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Why Study Networks?

» Components of biological systems, e.g. genes, proteins,

metabolites, interact with each other to carry out different

functions in the cell.

» Examples of such interactions include signaling, regulation

and interactions between proteins.

» We cannot understand the function and behavior of biological

systems by studying individual components (2 + 2 # 41).

» Networks provide an efficient representation of complex
reaction in the cells, as well as basis for
mathematical/statistical models for the study of these
systems.
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Central Dogma of Molecular Biology (Extended)

DNA Genomics — 25,000 Genes
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Networks in Biology: Gene Regulatory Interactions

A GENE REGULATORY NETWORK
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Networks in Biology: Gene Regulatory Networks
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Networks in Biology: Protein-Protein Interaction
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Networks in Biology: Protein-Protein Interaction (PPI)
Networks
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Networks in Biology: Metabolic Reactions
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But Do Networks Matter?

» They Dol

» Recent studies have linked changes in gene/protein networks
with many human diseases.

Systems Biology and Emerging Te _

Gene Networks and microRNAs Implicated in
Aggressive Prostate Cancer

Liang Wang,' Hui Tang,” Venugopal Thayanithy,® Subbaya Subramanian,® Ann 1. Oberg,”
Julie M. Cunningham,l James R. Cerhan,” Clifford J. Steer,” and Stephen N. Thibodeau"

'"Departments of Laboratory Medicine and Pathology and *Health Sciences Research, Mayo Clinic, Rochester, Minnesota; and
Departments of “Laboratory Medicine and Pathology, “Medicine, and Genetics, Cell Biology, and Development, University of
Minnesota, Minneapolis, Minnesota
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But Do Networks Matter?
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Estrogen-Regulated Gene Networks in Human
Breast Cancer Cells: Involvement of E2F1 in the
Regulation of Cell Proliferation
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But Do Networks Matter?
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But Do Networks Matter?

And, incorporating the knowledge of networks improves our ability
to find causes of complex diseases.

Molecular Systems Biology 3; Article number 140; doi:10.1038/msb4100180 mulecular
Citation: Molecular Systems Biology 3:140 systems

© 2007 EMBO and Nature Publishing Group Al rights reserved 1744-4292/07 biology
www.molecularsystemsbiology.com

REPORT

Network-based classification of breast cancer
metastasis

Han-Yu Chuang"®, Eunjung Lee>>®, Yu-Tsueng Liu®, Doheon Lee® and Trey Ideker
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' Bioinformatics Program, University of California San Diego, La Jolla, CA, USA, 2 Department of Bioengineering, University of California San Diego, La Jolla, CA, USA,
3 Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea and * Cancer Genetics Program, Moores Cancer
Center, University of California San Diego, La Jolla, CA, USA

5 These authors contributed equally to this work
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Why Do We Need Network Inference?

©Ali Shojaie

Despite progress, our knowledge of interactions in the genome
is limited.

The entire genome is a vast landscape, and experiments for
discovering networks are very expensive

From a statistical point of view, network estimation is related
to estimation of covariance matrices, which has many
independent applications in statistical inference and prediction
(more about this later)

Finally, and perhaps most importantly, gene and protein
networks are dynamic and changes in these networks have
been attributed to complex diseases.

SISG: Pathway & Networks 14
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Networks: A Short Premier

» A network is a collection of nodes V' and edges E.
» We assume there are p nodes in the network, and that the
nodes correspond to random variables X1, ... X,.

» Edges in the network can be directed X — Y or undirected
X =Y.

G, G, G;

» In all these example, the nodes are V = {1,2,3}.
» The edges are:

Ey = {1-2,2-3}

E, = {15332}

E = {1-2,1-3}

©Ali Shojaie SISG: Pathway & Networks 15
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Networks: A Short Premier

» A convenient way to represent the edges of the network is to
use an adjacency matrix A

» A matrix is a rectangular array of data (similar to a table)

» Values in each entry are shown by indeces of row and column

X
A= 1| . . . | Here, xisinrow 1 and column 2

» Adjacency matrix is a square matrix, which has a 1 if there is

an edge from a node in one row to a node in another column,
and 0 otherwise

» For undirected edges, we add a 1 in both directions

@©AIi Shojaie
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Networks: A Short Premier
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What Do Edges in Biological Networks Mean?

» In gene regulatory networks, an edge from gene i to gene j
often means that / affects the expression of J; i.e. as i's
expression changes, we expect that expression of j to
increase/decrease.

» In protein-protein interaction networks, an edge between
proteins i and j often means that the two proteins bind
together and form a protein complex. Therefore, we expect
that these proteins are generated at similar rates.

» In metabolic networks, an edge between compound / and j
often means that the two compounds are involved in the same
reaction, meaning that they are generated at relative rates.

» Thus, edges represent some type of association among genes,
proteins or metabolites, defined generally to include linear or
nonlinear associations; more later....

©AIli Shojaie SISG: Pathway & Networks
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Statistical Models for Biological Networks

» We use the framework of graphical models

» In this setting, nodes correspond to “random variables”

» In other words, each node of the network represents one of
the variables in the study

» In gene regulatory networks, nodes = genes
» In PPI networks, nodes = proteins
» |In metabolic networks, nodes = metabolites

» In practice, we observe n measurements of each of the
variables (genes/proteins/ metabolites) for say different
individuals, and want to determine which variables are
connected, or use their connection for statistical analysis

©AlIi Shojaie SISG: Pathway & Networks
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An Overview of Methods for Network Inference

Network Inference Methods Can be categorized into two general
classes:

» Methods based on marginal measures of association:

» Co-expression Networks (uses linear measures of association)
» Methods based on mutual information (can accommodate
non-linear associations)

» Methods based on conditional measures of association:

» Methods assuming multivariate normality /normality (glasso,
etc)

» Generalizations to allow for nonlinear dependencies
(nonparanormal, etc)

©Ali Shojaie SISG: Pathway & Networks
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Our Plan

In the remainder of this module, we will cover the following topics
» Methods for reconstructing undirected networks

» Co-expression Networks (WGCNA)
» ARACNE
» Conditional Independence Graphs

» Gaussian Observations (glasso, etc)
» Non-Gaussian and Non-Linear Data (nonparanormal, etc)
» Methods for reconstructing directed networks

» Bayesian Networks (basic concepts, reconstruction algorithm)

» Reconstructing directed networks from time-course data
(dynamic Bayesian networks)

» Reconstructing directed networks from perturbation screens

» Topology-based pathway enrichment analysis

©AlIi Shojaie SISG: Pathway & Networks 21
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An Overview of Network Reconstruction Methods

Network reconstruction methods can be categorized into two
general classes:
» Methods based on marginal measures of association:

» Co-expression Networks (uses linear measures of association)
» Methods based on mutual information (can accommodate
non-linear associations)

» Methods based on conditional measures of association:

» Methods assuming multivariate normality /normality
» Generalizations to allow for nonlinear dependencies

©Ali Shojaie SISG: Pathway & Networks




Co-Expression /Correlation Networks

» This is the simplest (and most-widely used!!) method for
estimating networks; it assumes that edges correspond to
large correlation magnitudes

> Let r(i,j) be correlation between X; and Xj; we claim an edge
between i and j if |r(i,j)| > T.

» Correlation is a simple measure of linear association between
two random variables.

» Here, 7 is a user-specified threshold, and is the tuning
parameter for this method.

» By construction, this is an undirected network (correlation is
symmetric).

©AlIi Shojaie SISG: Pathway & Networks

Limitations of Co-Expression Networks

» The estimation is highly dependent on the choice of 7.

» They may not correctly detect the edges in biological
networks: two genes/proteins can have high correlations, even
if they don't interact with each other!

» Correlation is a measure of linear association, but many
biological relationships are nonlinear

©AIli Shojaie SISG: Pathway & Networks




Limitations of Co-Expression Networks

» The estimation is highly dependent on the choice of 7.

» We can instead test Hy : r,, =0
» A commonly used test is given by the Fisher transformation

1 1+r 1
Z = 3 In (:) = artanh(r) ~y, N(O, ﬁ)

» Alternatively, we can work with “weighted” co-expression
networks

©Ali Shojaie SISG: Pathway & Networks

Weighted Gene Co-expression Network Analysis®

A

ray Data

» Measure concordance of gene expression
using Pearson correlation

» Continuously transform the Pearson
correlations into an (soft) adjacency
function — weighted network

» using the sigmoid adjacency function

1

Aij - 1+ e—lrj—70)

» using the power adjacency function

Ajj = |ryl”

» Perform downstream network analysis
(clustering, etc) on weighted networks

1Zhang and Horvath, A General Framework for Weighted Gene Co-Expression
Network Analysis, Stat App in Gen and Mol Bio, 2005
©Ali Shojaie SISG: Pathway & Networks




Choice of Parameters

» By changing the tuning parameters, adjacency functions

behave similar to

hard thresholding
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» Power and sigmoid adjacency functions lead to similar results
if the parameters are chosen to achieve scale-free topology

» We focus on power adjacency function

©Ali Shojaie
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Choice of Parameters
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» Using B ~ 6 gives a scale free network
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Software

» Implemented in the R-package WGCNA
install.packages (’WGCNA’,1ib=NULL,repos="http://cran.us.r-project.org’)
» Main estimation function

adjacency(datExpr,
selectCols = NULL,
type = "unsigned",
power = if (type=="distance") 1 else 6,

corFnc = "cor", corOptions = "use = ’p’",
distFnc = "dist", distOptions = "method = ’euclidean’")

» To determine the power so that the network has scale-free
distribution, need to search for multiple powers

©Ali Shojaie SISG: Pathway & Networks 9

Limitations of Co-Expression Networks

» Correlation is a measure of linear association, but many
biological relationships are nonlinear

0.4 0
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Limitations of Co-Expression Networks

» Correlation is a measure of linear association, but many
biological relationships are nonlinear
» We can use other measures of association, for instance,
Spearman correlation or Kendal's 7.
» These methods define correlation between two variables, based
on the ranking of observations, and not their exact values
» They can better capture non-linear associations
» We can instead use mutual information; this has been used in
many algorithm, including ARACNE

©Ali Shojaie SISG: Pathway & Networks 11

ARACNE: Algorithm for the Reconstruction of Accurate
Cellular NEtworks?

1. ldentifies statistically significant gene-gene co-regulation
based on mutual information

2. It then eliminates indirect relationships in which two genes are
co-regulated through one or more intermediates

2ARACNE: An algorithm for the reconstruction of gene regulatory networks in a
mammalian cellular context, Margolin et al, BMC Bioinfo, 2006
©AIli Shojaie SISG: Pathway & Networks 12




ARACNE

Samples
-~
3
v - \ /
2 Mutual Information
8 +
Data Processing Inequality / \
Gene regulatory network
y
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Data Processing Inequality (DPI)

O—E—0©

I(A, C) < min[I(A, B), (B, C)]

where
I(gi, &) = logP(gi,g;)/P(e&i)P(gj)

» Look at every triplet and remove the weakest link

» Need to estimate marginal and joint (pairwise) probabilities
(using Gaussian Kernel)

©Ali Shojaie SISG: Pathway & Networks 14




Algorithm Details

» Starts with a network where each triplet of genes is connected
by an edge.

» The algorithm then examines each gene triplet for which all
pairwise Mls are greater than a cut-off and removes the edge
with the smallest value based on DPI.

» Each triplet is analyzed irrespectively of whether its edges have
been selected for removal by prior DPI applications to different
triplets.

» The least of the three Mls can come from indirect interactions
only, and checking against the DPI may identify gene pairs
that are not independent but still do not interact.

©Ali Shojaie SISG: Pathway & Networks 15

Rationale and Guarantees

» If Mls can be estimated with no errors, then ARACNE
reconstructs the underlying interaction network exactly,
provided this network is a tree and has only pairwise
interactions.

» The maximum MI spanning tree is a subnetwork of the
network built by ARACNE.

©Ali Shojaie SISG: Pathway & Networks 16




Rationale and Guarantees

reconstructs an interaction network without false positives edges, provided: (a)
the network consists only of pairwise interactions, (b) for each j € mix, Iij > L.
Further, ARACNE does not produce any false negatives, and the network
reconstruction is exact iff (c) for each directly connected pair z5 and for any other

node k, we have I;; > min[l, Ijx].

©Ali Shojaie SISG: Pathway & Networks 17

Performance on Synthetic Data
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Application: B-lymphocytes Expression Data
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Application: B-lymphocytes Expression Data

» MYC (proto-oncogene) subnetwork (2063 genes)
> 29 of the 56 (51.8%) predicted first neighbors biochemically
validated as targets of the MYC transcription factor.

» New candidate targets were identified, 12 experimentally
validated.

» 11 proved to be true targets.

» The candidate targets that have not been validated are
possibly also correct.

©Ali Shojaie SISG: Pathway & Networks 20




Software

» Implemented in the R-package minet:

source("http://bioconductor.org/biocLite.R")
biocLite("minet")

» Main estimation function aracne(mim, eps=0)
» mim: mutual information matrix

mim <- build.mim(syn.data, estimator="spearman")
» eps: threshold for setting an edge to zero, prior to searching
over triplets

©AlIi Shojaie SISG: Pathway & Networks 21

Limitations of Co-Expression Networks

» The estimation is highly dependent on the choice of 7

» They may not correctly detect the edges in biological
networks: two genes/proteins can have high correlations, even
if they don't interact with each other!

©AIli Shojaie SISG: Pathway & Networks 22




Limitations of Co-Expression Networks

» The estimation is highly dependent on the choice of 7

» They may not correctly detect the edges in biological
networks: two genes/proteins can have high correlations, even
if they don't interact with each other!
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Limitations of Co-Expression Networks

» The estimation is highly dependent on the choice of 7

» They may not correctly detect the edges in biological
networks: two genes/proteins can have high correlations, even
if they don't interact with each other!
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Limitations of Co-Expression Networks

» The estimation is highly dependent on the choice of 7

» They may not correctly detect the edges in biological
networks: two genes/proteins can have high correlations, even
if they don't interact with each other!
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Partial Correlation

» Partial correlation measures the correlation between i and j
after the effect of the other variables are removed.

» In our example, this means that we would be taking into
account that the “information” was passed through mutual
friends, and not directly.

» This gives a more direct connection to biological networks; in
PPI networks: if protein A binds with B and C, but B and C
don't bind, then the correlation between B and C will be
removed once conditioned on A.

» Mathematically, the partial correlation between X; and X;
given X is given by:

Pij — PikPjk

Vi- P%k\/ 1- p_jgk

©Ali Shojaie SISG: Pathway & Networks 26

pii-k = p(Xi, Xj| Xi) =




Partial Correlation

» Partial correlation is also symmetric
» Partial correlation is also a number between -1 and 1

» In partial correlation networks, we draw an edge between X
and Y, if the partial correlation between them is large

» Calculation of partial correlation is more difficult

» Again, we can determine this using testing, however, we need
a larger sample size

» New statistical methods have been proposed in the past
couple of years to make this possible...(active area of research)

©AlIi Shojaie SISG: Pathway & Networks 27

A simple example

1 -8 .7 1 6 0
Correlation= | —.8 1 —.8 | PartialCorr = 6 1 .6
7 -8 1 0 6 1

True Network Correlation Partial Correlation

@ @ @
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A larger example

» A network with 10 nodes and 20 edges
» n = 100 observations

» Estimation using correlation & partial correlation (20 edges)

True Network Correlation Partial Correlation

OR©) OR©)

©Ali Shojaie SISG: Pathway & Networks 29

Partial Correlation for Gaussian Random Variables

» It turns out, we can calculate the partial correlation between
X;i and X; given all other variables, by calculating the inverse
of the empirical covariance matrix S.

> In other words, the (i, j) entry in ¥~ gives the partial
correlation between X; and X; given all other variables X\; ;.

» Now suppose the variables are connected by a graph G, then
if X ~ N(0, X), the nonzero entries in the inverse covariance
matrix correspond to the edges of G: (i,j) € E iff Z,.Jfl #0

©Ali Shojaie SISG: Pathway & Networks 30




Partial Correlation for Gaussian Random Variables
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Estimation
Therefore, to estimate the edges in the graph G,

» First, calculate the empirical covariance matrix of the
observations S = 1/(n — 1)X"X (remember X is n x p).

» Then, find the inverse of S. Non-zero values of this matrix
determine where there are edges in the network.

» This seems pretty simple, however, in practice this may not
work that well, even if the sample size is very large!!

True Graph Est Graph
@ le]
€] €]
] e}
@ @
€ €
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Difficulties in HD

» A number of problems arise in high dimensional settings,
especially when p > n.

» First, S is not invertible if p > n!

» Even if p < n, but nis not very large, we may still get poor
estimates, and we may get more false positives and false

negatives.
True Graph Est Graph
] ]
€] €]
@ @
] ]
€] €]
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Estimation in High Dimensions — Method 1

» A number of methods have been proposed for estimation of
conditional independence graphs from Gaussian observations
in high dimensions.

» The main idea in most of these methods is to use a
regularization penalty, like the lasso.

» The idea in the first method, called neighborhood selection, is
to estimate the graph by fitting a penalized regression of each
variable on all other variables.

» In other words, we solve, for j=1,...,p
1X; =~ XuBill> + XD |84l
ki ki

» The final estimate of the graph is obtained by getting all of
the edges fond from these individual regression problems.

©Ali Shojaie SISG: Pathway & Networks
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Estimation in High Dimensions — Method 2

» In the second approach, called graphical lasso, we directly
estimate the inverse covariance matrix by maximizing the ¢
penalized log likelihood

> It is easy to see that, the log likelihood function of (mean 0)
Gaussian random variables can be written as

logdet(©) — tr(SO),

where © is the p x p inverse covariance matrix (also known as
precision matrix).

» Therefore, we can estimate © by maximizing the penalized
log-likelihood objective function

logdet(©) — tr(S©) — A||9O||1,

» Here, logdet gives the logarithm of determinant of matrix; tr
gives the trace of the matrix, or some of its diagonal values;
and A is the tuning parameter.

©AlIi Shojaie SISG: Pathway & Networks
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Comparing the Two Approaches

» It turns out that the neighborhood selection approach is an
approximation to the graphical lasso problem:

» Consider regression of X; on Xy, j # k
» Then the regression coefficient for neighborhood selection is
related to the j, k element of ©O:

Ok
Be=—2k
©j
» A main difficulty with the neighborhood selection approach is
that the resulting graph is not necessarily symmetric.

» To deal with this, we can take the union or intersection of
edges from regressing Xj on X, and X; on Xj; however, this
is an ad hoc solution.

» On the other hand, neighborhood selection is computationally
more efficient, and may gives better estimates.

©AIli Shojaie SISG: Pathway & Networks
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A Real Example
» Flow cytometry allows us to obtain measurements of proteins
in individual cells, and hence facilitates obtaining datasets
with large sample sizes.
» Sachs et al (2003) conducted an experiment and gathered
data on p = 11 proteins measured on n = 7466 cells

©AlIi Shojaie SISG: Pathway & Networks
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Choice of tuning parameter
» Unlike supervised learning, choosing the right A is very
difficult in this case.

» As the previous example shows, as A gets larger, we get
sparser graphs.

» However, there is no systematic way of choosing the right .

» A number of methods have been proposed, based on the idea
of trying to control the false positives, but this is still the
topic of ongoing research.

» One option for choosing A\ controls the probability of falsely
connecting disconnected components at level o (Banerjee et
al, 2008). When variables are standardized, this gives:

ta—2(a/2p°)
Vn—2+ tn_z(oz/2p2)’

where t,_2(«) is the (100 — )% quantile of t-distribution
with n — 2 d.f.

©Ali Shojaie SISG: Pathway & Networks
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Some Comments

©AlIi Shojaie

The penalized estimation methods discussed above allow
estimation of graphical models in the p > n settings, e.g.
when p is in 1000’s and nis in 100’s.

However, both of these methods, and most other methods for
estimation of conditional independence networks, work when
the network is sparse.

Sparsity means that there are not many edges in the network,
and the network is far from fully connected.

Good news is that biological networks are believed to be
“sparse”. However, all of these concepts are theoretical and it
is difficult to assess how things work on real networks.

SISG: Pathway & Networks
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Computation

>

©AIli Shojaie

As we saw previously, the neighborhood selection problem is
an approximation to the graphical lasso problem.

It turns out that this relationship can be used for solving the
graphical lasso problem efficiently.

The idea is to turn the problem into iterating over P
regression problems, one for each column of the precision
matrix.

This results in a very efficient algorithm for solving this
problem, and in practice, we can solve problems with p in
1000's and nin 100's in a few minutes.

The algorithm, as well as the approximation for the
neighborhood selection problem, is implemented in the
R-package glasso.

In practice, it is often better to use the empirical correlation
matrix

SISG: Pathway & Networks
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An Example in R

» Download the empirical covariance matrix from
http://www-stat.stanford.edu/~tibs/ElemStatLearn/

> Install the R-package glasso
library(glasso)
##Read the covariance matrix
sachs <- as.matrix(read.table("sachscov.txt"))

dim(sachs)

##glasso
est.l <- glasso(s=sachs, rho=5, approx=FALSE, penalize.diagonal=FALSE)

##neighborhood selection
est.2 <- glasso(s=sachs, rho=5, approx=TRUE, penalize.diagonal=FALSE)

©AlIi Shojaie SISG: Pathway & Networks 41

Exercise

» Estimate the graph from the previous example with different
values of tuning parameter (Note: this is denoted by rho in
the code).

» Try the estimation with and without setting
penalize.diagonal=FALSE. What do you see?

» Try the estimation with the empirical correlation matrix
instead (you may find the function cov2cor () useful). What
do you see?
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Marginal vs Conditional Associations

©AlIi Shojaie

Partial correlations provide a better representation of edges in
biological networks.

Computationally, estimating the conditional independence
graph is almost as costly as estimating the co-expression
network (we can obtain a good approximation using the
neighborhood selection approach at similar computational
cost).

Estimation and inference using marginal associations can be
done with much smaller samples

The most important difference, however, is the idea of
conditioning! Partial correlation works if we condition on the
right set of variables. Marginal associations on the other
hand, is independent of conditioning.

SISG: Pathway & Networks 43

Final Thoughts

©AIli Shojaie

Estimation of graphical models is an important but
challenging problem.

The appropriate method depends on the design of experiment,
available data and sample size

Choosing the tuning parameter is a challenging problem in
both cases

It is often difficult to validate the estimates: however, in case
of biological networks, we can compare our findings with
known interactions from literature.
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Non-linear associations

Recall that correlation is a measure of linear dependence, this
is also true about partial correlation.

However, many real-world associations are non-linear

Therefore, (partial) correlation may miss non-linear
associations among variables
Mutual information-based methods (ARACNE etc) try to
address this issue

» calculating conditional mutual information is computationally

expensive
» ARACNE's solution for removing indirect associations is ad-hoc

SISG: Pathway & Networks




Linearity and Normality

» Need methods for estimation of graphical models with
non-linear associations
» Interestingly, assuming linear associations is closely related to
multivariate normality (MVN):
» MVN = linear relationships
» linear dependencies (+ extra mild assumptions) = MVN!?
» Both of these are strong assumptions and may not hold in
real-world applications!

'Khatri & Rao (1976) & Fisk (1970)

©AlIi Shojaie SISG: Pathway & Networks

Our Plan

» We will start by discussing the general notion of conditional
independence graphs (aka Markov Random Fields)
» We will then discuss three classes of models:

» Transformation-based and robust methods for handling
non-Gaussianity

» Parametric graphical models with non-Gaussian variables

» Semi- and non-parametric approaches for flexible estimation of
graphical models

©Ali Shojaie SISG: Pathway & Networks




Conditional Independence Graphs

> In case of Gaussian variables, ©j = 0 implies that X; and X
are conditionally independent.

» Conditional dependence is a general notion that defines the
class of conditional independent graphs (CIG). In CIG,

» XILY | Z iff
PX=x,Y=y|Z=2)=P(X=x|Z=2z)P(Y =y|Z=2)

» If X and Y are neighbors (X — Y), they are conditionally
dependent

» X is conditionally independent of all other nodes, given
neighbors(X): Z ¢ neighbors(X), then X 1L Z | neighbors(X)

©AlIi Shojaie SISG: Pathway & Networks

Nonparanormal (Gaussian Copula) Models

» Suppose X » N(0,X), but there exists monotone functions
fi,j =1,...psuch that [fi(X1),...f(X,)] ~ N(0,X)

» We say that X has a nonparanormal distribution
X ~ NPN,(f,X).

» f and ¥ are parameters of the distribution, and need to be
estimated from data.

» For continuous distributions, the nonparanormal family is
equivalent to the Gaussian copula family

» To estimate the nonparanomal network:

i) transform the data: [f1(X1),...f(Xp)]

ii) estimate the network of the transformed data (e.g. calculate
the empirical covariance matrix of the transformed data, and
apply glasso or neighborhood selection)
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A Related Procedure

» Liu et al (2012) and Xue & Zou (2012) proposed a closely
related idea using rank-based correlation
> Let rJ’ be the rank of XJ’ among le, ..,x/and 1; = (n+1)/2
be the average rank
» Calculate Spearman’s p or Kendall's 7

5o S (=B~ F)
J o H —_ [ —_
V(] = 5 0 (= AP

A 2 : i i’ i i’
Tjk — m Z sS1gn ((Xj — Xj )(X/( - Xk ))

1<i<i’<n

> If X ~ NPN,(f,X), then X = 2sin(pjm/6) = sin(7jxm/2)
» Therefore, we can estimate ¥ ! by plugging in rank-based
correlations into graphical lasso (R-package huge)

©AlIi Shojaie SISG: Pathway & Networks 7

A Real Data Example

e Protein cytometry data for cell signaling data (Sachs et al,
2005)

e Transform the data using Gaussian copula (Liu et al, 2009),
giving marginal normality

e Pairwise relationships seem non-linear

P38
1
P38
0
Il
PJNK
1

-2 -1 0

-3

PINK PKC

e Shapiro-Wilk test rejects multivariate normality:
p<2x10-16
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Graphical Models for Discrete Random Variables

» In many cases, biological data are not Gaussian: SNPs,
RNAseq, etc

» Need to estimate CIG for other distributions: binomial,
poisson, etc

» Unfortunately, for these distribution, the problem does not
have a closed-form!

» A special case, which is computationally more tractable, is the
class of pairwise MRFs

©Ali Shojaie SISG: Pathway & Networks 9

Pairwise Markov Random Fields

» The idea of pairwise MRFs is to “assume” that only two-way
interactions among variables exist

» The pairwise MRF associated with the graph G over the
random vector X is the family of probability distributions P(X)
that can be written as

P(X) x exp Z Gik(Xj, Xkc)

U.k)€E
» For each edge (j, k) € E, ¢j« is called the edge potential
function

» For discrete random variables, any MRF can be transformed
to an MRF with pairwise interactions by introducing
additional variables (Wainwright & Jordan, 2008)
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Graphical Models for Binary Random Variables

» Suppose Xi, ..., X, are binary random variables,
corresponding ot e.g. SNPs, or DNA methylation

» A special case of discrete graphical models is the Ising model
for binary random variables

1
Py(x) = exp Z 6k Xj X
Z(Q) (,k)EE

A pairwise MRF for binary data, with ¢ (x;j, xk) = 0jkxjxk

xt e {-1,+1}°

The partition function Z(#) ensures that distribution sums to 1
(j k) € E iff ij 75 0!

vV v.VvyyYy
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Graphical Models for Binary Random Variables

» We can consider a neighborhood selection? approach with an
{1 penalty to find the neighborhood of each node
N() = {k € V: (j.k) € E}

» For j=1,...,p, need to solve (after some algebra)

n
ming § n~ 1Y | F(0:x') = > Opxixi + Al0_j]1
i=1

ke—j

» £(0; x) = log {oxp (Zkefj ijxk> + exp (— Zkeﬁ- 9j/<><k>}
» It turns out this is equivalent to solving p penalized logistic
regression problems, which is rather easy (R-package glmnet)

Ravikumar et al (2010)
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Other Non-Gaussian Distributions

» Assume a pairwise graphical model

P(X) o exp 29j¢j()<j)+ Z Ok ik (X, X)

jev (,k)EE

» Then, similar to the Ising model, graphical models can be
learned for other members of the exponential family

» Poisson graphical models (for e.g. RNAseq), Multinomial
graphical models, etc

» All of these can be learned using a neighborhood selection
approach, using the glmnet package®

» We can even learn networks with multiple types of nodes (gene
expression, SNPs, and CNVs)*

3Yang et al (2012)
*Yang et al (2014), Chen et al (2015)
©AlIi Shojaie SISG: Pathway & Networks 13

A General Approach for Estimation of Graphical Models

e Consider n iid observations from a p-dimensional random
vector x = (Xq,...,X,) ~P

e Consider the (undirected) graph G = (V, E) with vertices
V={1,...,p}

e Want to estimate edges E C V x V that satisfy
Vj e V, dN(j) such that:

pi(Xj [ { X k #7}) = pi(X; [ { Xk : k€ N()}) = pi(X; [ { Xk : (k,J) € E}

e N(j) is the minimal set of variables on which the conditional
densities depend

©Ali Shojaie SISG: Pathway & Networks 14




Estimating Conditional Independencies

Question: how to condition?

e Approach 1: Estimate the joint density f(Xi,..., Xp); then
get the conditionals £;(X; | X_;)

Efficient, coherent

Computationally challenging

Restrictive: how many joint distributions do you know?

Hard to check if assumptions hold!

v

v vy

o Approach 2: Estimate the conditionals directly f;(X; | X_;)

» Computationally easy
> Leads to easy & flexible models (regression)!
» May not be efficient or coherent

©AlIi Shojaie SISG: Pathway & Networks
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A Semi-parametric Approach

» Consider additive non-linear relationships (additive model):

Xi | Xoj = fu(Xe) +e
k#j
> Then if £ (Xx) = fij(Xj) = 0, we conclude that X; and Xj are
conditionally independent, given the other variables

» |n other words, we assume that conditional distributions and
conditional means depend on the same set of variables

» We then use a semi-parametric approach for estimating the
conditional dependencies

©Ali Shojaie SISG: Pathway & Networks
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SpaCE JAM?®

» Sparse Conditional Estimation with Jointly Additive Models
(SpaCE JAM)

1/2
mmlmlze—ZIIXJ S fF)IBHAD - (1F(R15 + [1(5)113)

fix€F
4 Jj=1 k#j k>j

fik (Xi) = Wik Bj

V. is a n x r matrix of basis functions for fj

Bjk is an r-vector of coefficients

The standardized group lasso penalty for functions || fi||2

vV v.VvyyYy

» This is a convex problem, and block coordinate descent
converges to the global minimum

>Voorman et al (2014) Biometrika, R-package spacejam
©Ali Shojaie SISG: Pathway & Networks 17

SpaCE JAM

Estimating fj and fj; seems redundant...

y = tanh(x) + eps y=X+eps y =x"2 + eps

but necessary for non-linear functions

©AIli Shojaie SISG: Pathway & Networks 18




Other Flexible Procedures

» Forest density estimation (Liu et al, 2011) assumes that
underlying graph is a forest, and estimates the bivariate
densities non-parametrically.

» Graphical random forests (Fellinghauer et al, 2013) uses
random forests to flexibly model conditional means

» They consider conditional dependencies through conditional
mean

» They allow for general random variables, discrete or continuous

» Use a random forest to estimate E[X] | X\;] non-parametrically

» Theoretical properties have not yet been justified

©Ali Shojaie SISG: Pathway & Networks 19

Comparison on Simulated Data
non-linear relationships (p = 100, n = 50)
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Comparison on Simulated Data
linear relationships (p = 100, n = 50)
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Summary - |

» Multivariate normality & linear conditional relationships are
strong assumptions that may not hold in practice

» Marginal transformations (and rank-based methods) also
assume linear relationships in the transformed scale

» Estimation of graphical models for general non-Gaussian
distributions is a difficult problem, and often requires
additional assumptions (pairwise interactions, dependency via
conditional means etc)

©AlIi Shojaie SISG: Pathway & Networks
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Summary - |l

» Assuming pairwise interactions, graphical models for members
of the exponential family can be estimated efficiently
» This idea can also be extended to graphs with multiple node
types, however, the pairwise graphical model becomes
restrictive in that setting
» Considering conditional means and additive models is a
tractable alternative with good empirical and theoretical
properties
» GraFo uses random forests to solve this problem
» SpaCE JAM applies a standardized group lasso penalty, suited
for functional data, to enforce “symmetry” in terms of edge
selection

©AIli Shojaie SISG: Pathway & Networks
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Bayesian Networks

» Bayesian networks are a special class of graphical models
defined on directed acyclic graphs.
» Directed acyclic graphs (DAGs) are defined as graphs that:
i) only have directed edges, i.e. if Aj # 0, A;j =0;
ii) there are no cycles in the network.
» Bayesian networks are widely used to model causal
relationships between variables.

» Note that correlation # causation!

» Therefore, we (usually) cannot estimate Bayesian networks
from (partial) correlations

©AIli Shojaie SISG: Pathway & Networks




Why Bayesian Networks?
Many biological networks include directed edges:

» In gene regulatory networks, protein products of transcription
factors can alter the expression of target genes, but the target
genes (usually) don’t have a direct effect on the expression of
transcription factors

A GENE REGULATORY NETWORK

INPUT INPUT
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Why Bayesian Networks?
Many biological networks include directed edges:
» In cell signaling networks, the signal from the cell's
environment is transducted into the cell, and results e.g. in
(global) changes in gene expression, but gene expression may
not affect the environmental factors
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Why Bayesian Networks?

Many biological networks include directed edges:

» Biochemical reactions in metabolic networks, may not
reversible, and in that case, one metabolite may affect the
other, but the relationship is ont reciprocated

Do @

9
oy \ 2
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Why Bayesian Networks?

However, biological networks may not be DAGs:

» Gene regulatory networks, signaling networks and metabolic
networks, may all contain feedback loops (positive/negative)

/ PDE3Al <— PDE3
A )

. Inhibitors

ISO - tcAMP

positive
feedback
loop

t PKA

-
Ang II tcPKC —» CREB---» ICER 1

Bcl-2 |

T Apoptosis

which make estimation even more difficult!
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What's the Difference?

>

©Ali Shojaie

Bayesian networks are widely used to model causal
relationships between variables.

Undirected networks (e.g. GGM) provide information about
associations among variables; while this greatly helps in the
study of biological systems, in some cases, they are not
enough (e.g. drug development).

The main difference is of course the direction of the edges;
however, it turns out that there are also some differences in
terms of structure/skeleton of the network (more on this
later).

We can estimate undirected networks from observational data,
i.e. steady-state gene expression data, but usually they are not
enough for estimation of directed networks

Finally, estimation of directed networks is often much more
difficult

SISG: Pathway & Networks

Why is estimation more difficult?

>

©Ali Shojaie

Estimation of Bayesian networks requires estimating both the
skeleton of the network (i.e. whether there is an edge between
i and j) and also the direction of the edges.

While estimation of skeleton is possible, direction of edges
cannot be in general learned from observational data, no
matter how many samples we have (this is referred to as
observational equivalence). Consider this simple graph:

Then, no matter what n is, we cannot distinguish between
X1 — Xo and X, — X, so basically what we see is:

SISG: Pathway & Networks




Outline

» Basics of Bayesian networks, including

» directed acyclic graphs (DAGs)

» conditional independence in DAGs, d-separation, and moral
graphs

» probability distributions over DAGs

» structural equation models (SEM)

» additional topics (faithfulness, Markov equivalence, ...)

» Estimation of Bayesian networks from observational data

» Estimation of Bayesian networks from perturbation and
time-course data

©AIi Shojaie SISG: Pathway & Networks

Directed Graphs: Some Terminology

» nodes in directed networks represent random variables; we
denote the set of nodes by V

» edges are directed, and represent causal relationships among
variables; we denote the set of edges by £

> The parents of node j are {k : k — j}, we denote this by pa;

or pa(/)
» The children of node j are {k : j — k}

» Two vertices connected by an edge are called adjacent

©Ali Shojaie SISG: Pathway & Networks
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Directed Graphs: Some Terminology

> pa(l) =0, pa(2) = 1, pa(3) = pa(4) = {2}, pa(5) = {3,4}
» What are children of {1,...5}7

©AlIi Shojaie SISG: Pathway & Networks
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Directed Graphs: Some Terminology

» A path between two nodes / and j is a sequence of distinct
adjacent nodes:

> e.g. i(—k1—>k2—>k3<—j
» In a DAG with p nodes, there cannot be a path longer than
p—1(why?)
» There can be multiple paths between two nodes
» J/ is an ancestor of j if there is a directed path of length > 1
fromitoj: i— -+ —j(orifi=j)

» If / is an ancestor of j, then j is said to be a descendant of /

©Ali Shojaie SISG: Pathway & Networks
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Directed Graphs: Some Terminology

» What are paths between 1&4, 3&4, 2&67
» What are ancestors of {1,...5}7

©AlIi Shojaie SISG: Pathway & Networks
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Directed Graphs: Some Terminology

An important concept in DAGs is that of colliders (aka “inverted
forks"):

» k is a collider on a path between i and j if it is a not an
end-point of the path, and the path is of the form

lo.. >k ...J

» k is an non-collider if it is not an end-point, and is not a
collider on a path:

> i~k
> ... k— ...
> ... —k—...j

» Note: colliders and non-colliders are defined w.r.t. paths; a
collider in one path can be a non-collider in another!

©Ali Shojaie SISG: Pathway & Networks
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Directed Graphs: Some Terminology

» What are the colliders on paths between 1&4, 3&4, 2&67?
» What are the non-colliders on paths between 1&4, 3&4, 2&67

©Ali Shojaie SISG: Pathway & Networks 15

Factorization of Probability Distributions over DAGs

» First, note that for any set of random variables, not
necessarily on a DAG, we can write:

P(X1,X2,X3) = P(X1| Xz, X3)P(X2| X3)P(X3)
P(Xsz | X1, X2)P(X2|X1)P(X1)

» Now, consider this simple DAG

OaOm®

» Then, the probability distribution can be factorized as

P(X1, X2, X3) = P(X3 | Xo) P(X2|X1)P(X1)

©Ali Shojaie SISG: Pathway & Networks 16




Factorization of Probability Distributions over DAGs

» In general, for any set of random variables on a DAG
G = (V, E), and for any probability distribution P (Markov
relative to G) we have

P(V) =[] P(X; | pay)
Jjev
» Compare this with the general probability decomposition
P(V) = H P(XI | Xl;"'a)(j—l)
Jjev
» This means that on DAGs we have

P(X; | X1,...,Xj—1) = P(X; | pa;)

» In other words, the probability distribution for each variable
depends only on its parents

©AlIi Shojaie SISG: Pathway & Networks 17

Independence (unconditional)

» Recall the following (equivalent) characterizations of
independence, X L Y:

» P X=x,Y=y)=P(X=x)P(Y =y)
» P(X =x|Y =y) = P(X = x) (is symmetric)

» Intuitively, if X_ILY then knowledge of X provides no
information about Y.

» These can be generalized for vectors.
» If X and Y are jointly Gaussian X ILY iff Corr(X,Y) =0.
» If X and Y are binary, XL Y iff logOR(X,Y) = 0.

©Ali Shojaie SISG: Pathway & Networks 18




Conditional Independence

» Conditional independence X LY | Z has similar
characterizations:

) PX=x,Y=y|Z=2)=P(X=x|Z=2)P(Y =y|Z = 2)
i) P(X=x|Y =y,Z=2z2)=P(X = x|Z = z) (is symmetric)

» We also have,

(X=x,Z=2)P(Y =y,Z =2)
P(Z = 2) '

P
PX=xY=y Z=2)=

» Intuitively, if X_ILY then if Z is known, knowledge of X
provides no information about Y.

» These can be generalized for vectors.

©AlIi Shojaie SISG: Pathway & Networks 19

Conditional Independence

> If X & Y are binary, XL Y|Z iff logOR(X,Y|Z) =0

» This is the coefficient in logistic regression of (say) Y on X, Z.

> If X & Y are jointly Gaussian, X 1LY|Z iff Corr(X,Y|Z) = 0.

» This is the coefficient in linear regression of (say) Y on X, Z.

©AIli Shojaie SISG: Pathway & Networks 20




The Toy Example, Revisited

O Oan©

Recall that P(X1, X5, X3) = P(X3|X2)P(X2|X1)P(X1)
This implies that X3 LX;[X> (by (i))

However, this is not always the case on DAGs!

v

v

v

v

How can we read conditional independence relations from the
graph?

v

We can do this using a concept called d-separation?

©AlIi Shojaie SISG: Pathway & Networks
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An example from genetics

Consider an example from population genetics:

» We have genetic information for Mother, Father, Daughter
and Son in form of dominant/recessive genotype (A/a) for a
single gene

» Then each individual can have one of three states: AA, aa, Aa

©AIli Shojaie SISG: Pathway & Networks
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An example from genetics

Consider an example from population genetics:

W) ®

S O

» Now, it is natural to assume that given the parents’ genetic
information, the genotypes of Son and Daughter are
independent = SILD | {M, F}

©AlIi Shojaie SISG: Pathway & Networks
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An example from genetics

Consider an example from population genetics:

» Also, one can assume independence among genotypes of M
and F = M1F

» However, if we know that e.g. Son has Aa, and Mother has
aa, then Father should have Aa or AA = MW F|S

©Ali Shojaie SISG: Pathway & Networks
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d-separation

A path 7 is said to be d-separated (or blocked) by a set of nodes
Z, iff

1. 7 includes a chain i — m — j or a fork i <~ m — j such that
the middle note is in Z, or

2. 7 contains a collider (or inverted fork) i — m < j such that

neither the middle node m nor its descendants are NOT in Z.

How is this used?

» If i and j are d-separated given Z, then X;1LX;|Z for any
probability distribution P factorizing according to G

» If i and j are d-separated given (), then X;1LX; for any
probability distribution P factorizing according to G

©AlIi Shojaie SISG: Pathway & Networks
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Genetics example, revisited

Consider an example from population genetics:

» {M, F} block all paths from Sto D = DILS | {M, F}
> Is MILF?
» Is MILF | {S, D},

S, | D?

©AIli Shojaie SISG: Pathway & Networks
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Moral Graphs

» Reading conditional independence relations from DAGs can be
difficult
» An alternative approach is to use a modified version of the
network, called the moral graph of DAG
» To get the moral graph G of G
» join (“marry”) common parents of each node
» remove all the directions
» Then, X;1LX;|Z iff Z separates i and j in G
®©Ali Shojaie SISG: Pathway & Networks

Genetics example, revisited (again)

Consider an example from population genetics:

> Is SILD | {M,F}
> Is MLF?

> Is MILF | {S,D}, D?

S,
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Genetics example, revisited (again)

Consider an example from population genetics:

> Is SILD | {M,F}
> Is MLF?

> Is MILF | {S, D}, D?

S,

©AIi Shojaie SISG: Pathway & Networks 29

A More Complex Example

What are conditional independence relations in this graph?

O—Z (5—®
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A More Complex Example

What are conditional independence relations in this graph?

©AlIi Shojaie SISG: Pathway & Networks 31

Structural Equation Models

» A popular way to represent causal relationships on DAGs is via
structural equation models

Xj = fi(paj,vj), J=1,...,p

» f; can be in general any function relating j to its parents
> ~;'s represent the independent component of jth variable (i.e.
the part that doesn’t depend on pa;

» For Gaussian random variables, f; is linear

J €paj

> here, pji denotes the magnitude of effect of j* on j, or their
partial correlation
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A Toy Example

OO

Assuming normality we can write:

X1 = m
Xo = p1aX1+ 72 = prav1+ 72
X3 = p23Xo+ 3= p23p1271 + p2372 + 3

For non-Gaussian variables, these equations will involve non-linear
relationships.
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Pathway & Network Analysis of Omics Data:
Bayesian Networks — Estimation from
Observational Data

Ali Shojaie
Department of Biostatistics
University of Washington
faculty.washington.edu/ashojaie

Summer Institute for Statistical Genetics — 2016
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Estimation of DAGs in Biological Settings

» Estimation of DAGs is (in general) computationally very hard
(in fact, it's NP-hard): there are ~ 27" DAGs with p nodes!

» Three different types of biological data can be used for
estimation of directed graphs:

i) observational data: steady-state data, or data comparing
normal & cancer cells

ii) time-course data: time-course gene expression data

iii) perturbation data: data from knockouts experiments

» This lecture, we will cover (i), next lecture we will cover (ii)
and (iii)

©Ali Shojaie SISG: Pathway & Networks




Estimation of DAGs from Observational Data

Algorithms for estimation of DAGs can be broadly categorized into
two groups:

» constraint-based methods

» often based on tests for Cl & provide theoretical guarantees
» PC algorithm, Grow-Shrink

» score & search methods

» They assign a “score” to each estimated graph (e.g. based on
likelihood, Bayes factor, AIC etc)
» Then do a (greedy) search to find the best scoring graph
» Hill Climbing algorithm
» “hybrid” methods
» Usually first find the Markov blanket (e.g. the moral graph)

» Then perform a search in a restricted space
» Max-Min Hill Climbing algorithm

©AlIi Shojaie SISG: Pathway & Networks

Constraint-Based Methods

» Need a conditional independence test (to test if X 1LY | Z)

» For Gaussian data, we can use partial correlation (or the
Fisher's Z-transformation of it)
» For Binary data, we can use logOR
» In general, we can use conditional mutual information
» The idea is to see if there exists a set S, for each pair of
nodes j, ', such that X; LLXy | S

» S can have 0 to p-2 members! usually stop at some k < p

» l.e., for each pair of variables (all of them), we need to

p

2
look at all possible subsets of remaining variables!!

» Recall that conditional independence is symmetric =

undirected graph!!

» So, these methods find the structure/skeleton of the DAG
(will talk about direction later)

©Ali Shojaie SISG: Pathway & Networks




PC Algorlthm (Spirtes et al, 1993)

» One of the first algorithms for learning structure of DAGs

» Efficient implementations that allow for learning DAG
structures with p up to ~ 1000

» R-package pcalg (Kalisch & Buhlmann, 2007)

» The algorithm starts with a complete graph (i.e. a fully
connected graph)

» Then for each pair of nodes j, ' it finds a separating set, S
such that X; 1L Xy | S

» If a set is found, then remove the edge, otherwise, j —

©AlIi Shojaie SISG: Pathway & Networks

PC Algorithm  (spirtes et al, 1993)

Start with a complete undirected graph, and set i =0
Repeat

» ForeachjeV

» For each j' € ne())
» Determine if 35 C ne(j)\{/’} with |S| =
» Test for Cl: is X;ILX | 57
» If such an S exists, then set S; = S, remove j — ' edge

» i =i+1
Until |ne(j)| < i for all j
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Example

©Ali Shojaie
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Example
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Example
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Example
i=0 5172 =
©AIli Shojaie SISG: Pathway & Networks 10




Example

@)
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
I=0 5172 =0
S1a=10
=1
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Example
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Example
i=0 5172 =
S1a=10
i=1 S34=1{2}
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Example
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Example
©AIli Shojaie SISG: Pathway & Networks 26




Example
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Example
S1a=10
=1 53,4 = {2}
=2 51,5 = {3, 4}
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Example

=20 51,2 =0
S14=10
=1 5374 = {2}
=2 S15=13,4}
52,5 = {3, 4}
©AlIi Shojaie SISG: Pathway & Networks 29
Example
i=0 S120=10
5174 =
=1 53,4 = {2}
=2 51,5 = {3, 4}
5275 = {3, 4}
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Example

=0
=1
| =
=3

©Ali Shojaie

Sio=10
S14=10
S34={2}
S15 = {3,4}
Sa5 = {3,4}

STOP (|nej| < 3V))

SISG: Pathway & Networks 31

Example

©AIli Shojaie
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Example

i=3 STOP (|nej| < 3 V))
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Analysis of Protein Flow Cytometry using pcalg

> dat <- read.table(’sachs.data’)

> p <- ncol(dat)

> n <- nrow(dat)

## define independence test (partial correlations)

> indepTest <- gaussCItest

## define sufficient statistics

> suffStat <- list(C=cor(dat), n=n)

## estimate CPDAG

> pc.fit <- pc(suffStat, indepTest, p, alpha=0.1, verbose=FALSE)
> plot(pc.fit, main=’PC Algorithm’)

» Need to determine the type of Cl test (indepTest), and
sufficient statistics (suffStat)
» Also need to choose a (alpha), the probability of false
positive for selecting edges.
» Larger values of « allow more edges (not adjusted for multiple

comparisons)
» The algorithm works faster when « is small
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Analysis of Protein Flow Cytometry using pcalg

PC Algorithm

But wait, where did the directions come from? And why are only
some of the edges directed?

©AlIi Shojaie SISG: Pathway & Networks
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Markov Equivalence

Consider the following 4 graphs

@— Q@ — G
Q< G >3
o< G < €

— > C<4+—C

Which graphs satisfy Xj 1LX5 | X537
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Markov Equivalence

Consider the following 4 graphs

Q— Q@ ———»C

o< G >3

Q < G < €

Q— @ <+———G

In the first 3 graphs, X1 1L.X3 | X527
Two graphs that imply the same Cl relationships via d-separation
are called Markov equivalent

©AlIi Shojaie SISG: Pathway & Networks
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Representation of Markov Equivalence

» Markov equivalent graphs correspond to the same probability
distribution and cannot be distinguished from each other
based on observations!

» Therefore, the direction of edges that correspond to Markov
equivalent graphs cannot be determined

» We show these edges using undirected edges in the graph

» The resulting graph is a CPDAG (completed partially directed
acyclic graph), and is really the best we can do!

©Ali Shojaie SISG: Pathway & Networks

38




CPDAGs

IN LN LN
NN NS

Q@
a >—»<5
S
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Finding Partial Directions in DAGs

» Partial directions in DAGs can be determined from unmarried
colliders:
» For each unmarried collider i — k —
» If k¢ Sj, orient i —k —jasi— k<
» In addition to the above rule
» Orient each remaining unmarried collider i — k — j as
i— k—j
» If i - k —jand i — j then orient as i — j

» If i—m—j and i — k < j are unmarried colliders and m — k,
then orient as m — k

©Ali Shojaie SISG: Pathway & Networks 40




Example

=0 S12= 0
S14=10

i=1 S34=1{2)

i=2 Si5=1{34)
S5 = {3,4}
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The bnlearn package

» There are a number of R-packages for learning the structure
of DAGs, including pclag, bnlearn, deal

» bnlearn implements a number of estimation methods, both
constraint-based and search-based:
» constraint-based:
Grow-Shrink (GS);
Incremental Association Markov Blanket (IAMB);
Fast Incremental Association (Fast-IAMB);
Interleaved Incremental Association (Inter-IAMB);
» the following score-based structure learning algorithms:
> Hill Climbing (HC);
» Tabu Search (Tabu);
» the following hybrid structure learning algorithms:
» Max-Min Hill Climbing (MMHC);
» General 2-Phase Restricted Maximization (RSMAX2);

v

vYyy
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Analysis of Protein Flow Cytometry using bnlearn

> dagl <- gs(dat, alpha=0.01)  #GS method

> dag2 <- hc(dat2) #Hill-Climbing search
>

> par(mfrow= c(1,2))

> plot(dagl)

> plot(dag2)

>

> compare(dagl, dag2) #compare the two DAGs

» For GS need to choose a (alpha), the false positive
probability for selecting edges

» gs (and other structure-based methods) find a PCDAG

» hc gives a directed graph (with highest score)

» A number of criteria for choosing the “best” graph are
implemented

» To “search” the space either a new edge is added, or a current
edge is removed, or reversed (if no cycles)

©AlIi Shojaie SISG: Pathway & Networks 43

Analysis of Protein Flow Cytometry using bnlearn

> dagl
Bayesian network learned via Constraint-based methods

model:
[partially directed graphl
nodes: 11
arcs: 26
undirected arcs: 3
directed arcs: 23
average markov blanket size: 6.00
average neighbourhood size: 4.73
average branching factor: 2.09
learning algorithm: Grow-Shrink
conditional independence test: Pearson’s Linear Correlation
alpha threshold: 0.01
tests used in the learning procedure: 2029
optimized: TRUE
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Analysis of Protein Flow Cytometry using bnlearn

> dag2
Bayesian network learned via Score-based methods

model:
[PKC] [pjnk | PKC] [P44 |pjnk] [pakts|P44:PKC:pjnk] [praf |P44:pakts:PKC] [PIP3|pakts
[plcglpraf :PIP3:P44:pakts:pjnk] [pmek|praf:plcg:PIP3:P44:pakts:pjnk]
[PIP2|plcg:PIP3:PKC] [PKA|praf :pmek:plcg:P44:pakts:pjnk]
[P38|pmek:plcg:pakts:PKA:PKC:pjnk]

nodes: 11
arcs: 35

undirected arcs: 0

directed arcs: 35
average markov blanket size: 8.00
average neighbourhood size: 6.36
average branching factor: 3.18
learning algorithm: Hill-Climbing
score:

Bayesian Information Criterion (Gaussial
penalization coefficient: 4.459057
tests used in the learning procedure: 505
optimized: TRUE
©Ali Shojaie SISG: Pathway & Networks 45

Analysis of Protein Flow Cytometry using bnlearn

Grow-Shrink Hill Climbing

The two graphs are quite different

> compare(dagl,dag3)
$tp

[11 9

$£p

[1] 26

$fn

[11 17
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Comparison of Results for Protein Flow Cytometry Data

PC Algorithm Grow-Shrink Hill Climbing

» The estimated graphs are quite different

» The constrained-based methods seem to have more similarities
(at least in terms of structure)

» The estimate from HC has more edges; we can change e.g.
the score, but cannot directly control the sparsity

©AlIi Shojaie SISG: Pathway & Networks 47

Penalized Likelihood Estimation of DAGs

» Recall that structural equation models can be used to
represent causal relationships (and probability distributions)
on DAGs

Xi:ﬁ(pah’w)? i=1---,p

» And, for Gaussian random variables, we can write

X,:ij,)(,—f—’y,, ’:]—,>P

JEPa,;
° plz 6 p23 °
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Penalized Likelihood Estimation of DAGs

O Oan©

X1 = m
Xo = p12X1+ 72 = p1av1 + 72
X3 = p23Xo+ 93 = p23p1271 + p23y2 + 3

Thus X = Ay where
1 0 0
N= P12 1 0
p12p23 p23 1

©Ali Shojaie SISG: Pathway & Networks 49

Penalized Likelihood Estimation of DAGs

> It turns out that A = (/ — A)~!, where A is the weighted
adjacency matrix of the DAG!

» Thus, for Gaussian random variables, if we know the ordering
of the variables (which is a BIG assumption!)

after some math...

we can estimate the adjacency matrix of DAGs, by minimizing
the log-likelihood as a function of A:

A= argerzin {tr[(1 = A)"(I — A)S]}

Shojaie & Michailidis (2010)
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Penalized Likelihood Estimation of DAGs

» In high dimensions, we can solve a penalized version of this
problem, e.g. by adding a lasso penalty A} _;_; [Aj]

> It turns out that, the problem can be reformulated as (p — 1)
lasso problems, where we regress each variable, on those
appearing earlier in the ordering:

k—1
At k-1 = argmin $ n 7| Xe—10 — X3+ A 161w
HcRk—1 j:l

» As in glasso, A is a tuning parameter that controls the
o 2 .
amount of sparsity; A = WZQ/(zpz) controls a false positive

probability at level «
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Computational Complexity

» Compared to pcalg, this method runs much faster: ~ np?
operations vs ~ p? (q is the max degree)

» Can be easily implemented in R as p — 1 regressions using
glmnet. A more general version is available in the spacejam
package, which also includes estimation for non-Gaussian data

o |7 pcalg
8 —-4- lasso
© |+ Alasso
Q
E 8 |
- o
=) ™
a
O —
o
S |
o
- o
o — AmAW%A;,;._»_.-_»;_-_-v_.-_-~_--_vﬁs
\ \ \ \
p=100, n=100 p=100, n=1000 p=1000, n=100 p=1000, n=1000
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Simulation Studies

e Settings:
p = 50,100, 200
n =100

Total number of edges in the network = n
100 repetitions

e Performance Criteria

1. Matthew's Correlation Coefficient (MCC): ranges between —1
(worst fit) and 1 (best fit), similar to F;

2. Structural Hamming Distance (SHD): sum of false positive
and false negatives
3. True positive and false positive rates

e Tuning parameter for both PC-Algorithm and penalized likelihood
method based on false positive error «
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Random Ordering of Variables

—— pcalg FP
- -- lasso °
-—- Alassoy=1 © 2 4
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Regulatory Network of E-Coli

» Regulatory network of E-coli with p = 49 genes (7 TFs)

» Want to identify regulatory interactions among TFs and
regulated genes

Known Pcalg Lasso Alasso
Regulatory Network FP=0.004, FN=0.977 FP=0.042, FN=0.698 FP=0.068, FN=0.628
MCC=0.08, SHD=43 MCC=0.34, SHD=40 MCC=0.35, SHD=43
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Summary

e Estimation of DAGs from observational data is both conceptually
and computationally difficult

e Constraint-based and search-based algorithms become slow in high
dimensions

e Also, may not be able to distinguish DAGs from observational data
(Markov equivalence)

e Efficient penalized likelihood methods can estimate DAGs if the
ordering is known

e Efficient implementations in R available for most methods

e Different methods need different tuning parameters...

©AlIi Shojaie SISG: Pathway & Networks 57




Pathway & Network Analysis of Omics Data:
Reconstructing Regulatory Networks
from Time-Course & Perturbation Data

Ali Shojaie
Department of Biostatistics
University of Washington
faculty.washington.edu/ashojaie

Summer Institute for Statistical Genetics — 2016
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MAPK/ERK Pathway

|
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]

Gene

Transcription
Nucleus
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Estimation of Gene Regulator Networks

» Using steady-state gene expression data:
» undirected association graphs: Graphical lasso (glasso),
ARACNE, ...
» DAGs or CPDAGs: PC-Algorithm, ...

» Using time-course gene expression data
» Dynamic Bayesian networks
» Granger causality
» Using perturbation screens, obtained by “perturbing” the
biological system, often in the form of knockout or knockdown
experiments, where in each experiment one or more genes are
perturbed.
» Model-based approaches: Nested Effect Models (NEM),

methods of causal inference
» Heuristic approaches: e.g. Pinna et al (2010),
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Gene Regulatory Networks

Consider a simple regulatory network, with two transcription
factors and one gene:

(&) >
() » go : Inhibitor
(52) » g3 : Regulated Gene
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Gene Regulatory Networks

The temporal expressions patterns of g1, g» and g3 may look like:

®©Ali Shojaie
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Gene Regulatory Networks

The temporal expressions patterns of g1, g and g3 may look like:

©AIli Shojaie
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Temporal patterns in Gene Regulatory Networks

— O

o | — %
» g1 : Inducer R
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» g3 : Regulated Gene o |
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Temporal patterns in Gene Regulatory Networks
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Temporal patterns in Gene Regulatory Networks
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Estimation of Gene Regulatory Networks from Time-Course Data

» The goal is Discover interactions among genes from
time-course data

» This is achieved by observing the patterns of expressions over
time

» A suitable framework for inferring such mechanisms is Granger
causality:

» the idea is to see if changes in expression of gene X are
predictive of those in Y
» this model is closely related to the Dynamic Bayesian Networks

(DBNs)
» can handle self-regulatory effects and feedback loops
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Granger Causality
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Granger Causality
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Granger Causality

20 40 60 80 100

time
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Granger Causality
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Granger Causality
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Granger Causality
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We say X is Granger-causal for Y
Yt = 0.7Yt_]_ + O.4Xt_1 + 0.2Xt_2 + &¢
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Granger Causality

v

A time series X is said to be Granger-causal for Y if past
values of X provide statistically significant information about
future values of Y

» This is traditionally checked using a series of F-tests, on
lagged values of X

» Granger causality # causality : Granger causality is about
prediction and does not imply true causal effects

» Recent work extends this framework beyond Gaussian random
variables

» We focus on extension of this idea to high dimensional
settings, which we refer to as Network Granger Causality

©AlIi Shojaie SISG: Pathway & Networks 17

Network Granger Causality: Illustration

p variables observed over T time points

© ® () (%)

® ® o
® ® ® @

T3 T-2 T1 T
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Network Granger Causality: lllustration

©Ali Shojaie

p variables observed over T time points

& ® () ()

® ® o
® ® ® @

T-3 T-2 T-1 T
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Network Granger Causality: Definition

>

| 2

©Ali Shojaie

X1, ..., Xy stochastic processes and X* = (X{,... ,X;)T

Network Granger Causality Model:
XT — Ale—l 4. —|—AdXT_d _|_€T

XjT_t is Granger-causal for X.T if Af,j # 0.

DAG with (d + 1) x p variables

alternatively, a vector autoregressive model of order d
(VAR(d)) with p variables.

Often d <« T, but not known:

» usually, d is “guessed”, and is set to d = 1 (especially in
applications of DBN), which can result in loss of information
» the alternative is to include all previous time points (set
d = T — 1) but that would result in too many variables

Recent work has focused on simultaneous estimation of d and
network.

SISG: Pathway & Networks 20




Previous work on NGC in high dimensional settings

» The concept of Granger causality has been used in discovering

gene regulatory interactions by Fujita et al (2007) and
Mukhopadhyay and Chatterjee (2007)

» A number of recent work have considered penalized regression
models for estimation of Granger-causal models:

» lasso regression used in Arnold et al (2007) in a financial
application

» group lasso used in Lozano et al (2009) for grouping effects
over time

» truncating lasso Shojaie & Michailidis (2010) to estimate d
and network simultaneously

» lasso w adaptive thresholding used in Shojaie, Basu &
Michailidis (2012) for improved estimation of d and network

©AlIi Shojaie SISG: Pathway & Networks
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Truncating Lasso Penalty

1
Xt data at time t

d

d p
argminn~ || &7 — Z XT7t0t3 + ) Z \Utz 10| wf
0tERP t=1 t=1 j=1

vl=1 wi= M/{\|A(t*1)||o<P25/(T—f)}, t>2

where M is a large constant, and [ is the user-specified false
negative rate (FNR).
» Can use the following value of A that controls a version of
false positive rate (FPR) at the level o
AMa) =2n"127%,

2:7'p2

» This method assumes that influences decay over time
Shojaie & Michailidis (2010)

©Ali Shojaie SISG: Pathway & Networks
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An lllustrative Example

" - - L] -I .l -
True . e Lo N £-
) L L.
,;| f\ - lasso
[=] .
lasso . "
EI - " . "
,;| f\ ' . Alasso
Alasso "o "
E’ . - ™
B B Tlasso
s, [
Tlasso . - o
B TAlasso
_—. .
TAlasso O . '
-t -
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Example |: Gene Network of Hela Cells

9 genes, 47 time points
d=3

©AIli Shojaie SISG: Pathway & Networks 24




Example Il: Gene Regulatory Networks of Yeast

5 Transcription Factors, 37 genes (p = 42), 8 time points
d=2

Known Regulatory Network Alasso TAlasso grpLasso
P=0.71, R=0.22, F1= 0.34 P=0.67, R:D?.36, F1=0.46 P=0.56, R=0.2, F1=0.3
o 1 sana L
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Non-decaying Granger-causal effects

9,
O,
O,

T-3 T-2 T-1 T
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Non-decaying Granger-causal effects

©AIli Shojaie SISG: Pathway & Networks 27

Regulatory Network of T-Cell Activation

» Data from Rangel et al (2004) on activation of T-cells
» p =58 genes, n = 44 samples, and T = 10 time points

» Goal is to estimate the regulatory interactions

©AIli Shojaie SISG: Pathway & Networks 28




Adjacency Matrices

of Estimated Networks

R P-4 T-3 - T-2 T-1
1 - -
. : bl
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Alasso: edges= 96 TAlasso: edges= 101 Thlasso: edges= 79
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Alasso
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Thlasso

Alasso TAlasso
(96)
99

35

(101)

102 (79)

Thlasso
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Adaptively Thresholded Lasso Estimate: Main Ildea

» Logic: Lasso is in general biased, and cannot achieve structure

and norm consistency simultaneously

» In short, the idea is to start with lasso estimates, and then
remove “small” values from the adjacency matrix

» Consider two levels of thresholding, one for each element of

adjacency matrix, and the second for whole adjacency
matrices at a given time point

©Ali Shojaie SISG: Pathway & Networks
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Method Details

(i) Obtain the regular lasso estimate Af(),) by solving

T—1 p
argmin n~ | &7 — ZXT t9t||2+)\22|9 |wf
OtcRP t—1 j—1

(ii) Let Wt = exp( M1z _pzs/(r_1)y ) and define the
thresholded estimate:

At At .
Ajj = Aij1{|A,§.|zT\ut}

Here M is a large constant and 7 is tuning parameter for
thresholding.

(iii) Estimate the order of the time series by setting
d = max.{t: |Afljo > p?B/(T — 1)}

©AIli Shojaie SISG: Pathway & Networks
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[llustrative Ex |: Under Decay Assumption

True
Alasso
TAlasso
Thlasso
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[llustrative Ex Il: Decay Assumption Violated
True ..
",
] "-.‘
Alasso
] ) "
TAlasso
Thlasso -
.
i "-.‘
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Comments

» Benefits:
» The optimization problem is convex, and can be solved
efficiently.
» Does not require structural assumptions (no decay assumption)
» Drawbacks:
» Requires more tuning parameters
» Can be less efficient than truncating lasso if the decay
assumption holds
» The tuning parameters can be chosen so that the method has

desirable performance

v

Penalized methods implemented in the R package ngc

©AlIi Shojaie SISG: Pathway & Networks 35

Data from Perturbation Screens

» Steady-state data are easy to obtain, but only represent
association among genes and hence have insufficient
informational content

» Perturbation data provide direct evidence on causal directions,
but are expensive to obtain. This becomes more complicated
if perturbing a particular gene is lethal.

» Data is obtained by knockout or knockdown experiments on
one or more genes at a time. The data then measures the
effect of the experiments on other genes in the network.

©Ali Shojaie SISG: Pathway & Networks 36




Data from Perturbation Screens

» In practice, due to limited sample size, the perturbation data
are often discretized: genes are categorized as up/down
regulated or active/inactive.

» The discretized perturbation data
(i) do not provide enough information to construct the structure
of regulatory networks.
(ii) provide enough information to determine causal (topological)
ordering(s) of nodes.

©AlIi Shojaie SISG: Pathway & Networks 37

Methods for Estimation of Regulatory Networks from
Perturbation Data

» Nested Effect Model (NEM): defines a probability distribution
for perturbed (knockout) genes, and estimates the networks
using a Bayesian framework

» Heuristic approaches: start with the network of significant
effects of genes on all other genes (based on the perturbation
data) and try to trim this network using features of observed
networks

» Causal inference methods: in particular, using the intervention
calculus (Pearl, 2000) which describes the joint probability
distribution of random variables in the setting of experiments

©Ali Shojaie SISG: Pathway & Networks 38




Nested Effect Models

» Motivated by RNAI experiment settings: few knocked-out
genes (called S genes), and a larger number of affected genes
(called E genes)

B —E—E)

R e

» Assumes that each S gene affect few E genes

» More importantly, assumes that each E genes is only affected
by one S gene

» The network of S gens is arbitrary, but there is no association
among E genes (condition on S genes)

» Considers the setting where S genes are (potentially) not
observable, but E genes are observed

» The goal is to learn the relationship among S genes, based on
the patterns of E genes, which is a difficult problem!

©AIli Shojaie SISG: Pathway & Networks
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Nested Effect Models

My Expected Observed
T > xEEEEEE < N
X —} Y —} 7
v gl | [ [
' ".~ ' ".~ ' ".~ z ZI:":":":'.
E, E, E; E, Es Eg E, E, E5 E4 Es Eg E; E, E5 E4 Eg Eg

» Works with discretized data: there is either an effect (1) from
knocking out of S; on E; or not (0)

» Assumes there are positive and negative control samples

» Allows for presence of false positives and false negatives in the
discretized data

©Ali Shojaie SISG: Pathway & Networks
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Nested Effect Models

» In the simplest form (a) a chain
with 3 nodes is assumed, and the
model tries to learn the relationship
between S genes based on the E
genes that are affected by each
perturbation (b)

» The matrix @ is the influence
matrix discussed before

g
&

o o =

e

Il
—
- =
» e

m
o~ oM o - 0

- o oM

—
[ )
W N

=

@
I
—

Intervention

Effects » To simplify computation, the task
of structure learning is broken
down into triplets of S genes

2

B E®
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Nested Effect Models

(a) Data (b) Clustering (c) Nested Effects Model

ol \@
NS

mil.

(d) Subset structure

®® 6 6

A B CDEF GH

» Reconstruction of network of S genes is performed by first
clustering the E genes into groups with similar patterns

» It is then decided whether a cluster is up-stream or
down-stream the other one based on the patterns of effects
(subset relationships)
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Nested Effect Models

> library(nem)

> data("BoutrosRNAi2002")

> disc <- nem.discretize(D=BoutrosRNAiExpression,neg=1:4,pos=5:8)
> res <- nem(D=disc$dat,para=disc$para,inference="search")

nem(D, ...)
D data matrix with experiments in the columns (binary or continuous)

» R package nem implements the original NEM model, as well as
some of its extensions

» The package works well for up to ~ 100 S genes (though very
slow), but may not work for larger experiments

©Ali Shojaie SISG: Pathway & Networks 43
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The RIPE Algorithm
Influence Graph
Perturbation Steady-State Gene
Screens Expression Data
1) Determine causal orderings
sl . from perturbation screens
%}) { ’ 3 ¥ Constrained PLDAG (S. & Michailidis, 2010)
=@ Il) Use penalized likelihood to A“kIZMwm{”‘“ng,nﬁ+lijgh}
estimate a DAG for each ordering oeRt! =
) ¥
l, Ill) Determine the "consensus"
MC-DFS/Backtracking graph by model averaging .
Regulatory Network Inference from joint Perturbation and Expression data
(Shojaie et al, 2014), package ripe on github
44
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The RIPE Algorithm

RIPE integrates two sources of data, from perturbation screens
and steady-state expression profiles, to give better estimates of
regulatory networks

I) Use perturbation data to determine causal ordering(s) among
nodes

[I) For each ordering from step (I), use steady-state gene
expression data to estimate the structure of the graph

[1I) Use model averaging to construct a consensus graph

©AlIi Shojaie SISG: Pathway & Networks 45

Step 1) Determining Causal Orderings

» First, obtain the influence graph P from the perturbation data
(this can be done many different ways: p-value
cutoff/fold-change cutoff etc)

©Ali Shojaie SISG: Pathway & Networks 46




Step |) Determining Causal Orderings

» First, obtain the influence graph P from the perturbation data
(this can be done many different ways: p-value
cutoff/fold-change cutoff etc)

» In absence of noise, the influence graph is obtained from the
original graph by connecting node / to j if there is a directed
path from / to j

©Ali Shojaie SISG: Pathway & Networks a7

Step 1) Determining Causal Orderings

» First, obtain the influence graph P from the perturbation data
(this can be done many different ways: p-value
cutoff/fold-change cutoff etc)

» In absence of noise, the influence graph is obtained from the
original graph by connecting node / to j if there is a directed
path from / to j

» In practice, the influence graph will likely include false positive
and false negative edges.
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Step |) Determining Causal Orderings

» Create a hyper-graph of strong
connected components (SCC),
where each node is a collection of
> 1 nodes that cannot be further
ordered (i.e. there is a cycle).

» Find an ordering (topological
sorting) of the SCC graph (note,
this is by construction a DAG)
using Depth First Search
algorithm (DFS).

» Find all possible orderings of each
connected component (using

backtracking algorithm of Knuth,
or Monte Carlo DFS MC-DFS)

©AlIi Shojaie SISG: Pathway & Networks 49

Step II) Estimation of the Structure

» Given a topological ordering of nodes, the nodes of the graph
can be rearranged to form a DAG

» For each ordering, estimate (the structure of) one DAG using
the penalized likelihood method of the previous lecture, (by
solving p — 1 lasso regression problems):

k—1
At k-1 = argmin $ n 7| Xp—10 — Xull3 + A 161w
fcRk—1 j:l

OO
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Step 111) Building a Consensus Graph

Histogram of Negative penalized log-Likelihoods

» For each ordering, the
estimated graph is a DAG

2000

1500

» However, the true graph may "
include cycles. Also, results g
from one ordering may be
inaccurate (noise...).

Freqy
1000
L

500
L

r T
300 305 310

» Solution: average over edges with the best scores:

As; = Z Lija8 150 E={(ij):A;>7}
keQ

1
1

» Lg: lower gth quantile of (penalized) negative log-likelihoods
» Q={0€O: /(o) <L,} set of orderings for these likelihoods
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Simulate Network: DAG of size p = 20
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Data Generation

Perturbation data: Adjacency matrices of true and noisy influence

graphs
Po P4 P2 P3
| | |
[ | ] H Em [ | ] H Em [ | ] - H E Em =l [ 1 [ ]
u | u | u | | | u_n
n HE = n o u n N = [ | ]
- n l=l.. - n l=... - - n .=... - = .=.=.
n [ 1| n [ 1| n [ 1| n [ 1|
n | » | » | | | »
n [ 1] . n
u - n
n - n n - n .- n - n
u u n
| | | |

Steady-state expression data: generated n = 50 Gaussian
observations according to the true DAG.
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Comparison of F; measures
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How Many Orderings?

For P3, there are a total of 3962 orderings using the backtracking

algorithm.

07 0.8
| |

0.6

04

0.3
|

Fy
Precision
Recall

200 ord 500 ord 1000 ord 2000 ord Backtrack
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High Dimensional Cyclic Graphs (p = 1000)

Effect of FP and FN errors

0.7

F
4

0.4 —

0.3

— PCALG
0.2 | - - PINNA

RIPE-10000rd

° Nno err
* FP

- FP&FN

no err —

FP:0.02% (200) —

©Ali Shojaie

FP:0.04% (400)
FP:0.06% (600) |
FN:2% (200) —
FN:4% (400) —
FN:6% (600) —|

SISG: Pathway & Networks

FP:0.01% FN:1% (200) —

FP:0.02% FN:2% (400) —
FP:0.03% FN:3% (600) —
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A More Complicated Example: DREAM-4 Challenge

» The DREAM project (Dialogue for Reverse Engineering

Assessments and Methods) is an attempt to construct realistic

regulatory networks

» DREAM-4 challenge had multiple competitions, including
reverse engineering 5 networks of size 100 selected from true

regulatory components of yeast and E-coli.

» The perturbation data is simulated based on the true network

(using coupled ODE)

» Two types of perturbation data are available: knockout and

knockdown experiments

» The algorithm of Pinna et al (PINNA) was the winner of the
high dimensional reconstruction challenge (on networks of size

100)

©AlIi Shojaie SISG: Pathway & Networks
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DREAM Network 1 (Simplest)
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DREAM Network 5 (Most Difficult!)

68 v" 4'; X
G28 2 X %131/;64:‘ |
67 ‘ 'ﬂ'iAVZ/, R
,fv/“\;x Ul
N\
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Comparison of F; Measures
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Example of estimated modules

Largest cyclic component in DREAM1 network
When the perturbation data includes cycles, the consensus graph
will be cyclic.

True Graph Estimated Graph
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Network of Yeast Transcription Factors

» 269-node corresponding to known yeast TF's (p = 269)

» Perturbation data: knockout experiments from Hu et al
(2007, Nat Genetics)

» Steady-state expression data: n = 200 day-to-day variation
samples of yeast (publicly available), not really iid!

» Used 10,000 orderings

» To evaluate: use available data on yeast regulatory network,

which is (most likely) incomplete. Therefore, “false positives”
may be true edges
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Network of Yeast Transcription Factors

» Significance of true positives (TP), in comparison to the
BioGrid network

» Histograms show number of TP's in random networks of

equal sizes
PCALG PINNA
o TP =10, |E|=476 (p-value=0.5543) TP =18, |E|=622 (p-value=0.1265) TP =19, |E|=520 (p-value=0.0185)
g4 — i —

2000
|

2000
I

1500
L

1500
L

1000

1000
I

0 500
I
0 500
I
500
I

o 5 10 15 20 5 10 15 20 25 30 5 10 15 20 25
no of TP no of TP no of TP
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Extension: k < p

» In many biological experiments, perturbation screens are only
run on a subset of genes (k out of p)

» If perturbation is available on TFs, the RIPE algorithm can be
modified to estimate the network

RIPE Performance in yeast regulatory network (6051 genes)
TP =134, |E[=10014 (p-value<0.001)

200
|

150
1

100
1

RIPE

50

T T T T 1
60 80 100 120 140

no of TP
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Summary

©AlIi Shojaie

Estimation of regulatory networks is difficult! In addition to need for
causal inference, the presence of feedback loops, and the small
sample size of biological experiments hinder estimation of directed
regulatory networks

Available data differ in informational content and available sample
size (and hence noise level)

Time-course and perturbation data offer greater potential for
learning the structure of DAGs; however, they also introduce new
challenges.

Computational complexity is a bottleneck of many proposed
methods, many existing methods are approximations of the biology,
or make strong assumptions

This is an active area of research, with many methods being
developed and implemented...
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Pathway & Network Analysis of Omics Data:
Network-Based Pathway Enrichment Analysis

Ali Shojaie
Department of Biostatistics
University of Washington
faculty.washington.edu/ashojaie

Summer Institute for Statistical Genetics — 2016
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Yeast GAL Pathway

Ideker et al, 2001
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Issues of Interest

v

v

v

v

v

©AlIi Shojaie

Incorporate the network information
Consider changes in the gene (protein, metabolite) expressions
Consider changes in the network structure

Test the “effect” of pre-specified subnetwork/pathway, sharing
common biological function, chromosomal location etc

A general framework for inference in complex experiments

SISG: Pathway & Networks

Recap:

Gene Set Enrichment Analysis

Subramanian et al. (2005) proposed gene set enrichment analysis
(GSEA); Efron & Tibshirani (2007) formalized the GSEA
approach, and proposed a more efficient test statistic

| 2

| 2

>
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Test the significance of a priori defined gene sets
Preserve the correlation among genes in the gene set

Based on a competitive null hypothesis, where activity of each
pathway is compared with other pathways, often using a
permutation test

Competitive tests of enrichment assume that a small number
of genes have differential activity, and are very sensitive to the
choice of gene sets, they also problem with

Self-contained tests address these issues, but may be less
efficient or sensitive to model assumptions (Goemen &
Buhlmann (2007), Ackermann & Strimmer (2009))
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Signaling Pathway Impact Analysis (SPIA)

» Combines classical overrepresentation analysis (ORA) with
measure of perturbation of a given pathway under a given
condition

» A bootstrap procedure is used to assess the significance of the
observed pathway perturbation (difficult to extend to
comparison of > 2 conditions)

» Currently not applicable to all pathways (more later)

» Models each pathway separately (ignores connections among
pathways)

» Implemented in the Bioconductor package SPIA

©AlIi Shojaie SISG: Pathway & Networks

The SPIA Methodology

SPIA combines two types of evidence
(i) the overrepresentation of DE genes in a given pathway

» measured by the p-value for the given number of DE genes
Pnpe = P(X > Npe | Ho)
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The SPIA Methodology

SPIA combines two types of evidence

(ii) the abnormal perturbation of the pathway
» the perturbation for each gene in the pathway is defined as

PF
PF(gI) = AE(g,) + ZP 1 BU NDS((géJ

» PF(g;) is the perturbation factor of gene i (not known)

» [ is the magnitude of effect of gene j on gene i; currently,
betaj =1if j — i

» AE(g;) is the fold change in expression of gene i

» Nps(gj) is the number of downstream genes from gene j

©Ali Shojaie SISG: Pathway & Networks

The SPIA Methodology

» The accumulated activity of each gene can then be calculated
as ACC(gj) =B - (I — B)"1AE
» B is the normalized matrix of §'s: Bj = B;;/Nps(gj)
» AE is the vector of fold changes
» Requires B to be invertible; would not work otherwise

» The total accumulated perturbation of the pathway is then
given by tq = >, ACC(gi)
» The p-value for pathway perturbation is given by

PperT = P(Ta > ta | Ho), which is calculated using a
bootstrap approach
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The SPIA Methodology
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The SPIA Methodology

SPIA combines two types of evidence
» The final p-value for each pathway is calculated based on the
p-values from parts (i) and (ii):
> P(;(I) =C — C In(c,-)
> ¢ = Pnpe(i)Ppert (i)

P PERT

©AIli Shojaie SISG: Pathway & Networks
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An Example in R: Data on Colorectal Cancer

data(colorectalcancer)

#pathway analysis using SPIA

#use nB=2000 or higher for more accurate results

#uses older version of KEGG signaling pathways graphs

res <- spia(de=DE_Colorectal, all=ALL_Colorectal, organism="hsa", beta=NULL,
nB=2000, plots=FALSE, verbose=TRUE, combine="fisher")

#now combine pNDE and pPERT using the normal inversion method without
#running spia function again
res$pG=combfunc (res$pNDE, res$pPERT, combine="norminv")
res$pGFdr=p.adjust (res$pG, "fdr")
res$pGFWER=p.adjust (res$pG, "bonferroni")

plotP(res,threshold=0.05)

#highlight the colorectal cancer pathway in green

points(I(-log(pPERT)) "I(-log(pNDE)) ,data=res[res$ID=="05210",],col="green",
pch=19,cex=1.5)
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The SPIA Methodology

SPIA two-way evidence plot
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Network-Based Gene Set Analysis (NetGSA)

» Combines the ideas of gene set analysis methods, and
network-based single gene analysis

» Generalizes SPIA, to allow for more complex experiments &
incorporate interactions among pathways

» Assesses the overall behavior of arbitrary subnetworks
(pathways): changes in gene expression & network structure

» Uses latent variables to model the interaction between genes
defined by the network

» Uses mixed linear models for inference in complex data

» Computationally challenging for large networks (e.g. not
applicable to whole genome sequencing data) unless,
pathways separated (similar to SPIA)

©AlIi Shojaie SISG: Pathway & Networks
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Problem Setup

» Gene (protein/metabolite) expression data for K experimental
conditions and J time points

» Network information (partially) available in the form of a
directed weighted graph G = (V/, E), with vertex set V
corresponding to the genes/proteins/metabolites and edge set
E capturing their associations

» Edges in the network can be directed j — k or undirected
J ek
» Edges defines the effect of nodes on their immediate

neighbors; the weight associated with each edge corresponds
to the value of partial correlation

> Represent the network by its adjacency matrix A: Aj # 0 iff
k — j & for undirected edges, Ajx = Ay

» Pathways defined a priori based on common biological
functions, etc

©Ali Shojaie SISG: Pathway & Networks
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The Latent Variable Model: Main ldea

OO

X1 = m
Xo = p1aXi+ 72 = prav1+ 72
X3 = p3Xo+ 93 = p23p12v1 + p23y2 + 3

Thus X = Ay where

1 0 0
A= P12 1 0
p12p23 p23 1

©AlIi Shojaie SISG: Pathway & Networks 15

The Latent Variable Model

» Let Y be the ith sample in the expression data

> Let Y = X +¢, with X the signal and € ~ N,(0, 021,) the
noise

» The influence matrix A measures the propagated effect of
genes on each other through the network, and can be
calculated based on the adjacency matrix A

» Using X = Ay, we get
Y=M+e, = Y~ Ny(Au, AN +02l)

where v ~ Np(, nglp) are latent variables

©Ali Shojaie SISG: Pathway & Networks 16




Mixed Linear Model Representation

Rearranging the expression matrix into np-vector Y, we can write
Y=V3+Tlv+e
where B and ~ are fixed and random effect parameters and
e ~ Nnp(0, R(6c)), v~ an(O,agylnp)

e Temporal Correlation incorporated through R

In general, the design matrices, W and Il depend on the
experimental settings (similar to ANOVA), and are functions of A

©AlIi Shojaie SISG: Pathway & Networks
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Estimation of MLM Parameters

MLE for :
1 A~

B=WWlv) vty

where W = J%I_II'I’ + R.

BA depends on estimates of J% and 03 (estimated using restricted
maximum likelihood (REML)).

©AIli Shojaie SISG: Pathway & Networks
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Inference using MLM

» Let ¢ be a contrast vector (a linear combination of fixed
effects), and consider the test:

Ho:/6=0 vs. Hy:(B8#0

» Use t-test to test the significance of each hypothesis
separately
s

Ve

T =

where C = (W'W-1y)™"
» Under the null hypothesis, T is approximately t-distributed
with degrees of freedom that needs to be estimated

©Ali Shojaie SISG: Pathway & Networks 19

“Optimal” Choice of Contrast Vector

» One intuitive choice is to use the indicator vector for the
members of pathway b, but this only reflects changes in the
mean vector

» Need to de-couple the effect of each subnetwork from other
nodes

» Can be shown that (bA - b)~ is not affected by nodes outside
b, but includes the effects of nodes in b on each other

» In the case-control case, the optimal contrast vector is:
= (—b bAC.b - b/\T)

©Ali Shojaie SISG: Pathway & Networks 20




“Optimal” Choice of Contrast Vector

- -

-~ -

1 0 0
N= P12 1 0
p12p23 p23 1

Consider the set, b = (0,1, 1); then
(bA) = (p12 + p12p23, 1 + p23, 1)
On the other hand,

(bA-b) = (0,1 + p23,1)
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Yeast Galactose Utilization Pathway

Ideker et al (2001) data on yeast Galactose Utilization Pathway
» Gene expression data for 2 experimental conditions: (gal+)
and (gal-)

» Gene-gene and protein-gene interactions as well as association
weights found from previous studies

» Q: which pathways respond to the change in growth medium?

©AlIi Shojaie SISG: Pathway & Networks 23

Analysis of Yeast GAL Data

» Data:
» gene expression data for 343 genes
» 419 interactions found from previous studies and integration
with protein expression (association among genes also
available)

» Results:

» GSEA finds Galactose Utilization Pathway significant
» NetGSA finds several other pathways with biologically
meaningful functions related to survival of yeast cells in gal—-

©Ali Shojaie SISG: Pathway & Networks 24




173 asea o0 TR B

3 ‘-/ﬂc‘.;:,"n*rszf

Al

1

Matin
cell eycle.

©AIli Shojaie SISG: Pathway & Networks

25

771 GSEA >0 SRR 8L

& NetGSA ’/ S
[ >

i
(i

B o 06 o Ows
of € _{;- ..‘ ——_!Z

[

. Sho ~ - ~
& /— A £ ol
T )- C 1 -

©AIli Shojaie SISG: Pathway & Networks

26




Environmental Stress Response in Yeast

Gene expression data on Yeast Environmental Stress Response
(ESR) (Gasch et al., 2000)

» 3 combinations of experimental factor, heat shock and
osmotic changes (sorbitol), over 3 time points
» Temporal correlation

» Network correlation
» Q: Which pathways indicate response to environmental stress

» in different experimental conditions
» over time

©AlIi Shojaie SISG: Pathway & Networks 27

Yeast ESR Data

Gasch et al (2000)

» Gene Expression Data

Experiment Obs. Time (after 33C)
Mild heat shock (29C to 33C), no sorbitol 5, 15, 30 min
Mild Heat Shock, 1M sorbitol at 29C & 33C 5, 15, 30 min
Mild Heat Shock, 1M sorbitol at 29C 5, 15, 30 min

» Network Data

» Use YeastNet (Lee et al., 2007) for gene-gene interactions (102,000
interactions among 5,900 yeast genes)

» Use independent experiments of Gasch et al. to estimate weights

» Pathways are defined using GO functions

©Ali Shojaie SISG: Pathway & Networks 28




Model and Results

Eyll = /\/,L,

» Temporal correlation is modeled directly via R (as AR(1) process)
> Results:

» ~ 3000 genes,

47 pathways showed significant changes of expression
24 pathways showed changes over time

12 pathways showed both types of changes

Gasch et al.

©Ali Shojaie SISG: Pathway & Networks

» Model: Let j and k be indices for time and levels of sorbitol

EYjy =Np+oj+90k) j, k=23

29 pathways showed changes in response to different sorbitol levels

Significant pathways overlap with the gene functions recognized by

29

Yeast ESR Network
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Significant subnetworks

a) Cell Cycle c) Signaling

d) Respiration

©Ali Shojaie SISG: Pathway & Networks 31

Expression Profiles

Average Standardized Expression Levels of Pathways

4

2

-2

-4

standardized expression
0

» Induced and Suppressed Pathways

» Can observe the transient patterns of expressions as predicted by
Gasch et al.
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Effect of Noise In Network Information

» Let A be observed network information, and A be the truth.

> It can be shown that, if [|[A — Al| is small then, NetGSA still
works (is asymptotically most powerful unbiased test)

o o
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Metabolic Profiling in Bladder Cancer

Targeted metabolic profiling of bladder cancer (BCa) (Putluri et
al., 2012)

» 58 bladder cancer and adjacent benign samples

» Pathways information obtained from KEGG

® .9
e @y

» Varying number of identified metabolites per pathway (3-15)
» O: Which show differential activity in BCa?
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Metabolic Profiling in BCa

» 63 metabolites identified, mapped to 70 pathways

» 27 pathways with at least 3 members

Color Key

u

-4 0
Row Z-Score

Fatty acid biosynthesis

Biosynthesis of unsaturated fatty acids
Sulfur metabolism

Lysine degradation

Alkaloid biosynthesis Il

Methionine metabolism

Valine, leucine and isoleucine biosynthesis
Pyrimidine metabolism

Valine, leucine and isoleucine degradation
Pantothenate and CoA biosynthesis
Phenylalanine, tyrosine and tryptophan biosynthesis

OODO0poDO0ODOED
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Metabolic Profiling in BCa

» Small pathway sizes & significant overlap among pathways

#metaboloites in pathway pathways overlap
L T—
—
o _
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S S o
g g 7
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» Existing methods may not work well...
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Metabolic Interaction Network
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Significant Pathways

» GSEA does not identify any pathway as differential
» GSA identifies Fatty Acid Biosynthesis as differential

» NetGSA identifies another 7 pathways corresponding to role of
Amino Acid Metabolism in BCa, also observed by Putluri et al

(2012)
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R package netgsa

v

Basic usage:
NetGSA(A1l, A2, x, y, B)
» A1,A2: p X p weighted adjacency matrices for condition 1 and
2 (e.g. normal vs cancer), to allow for changes in the network
» B: a K x P 0-1 matrix of pathway membership: By ; =1 if
gene/protein/metabolite j in pathway k
» Output: test statistics and p-values for each pathway
» In the current version, only two conditions are supported (e.g.

cancer vs. normal); extension for multiple conditions will be
released (hopefully) soon

» The code above takes weighted A1, A2 as input. However,
the package includes functions that allow you to enter a
(partial) edge list as input, and estimate A1, A2 for the case
of undirected networks
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Summary

» Network-based enrichment analysis methods (SPIA, NetGSA)
can be more powerful (if their assumptions are not violated!)

» Active area of research: a number of other methods have been
recently proposed

» Focus is shifting towards estimating changes in the structure
of networks: differential network biology!

!ldeker & Krogan (2012)
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