNA-seq	can	quan/fy	expression	of	both	variants,	mapping	
both	transcripts	to	a	single	gene	causes	loss	of	/ssue-specific	
informa/on,	and	possibly	even	condi/on-specific	informa/on	
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Low	Resolu/on	Knowledge	Bases	
•  Therefore,	before	pathway	analysis	can	exploit	current	
and	future	technological	advances	in	biotechnology,	it	
is	cri/cally	important	to	annotate	exact	transcripts	and	
SNPs	that	par/cipate	in	a	given	pathway	

•  While	new	approaches	are	being	developed	in	this	
regard,	they	may	not	yet	be	adequate	
–  Braun	et	al.	proposed	a	method	for	analyzing	SNP	data	
from	a	GWAS		

–  S/ll	relies	on	mapping	mul/ple	SNPs	to	a	single	gene,	
followed	by	gene-to-pathway	mapping	

Incomplete	and	Inaccurate	Annota/on	

•  A	surprisingly	large	number	of	genes	are	s/ll	not	annotated	

•  Many	of	the	genes	are	hypothe/cal,	predicted,	or	pseudogenes	
–  Although	the	number	of	protein-coding	genes	in	the	human	genome	is	

es/mated	to	be	between	20,000	and	25,000,	according	Entrez	Gene,	
there	are	45,283	human	genes,	of	which	14,162	are	pseudogenes			

–  One	could	argue	that	the	pseudogenes	should	not	be	included	when	
evalua/ng	func/onal	annota/on	coverage	

–  pseudogene-derived	small	interfering	RNAs	have	been	shown	to	
regulate	gene	expression	in	mouse	oocytes		

–  GO	provides	annota/ons	for	271	pseudogenes	
–  A	widely	used	DNA	microarray,	Affymetrix	HG	U133	plus	2.0,	contains	

1,026	probe	sets	that	correspond	to	823	pseudogenes	
–  Should	pseudogenes	be	included	in	the	count	when	es/ma/ng	

annota/on	coverage	for	the	human	genome?	
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Incomplete	and	Inaccurate	Annota/on	
Number	of	GO-annotated	genes	(leT	panel)	and	number	of	GO	annota/ons	(right	panel)	for	human	from	January	2003	
to	November	2009.As	the	es/mated	number	of	known	genes	in	the	human	genome	is	adjusted	(between	January	2003	
and	December	2003)	and	annota/on	prac/ces	are	modified	(between	December	2004	and	December	2005,	and	
between	October	2008	and	November	2009),	one	can	argue	that,	although	the	number	of	annotated	genes	and	the	
annota/ons	are	decreasing	(which	is	mainly	due	to	the	adjusted	number	of	genes	in	the	human	genome	and	changes	in	
the	annota/on	process),	the	quality	of	annota/ons	is	improving,	as	demonstrated	by	the	steady	increase	in	non-IEA	
annota/ons	and	the	number	of	genes	with	non-IEA	annota/ons.	However,	the	increase	in	the	number	of	genes	with	
non-IEA	annota/ons	is	very	slow.	In	almost	7	years,	between	January	2003	and	November	2009,	only	2,039	new	genes	
received	non-IEA	annota/ons.	At	the	same	/me,	the	number	of	non-IEA	annota/ons	increased	from	35,925	to	65,741,	
indica/ng	a	strong	research	bias	for	a	small	number	of	genes.doi:10.1371/journal.pcbi.1002375.g003	

Incomplete	and	Inaccurate	Annota/on	

•  Addi/onally,	many	of	the	exis/ng	annota/ons	are	of	
low	quality	and	may	be	inaccurate	
–  >95%	of	the	annota/ons	in	the	October	2007	release	of	
GO	had	the	evidence	code	“inferred	from	electronic	
annota/ons	(IEA)”	

–  the	only	ones	in	GO	that	are	not	curated	manually	
–  Annota/ons	inferred	from	indirect	evidence	are	
considered	to	be	of	lower	quality	than	those	derived	from	
direct	experimental	evidence	

–  If	the	annota/ons	with	IEA	code	are	removed,	the	number	
of	genes	with	good	quality	annota/ons	in	the	November	
2009	release	of	human	GO	annota/ons	is	reduced	from	
18,587	to	11,890	
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Incomplete	and	Inaccurate	Annota/on	

•  It	is	very	likely	that	the	reduced	number	of	annota/ons	
and	annotated	genes	since	January	2003	is	an	indicator	
of	improving	quality	

•  This	is	due	in	part	to	the	fact	that	the	number	of	genes	
in	a	genome	are	con/nuously	being	adjusted	and	the	
func/onal	annota/on	algorithms	are	being	improved	
–  the	number	of	non-IEA	annota/ons	is	con/nuously	
increasing		

•  However,	the	rate	of	increase	for	non-IEA	annota/ons	
is	very	slow	(approximately	2,000	genes	annotated	in	7	
years)	

Incomplete	and	Inaccurate	Annota/on	

•  Manual	cura/on	of	the	en/re	genome	is	expected	to	take	a	very	
long	/me	(~13–25	years)	

•  En/re	research	community	could	par/cipate	in	the	cura/on	process	

•  One	approach	to	facilitate	par/cipa/on	of	a	large	number	of	
researchers	is	to	adopt	a	standard	annota/on	format	similar	to	
Minimum	Informa/on	About	a	Microarray	Experiment	(MIAME)	
–  should	this	be	required	like	GEO?	

•  A	format	for	func/onal	annota/on	can	be	designed	or	adopted	
from	the	exis/ng	formats	(e.g.,	BioPAX,	SBML)	
–  Such	a	format	could	allow	researchers	to	specify	an	experimentally	

confirmed	role	of	a	specific	transcript	or	a	SNP	in	a	pathway	along	with	
experimental	and	biological	condi/ons	
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Missing	Condi/on	and	cell-specific	
informa/on	

•  Most	pathway	knowledge	bases	are	built	by	cura/ng	
experiments	performed	in	different	cell	types	at	different	
/me	points	under	different	condi/ons	

•  These	details	are	typically	not	available	in	the	knowledge	
bases!		

•  One	effect	of	this	omission	is	that	mul/ple	independent	
genes	are	annotated	to	par/cipate	in	the	same	interac/on	
in	a	pathway	

•  This	effect	is	so	widespread	that	many	pathway	knowledge	
bases	represent	a	set	of	dis/nct	genes	as	a	single	node	in	a	
pathway	

Missing	Condi/on	and	cell-specific	
informa/on	

•  Example:	Wnt/beta-catenin	pathway	in	STKE		
–  the	node	labeled	“Genes”	represents	19	genes	directly	
targeted	by	Wnt	in	different	organisms	(Xenopus	and	
human)	in	different	cells	and	/ssues	(colon	carcinoma	cells	
and	epithelial	cells	

–  these	non-specific	genes	introduce	bias	for	these	
pathways	in	all	exis/ng	analysis	approaches	

–  For	instance,	any	ORA	method	will	assign	higher	
significance	(typically	an	order	of	magnitude	lower	p-
value)	to	a	pathway	with	more	genes	

–  Similarly,	more	genes	in	a	pathway	also	increase	the	
probability	of	a	higher	pathway-level	sta/s/c	in	FCS	
approaches,	yielding	higher	significance	for	a	given	
pathway.	
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Missing	Condi/on	and	cell-specific	
informa/on	

•  This	contextual	informa/on	is	typically	not	available	
from	most	of	the	exis/ng	knowledge	bases	

•  A	standard	func/onal	annota/on	format	discussed	
above	would	make	this	informa/on	available	to	
curators	and	developers	
–  For	instance,	the	recently	proposed	Biological	Connec/on	
Markup	Language	(BCML)	allows	pathway	representa/on	
to	specify	the	cell	or	organism	in	which	each	pathway	
interac/on	occurs.		

–  BCML	can	generate	cell-,	condi/on-,	or	organism-specific	
pathways	based	on	user-defined	query	criteria,	which	in	
turn	can	be	used	for	targeted	analysis	

Missing	Condi/on	and	cell-specific	
informa/on	

•  Exis/ng	knowledge	bases	do	not	describe	the	effects	of	an	
abnormal	condi/on	on	a	pathway		
–  For	example,	it	is	not	clear	how	the	Alzheimer's	disease	
pathway	in	KEGG	differs	from	a	normal	pathway		

–  Nor	it	is	clear	which	set	of	interac/ons	leads	to	Alzheimer's	
disease	

•  We	are	now	understanding	that	context	plays	an	important	
role	in	pathway	interac/ons	

•  	Informa/on	about	how	cell	and	/ssue	type,	age,	and	
environmental	exposures	affect	pathway	interac/ons	will	
add	complexity	that	is	currently	lacking	
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Methodological	Challenges	

•  Benchmark	data	sets	for	comparing	different	
methods	

•  Inability	to	model	and	analyze	dynamic	
response	

•  Inability	to	model	effects	of	an	external	s/muli	

Comparing	Different	Methods	

•  How	do	we	compare	different	pathway	analysis	
methods?	

•  Simulated	data	
– Advantages:		

•  Real	signal	is	simulated,	so	“true”	answer	is	known	

– Disadvantages	
•  Cannot	contain	all	the	complexity	of	real	data	
•  The	success	of	the	methods	can	reflect	the	similarity	of	how	
well	the	simula/on	matches	the	knowledgebase	structure	
used	
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Comparing	Different	Methods	
•  Benchmark	data	
– Advantages:		

•  Can	compare	sensi/vity	and	specificity	
•  Several	datasets	have	been	consistently	used	in	the	
literature	

•  Includes	all	the	complexity	of	real	biological	data	

– Disadvantages	
•  Affected	by	confounding	factors		

–  absence	of	a	pure	division	into	classes		
–  presence	of	outliers	
–  ….	

•  No	true	answer	known	for	grounded	comparisons	–	actual	
biology	isnt	known	

Comparing	Different	Methods	
•  A	general	challenge:	Different	definiGons	of	the	same	

pathway	in	different	knowledge	bases	can	affect	
performance	assessment		

–  GO	defines	different	pathways	for	apoptosis	in	different	cells	
•  	(e.g.,	cardiac	muscle	cell	apoptosis,	B	cell	apoptosis,	T	cell	apoptosis)	
•  Further	dis/nguishes	between	induc/on	and	regula/on	of	apoptosis		

–  KEGG	defines	a	single	signaling	pathway	for	apoptosis		
•  does	not	dis/nguish	between	induc/on	and	regula/on	

–  An	approach	using	KEGG	would	iden/fy	a	single	pathway	as	
significant,	whereas	GO	could	iden/fy	mul/ple	pathways,	and/
or	specific	aspects	of	a	single	apoptosis	pathway	
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Inability	to	model	and	analyze	
dynamic	response	

•  No	exis/ng	approach	can	collec/vely	model	and	analyze	
high-throughput	data	as	a	single	dynamic	system	

•  Current	approaches	analyze	a	snapshot	assuming	that	each	
pathway	is	independent	of	the	others	at	a	given	/me	
–  measure	expression	changes	at	mul/ple	/me	points,	and	
analyze	each	/me	point	individually	

–  Implicitly	assumes	that	pathways	at	different	/me	points	are	
independent	

•  Need	models	that	accounts	for	dependence	among	
pathways	at	different	/me	points	
–  Much	of	this	limita/on	is	due	to	technology/experimental	
design	à	not	all	bioinforma/cs	limita/ons	

Inability	to	model	effects	of	an	
external	s/muli	

•  Gene	set–based	approaches	oTen	only	consider	
genes	and	their	products		

•  Completely	ignore	the	effects	of	other	molecules	
par/cipa/ng	in	a	pathway	
–  such	as	the	rate	limi/ng	step	of	a	mul/-step	pathway.		

•  Example:	
–  The	amount/strength	of	Ca2+	causes	different	
transcrip/on	factors	to	be	ac/vated		

–  This	informa/on	is	usually	not	available.		
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Summary	
•  In	the	last	decade,	pathway	analysis	has	matured,	and	
become	the	standard	for	trying	to	dissect	the	biology	
of	high	throughput	experiments.	

•  Many	similari/es	across	the	three	main	genera/ons	of	
pathway	analysis	tools.	

•  Will	discuss	more	details	of	some	of	these	choices,	
knowledge	bases,	and	specific	approaches	next.	

•  Many	open	methods	development	challenges!	

Overview	of	Module	

•  First	Half:	
– Overview	of	gene	set	and	pathway	analysis	
•  Commonly	used	databases	and	annota/on	issues	
•  1st	and	2nd	genera/on	tools	

–  Basic	differences	in	methods	
–  Details	on	very	popular	methods	

•  Issues	with	different	“omics”	datatypes	

•  Second	Half	
– “3rd	genera/on”	methods	
– Network	analysis	modeling	
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Ques/ons?	

																					motsinger@stat.ncsu.edu	
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Pathway and Gene Set Analysis 
Part 1 

The	early	steps	of	a	microarray	study	

•  Scien;fic	Ques;on	(biological)	
•  Study	design	(biological/sta;s;cal)	
•  Conduc;ng	Experiment	(biological)	

•  Preprocessing/Normalizing	Data	(sta;s;cal)	

•  Finding	differen;ally	expressed	genes	
(sta;s;cal)	
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A	data	example	

•  Lee	et	al	(2005)	compared	adipose	;ssue	
(abdominal	subcutaenous	adipocytes)	between	
obese	and	lean	Pima	Indians	

•  Samples	were	hybridised	on	HGu95e-Affymetrix	
arrays	(12639	genes/probe	sets)	

•  Available	as	GDS1498	on	the	GEO	database	
• We	selected	the	male	samples	only	

–  10	obese	vs	9	lean	
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The	“Result”	
Probe Set ID log.ratio pvalue adj.p
73554_at 1.4971 0.0000 0.0004
91279_at 0.8667 0.0000 0.0017
74099_at 1.0787 0.0000 0.0104
83118_at -1.2142 0.0000 0.0139
81647_at 1.0362 0.0000 0.0139
84412_at 1.3124 0.0000 0.0222
90585_at 1.9859 0.0000 0.0258
84618_at -1.6713 0.0000 0.0258
91790_at 1.7293 0.0000 0.0350
80755_at 1.5238 0.0000 0.0351
85539_at 0.9303 0.0000 0.0351
90749_at 1.7093 0.0000 0.0351
74038_at -1.6451 0.0000 0.0351
79299_at 1.7156 0.0000 0.0351
72962_at 2.1059 0.0000 0.0351
88719_at -3.1829 0.0000 0.0351
72943_at -2.0520 0.0000 0.0351
91797_at 1.4676 0.0000 0.0351
78356_at 2.1140 0.0001 0.0359
90268_at 1.6552 0.0001 0.0421

What	happened	to	the	Biology???	

Slightly	more	informa;ve	results	
Probe Set ID Gene SymbolGene Title go biological process termgo molecular function term log.ratio pvalue adj.p
73554_at CCDC80 coiled-coil domain containing 80--- --- 1.4971 0.0000 0.0004
91279_at C1QTNF5 /// MFRPC1q and tumor necrosis factor related protein 5 /// membrane frizzled-related proteinvisual perception /// embryonic development /// response to stimulus--- 0.8667 0.0000 0.0017
74099_at --- --- --- --- 1.0787 0.0000 0.0104
83118_at RNF125 ring finger protein 125 immune response /// modification-dependent protein catabolic processprotein binding /// zinc ion binding /// ligase activity /// metal ion binding-1.2142 0.0000 0.0139
81647_at --- --- --- --- 1.0362 0.0000 0.0139
84412_at SYNPO2 synaptopodin 2 --- actin binding /// protein binding1.3124 0.0000 0.0222
90585_at C15orf59 chromosome 15 open reading frame 59--- --- 1.9859 0.0000 0.0258
84618_at C12orf39 chromosome 12 open reading frame 39--- --- -1.6713 0.0000 0.0258
91790_at MYEOV myeloma overexpressed (in a subset of t(11;14) positive multiple myelomas)--- --- 1.7293 0.0000 0.0350
80755_at MYOF myoferlin muscle contraction /// blood circulationprotein binding 1.5238 0.0000 0.0351
85539_at PLEKHH1 pleckstrin homology domain containing, family H (with MyTH4 domain) member 1--- binding 0.9303 0.0000 0.0351
90749_at SERPINB9 serpin peptidase inhibitor, clade B (ovalbumin), member 9anti-apoptosis /// signal transductionendopeptidase inhibitor activity /// serine-type endopeptidase inhibitor activity /// serine-type endopeptidase inhibitor activity /// protein binding1.7093 0.0000 0.0351
74038_at --- --- --- --- -1.6451 0.0000 0.0351
79299_at --- --- --- --- 1.7156 0.0000 0.0351
72962_at BCAT1 branched chain aminotransferase 1, cytosolicG1/S transition of mitotic cell cycle /// metabolic process /// cell proliferation /// amino acid biosynthetic process /// branched chain family amino acid metabolic process /// branched chain family amino acid biosynthetic process /// branched chain family amino acid biosynthetic processcatalytic activity /// branched-chain-amino-acid transaminase activity /// branched-chain-amino-acid transaminase activity /// transaminase activity /// transferase activity /// identical protein binding2.1059 0.0000 0.0351
88719_at C12orf39 chromosome 12 open reading frame 39--- --- -3.1829 0.0000 0.0351
72943_at --- --- --- --- -2.0520 0.0000 0.0351
91797_at LRRC16A leucine rich repeat containing 16A--- --- 1.4676 0.0000 0.0351
78356_at TRDN triadin muscle contraction receptor binding 2.1140 0.0001 0.0359
90268_at C5orf23 chromosome 5 open reading frame 23--- --- 1.6552 0.0001 0.0421

If	we	are	lucky,	some	of	the	top	genes	mean	something	to	us	

But	what	if	they	don’t?	

And	how	what	are	the	results	for	other	genes	with	similar	biological	
func;ons	
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How	to	incorporate	biological	knowledge	

•  The	type	of	knowledge	we	deal	with	is	rather	simple:	
		
		We	know	groups/sets	of	genes	that	for	example	
–  Belong	to	the	same	pathway	
–  Have	a	similar	func;on	
–  Are	located	on	the	same	chromosome,	etc…	

•  We	will	assume	these	groupings	to	be	given,	i.e.	we	
will	not	yet	discuss	methods	used	to	detect	
pathways,	networks,	gene	clusters	
•  We	will	later!	
	

What	is	a	pathway?	

•  No	clear	defini;on	
–  Wikipedia:	“In	biochemistry,	metabolic	pathways	are	

series	of	chemical	reac;ons	occurring	within	a	cell.	In	
each	pathway,	a	principal	chemical	is	modified	by	
chemical	reac;ons.”	

–  These	pathways	describe	enzymes	and	metabolites	

•  But	ohen	the	word	“pathway”	is	also	used	to	
describe	gene	regulatory	networks	or	protein	
interac;on	networks	

•  In	all	cases	a	pathway	describes	a	biological	
func;on	very	specifically	
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What	is	a	Gene	Set?	
•  Just	what	it	says:	a	set	of	genes!	

–  All	genes	involved	in	a	pathway	are	an	example	of	a	Gene	
Set	

–  All	genes	corresponding	to	a	Gene	Ontology	term	are	a	
Gene	Set	

–  All	genes	men;oned	in	a	paper	of	Smith	et	al	might	form	a	
Gene	Set	

•  A	Gene	Set	is	a	much	more	general	and	less	specific	
concept	than	a	pathway	

•  S;ll:	we	will	some;mes	use	two	words	
interchangeably,	as	the	analysis	methods	are	mainly	
the	same		

Where	Do	Gene	Sets/Lists	Come	From?	

•  Molecular	profiling	e.g.	mRNA,	protein	
–  Iden;fica;on	à	Gene	list	

–  Quan;fica;on	à	Gene	list	+	values	

–  Ranking,	Clustering	(biosta;s;cs)	
•  Interac;ons:	Protein	interac;ons,	Transcrip;on	
factor	binding	sites	(ChIP)	

•  Gene;c	screen	e.g.	of	knock	out	library	
•  Associa;on	studies	(Genome-wide)	

–  Single	nucleo;de	polymorphisms	(SNPs)	

–  Copy	number	variants	(CNVs)	

– ……..	
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What	is	Gene	Set/Pathway	analysis?	

•  The	aim	is	to	give	one	number	(score,	p-value)	
to	a	Gene	Set/Pathway	
– Are	many	genes	in	the	pathway	differen;ally	
expressed	(up-regulated/downregulated)	

–  Can	we	give	a	number	(p-value)	to	the	probability	
of	observing	these	changes	just	by	chance?	

	

Goals	

•  Pathway	and	gene	set	data	resources	
•  Gene	anributes	
•  Database	resources	

•  GO,	KeGG,	Wikipathways,	MsigDB	

•  Gene	iden;fiers	and	issues	with	mapping	

•  Differences	between	pathway	analysis	tools	
•  Self	contained	vs.	compe;;ve	tests	

•  Cut-off	methods	vs.	global	methods	

•  Issues	with	mul;ple	tes;ng		
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•  Interac;ons	with	other	genes	
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Gene	Anributes	
•  Func;onal	annota;on	

–  Biological	process,	molecular	func;on,	cell	loca;on	

•  Chromosome	posi;on	

•  Disease	associa;on	
•  DNA	proper;es	

–  TF	binding	sites,	gene	structure	(intron/exon),	SNPs	
•  Transcript	proper;es	

–  Splicing,	3’	UTR,	microRNA	binding	sites	

•  Protein	proper;es	
–  Domains,	secondary	and	ter;ary	structure,	PTM	sites	

•  Interac;ons	with	other	genes	

Database	Resources	

•  Use	func;onal	annota;on	to	aggregate	genes	
into	pathways/gene	sets	

•  A	number	of	databases	are	available	
– Different	analysis	tools	link	to	different	databases	
–  Too	many	databases	to	go	into	detail	on	every	one	
–  Commonly	used	resources:	

•  GO	
•  KeGG	
•  MsigDB	
•  WikiPathways	
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Pathway	and	Gene	Set	data	resources	

•  The	Gene	Ontology	(GO)	database	
–  hnp://www.geneontology.org/	
–  GO	offers	a	rela;onal/hierarchical	database	
–  Parent	nodes:	more	general	terms	

–  Child	nodes:	more	specific	terms	

–  At	the	end	of	the	hierarchy	there	are	genes/proteins	
–  At	the	top	there	are	3	parent	nodes:	biological	process,	
molecular	func;on	and	cellular	component	

•  Example:	we	search	the	database	for	the	term	
“inflamma;on”	

The	genes	on	our	array	that	code	for	one	of	the	44	gene	products	would	form	the	
corresponding	“inflamma;on”	gene	set	
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What	is	the	Gene	Ontology	(GO)?	

•  Set	of	biological	phrases	(terms)	which	are	
applied	to	genes:	
– protein	kinase	
– apoptosis	
– membrane	

•  Ontology:	A	formal	system	for	describing	
knowledge	

GO	Structure	

•  Terms	are	related	
within	a	hierarchy	
–  is-a	
–  part-of	

•  Describes	mul;ple	
levels	of	detail	of	gene	
func;on	

•  Terms	can	have	more	
than	one	parent	or	
child	
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GO	Structure	

              cell

membrane          chloroplast

mitochondrial        chloroplast
membrane             membrane

is-a
part-of

Species	independent.	Some	lower-level	terms	are	specific	to	a	group,	but	higher	level	
terms	are	not	

What	GO	Covers?	

•  GO	terms	divided	into	three	aspects:	
– cellular	component	

– molecular	func;on	

– biological	process	

glucose-6-phosphate	isomerase	ac;vity	

Cell	division	
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Terms	

•  Where	do	GO	terms	come	from?	
– GO	terms	are	added	by	editors	at	EBI	and	gene	
annota;on	database	groups	

– Terms	added	by	request	

– Experts	help	with	major	development	

– 27734	terms,	98.9%	with	defini;ons.	
•  16731	biological_process	
•  2385	cellular_component	

•  8618	molecular_func;on	

•  Genes	are	linked,	or	associated,	with	GO	
terms	by	trained	curators	at	genome	
databases	
– Known	as	‘gene	associa;ons’	or	GO	annota;ons	
– Mul;ple	annota;ons	per	gene		

•  Some	GO	annota;ons	created	automa;cally	

Annota;ons	
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Annota;on	Sources	

•  Manual	annota;on	
– Created	by	scien;fic	curators	

•  High	quality	
•  Small	number	(;me-consuming	to	create)	

•  Electronic	annota;on	
– Annota;on	derived	without	human	valida;on	

•  Computa;onal	predic;ons	(accuracy	varies)	
•  Lower	‘quality’	than	manual	codes	

•  Key	point:	be	aware	of	annota;on	origin		

Evidence	Types	
•  ISS:  Inferred from Sequence/Structural Similarity 

•  IDA: Inferred from Direct Assay 

•  IPI:  Inferred from Physical Interaction 

•  IMP:  Inferred from Mutant Phenotype 

•  IGI:   Inferred from Genetic Interaction 

•  IEP:  Inferred from Expression Pattern 

•  TAS: Traceable Author Statement 

•  NAS: Non-traceable Author Statement 

•  IC:    Inferred by Curator 

•  ND:   No Data available 

•  IEA: Inferred from electronic annotation 
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Species	Coverage	

•  All	major	eukaryo;c	model	organism	species	

•  Human	via	GOA	group	at	UniProt	

•  Several	bacterial	and	parasite	species	through	
TIGR	and	GeneDB	at	Sanger	

•  New	species	annota;ons	in	development	

Variable	Coverage	

Lomax	J.	Get	ready	to	GO!	A	biologist's	guide	to	the	Gene	Ontology.	Brief	Bioinform.	2005	Sep;6(3):298-304.	
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Contribu;ng	Databases	
–  Berkeley	Drosophila	Genome	Project	(BDGP)	
–  dictyBase	(Dictyostelium	discoideum)		
–  FlyBase	(Drosophila	melanogaster)		
–  GeneDB	(Schizosaccharomyces	pombe,	Plasmodium	falciparum,	Leishmania	

major	and	Trypanosoma	brucei)		
–  UniProt	Knowledgebase	(Swiss-Prot/TrEMBL/PIR-PSD)	and	InterPro	databases		
–  Gramene	(grains,	including	rice,	Oryza)		
–  Mouse	Genome	Database	(MGD)	and	Gene	Expression	Database	(GXD)	(Mus	

musculus)		
–  Rat	Genome	Database	(RGD)	(RaAus	norvegicus)	
–  Reactome	
–  Saccharomyces	Genome	Database	(SGD)	(Saccharomyces	cerevisiae)		
–  The	Arabidopsis	Informa;on	Resource	(TAIR)	(Arabidopsis	thaliana)		
–  The	Ins;tute	for	Genomic	Research	(TIGR):	databases	on	several	bacterial	

species		
–  WormBase	(CaenorhabdiEs	elegans)		
–  Zebrafish	Informa;on	Network	(ZFIN):	(Danio	rerio)		

GO	Slim	Sets	

•  GO	has	too	many	
terms	for	some	uses	
– Summaries	(e.g.	Pie	
charts)	

•  GO	Slim	is	an	official	
reduced	set	of	GO	
terms	
– Generic,	plant,	yeast	
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GO	Sohware	Tools	

•  GO	resources	are	freely	available	to	anyone	
without	restric;on	
–  Includes	the	ontologies,	gene	associa;ons	and	
tools	developed	by	GO	

•  Other	groups	have	used	GO	to	create	tools	for	
many	purposes	
– hnp://www.geneontology.org/GO.tools	

Accessing	GO:	QuickGO	

hnp://www.ebi.ac.uk/ego/	
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Other	Ontologies	

hnp://www.ebi.ac.uk/ontology-lookup	

KEGG	pathway	database	

•  KEGG	=	Kyoto	Encyclopedia	of	Genes	and	
Genomes	
– hnp://www.genome.jp/kegg/pathway.html	

– The	pathway	database	gives	far	more	detailed	
informa;on	than	GO	

•  Rela;onships	between	genes	and	gene	products	
– But:	this	detailed	informa;on	is	only	available	for	
selected	organisms	and	processes	

– Example:	Adipocytokine	signaling	pathway		
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KEGG	pathway	database	

•  Clicking	on	the	nodes	in	the	pathway	leads	to	
more	informa;on	on	genes/proteins	
– Other	pathways	the	node	is	involved	with	
– Entries	in	Gene/Protein	databases	
– References	
– Sequence	informa;on	

•  Ul;mately	this	allows	to	find	corresponding	
genes	on	the	microarray	and	define	a	Gene	
Set	for	the	pathway	
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Wikipathways	

•  hnp://www.wikipathways.org	

•  A	wikipedia	for	pathways	
– One	can	see	and	download	pathways	
– But	also	edit	and	contribute	pathways	

•  The	project	is	linked	to	the	GenMAPP	and	
Pathvisio	analysis/visualisa;on	tools	
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MSigDB	

•  MSigDB	=	Molecular	Signature	Database	

hnp://www.broadins;tute.org/gsea/msigdb	

•  Related	to	the	the	analysis	program	GSEA	

•  MSigDB	offers	gene	sets	based	on	various	
groupings	
– Pathways	
– GO	terms	

– Chromosomal	posi;on,…	
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Some	Warnings	
•  In	many	cases	the	defini;on	of	a	pathway/gene	set	in	a	

database	might	differ	from	that	of	a	scien;st	

•  The	nodes	in	pathways	are	ohen	proteins	or	metabolites;	the	
ac;vity	of	the	corresponding	gene	set	is	not	necessarily	a	
good	measurement	of	the	ac;vity	of	the	pathway	

	

•  There	are	many	more	resources	out	there	(BioCarta,	BioPax)	

•  Commercial	packages	ohen	use	their	own	pathway/gene	set	
defini;ons	(Ingenuity,	Metacore,	Genoma;x,…)	

•  Genes	in	a	gene	set	are	usually	not	given	by	a	Probe	Set	ID,	
but	refer	to	some	gene	data	base	(Entrez	IDs,	Unigene	IDs)	

•  Conversion	can	lead	to	errors!	
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•  In	many	cases	the	defini;on	of	a	pathway/gene	set	in	a	
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defini;ons	(Ingenuity,	Metacore,	Genoma;x,…)	

•  Genes	in	a	gene	set	are	usually	not	given	by	a	Probe	Set	ID,	
but	refer	to	some	gene	data	base	(Entrez	IDs,	Unigene	IDs)	

•  Conversion	can	lead	to	errors!	
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Gene	Anributes	

•  Func;onal	annota;on	
–  Biological	process,	molecular	func;on,	cell	loca;on	

•  Chromosome	posi;on	
•  Disease	associa;on	
•  DNA	proper;es	

–  TF	binding	sites,	gene	structure	(intron/exon),	SNPs	
•  Transcript	proper;es	

–  Splicing,	3’	UTR,	microRNA	binding	sites	

•  Protein	proper;es	
–  Domains,	secondary	and	ter;ary	structure,	PTM	sites	

•  Interac;ons	with	other	genes	

Sources	of	Gene	Anributes	

•  Ensembl	BioMart	(eukaryotes)	
– hnp://www.ensembl.org	

•  Entrez	Gene	(general)	
– hnp://www.ncbi.nlm.nih.gov/sites/entrez?
db=gene	

•  Model	organism	databases	
– E.g.	SGD:	hnp://www.yeastgenome.org/	

•  Many	others…..	
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Ensembl	BioMart	
•  Convenient	access	to	gene	list	annota;on	

Select	genome	

Select	filters	

Select	anributes	
to	download	

Gene	and	Protein	Iden;fiers	

•  Iden;fiers	(IDs)	are	ideally	unique,	stable	names	or	
numbers	that	help	track	database	records	
–  E.g.	Social	Insurance	Number,	Entrez	Gene	ID	41232	

•  Gene	and	protein	informa;on	stored	in	many	databases	
–  à	Genes	have	many	IDs	

•  Records	for:	Gene,	DNA,	RNA,	Protein	
–  Important	to	recognize	the	correct	record	type	
–  E.g.	Entrez	Gene	records	don’t	store	sequence.	They	link	
to	DNA	regions,	RNA	transcripts	and	proteins.	
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NCBI	
Database	
Links	

hnp://www.ncbi.nlm.nih.gov/Database/datamodel/data_nodes.swf	

NCBI:	
U.S.	Na;onal	Center	
for	Biotechnology	
Informa;on	
	
Part	of	Na;onal	
Library	of	Medicine	
(NLM)	

Common	Iden;fiers	
Species-specific	
HUGO	HGNC	BRCA2	
MGI	MGI:109337	
RGD	2219		
ZFIN	ZDB-GENE-060510-3		
FlyBase	CG9097		
WormBase	WBGene00002299	or	ZK1067.1		
SGD	S000002187	or	YDL029W	
Annota5ons	
InterPro	IPR015252	
OMIM	600185	
Pfam		PF09104	
Gene	Ontology	GO:0000724	
SNPs	rs28897757	
Experimental	Pla:orm	
Affymetrix	208368_3p_s_at	
Agilent	A_23_P99452	
CodeLink	GE60169	
Illumina	GI_4502450-S	

Gene	
Ensembl	ENSG00000139618	
Entrez	Gene	675	
Unigene	Hs.34012	
	

RNA	transcript	
GenBank	BC026160.1	
RefSeq	NM_000059	
Ensembl	ENST00000380152	
	

Protein	
Ensembl	ENSP00000369497	
RefSeq	NP_000050.2	
UniProt	BRCA2_HUMAN	or	
A1YBP1_HUMAN	
IPI	IPI00412408.1	
EMBL	AF309413		
PDB	1MIU	

Red	=	Recommended	
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Iden;fier	Mapping	

•  So	many	IDs!	
– Mapping	(conversion)	is	a	headache	

•  Four	main	uses	
–  Searching	for	a	favorite	gene	name	
–  Link	to	related	resources	
–  Iden;fier	transla;on	

•  E.g.	Genes	to	proteins,	Entrez	Gene	to	Affy	
– Unifica;on	during	dataset	merging	

•  Equivalent	records	

ID	Mapping	Services	

•  Synergizer	
–  hnp://llama.med.harvard.edu/

synergizer/translate/	

•  Ensembl	BioMart	
–  hnp://www.ensembl.org	

•  UniProt	
–  hnp://www.uniprot.org/	
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ID	Mapping	Challenges	
•  Avoid	errors:	map	IDs	correctly	
•  Gene	name	ambiguity	–	not	a	good	ID	

–  e.g.	FLJ92943,	LFS1,	TRP53,	p53	
–  Bener	to	use	the	standard	gene	symbol:	TP53	

•  Excel	error-introduc;on	
– OCT4	is	changed	to	October-4	

•  Problems	reaching	100%	coverage	
–  E.g.	due	to	version	issues	
– Use	mul;ple	sources	to	increase	coverage	

Zeeberg	BR	et	al.	Mistaken	iden;fiers:	gene	name	errors	can	be	introduced	inadvertently	when	using	
Excel	in	bioinforma;cs	BMC	Bioinforma;cs.	2004	Jun	23;5:80	

Goals	

•  Pathway	and	gene	set	data	resources	
•  Gene	anributes	
•  Database	resources	

•  GO,	KeGG,	Wikipathways,	MsigDB	

•  Gene	iden;fiers	and	issues	with	mapping	

•  Differences	between	pathway	analysis	tools	
•  Self	contained	vs.	compe;;ve	tests	

•  Cut-off	methods	vs.	global	methods	

•  Issues	with	mul;ple	tes;ng		



7/21/16	

27	

Goals	

•  Pathway	and	gene	set	data	resources	
•  Gene	anributes	
•  Database	resources	

•  GO,	KeGG,	Wikipathways,	MsigDB	

•  Gene	iden;fiers	and	issues	with	mapping	

•  Differences	between	pathway	analysis	tools	
•  Self	contained	vs.	compe;;ve	tests	

•  Cut-off	methods	vs.	global	methods	

•  Issues	with	mul;ple	tes;ng		

Aims	of	Analysis	

•  Reminder:	The	aim	is	to	give	one	number	
(score,	p-value)	to	a	Gene	Set/Pathway	
– Are	many	genes	in	the	pathway	differen;ally	
expressed	(up-regulated/downregulated)?	

– Can	we	give	a	number	(p-value)	to	the	probability	
of	observing	these	changes	just	by	chance?	

– Similar	to	single	gene	analysis	sta;s;cal	
hypothesis	tes;ng	plays	an	important	role	
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General	differences	between	analysis	tools	

•  Self	contained	vs	compe;;ve	test	
–  The	dis;nc;on	between	“self-contained”	and	
“compe;;ve”	methods	goes	back	to	Goeman	and	
Buehlman	(2007)	

–  A	self-contained	method	only	uses	the	values	for	the	
genes	of	a	gene	set	

•  The	null	hypothesis	here	is:	H	=	{“No	genes	in	the	Gene	Set	are	
differen;ally	expressed”}	

–  A	compe;;ve	method	compares	the	genes	within	the	
gene	set	with	the	other	genes	on	the	arrays	

•  Here	we	test	against	H:	{“The	genes	in	the	Gene	Set	are	not	more	
differen;ally	expressed	than	other	genes”}	

	

Example:	Analysis	for	the	GO-Term	
“inflammatory	response”	(GO:0006954)	
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Back	to	the	Real	Data	Example	
	
•  Using	Bioconductor	sohware	we	can	find	96	probesets	
on	the	array	corresponding	to	this	term	

•  8	out	of	these	have	a	p-value	<	5%	

•  How	many	significant	genes	would	we	expect	by	
chance?	

•  Depends	on	how	we	define	“by	chance”	

The	“self-contained”	version	

•  By	chance	(i.e.	if	it	is	NOT	differen;ally	
expressed)	a	gene	should	be	significant	with	a	
probability	of	5%	

•  We	would	expect	96	x	5%	=	4.8	significant	genes	

•  Using	the	binomial	distribu;on	we	can	calculate	
the	probability	of	observing	8	or	more	significant	
genes	as	p	=	10.8%,	i.e.	not	quite	significant	
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The	“compe;;ve”	version	

•  Overall	1272	out	of	12639	
genes	are	significant	in	this	
data	set	(10.1%)	

•  If	we	randomly	pick	96	genes	
we	would	expect	96	x	10.1%	=	
9.7	genes	to	be	significant	“by	
chance”	

•  A	p-value	can	be	calculated	
based	on	the	2x2	table	

•  Tests	for	associa;on:	Chi-
Square-Test	or	Fisher’s	exact	
test	

In GS Not in GS
sig 8 1264

non-sig 88 11 279

P-value	from	Fisher’s	exact	test	(one-
sided):	73.3%,	i.e	very	far	from	being	
significant	

Compe;;ve	Tests	

•  Compe;;ve	results	depend	highly	on	how	many	genes	are	on	
the	array	and	previous	filtering	
–  On	a	small	targeted	array	where	all	genes	are	changed,	a	compe;;ve	

method	might	detect	no	differen;al	Gene	Sets	at	all	

•  Compe;;ve	tests	can	also	be	used	with	small	sample	sizes,	
even	for	n=1	
–  BUT:	The	result	gives	no	indica;on	of	whether	it	holds	for	a	wider	

popula;on	of	subjects,	the	p-value	concerns	a	popula;on	of	genes!	

•  Compe;;ve	tests	typically	give	less	significant	results	than	
self-contained	(as	seen	with	the	example)	

•  Fisher’s	exact	test	(compe;;ve)	is	probably	the	most	widely	
used	method!	
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Cut-off	methods	vs	whole	gene	list	methods	

•  A	problem	with	both	tests	discussed	so	far	is,	that	
they	rely	on	an	arbitrary	cut-off	

•  If	we	call	a	gene	significant	for	10%	p-value	threshold	
the	results	will	change		
–  In	our	example	the	binomial	test	yields	p=	2.2%,	i.e.	for	
this	cut-off	the	result	is	significant!	

•  We	also	lose	informa;on	by	reducing	a	p-value	to	a	
binary	(“significant”,	“non-significant”)	variable	
–  It	should	make	a	difference,	whether	the	non-significant	
genes	in	the	set	are	nearly	significant	or	completely	
unsignificant	

P-value histogram for inflammation genes
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• 	We	can	study	the	distribu;on	
of	the	p-values	in	the	gene	set	

• 	If	no	genes	are	differen;ally	
expressed	this	should	be	a	
uniform	distribu;on	

• 	A	peak	on	the	leh	indicates,	
that	some	genes	are	
differen;ally	expressed	

• 	We	can	test	this	for	example	
by	using	the	Kolmogorov-
Smirnov-Test	

• 	Here	p	=	8.2%,	i.e.	not	quite	
significant	

• This	would	be	a	“self-
contained”	test,	as	only	the	
genes	in	the	gene	set	are	being	
used	
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Kolmogorov-Smirnov	Test	

•  The	KS-test	compares	
an	observed	with	an	
expected	cumula;ve	
distribu;on	

•  The	KS-sta;s;c	is	given	
by	the	maximum	
devia;on	between	the	
two	
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Histogram of the ranks of p-values for inflammation genes
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• 	Alterna;vely	we	could	look	at	
the	distribu;on	of	the	RANKS	of	
the	p-values	in	our	gene	set	

• 	This	would	be	a	compe;;ve	
method,	i.e	we	compare	our	
gene	set	with	the	other	genes	

• 	Again	one	can	use	the	
Kolmogorov-Smirnov	test	to	test	
for	uniformity	

• 	Here:	p=	85.1%,	i.e.	very	far	
from	significance	
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Other	general	issues	
•  Direc;on	of	change	

–  In	our	example	we	didn’t	differen;ate	between	up	or	down-regulated	
genes	

–  That	can	be	achieved	by	repea;ng	the	analysis	for	p-values	from	one-
sided	test	

•  Eg.	we	could	find	GO-Terms	that	are	significantly	up-regulated	
–  With	most	sohware	both	approaches	are	possible	

•  Mul;ple	Tes;ng	
–  As	we	are	tes;ng	many	Gene	Sets,	we	expect	some	significant	findings	

“by	chance”	(false	posi;ves)	
–  Controlling	the	false	discovery	rate	is	tricky:	The	gene	sets	do	overlap,	

so	they	will	not	be	independent!	
•  Even	more	tricky	in	GO	analysis	where	certain	GO	terms	are	subset	of	
others	

–  The	Bonferroni-Method	is	most	conserva;ve,	but	always	works!	

	

•  Resampling	strategies	(dependence	between	
genes)	
– The	methods	we	used	so	far	in	our	example	
assume	that	genes	are	independent	of	each	
other…if	this	is	violated	the	p-values	are	incorrect	

– Resampling	of	group/phenotype	labels	can	correct	
for	this	

– We	give	an	example	for	our	data	set	

Mul;ple	Tes;ng	for	Pathways	
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Example	Resampling	Approach	

1.  Calculate	the	test	sta;s;c,	e.g.	the	percentage	of	significant	
genes	in	the	Gene	Set	

2.  Randomly	re-shuffle	the	group	labels	(lean,	obese)	between	
the	samples	

3.  Repeat	the	analysis	for	the	re-shuffled	data	set	and	
calculate	a	re-shuffled	version	of	the	test	sta;s;c	

4.  Repeat	2	and	3	many	;mes	(thousands…)	

5.  We	obtain	a	distribu;on	of	re-shuffled	%	of	significant	
genes:	the	percentage	of	re-shuffled	values	that	are	larger	
than	the	one	observed	in	1	is	our	p-value	

•  The	reshuffling	takes	gene	to	gene	correla;ons	into	
account	

•  Many	programs	also	offer	to	resample	the	genes:	
This	does	NOT	take	correla;ons	into	account	

•  Roughly	speaking:	
–  Resampling	phenotypes:	corresponds	to	self-contained	
test	

–  Resampling	genes:	corresponds	to	compe;;ve	test	

Resampling	Approach	
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•  Genes	being	present	more	than	once	

–  Common	approaches	
•  Combine	duplicates	(average,	median,	maximum,…)	
•  Ignore	(i.e	treat	duplicates	like	different	genes)	

•  Using	summary	sta;s;cs	vs	using	all	data	
–  Our	examples	used	p-values	as	data	summaries	
–  Other	approaches	use	fold-changes,	signal	to	noise	ra;os,	
etc…	

–  Some	methods	are	based	on	the	original	data	for	the	
genes	in	the	gene	set	rather	than	on	a	summary	sta;s;c	

Resampling	Approaches	

Resampling	Approaches	

•  The	resampling	approaches	are	highly	
computa;onally	intensive	

•  New	methods	are	being	developed	to	speed	
this	up	
– Empirical	approxima;ons	of	permuta;ons	
– Empirical	pathway	analysis,	without	permuta;on.	

•  Zhou	YH,	Barry	WT,	Wright	FA.Biosta;s;cs.	2013	Jul;
14(3):573-85.	doi:	10.1093/biosta;s;cs/kxt004.	Epub	
2013	Feb	20.	
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Summary	

•  Databases	
•  Choice	makes	a	difference	
•  Not	all	use	the	same	IDs	–	watch	out	J	
•  Major	differences	between	methods	
•  Issues	with	mul;ple	tes;ng	

•  Next	lecture,	will	go	into	more	detail	on	a	few	
methods	

Ques;ons?	
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Alison Motsinger-Reif, PhD 
Bioinformatics Research Center 

Department of Statistics 
North Carolina State University 

motsinger@stat.ncsu.edu 

Pathway and Gene Set Analysis 
Part 2 

Goals	

Some	methods	in	more	detail	
•  TopGO	
•  Global	Ancova	
•  Pathvisio/Genmapp	
•  Impact	Factor	Analysis	
•  GSEA	
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Some	methods	in	detail	

•  There	are	far	too	many	methods	to	give	a	
comprehensive	overview	

	

Table	of	methods	(from	Nam	&	Kim)	
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Table	of	soKware	(from	Nam	&	Kim)	

TopGO	
•  TopGO	is	a	GO	term	analysis	program	available	from	

Bioconductor	

•  It	takes	the	GO	hierarchy	into	account	when	scoring	terms	

•  If	a	parent	term	is	only	significant	because	of	child	term,	it	will	
receive	a	lower	score	

•  TopGO	uses	the	Fisher-test	or	the	KS-test	(both	compeRRve)	

•  TopGO	also	gives	a		
	graphical	representaRon	
	of	the	results	in	form	of	a		
	tree	
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Tree	showing	the	15	most	significant	GO	
terms	

Zooming	in	
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Global	Ancova	
•  Uses	all	data	(instead	of	summary	staRsRcs)	

•  NOT	a	mulRvariate	method	(MANOVA)	

•  One	linear	model	for	all	genes	within	the	
		gene	set	

–  Gene	is	a	factor	in	the	model	that	interacts	with	other	factors	

•  Full	model	(e.g.	including	difference	between	lean	and	obsese)	is	
compared	with	restricted	model	(no	difference)	

•  P-values	are	calculated	by	group	label	resampling	

•  Algorithm	allows	for	complex	linear	models	including	covariates	

•  Related	to	Goeman’s	Globaltest,	which	reverses	roles	of	gene	expression	
and	groups:	Goeman	uses	gene	expression	to	explain	groups	(logisRc	
regression)	

	
	

10	most	significant	KEGG	pathways	according	to	
Global	Ancova	

Pathway Name path.size sig.genes perc.sig p.gs p.fisher p.globaltest p.globalAncova
Pantothenate and CoA biosynthesis 11 3 27.27% 7.05% 9.08% 0.55% 0.01%
Valine, leucine and isoleucine biosynthesis 4 2 50.00% 4.10% 5.29% 0.22% 0.02%
Cell Communication 60 10 16.67% 8.77% 7.51% 1.02% 0.03%
PPAR signaling pathway 37 10 27.03% 11.01% 0.28% 1.64% 0.07%
Inositol metabolism 1 1 100.00% 8.46% 10.06% 0.19% 0.10%
Valine, leucine and isoleucine degradation 35 7 20.00% 49.56% 5.65% 1.42% 0.11%
Fatty acid metabolism 27 6 22.22% 49.59% 4.81% 1.54% 0.31%
ECM-receptor interaction 49 8 16.33% 4.91% 11.45% 1.47% 0.83%
Focal adhesion 122 16 13.11% 76.63% 16.40% 2.59% 0.87%
Purine metabolism 78 14 17.95% 26.82% 2.26% 3.42% 1.21%

p.gs	=	A	GSEA	related	compeRRve	method	(available	in	Limma)	

p.fisher	=	Fisher-Test	(compeRRve)	



7/21/16	

6	

Genmapp/Pathvisio	
•  These	are	two	pathway	visualisaRon	tools	that	
collaborate	
–  hbp://www.genmapp.org	
–  hbp://www.pathvisio.org	

•  Both	do	some	basic	staRsRcal	analysis	too	(Fisher-
Test	with	normal	approximaRon)	

•  Main	focus	is	on	visually	displaying	pathways	
–  Genes/nodes	can	be	color-coded	according	to	the	data	
–  Results	(p-values,	fold	changes)	can	be	displayed	next	to	
genes/nodes	
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Impact	Factor	Analysis	
•  	Impact	Factor	(IF)	analysis	combines	both	ORA	and	FCS	approach,	while	accounRng	for	the	

topology	of	the	pathway	

•  IF	analysis	computes	PerturbaRon	Factor	(PF)	for	each	gene	in	each	pathway,	which	is	a	
gene-level	staRsRc,	as	follows:	

	
•  The	first	term,																	,	represents	the	signed	normalized	measured	expression	change	(i.e.,	

	fold	change)	of	the	gene			
•  The	second	term	accounts	for	the	topology	of	the	pathway,	where	gene							is	upstream	of	

gene								
•  In	the	second	term,									represents	the	type	and	strength	of	interacRon	between						and	
•  If						acRvates					,															,	and	if							inhibits					,	
•  Note	that	the	PF	of	the	upstream	gene								is	normalized	by	the	number	of	downstream	

genes	it	interacts	with,		
•  The	second	term	is	repeated	for	every	gene							that	is	upstream	of	gene	
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Impact	Factor	Analysis	
•  Next,	Impact	Factor	(IF),	is	computed:	

Impact	Factor	Analysis	
•  Next,	Impact	Factor	(IF),	is	computed:	

The	1st	term	captures	the	significance	of	the	
given	pathway	Pi		as	provided	by	ORA,	where	pi	
corresponds	to	the	probability	of	obtaining	a	
value	of	the	staRsRc	used	at	least	as	extreme	
as	the	one	observed	when	the	null	hypothesis	
is	true	
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Impact	Factor	Analysis	
•  Next,	Impact	Factor	(IF),	is	computed:	

Because	IF	should	be	large	for	severely	
impacted	pathways	(i.e.,	small	p-values),	the	
1st	term	uses	1/pi		rather	than	pi	

Impact	Factor	Analysis	
•  Next,	Impact	Factor	(IF),	is	computed:	

Log	funcRon	is	necessary	to	map	the	
exponenRal	scale	of	the	p-values	to	a	linear	
scale	in	order	to	keep	the	model	linear	
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Impact	Factor	Analysis	
•  Next,	Impact	Factor	(IF),	is	computed:	

The	2nd	term	sums	up	the	values	of	the	PFs	for	
all	genes	g	on	the	given	pathway	Pi,	and	is	
normalized	by	the	number	of	differenRally	
expressed	genes	on	the	given	pathway	Pi	
	

Impact	Factor	Analysis	
•  Note	that	Eq.	1	essenRally	describes	the	perturbaRon	
factor	PF	for	a	gene	gi	as	a	linear	funcRon	of	the	
perturbaRon	factors	of	all	genes	in	a	given	pathway	

•  Therefore,	the	set	of	all	equaRons	defining	the	PFs	for	
all	genes	in	a	given	pathway	Pi	form	a	system	of	
simultaneous	equaRons	

•  Expanding	and	re-arranging	EquaRon	1	for	all	genes	g1,	
g2,	….,	gn		in	a	pathway	Pi		can	be	re-wriben	as	follows:	
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Impact	Factor	Analysis	

•  AKer	compuRng	the	PFs	of	all	genes	in	a	given	pathway	
as	the	soluRon	of	this	linear	system,	Eq.	2	is	used	to	
calculate	the	impact	factor	of	each	pathway	

•  The	impact	factor	of	each	pathway	is	then	used	as	a	
score	to	assess	the	impact	of	a	given	gene	expression	
data	set	on	all	pathways	(the	higher	the	impact	factor	
the	more	significant	the	pathway)	

Gene	Set	Enrichment	Analysis	(GSEA)	
•  GSEA	can	be	used	with	any	gene	set	

•  It	is	available	as	a	standalone	program,	and	versions	of	GSEA	available	
within	R/Bioconductor	

•  GSEA	has	many	opRons	and	is	a	mix	of	a	compeRRve	and	self-contained	
method	
–  Default	methods	is	to	use	a	Kolmogorov	Smirnov-type	staRsRc	to	test	the	

distribuRon	of	the	gene	set	in	the	ranked	gene	list	(compeRRve)	
–  Typically	that	staRsRc	(“enrichment	score”)	is	tested	by	permuRng/

reshuffling	the	group	labels	(self-contained)	

•  Two	Key	Papers	
–  Mootha	et	al.,	Nature	GeneRcs	34,	267–273	(2003)		
–  Subramanian	et	al.,	PNAS	102(43),	15545–15550	(2005).		

•  Note	-	the	descripRon	of	GSEA	changed	between	the	two	papers.		
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Dataset distribution

N
um

ber of genes

Gene Expression Level

The	Kolmogorov–Smirnov	test	is	used	to	determine	whether	two	underlying	
one-dimensional	probability	distribuRons	differ,	or	whether	an	underlying	
probability	distribuRon	differs	from	a	hypothesized	distribuRon,	in	either	case	
based	on	finite	samples.	
	

Gene set 1 distribution

Gene set 2 distribution

K-S	Test	

Kolmogorov-Smirnov	Test	

•  Based	on	staRsRcs	of	
�Brownian	Bridge�		
–  random	walk	fixed	end	

•  Maximum	difference	is	
test	staRsRc	
–  Null	distribuRon	known	

•  Reformulated	by	GSEA	
as	difference	of	CDF	–	
uniform	from	axis	
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K-S	Test	Finds	Irrelevant	Sets	

•  SomeRmes	ranks	concentrated	in	middle		
–  K-S	staRsRc	high,	but	not	meaningful	for	path	change	

•  Fix:	ad-hoc	weighRng	by	actual	t-scores	emphasizes	
departures	at	extreme	ends	

•  No	theory	
•  Generate	null	distribuRon	by	permutaRon	

GSEA	Algorithm:	Step	1	
•  Calculate	an	Enrichment	Score:	

–  Rank	genes	by	their	expression	difference		

–  Compute	cumulaRve	sum	over	ranked	genes:		
•  Increase	sum	when	gene	in	set,	decrease	it	
otherwise	

•  Magnitude	of	increment	depends	on	correlaRon	of	
gene	with	phenotype.	

•  Record	the	maximum	deviaRon	from	zero	as	the	
enrichment	score		
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The	rows	represent	the	samples	or	chips,	and	
the	columns	represent	the	genes	

Samples	

Genes	

•  Genes	on	the	leK	side	are	highly	expressed	
on	the	top	half	(indicated	by	red	color)	and	
lowly	expressed	on	the	bobom	half	
(indicated	by	blue	color).		The	reverse	is	
shown	on	the	right-most	genes		

•  Created	a	gradient	or	ranked	list	
corresponding	to	the	degree	of	correlaRon	
with	the	two	phenotypes		

Diseased	

Normal	

Highly	expressed	in	diseased	

Lowly	expressed	in	diseased	
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•  This	is	depicted	nicely	by	the	graph	on	the	bobom	of	the	figure,	where	the	
posiRve	ranks	on	the	leK	represent	the	correlaRon	to	the	Disease	phenotype	and	
the	negaRve	ranks	on	the	right	signify	the	correlaRon	to	the	Normal	phenotype	

•  The	graph	also	generates	a	rank	gradient	that	represents	the	order	of	the	most	
up-regulated	genes	for	the	Disease	sample	on	the	leK-most,	and	the	most	up-
regulated	genes	for	the	Normal	samples	on	the	right-most	

Diseased	

Normal 

•  Now,	let�s	hide	the	heatmap	and	replace	the	middle	part	of	the	
figure	with	genes	from	a	specific	geneset,	say	genes	from	the	
Glycolysis	pathway.			

•  Each	verRcal	blue	bars	represents	a	gene	from	the	pathway,	
being	mapped	on	the	same	locaRon	as	the	whole	dataset		

•  Again,	genes	that	are	located	on	the	leK	side	are	highly	
expressed	on	the	Disease	samples,	and	the	opposite	is	true	for	
the	right-most	genes	
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•  Now,	we	are	ready	to	demonstrate	the	GSEA	algorithm.			
•  The	walk	down	algorithm	basically	scans	the	ranked	gene	list	L,	

and	when	a	member	of	S	is	encountered,	an	Enrichment	Score	
(ES)	is	registered.		This	is	illustrated	on	the	top	part	of	the	figure	
below;	when	the	ES	started	to	build	upon	encountering	more	
genes	from	the	GeneSet	S.	

•  The	more	S	genes	is	found,	the	higher	the	ES		
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•  But,	when	no	S	genes	were	encountered	for	a	long	walk	down,		
as	indicated	on	the	middle	secRon	of	the	middle	plot,	the	ES	
will	decrease	accordingly.			

•  In	other	words,	a	high	ES	relies	inRmately	with	the	clustering	of	
S	genes	in	close	proximity.		In	this	example,	we	would	conclude	
that	the	S	genes	have	high	degree	of	correlaRon	with	the	
Disease	phenotype	since	most	of	the	ES	was	gained	from	the	
leK	porRon	of	the	plot	

GSEA	Algorithm:	Step	1	
•  Calculate	an	Enrichment	Score:	

–  Rank	genes	by	their	expression	difference		

–  Compute	cumulaRve	sum	over	ranked	genes:		
•  Increase	sum	when	gene	in	set,	decrease	it	
otherwise	

•  Magnitude	of	increment	depends	on	correlaRon	of	
gene	with	phenotype	

•  Record	the	maximum	deviaRon	from	zero	as	the	
enrichment	score		
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GSEA	Algorithm:	Step	1	

GSEA	Algorithm:	Step	2	
•  Assess	significance:		

–  Permute	phenotype	labels	1000	Rmes		
–  Compute	ES	score	as	above	for	each	permutaRon		
–  Compare	ES	score	for	actual	data	to	distribuRon	of	ES	
scores	from	permuted	data		

•  PermuRng	the	phenotype	labels	instead	of	the	genes	
maintains	the	complex	correlaRon	structure	of	the	gene	
expression	data	
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GSEA	Algorithm:	Step	3	
•  Adjustment	for	mulRple	hypothesis	tesRng:		

–  Normalize	the	ES	accounRng	for	size	of	each	gene	set,	
yielding	normalized	enrichment	score	(NES)		

–  Control	proporRon	of	false	posiRves	by	calculaRng	FDR	
corresponding	to	each	NES,	by	comparing	tails	of	the	
observed	and	null	disRbuRons	for	the	NES	

GSEA	Algorithm:	Step	4	
•  The	original	method	used	equal	weights	for	each	gene	

–  The	revised	method	weighted	genes	according	to	their	
correlaRon	with	phenotype	

–  This	may	cause	an	asymmetric	distribuRon	of	ES	scores	
if	there	is	a	big	difference	in	the	number	of	genes	highly	
correlated	to	each	phenotype	

•  Consequently,	the	above	algorithm	is	performed	twice:	one	
for	the	posiRvely	scoring	gene	sets	and	once	for	the	
negaRvely	scoring	gene	sets	
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Overview	of	GSEA	
•  The	original	method	used	equal	weights	for	each	gene	

–  The	revised	method	weighted	genes	according	to	their	
correlaRon	with	phenotype	

–  This	may	cause	an	asymmetric	distribuRon	of	ES	scores	
if	there	is	a	big	difference	in	the	number	of	genes	highly	
correlated	to	each	phenotype	

•  Consequently,	the	above	algorithm	is	performed	twice:	one	
for	the	posiRvely	scoring	gene	sets	and	once	for	the	
negaRvely	scoring	gene	sets	

GSEA	results	for	our	data	set	(using	pathway	gene	sets)	
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List	of	most	significant	up-regulated	gene	sets	

The	Enrichment	score	is	based	on	
the	difference	of	the	cumulaRve	
distribuRon	of	the	gene-set	minus	
the	expected	

This	plot	is	basically	the	
Kolmogorov-Smirnov	plot	rotated	
by	45	degrees	
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NES	

pval	

FDR	
Benjamini-Hochberg	

Zoom	In	on	Enrichment	Plot	

hbp://www.broad.mit.edu/gsea/	

GSEA	SoKware	
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Outlook	
•  Gene	Set	and	Pathway	Analysis	is	a	very	acRve	field	of	

research:	new	methods	are	published	all	the	Rme!	

•  One	important	aspect:	taking	pathway	structure	into	account	
–  All	methods	we	discuss	ignored	this	structure	
–  New	methods	use	and	“Impact	Factor”	(IF),	which	gives	
more	weight	to	gene	that	are	key	regulators	in	the	
pathway	(Draghici	et	al	(2007))	

•  Other	Aspects:	
–  Study	the	behavior	of	pathways	across	experiments	in	
microarray	databases	like	GEO	or	Array	Express	

–  Incorporate	other	data	into	the	analysis	(proteomics,	
metabolomics,	sequence	data)	

	

Summary	
•  There	are	many	popular	databases/internet	
resources	for	pathways	and	gene	sets	

•  Many	important	analysis	issues	

•  It	is	impossible	to	explain	all	exisRng	approaches	but	
many	of	them	are	some	combinaRons	of	the	
methods	we	discussed	

•  This	is	an	acRve	field:	improvements	and	further	
developments	are	a	really	acRve	area	of	research	
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QuesRons?	
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Pathway/	Gene	Set	Analysis	in	
Genome-Wide	Associa;on	Studies	

Alison	Motsinger-Reif,	PhD	
Associate	Professor	

Bioinforma;cs	Research	Center	
Department	of	Sta;s;cs	

North	Carolina	State	University	
	

Goals	

•  Methods	for	GWAS	with	SNP	chips	
–  Integra;ng	expression	and	SNP	informa;on	
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Many	Shared	Issues	

•  Many	of	the	issues/choices/methodological	
approaches	discussed	for	microarray	data	are	
true	across	all	“-omics”	

•  Many	methods	have	been	readily	extended	
for	other	omic	data	

•  There	are	several	biological	and	technological	
issues	that	may	make	just	“off	the	shelf”	use	
of	pathway	analysis	tools	inappropriate	

Genome-Wide	Associa;on	Studies	
Popula;on	resources		
• 	trios		
• 	case-control	samples	

Whole-genome	genotyping	
• 	hundreds	of	thousands	or	million(s)	
of	markers,	typically	SNPs	

Genome-wide	Associa;on	
• 	single	SNP	alleles	
• 	genotypes	
• 	mul;marker	haplotypes	
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Advantages	of	GWAS	

•  Compared	to	candidate	gene	studies	
–  unbiased	scan	of	the	genome	
–  poten;al	to	iden;fy	totally	novel	suscep;bility	factors	

•  Compared	to	linkage-based	approaches	
–  capitalize	on	all	meio;c	recombina;on	events	in	a	popula;on	

• Localize	small	regions	of	the	chromosome	
• enables	rapid	detec;on	causal	gene	

–  Iden;fies	genes	with	smaller	rela;ve	risks	

Concerns	with	GWAS	
•  Assumes	CDCV	hypothesis	

•  Expense	

•  Power	dependent	on:	
–  Allele	frequency	
–  Rela;ve	risk	
–  Sample	size	
–  LD	between	genotyped	
marker	and	the	risk	allele	

–  disease	prevalence	
–  .ul;ple	tes;ng	
–  …….	

•  Study	Design	
–  Replica;on	
–  Choice	of	SNPs	

•  Analysis	methods	
–  IT	support,	data	
management	

–  Variable	selec;on	
–  Mul;ple	tes;ng	
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Successes	in	GWAS	Studies	
•  Over	400	GWAS	papers	published	to	date	

•  Big	Finds:	
–  In	2005,	it	was	learned	through	GWAS	that	age-related	macular	
degenera;on	is	associated	with	varia;on	in	the	gene	for	
complement	factor	H,	which	produces	a	protein	that	regulates	
inflamma;on	(Klein	et	al.	(2005)	Science,	308,	385–389)	

–  In	2007,	the	Wellcome	Trust	Case-Control	Consor;um	(WTCCC)	
carried	out	GWAS	for	the	diseases	coronary	heart	disease,	type	
1	diabetes,	type	2	diabetes,	rheumatoid	arthri;s,	Crohn's	
disease,	bipolar	disorder	and	hypertension.	This	study	was	
successful	in	uncovering	many	new	disease	genes	underlying	
these	diseases.	

More	Successes	
•  Associa;on	scan	of	14,500	nonsynonymous	SNPs	in	four	diseases	iden;fies	

autoimmunity	variants.	Nat	Genet.	2007	

•  Genome-wide	associa;on	study	of	14,000	cases	of	seven	common	diseases	and	
3,000	shared	controls.	Wellcome	Trust	Case	Control	Consor0um	Nature.	
2007;447;661-78	

•  Genomewide	associa;on	analysis	of	coronary	artery	disease.	
Samani	et	al.	N	Engl	J	Med.	2007;357;443-53	

•  Sequence	variants	in	the	autophagy	gene	IRGM	and	mul;ple	other	replica;ng	loci	
contribute	to	Crohn's	disease	suscep;bility.	Parkes	et	al.	Nat	Genet.	2007;39;830-2	

•  Robust	associa;ons	of	four	new	chromosome	regions	from	genome-wide	analyses	
of	type	1	diabetes.	Todd	et	al.	Nat	Genet.	2007;39;857-64	

•  A	common	variant	in	the	FTO	gene	is	associated	with	body	mass	index	and	
predisposes	to	childhood	and	adult	obesity.	Frayling	et	al.	Science.	
2007;316;889-94	

•  Replica;on	of	genome-wide	associa;on	signals	in	UK	samples	reveals	risk	loci	for	
type	2	diabetes.	Zeggini	et	al.	Science.	2007;316;1336-41	

•  Scon	et	al.	(2007)	A	genome-wide	associa;on	study	of	type	2	diabetes	in	Finns	
detects	mul;ple	suscep;bility	variants.	Science,	316,	1341–1345.	

•  …………	
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Limita;ons	
•  For	many	diseases,	the	amount	of	trait	
varia;on	explained	by	even	the	successes	is	
way	below	the	es;mated	heritability.	

•  Recently,	GWAS	are	under	a	lot	of	cri;cism	for	
rela;vely	few	translatable	findings	given	the	
investment	and	hype.	

•  Assump;ons	underlying	GWAS	are	not	true	
for	all	diseases.	

TA	Manolio	et	al.	Nature	461,	747-753	(2009)	doi:10.1038/nature08494	

Feasibility	of	iden;fying	gene;c	variants	by	risk	allele		
frequency	and	strength	of	gene;c	effect	(odds	ra;o).	
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Reasons	GWAS	Can	Fail	
even	if	well-powered	and	well-designed….	

•  Alleles	with	small	effect	sizes	
•  Rare	variants	
•  Popula;on	differences	
•  Epista;c	interac;ons	
•  Copy	number	varia;on	
•  Epigene;c	inheritance	
•  Disease	heterogeneity	
•  ……….	

Missing	Heritability	
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Possible	Associa;on	Models	

1.  Each	of	several	genes	may	have	a	variant		
that	confers	increased	risk	of	disease	
independent	of	other	genes	

2.  Several	genes	in	contribute	addi;vely	to	the	
malfunc;on	of	the	pathway	

3.  There	are	several	dis;nct	combina;ons	of	
gene	variants	that	increase	rela;ve	risk	but	
only	modest	increases	in	risk	for	any	single	
variant	

Hypothe;cal	Disease	Mechanism	
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Hypothe;cal	Disease	Mechanism	

Hypothe;cal	Disease	Mechanism	
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Hypothe;cal	Disease	Mechanism	

Hypothe;cal	Disease	Mechanism	

•  For	each	gene	probability	of	knockout	=	0.22	=	
0.04		

•  Probability	of	disease:	
– Pathway	knocked	out	=	0.4	
– Pathway	in	tact	=	0.2		

•  Sample	Size	=	2000	cases,	2000	controls		
•  Power:		
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Linear	Pathway	

Enrichment	Tes;ng	in	GWAS	
•  Tes;ng	pathway	enrichment	is	possible	in	GWAS	data		

–  Many	of	the	same	issues	that	exist	in	gene	expression	
enrichment	tes;ng	occur	in	GWAS	enrichment	tes;ng	(e.g.	
choice	of	sta;s;cs,	compe;;ve	vs	self-contained)		

•  Primary	difference:	
–  In	expression	data	the	unit	of	tes;ng	is	a	gene			
–  In	GWAS	data	the	unit	of	tes;ng	is	a	SNP		

•  Challenges:		
–  Iden;fying	the	SNP	(set)	->	Gene	mapping		
–  Summarizing	across	individual	SNP	sta;s;cs	to	compute	a	per-
gene	measure		
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Mapping	SNPs	to	Genes	
•  All	SNPs	in	physical	proximity	of	each	gene	

–  Pros:		
•  All/most	genes	represented		

–  Cons:		
•  Varying	number	of	SNPs	per	gene	
•  Many	of	the	SNPs	may	dilute	signal	
•  Defining	gene	proximity	can	affect	results		

•  eSNPs	(Expression	associated	SNPs)	
–  Pros:		

•  1	SNP	per	gene		
•  SNPs	func;onally	associated		

–  Cons:		
•  Assumes	variants	effect	expression	
•  Not	all	genes	have	eSNPs	
•  eSNPs	may	be	study	and	;ssue	dependent		

Gene	summaries	

•  Ini;al	studies	propose	different	
sta;s;cs	for	summarizing	the	overall	
gene	associa;on	prior	to	enrichment	
analysis	
– Number/propor;on	of	SNPs	with	pvalue	<	0.05		
– Mean(-log10(pvalue))		
– Min(pvalue)		
– 1-(1-Min(pvalue))N		
– 1-(1-Min(pvalue))(N+1)/2		
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First	approaches:	combining	p-values	
•  Compute	gene-wise	p-value:	

–  Select	most	likely	variant	-	�best�	p-value	
–  Selected	minimum	p-value	is	biased	downward	
–  Assign	�gene-wise�	p-value	by	permuta;ons	(Wessall-Young)	

•  Permute	samples	and	compute	�best�	p-value	for	each	
permuta;on	

•  Compare	candidate	SNP	p-values	to	this	null	distribu;on	of	
�best�	p-values	

•  Combine	p-values	by	Fisher�s	method,	across	SNPs	
(biased	in	the	presence	of	correla;on)	
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Next	approaches	

•  Addi;ve	model:	

– Where	ni	indexes	the	number	of	allele	Bs	of	a	SNP	in	
gene	i	in	the	gene	set	G	

–  Select	subset	of	most	likely	SNP�s	
–  Fit	by	logis;c	regression	(glm()	in	R)	

•  Significance	by	permuta;ons	
–  Permute	sample	outcomes	
–  Select	genes	and	fit	logis;c	regression	again	

•  Assess	goodness	of	fit	each	;me	
–  Compare	observed	goodness	of	fit	 	 		
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Compe;;ve	vs.	Self-Contained	Tests	

•  Compe;;ve	cutoff	tests	
– Require	only	permu;ng	SNP	or	Gene	labels	
– May	only	allow	to	assess	rela;ve	significance		

•  Self-contained	distribu;on	tests		
– Require	permu;ng	phenotype-genotype	
rela;onships		

– Resource	intensive,	may	be	difficult	for	large	
meta-analyses		

– Allow	to	assess	overall	significance		

Compe;;ve	vs.	Self-Contained	Tests	

•  Self-contained	null	hypothesis	
– no	genes	in	gene	set	are	differen;ally	expressed		

•  Compe;;ve	null	hypothesis	
– genes	in	gene	set	are	at	most	as	oven	
differen;ally	expressed	as	genes	not	in	gene	set	

	 	What	does	this	mean	for	SNP	data?		
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Choice	of	Pathways/Gene	Sets	
•  Rela;vely	less	“signal”	in	GWAS	than	in	gene	expression	

(GE)		
–  GE	enrichment	typically	test	which	gene	sets/pathways	show	
enrichment		

–  GWAS	enrichment	typically	test	if	there	is	enrichment		

•  Typically	want	to	be	conserva;ve	about	selec;ng	the	
number	of	pathways	to	test,	otherwise	will	be	difficult	to	
overcome	mul;ple	tes;ng		

•  Priori;zed	Approach:		
–  Limited	number	of	specific	hypotheses	(e.g.	gene	sets	from	
experiment,	co-expression	modules,	disease-specific	pathways/
ontologies)		

–  Exploratory	analyses	such	as	all	KEGG/GO	sets		

Some	Specific	Methods	

•  SSEA		
– SNP	Set	Enrichment	Analysis	

•  i-GSEA4GWAS	
•  MAGENTA		
– Meta-Analysis	Gene-set	Enrichment	of	variant	
Associa;ons	
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SSEA	

•  Zhong	et	al.	AJHG	(2010)	
•  eSNP	analysis	to	map	SNPs	to	genes	
– More	on	this	later…..	

•  Pathway	sta;s;c	=	one-sided	Kolmogorov-
Smirnov	test	sta;s;c	

•  Pathway	p-value	assessed	by	permu;ng	
genotype-phenotype	rela;onship	

•  FDR	used	to	control	error	due	to	the	number	of	
pathways	tested	

i-GSEA4GWAS	
•  Zhang	et	al.	Nucl	Acids	Res	(2010)		
•  hnp://gsea4gwas.psych.ac.cn/		

•  Categorizes	genes	as	significant	or	not	significant	
–  Significant:	At	least	1	SNP	in	the	top	5%	of	SNPs	
–  Does	not	adjust	for	gene	size		

•  Pathway	score:	k/K	
–  k	=	Propor;on	of	significant	genes	in	the	geneset		
–  K	=	Propor;on	of	significant	genes	in	the	GWAS		

•  FDR	assessed	by	permu;ng	SNP	labels		
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Results	
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MAGENTA	
•  Segre	et	al.	PLoS	Gene0cs	(2010)	
•  Sovware	download:		
–  hnp://www.broadins;tute.org/mpg/magenta/		
–  Requires	MATLAB!!	
–  Less	convenient,	but	more	customizable	than	
iGSEA4GWAS		

•  Customizable	propor;on	of	“significant”	genes		
•  Customizable	gene	window	(upstream	&	downstream)		
•  Op;on	for	Rank-Sum	test		
•  Gene	Summary	=	min(p)		
–  Uses	stepwise	regression	to	adjust	for	mul;ple	possible	
factors:	e.g.	gene	size,	SNP	density		

MAGENTA	Results	
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Adapta;ons	of	GSEA	

•  Order	log-odds	ra;os	or	linkage	p-values	for	
all	SNPs		

•  Map	SNPs	to	genes,	and	genes	to	groups	
•  Use	linkage	p-values	in	place	of	t-scores	in	
GSEA	
– Compare	distribu;on	of	log-odds	ra;os	for	SNPs	
in	group	to	randomly	selected	SNP�s	from	the	
chip	

	
	

Summary	Points	for	GWAS	
•  In	GWAS,	few	SNPs	typically	reach	genome-wide	significance		

•  Biological	func;on	of	those	that	do	can	take	years	of	work	to	unravel	

•  Incorpora;ng	biological	informa;on	(expression,	pathways,		etc)	can	help	
interpret	and	further	explore	GWAS	results		

•  Enrichment	tests	can	be	used	to	explore	biological	pathway	enrichment		
–  Different	tests	tell	you	different	things		

•  Annota;on	choices	very	different	that	in	gene	expression	data,	though	s;ll	
rely	on	the	same	resources....	not	necessarily	so	for	other	‘omics”	
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Adding	in	Gene	Expression	Data	

•  Many	mo;va;ng	reasons	to	combine/integrate	
data	from	mul;ple	“-omes”	

•  Expression	and	SNP	data	is	most	commonly	done	
–  Though	methods	could	be	applied	to	combine	other	“-
omics”	

•  Generally	make	assump;ons	about	central	
dogma	

Gene;cs	of	Gene	Expression	

•  Schadt,	Monks,	et	al.	(Nature	2003)	&	Morley,	
Molony,	et	al.	(Nature	2004)	showed	that	gene	
expression	is	a	heritable	trait	under	gene;c	
control		

•  Iden;fying	expression-associated	SNPs	(eSNPs)	
can	iden;fy	SNPs	which	are	associated	with	
biological	func;on		

•  For	significant	GWAS	“hits”	eSNPs	can	suggest	
candidate	genes	and	possibly	informa;on	about	
direc;on	of	associa;on		
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Mo;va;on	for	Integrated	Analysis	

•  Newer	approaches	will	allow	you	to	not	do	
par;;oned/filtered	analysis,	and	leverage	
informa;on	across	datatypes	

•  New	technologies	allow	for	more	ready	
integra;on	
–  Ex.	RNA-Seq	
– Dropping	costs	allow	for	more	datatypes	to	be	
collected	simultaneously	

–  Biobanking	effort	are	storing	more	;ssues	

Mo;va;on	for	Integrated	Analysis	
•  Naturally	allow	Bayesian	approaches	for	iden;fying	
priors	or	join;ng	modeling	data	

•  Several	new	approaches	proposed	
– Methods	that	were	developed	for	eSNPs	are	readily	
extended	across	data	types	

–  Other	approaches	take	into	account	similari;es	between/
withing	phenotypes	
•  Several	an	ontology	jointly	represen;ng	disease	risk	factors	and	
causal	mechanisms	based	on	GWAS	results		

•  Proposed	ontology	is	disease-specific	(nico;ne	addic;on	and	
treatment)	and	only	applicable	to	very	specific	research	ques;ons	

– More	later	on	“different	issues	for	–omics”	
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Mo;va;on	for	Integrated	Analysis	

•  Methods	are	largely	relying	on	central	dogma	
assump;ons	that	do	not	always	hold	

Summary		
•  Pathway	and	gene	set	analysis	has	been	
extended	to	SNP	and	SNV	data	

•  Some	annota;on	resources	are	readily	adapted,	
but	a	new	series	of	choices	are	available	

•  Sovware	packages	for	GWAS	pathway	analysis	
are	maturing	

•  Advances	in	approxima;on	for	permuta;on	
tes;ng	will	make	these	tools	more	
computa;onally	tractable	

•  Many	of	the	same	issues	with	missing	
annota;on,	etc.	are	s;ll	a	concern	
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Summary		
•  Integra;on	of	SNP	level	and	eSNP	data	has	
been	highly	successful,	and	helps	mo;vate	the	
integra;on	of	other	“-omes”	in	analysis	

•  Such	integra;on	will	be	dependent	on	the	
quality	of	the	annota;on	that	it	relies	on	

•  Next,	we	will	talk	about	specific	concerns	for	
different	datatypes	

•  Issues	will	compound	in	integrated	analysis…	

Ques;ons?	

																					motsinger@stat.ncsu.edu	
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Pathway	Analysis	in	other	data	

types	
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Associate	Professor	

BioinformaAcs	Research	Center	

Department	of	StaAsAcs	

North	Carolina	State	University	

	

New	“-Omes”	

•  Genome	
	

•  Transcriptome	

•  Metabolome	

•  Epigenome	

•  Proteome	

	

•  Phenome,	exposome,	lipidome,	glycome,	
				interactome,	spliceome,	mechanome,	etc...	



7/21/16	

2	

Goals	

	

•  Pathway	analysis	in	metabolomics	

•  Pathway	analysis	in	proteomics	

•  Issues,	concerns	in	other	data	types	
–  MethylaAon	data	

–  aCGH	
–  Next	generaAon	sequencing	technologies	

•  Many	approaches	generalize,	but	there	are	always	specific	

challenges	in	different	data	types	

•  Weighted	co-expression	analysis	

Metabolomics	

•  While	many	proteins	interact	with	each	
other	and	the	nucleic	acids,	the	real	
metabolic	funcAon	of	the	cell	relies	on	
the	enzymaAc	interconversion	of	the	
various	small,	low	molecular	weight	

compounds	(metabolites)	

•  Technology	is	rapidly	advancing	

•  The	frequent	final	product	of	the	

metabolomics	pipeline	is	the	generaAon	
of	a	list	of	metabolites	who’s	
concentraAons	have	been	(significantly)	
altered	which	must	be	interpreted	in	

order	to	derive	biological	meaning		

	 	 	 		

à	Perfect	for	pathway	analysis	
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2	routes	to	Metabolomics	

Data	processing	and	annotaAon	

•  Preprocessing	and	the	level	of	annotaAon	is	
VERY	different	than	in	genomic	and	

transcriptomic	data	

•  Many	steps	in	overall	experimental	design	

that	greatly	influence	interpretaAon	

•  Will	breifly	cover	some	of	the	main	issues	
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AnalyAcal	Pla`orm	

•  Likely	GC/LC-MS	or	NMR	as	they	are	the	most	common	

•  Choice	is	normally	based	more	on	available	equipment,	etc.	more	

than	experimental	design	

•  GC-MS	is	an	extremely	common	metabolomics	pla`orm,	resulAng	

in	a	high	frequency	of	tools	which	allow	for	the	direct	input	of	GC-

MS	spectra.		

–  Popularity	is	due	to	its	relaAvely	high	sensiAvity,	broad	range	of	
detectable	metabolites,	existence	of	well-established	

idenAficaAon	libraries	and	ease	of	automaAon		

–  separaAon-coupled	MS	data	requires	much	processing	and	

careful	handling	to	ensure	the	informaAon	it	contains	is	not	

arAfactual		

Targeted	vs.	Untargeted	

•  ScienAsts	have	been	quanAfying	metabolite	

levels	for	over	50	years	through	targeted	

analysis…	

•  With	new	technologies,	the	focus	can	be	on	

untargeted	metabolomics		

–  Really	hard	to	annotate	and	interpret	
–  Integrated	–omics	analysis	being	used	to	help	

annotate	and	understand	untargeted	metabolites	

– Analogous	to	candidate	gene	vs.	genome	wide	tesAng	



7/21/16	

5	

Key	Issues	in	Metabolomics	

•  All	of	the	metabolites	within	a	system	cannot	be	idenAfied	with	any	one	analyAcal	
method	due	to	chemical	heterogeneity,	which	will	cause	downstream	issues	as	all	
metabolites	in	a	pathway	have	not	been	quanAfied	

•  Not	all	metabolites	have	been	idenAfied	and	characterized	and	so	do	not	exist	in	

the	standards	libraries,	leading	to	large	number	of	unannotated	and/or	unknown	
metabolites	of	interest	

•  Organism	specific	metabolic	databases/networks	only	exist	for	the	highest	use	
model	organisms	making	contextual	interpretaAons	difficult	for	many	researchers	

•  InterpreAng	the	huge	datasets	of	metabolite	concentraAons	under	various	

condiAons	with	biological	context	is	an	inherently	complex	problem	requiring	
extremely	in	depth	knowledge	of	metabolism.	

•  The	issue	of	determining	which	metabolites	are	actually	important	in	the	

experimental	system	in	quesAon.		

		

Metabolomic	Databases	

•  Two	types	of	data-bases:	
–  top-down	(gene	to	protein	to	metabolite)		

–  bojom-up	(chemical	enAty	to	biological	funcAon)	

approaches		

– www.metabolomicssociety.org/database		

•  Most	commonly	used	in	biomedical	applicaAons:	

– MetaCyc	

–  KEGG	
•  Subdatabases	LIGAND,	REACTION	PAIR	and	PATHWAY		
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Metabolomic	Databases	

•  KEGG	and	MetaCyc	are	largest	(in	terms	of	number	of	
organisms	and	most	in	depth	comprehensive	(i.e.	

contains	linked	informaAon	from	metabolite	to	gene)	

•  Others	that	are	rapidly	growing:	
–  Reactome	(human)	

–  KNApSAcK	(plants)	
– Model	SEED	(diverse)	

–  BiG	[40]	(6	model	organisms)	

–  can	be	more	useful	than	the	large	databases	if	a	specific	

organism	is	desired		

Metabolomic	Databases	

•  KEGG	and	MetaCyc	databases	each	contain	a	generalized	
‘conserved’	set	of	pathways	based	on	metabolic	pathways	that	are	
more	or	less	the	same	throughout	life	in	general		

–  For	KEGG,	organism	specific	annotaAons	are	available	to	query	

–  For	MetaCyc,	individual	‘Cyc’	databases	have	been	generated	for	a	

number	of	organisms,		

•  some	just	computaAonally	

•  others	extensively	manually	curated	such	as	AraCyc	for	Arabidopsis	

•  More	recent	development	are	the	cheminformaAc	databases	like	

PubChem		

–  provide	a	chemically	ontological	approach	to	cataloguing	the	ill-

defined	category	of	‘small	molecules’	acAve	in	biological	systems	

–  can	provide	addiAonal	non-biology	specific	informaAon	as	well	

alternaAve	formapng	opAons	for	datasets	(watch	for	errors!)	
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Enrichment	analysis		

•  These	databases	are	used	to	create	
“metabolite	sets”	for	enrichment	analysis	

•  Majority	of	available	tools	do	early	generaAon	

over-representaAon	analysis	

– With	all	the	advantages	and	caveats!	

– For	more	up	to	date	analysis,	will	need	to	work	to	

merge	databases,	etc.	to	correctly	use	more	up-

to-date	approaches	

	

Metabolomics	Analysis	Tools	

•  Comprehensive	pla`orms	

–  Provide	a	suite	of	uAliAes	allowing	comprehensive	analysis	from	raw	spectral	data	to	pathway	

analysis	

•  MetaboAnalyst	

•  MeltDB	

•  Enrichment	Analysis	

–  Only	works	with	processed	data	

•  PAPi	

•  MBRole	

•  MPEA	

•  TICL	

•  IMPaLA	

•  Metabolite	Mapping	

–  Connects	metabolites	to	geneAc/proteomic,	etc.	resources	

•  MetaMapp	

•  Masstrix	

•  Paintomics	

•  VANTED	

•  Pathos	
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Metaboanalyst	

•  A	number	of	uAliAes:	

–  Data	quality	checking	(useful	for	batch	effects)		
–  metabolite	ID	converter	among	others	are	also	included.		

–  If	beginning	from	raw	GC	or	LC-MS	data	MetaboAnalyst	uses	XCMS		

for	peak	fipng,	idenAficaAon	etc.		

–  Once	at	the	peak	list	(NMR	or	MS)	stage,	various	preprocessing	

opAons	such	as	data-filtering	and	missing	value	esAmaAon	can	be	
used.		

–  A	number	of	normalizaAon,	transformaAon	and	scaling	operaAons	can	

be	performed.		

–  Suite	of	staAsAcal	analyses	including	metabolomics	standards	like	PCA,	

PLS-DA	and	hierarchically	clustered	heatmaps,	among	many	other	

opAons.		

–  All	these	things	can	be	done	in	other	programs,	but	this	is	a	great	tool	
to	get	started	if	you’re	new	to	metabolomics!	

Metaboanalyst	

•  Enrichment	Analysis	tool	of	MetaboAnalyst	was	one	of	
the	earliest	implementaAons	of	GSEA	for	

metabolomics	datasets	(MSEA)	

–  quite	biased	towards	human	metabolism	unless	you	make	

custom	background	pathways/sets	

•  Three	opAons	for	input	
–  a	single	column	list	of	compounds	(Over	RepresentaAon	
Analysis,	ORA)	

–  a	two	column	list	of	compounds	AND	abundances	(Single	

Sample	Profiling,	SSP)		

–  a	mulA-column	table	of	compound	abundances	in	classed	

samples	(QuanAtaAve	Enrichment	Analysis,	QEA).		
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Metaboanalyst	

•  ORA	will	calculate	whether	a	parAcular	set	of	
metabolites	is	staAsAcally	significantly	higher	in	the	

input	list	than	a	random	list,	which	can	be	used	to	

examine	ranked	or	threshold	cut-off	lists	

•  SSP	is	aimed	at	determining	whether	any	metabolites	
are	above	the	normal	range	for	common	human	

biofluids	

•  QEA	is	the	most	canonical	and	will	determine	which	

metabolite	sets	are	enriched	within	the	provided	class	

labels,	while	providing	a	correlaAon	value	and	p-value	

PAPi	

•  Pathway	AcAvity	Profiling	is	an	R-based	tool	

•  As	input	it	takes	a	list	with	abundances	(normalized	
and	scaled)	

•  Works	on	the	assumpAons	that	the	detecAon	(i.e.	
presence	in	the	list)	of	more	metabolites	in	a	pathway	

and	that	lower	abundances	of	those	metabolites	

indicates	higher	flux	and	therefore	higher	pathway	

acAvity		

–  AssumpAon	may	not	always	be	true	

–  Ex.	TCA	cycle	intermediates	can	have	high	abundance	even	

when	flux	through	the	reacAons	in	this	pathway	is	also	

high		
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PAPi	

•  PAPi	calculates	an	acAvity	score	(AS)	for	each	pathway	

•  The	metabolic	pathways	are	taken	from	the	general	

KEGG	database		

•  The	AS	indicates	the	probability	of	this	pathway	being	
acAve	in	the	cell	

•  These	scores	can	then	be	used	to	compare	

experimental	and	control	condiAons	by	performing	

ANOVA	or	a	t-test	to	compare	two	sample	types.		

MetaMapp	

•  Performs	metabolic	mapping	for	unknown	

and	unannotated	metabolites	

•  Since	biochemistry	is	the	interconversion	of	

chemically	similar	enAAes,	compounds	can	be	

clustered	solely	by	their	chemical	similarity	

– Highly	beneficial	for	metabolites	without	reacAon	

annotaAon	

•  Also	uses	KEGG	reactant	pair	informaAon	

– chemical	similarity	misclustered	some	obviously	

biologically-related	metabolites		
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MetaMapp	

•  Can	also	map	

metabolites	based	

on	their	mass	

spectral	similarity	

(for	unknowns)	

•  Can	be	used	to	
make	custom/novel	

sets	for	pathway	

analysis	

Summary	on	Metabolomics	Pathway	

Analysis	

•  Metabolomics	is	a	maturing	area	

•  “Easy”	implementaAons	of	tools	oven	behind	

best	pracAces	in	pathway	approaches	

•  Issues	with	Ame	dependencies,	Assue	

dependencies,	etc.	are	more	exaggerated	in	

metabolomics	

•  As	the	technology	is	maturing,	we	are	just	gepng	

to	understand	the	biases,	sources	of	variaAon,	

etc.	

– Data	quality	control	best	pracAces	are	evolving	
– Will	have	major	impact	on	the	pathway	analysis	
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Specific	Issues	for	other	-omics	

•  Will	consider	some	issues	that	are	both	specific	

to	the	“-ome”	and	to	parAcular	technologies	

•  Proteomics	

•  Epigenomics	

•  Array	CGH	data	
•  RNA	seq	
•  Next	generaAon	sequencing	
•  …….	

Proteomics	

•  Aver	genomics	and	transcriptomics,	proteomics	is	the	

next	step	in	central	dogma	

•  Genome	is	more	or	less	constant,	but	the	proteome	

differs	from	cell	to	cell	and	from	Ame	to	Ame	

•  DisAnct	genes	are	expressed	in	different	cell	types,	
which	means	that	even	the	basic	set	of	proteins	that	

are	produced	in	a	cell	needs	to	be	idenAfied	

•  It	was	assumed	for	a	long	Ame	that	microarrays	would	

capture	much	of	this	informaAon	à	NO!	



7/21/16	

13	

Proteomics	vs.	Transcriptomics	

•  mRNA	levels	do	not	correlate	with	protein	content	

•  mRNA	is	not	always	translated	into	protein	

•  The	amount	of	protein	produced	for	a	given	amount	of	mRNA	
depends	on	the	gene	it	is	transcribed	from	and	on	the	current	
physiological	state	of	the	cell	

•  Many	proteins	are	also	subjected	to	a	wide	variety	of	chemical	
modificaAons	aver	translaAon	

–  Affect	funcAon	
–  Ex:	phosphorylaAon,	ubiquiAnaAon	

•  Many	transcripts	give	rise	to	more	than	one	protein,	through	

alternaAve	splicing	or	alternaAve	post-translaAonal	modificaAons	

Proteomics	

•  Technological	advances	
for	proteomics	has	

slowed	

–  Like	metabolomics,	the	
lack	of	any	PCR-like	

amplificaAon	is	limited	

	

– Unlike	metabolomics	that	
has	a	reasonable	search	

space,	there	esAmated	to	

be	more	than	a	million	

transcripts	
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Proteomics	

•  Available	technologies	have	different	
challenges	

– Protein	microarrays	vs.	mass	spec	based	methods	

– General	concerns	with	reproducibility	dampened	

iniAal	excitement	

Proteomics	

•  The	high	complexity	and	technical	instability	

mean	that	the	level	of	annotaAon	is	oven	

quite	low	

•  Same	challenges	as	with	metabolomics,	but	

more	exaggerated	given	the	large	annotaAon	

space	

•  Many	of	the	same	issues	…..	
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Epigenomics	

•  “Complete”	set	of	epigeneAc	modificaAons	on	
the	geneAc	material	of	a	cell	

–  epigeneAc	modificaAons	are	reversible	modificaAons	
on	a	cell’s	DNA	or	histones	that	affect	gene	expression	

without	altering	the	DNA	sequence	

– DNA	methylaAon	and	histone	modificaAon	most	
commonly	assayed	

•  Rapidly	advancing	technologies	
– Histone	modificaAon	assays	

–  CHIP-CHIP	and	CHIP-Seq	
– MethylaAon	arrays	

Epigenomics	

•  Recent	studies	have	focused	on	issues	related	to	differenAal	
numbers	of	probes	in	genes	

–  Most	microarrays	were	designed	with	the	same	number	

–  For	methylaAon	data,	this	is	not	the	case,	and	extreme	bias	can	be	

seen		

–  Bias	results	in	a	large	number	of	false	posiAves	

•  Can	be	corrected	by	applying	methods	that	models	the	relaAonship	
between	the	number	of	features	associated	with	a	gene	and	its	
probability	of	appearing	in	the	foreground	list	

–  CpG	probes	in	the	case	of	microarrays		

–  CpG	sites	in	the	case	of	high-throughput	sequencing	
–  Chip	annotaAon	

•  Can	also	be	corrected	with	careful	applicaAon	of	permutaAon	
approaches	
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Next	GeneraAon	Sequencing	

•  Variant	calling	in	NGS	can	detect	single	nucleoAde	
variants	(SNVs)	and	SNPs	

•  For	SNPs,	the	exact	same	pathway	methods	can	be	

used	as	designed	for	GWAS	studies	(assuming	

genotyping	in	genome	wide)	

•  For	rare	variants,	standard	approaches	are	a	challenge	
–  highly	inflated	false-posiAve	rates	and	low	power	in	
pathway-based	tests	of	associaAon	of	rare	variants	

–  due	to	their	lack	of	ability	to	account	for	gameAc	phase	

disequilibrium	

–  New	area	of	methods	development	

Next	GeneraAon	Sequencing	

•  RNA-seq	data	
– Not	truly	quanAtaAve	
– With	experience,	know	that	there	are	very	

different	variance	distribuAons	at	different	levels	

of	expression	

– Will	majer	for	methods	that	test	for	differences	

in	variance	as	well	as	mean	

•  Two	sided	K-S	tests….	
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Summary	on	Integrated	Analysis 		

•  Technology	advances	across	the	“omics”	is	an	

exciAng	opportunity	for	bejer	understanding	

complexity	

•  Technologies	have	unique	properAes	that	
need	to	be	understood	and	accounted	for	in	

analysis	

•  Metabolomics	resources	are	rapidly	maturing	

Summary	on	Integrated	Analysis	

•  Database	development,	curaAon,	ediAng,	etc.	

always	lags	behind	technology	

•  Issues	with	incomplete	and	inaccurate	

annotaAon	accumulate	as	more	“omes”	are	

considered	

•  With	more	complex	data,	this	complexity	is	not	

readily	captured	in	the	databases	the	gene	set	

analysis	relies	on	

– Differences	in	cell	types,	exposure,	Ame,	etc.	

– Major	needs	for	methods	development…..	
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QuesAons?	

																					motsinger@stat.ncsu.edu	


