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Why Study Networks?

I Components of biological systems, e.g. genes, proteins,
metabolites, interact with each other to carry out different
functions in the cell.

I Examples of such interactions include signaling, regulation
and interactions between proteins.

I We cannot understand the function and behavior of biological
systems by studying individual components (2 + 2 6= 4!).

I Networks provide an efficient representation of complex
reaction in the cells, as well as basis for
mathematical/statistical models for the study of these
systems.
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Central Dogma of Molecular Biology (Extended)Omics – An Overview
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Beecher C., "The Human Metabolome" in "Metabolic Profiling: Its Role in 
Biomarker Discovery and Gene Function Analysis" eds. Harrigan G & 
Goodacre R, /Kluwer Academic Publishers (Boston), pps 311 -- 319 (2003).
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Networks in Biology: Gene Regulatory Networks
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But Do Networks Matter?

I They Do!

I Recent studies have linked changes in gene/protein networks
with many human diseases.

Systems Biology and Emerging Technologies

Gene Networks and microRNAs Implicated in
Aggressive Prostate Cancer

Liang Wang,1 Hui Tang,2 Venugopal Thayanithy,3 Subbaya Subramanian,3 Ann L. Oberg,2

Julie M. Cunningham,1 James R. Cerhan,2 Clifford J. Steer,4 and Stephen N. Thibodeau1

1Departments of Laboratory Medicine and Pathology and 2Health Sciences Research, Mayo Clinic, Rochester, Minnesota; and
Departments of 3Laboratory Medicine and Pathology, 4Medicine, and Genetics, Cell Biology, and Development, University of
Minnesota, Minneapolis, Minnesota

Abstract
Prostate cancer, a complex disease, can be relatively harmless
or extremely aggressive. To identify candidate genes involved
in causal pathways of aggressive prostate cancer, we imple-
mented a systems biology approach by combining differential
expression analysis and coexpression network analysis to
evaluate transcriptional profiles using lymphoblastoid cell
lines from 62 prostate cancer patients with aggressive pheno-
type (Gleason grade ≥ 8) and 63 prostate cancer patients with
nonaggressive phenotype (Gleason grade ≤ 5). From 13,935
mRNA genes and 273 microRNAs (miRNA) tested, we identi-
fied significant differences in 1,100 mRNAs and 7 miRNAs with
a false discovery rate (FDR) of <0.01. We also identified a co-
expression module demonstrating significant association with
the aggressive phenotype of prostate cancer (P = 3.67 × 10−11).
The module of interest was characterized by overrepresenta-
tion of cell cycle–related genes (FDR = 3.50 × 10−50). From this
module, we further defined 20 hub genes that were highly
connected to other genes. Interestingly, 5 of the 7 differential-
ly expressed miRNAs have been implicated in cell cycle regu-
lation and 2 (miR-145 and miR-331-3p) are predicted to
target 3 of the 20 hub genes. Ectopic expression of these
two miRNAs reduced expression of target hub genes and sub-
sequently resulted in cell growth inhibition and apoptosis.
These results suggest that cell cycle is likely to be a molecular
pathway causing aggressive phenotype of prostate cancer.
Further characterization of cell cycle–related genes (particu-
larly, the hub genes) and miRNAs that regulate these hub
genes could facilitate identification of candidate genes re-
sponsible for the aggressive phenotype and lead to a better
understanding of prostate cancer etiology and progression.
[Cancer Res 2009;69(24):9490–7]

Introduction
Prostate cancer remains the most commonly diagnosed non–

skin cancer in men in the United States. Approximately one in
three men over the age of 50 years shows histologic evidence of
prostate cancer. However, only ∼10% will be diagnosed with clin-
ically significant prostate cancer, implying that most prostate can-

cers never progress to become life threatening. Thus far, little is
known about what makes some prostate cancers biologically ag-
gressive and more likely to progress to metastastic and potentially
lethal disease. Prostate cancer is a complex disease, believed to be
caused by variations in a large number of genes and their complex
interactions. Conventional approaches used to elucidate genetic
risk factors and genetic mechanisms include family-based linkage
analysis, pathway-based association study, and genome-wide asso-
ciation study. Among these approaches, genome-wide association
study has been very successful with over a dozen single nucleotide
polymorphisms identified with elevated risk to prostate cancer (1).
However, the observed associations have yet to be translated into a
full understanding of the genes or genetic elements mediating dis-
ease susceptibility. Furthermore, few prostate cancer risk variants
identified from genome-wide association study have any associa-
tion with clinical characteristics. This is not surprising because
these risk single nucleotide polymorphisms are identified by com-
paring prostate cancer cases with controls. Studies using case-case
design are clearly needed to identify associations of genetic var-
iants with aggressive prostate cancer.
Traditionally, microarray-based transcriptional profiling analysis

produces massive gene lists (usually based on P value) without
consideration of potential relationships among these genes. The
gene-by-gene approach often lacks a coherent picture of disease-
related pathologic interactions. To facilitate candidate gene discov-
ery, there is now an increasing interest in using a systems biology
approach. This approach allows for a higher order interpretation of
gene expression relationships and identifies modules of coex-
pressed genes that are functionally related, and eventually charac-
terizes causal pathways and genetic variants. Thus far, studies
using the approach have successfully identified disease-related
transcriptional networks and genetic variants that contribute to
the disease phenotypes (2–7). For example, an early study analyzed
the gene expression profiles in large population-based adipose tis-
sue cohorts and found a marked correlation between gene expres-
sion in adipose tissue and obesity-related traits. The systems
biology approach identified a core network module that was caus-
ally associated with obesity (2). This study has recently been vali-
dated through characterization of transgenic and knockout mouse
models of genes predicted to be causal for obesity phenotype (7).
Expression levels of many genes show abundant natural varia-

tion in species from yeast to human (8). Studies have shown
significant association of genetic polymorphisms with gene expres-
sion in a variety of human cell lines and tissues (9). In addition to
genetic factors, however, microRNAs (miRNA) are emerging as key
players in the regulation of gene expression. miRNAs are small
noncoding RNAs that control the expression of protein-coding
transcripts. Each miRNA has multiple target genes that are

Note: Supplementary data for this article are available at Cancer Research Online
(http://cancerres.aacrjournals.org/).

Requests for reprints: Liang Wang, Department of Laboratory Medicine and
Pathology, Mayo Clinic College of Medicine, 200 First Street Southwest, Rochester,
MN 55905. Phone: 507-284-9136; Fax: 507-266-5193; E-mail: wang.liang@mayo.edu.

©2009 American Association for Cancer Research.
doi:10.1158/0008-5472.CAN-09-2183

9490Cancer Res 2009; 69: (24). December 15, 2009 www.aacrjournals.org
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Estrogen-Regulated Gene Networks in Human
Breast Cancer Cells: Involvement of E2F1 in the
Regulation of Cell Proliferation

Joshua D. Stender, Jonna Frasor, Barry Komm, Ken C. N. Chang, W. Lee Kraus, and
Benita S. Katzenellenbogen

Departments of Biochemistry (J.D.S.) and Molecular and Integrative Physiology (J.F., B.S.K.),
University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3704; Women’s Health and
Musculoskeletal Biology (B.K., K.C.N.C.), Wyeth Research, Collegeville, Pennsylvania 19426; and
Department of Molecular Biology and Genetics (W.L.K.), Cornell University, Ithaca, New York
14853-4203

Estrogens generally stimulate the proliferation of
estrogen receptor (ER)-containing breast cancer
cells, but they also suppress proliferation of some
ER-positive breast tumors. Using a genome-wide
analysis of gene expression in two ER-positive hu-
man breast cancer cell lines that differ in their
proliferative response to estrogen, we sought to
identify genes involved in estrogen-regulated cell
proliferation. To this end, we compared the tran-
scriptional profiles of MCF-7 and MDA-MB-
231ER� cells, which have directionally opposite
17�-estradiol (E2)-dependent proliferation pat-
terns, MCF-7 cells being stimulated and 231ER�
cells suppressed by E2. We identified a set of ap-
proximately 70 genes regulated by E2 in both cells,
with most being regulated by hormone in an oppo-
site fashion. Using a variety of bioinformatics ap-
proaches, we found the E2F binding site to be
overrepresented in the potential regulatory regions
of many cell cycle-related genes stimulated by es-

trogen in MCF-7 but inhibited by estrogen in
231ER� cells. Biochemical analyses confirmed
that E2F1 and E2F downstream target genes were
increased in MCF-7 and decreased in 231ER� cells
upon estrogen treatment. Furthermore, RNA inter-
ference-mediated knockdown of E2F1 blocked es-
trogen regulation of E2F1 target genes and re-
sulted in loss of estrogen regulation of
proliferation. These results demonstrate that reg-
ulation by estrogen of E2F1, and subsequently its
downstream target genes, is critical for hormone
regulation of the proliferative program of these
breast cancer cells, and that gene expression pro-
filing combined with bioinformatic analyses of
transcription factor binding site enrichment in reg-
ulated genes can identify key components associ-
ated with nuclear receptor hormonal regulation of
important cellular functions. (Molecular Endocrin-
ology 21: 2112–2123, 2007)

ESTROGENS STIMULATE THE growth of many
breast cancers via the estrogen receptor (ER) and,

therefore, the ER, a member of the nuclear hormone
receptor transcription factor family, has proven to be a
valuable target for endocrine-based therapies (1–5).
Upon hormone binding, ER exerts many of its effects
by interacting with DNA elements in target gene pro-
moters either directly or through tethering to other
transcription factors (6–10), and orchestrating the as-
sembly of coregulator and mediator proteins (11, 12),
chromatin remodeling complexes (13, 14), and the
basal transcription machinery to regulate transcription
(3, 13–19). In some manner, these transcriptional re-
sponses drive estrogen’s regulation of cell prolifera-

tion (20) and other functional changes in target cells
(21, 22). Understanding the manner in which estrogen
regulates the proliferation of breast cancer cells is key
to the development of novel targeted therapies for
cancer prevention and treatment.

Through the use of gene expression profiling with
DNA microarrays, 17�-estradiol (E2) has been found to
regulate diverse gene targets and functional pathways
in ER-containing cancer cells (23, 24). Although estro-
gen usually stimulates the proliferation of ER-contain-
ing human breast cancer cells, such as MCF-7 and
ZR75 (23, 25, 26) and of ER-positive breast tumors in
women, some breast cancer cells and tumors show
reduced proliferation and tumor regression when
treated with estrogen (27–32). The sequencing of the
human genome, in addition to allowing examination of
the effects of hormonal agents on a wide range of
genes, provides an opportunity to extract the potential
regulatory regions for all genes within a gene expres-
sion dataset. Bioinformatic analysis of these regula-
tory regions for transcription factor binding sites has
provided information about potential coordinated reg-

First Published Online June 5, 2007
Abbreviations: E2, 17�-Estradiol; ER, estrogen receptor;

ICI, the antiestrogen ICI 182,780; siRNA, small interfering
RNA.

Molecular Endocrinology is published monthly by The
Endocrine Society (http://www.endo-society.org), the
foremost professional society serving the endocrine
community.

0888-8809/07/$15.00/0 Molecular Endocrinology 21(9):2112–2123
Printed in U.S.A. Copyright © 2007 by The Endocrine Society

doi: 10.1210/me.2006-0474
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Cancer Cell

Article

A Transcriptional Signature and Common
Gene Networks Link Cancer with Lipid
Metabolism and Diverse Human Diseases
Heather A. Hirsch,1,7 Dimitrios Iliopoulos,1,7 Amita Joshi,1,7 Yong Zhang,2 Savina A. Jaeger,3 Martha Bulyk,3,4,5

Philip N. Tsichlis,6 X. Shirley Liu,2 and Kevin Struhl1,*
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3Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
4Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
5Harvard/MIT Division of Health Sciences and Technology (HST), Harvard Medical School, Boston, MA 02115, USA
6Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
7These authors contributed equally to this work

*Correspondence: kevin@hms.harvard.edu

DOI 10.1016/j.ccr.2010.01.022

SUMMARY

Transcriptional profiling of two isogenic models of transformation identifies a gene signature linking cancer
with inflammatory and metabolic diseases. In accord with this common transcriptional program, many drugs
used for treatment of diabetes and cardiovascular diseases inhibit transformation and tumor growth.
Unexpectedly, lipid metabolism genes are important for transformation and are upregulated in cancer
tissues. As in atherosclerosis, oxidized LDL and its receptor OLR1 activate the inflammatory pathway
through NF-kB, leading to transformation. OLR1 is important for maintaining the transformed state in devel-
opmentally diverse cancer cell lines and for tumor growth, suggesting a molecular connection between
cancer and atherosclerosis. We suggest that the interplay between this common transcriptional program
and cell-type-specific factors gives rise to phenotypically disparate human diseases.

INTRODUCTION

Clinical and epidemiological studies have linked cancer and other

chronic medical conditions. For example, patients diagnosed

with metabolic syndrome, inflammatory diseases, and autoim-

mune conditions show increased incidence and aggressiveness

of tumor formation (Giovannucci, 2007; Mantovani et al., 2008;

Pischon et al., 2008). Conversely, diabetics treated with metfor-

min to lower insulin levels have reduced levels of cancer in

comparison to untreated individuals (Hsu et al., 2007; Larsson

et al., 2007). Smoking is linked not only to lung cancer, but also

to cardiovascular and other diseases. In general, the molecular

bases of these links among diseases are poorly understood.

Inflammation is commonly associated with cancer formation

and progression, and it is estimated that 15%–20% of all cancer

related deaths can be attributed to inflammation and underlying

infections (Mantovani et al., 2008). Inflammatory molecules are

elevated in many forms of cancer, and they provide growth

signals that promote the proliferation of malignant cells (Balkwill

and Mantovani, 2001; Karin, 2006; De Marzo et al., 2007; Naugler

and Karin, 2008; Pierce et al., 2009). Constitutively active NF-kB,

the key transcription factor that mediates the inflammatory

response, occurs in many types of cancer, and mouse models

provide evidence for a causative role of NF-kB in malignant

conversion and progression (Luedde et al., 2007; Naugler and

Karin, 2008; Sakurai et al., 2008).

Significance

Although there are epidemiological and clinical connections between cancer and other diseases, the molecular bases of
these connections are not well understood. mRNA expression profiling in two isogenic models of cellular transformation
identifies a transcriptional signature and underlying gene regulatory networks that underlie diverse human diseases. In
addition, it reveals the heretofore unappreciated importance of lipid metabolism to cellular transformation as well as the
connection of cancer to atherosclerosis. These observations lead to the view that a variety of phenotypically diverse disease
states are nevertheless linked through a common transcriptional program involving inflammatory and metabolic pathways.

348 Cancer Cell 17, 348–361, April 13, 2010 ª2010 Elsevier Inc.
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And, incorporating the knowledge of networks improves our ability
to find causes of complex diseases.

REPORT

Network-based classification of breast cancer
metastasis

Han-Yu Chuang1,5, Eunjung Lee2,3,5, Yu-Tsueng Liu4, Doheon Lee3 and Trey Ideker1,2,4,*

1 Bioinformatics Program, University of California San Diego, La Jolla, CA, USA, 2 Department of Bioengineering, University of California San Diego, La Jolla, CA, USA,
3 Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea and 4 Cancer Genetics Program, Moores Cancer
Center, University of California San Diego, La Jolla, CA, USA
5 These authors contributed equally to this work
* Corresponding author. Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA. Tel.: þ 1 858 822 4558; Fax: þ 1 858 534 5722;
E-mail: trey@bioeng.ucsd.edu
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Mapping the pathways that give rise to metastasis is one of the key challenges of breast cancer
research. Recently, several large-scale studies have shed light on this problem through analysis of
gene expression profiles to identify markers correlated with metastasis. Here, we apply a protein-
network-based approach that identifies markers not as individual genes but as subnetworks
extracted from protein interaction databases. The resulting subnetworks provide novel hypotheses
for pathways involved in tumor progression. Although genes with known breast cancer mutations
are typically not detected through analysis of differential expression, they play a central role in the
protein network by interconnecting many differentially expressed genes. We find that the
subnetwork markers are more reproducible than individual marker genes selected without
network information, and that they achieve higher accuracy in the classification of metastatic
versus non-metastatic tumors.
Molecular Systems Biology 16 October 2007; doi:10.1038/msb4100180
Subject Categories: molecular biology of disease; metabolic and regulatory networks
Keywords: breast cancer metastasis; classification; protein networks; pathways; microarrays

This is an open-access article distributed under the terms of the Creative Commons Attribution License,
which permits distribution, and reproduction in any medium, provided the original author and source are
credited. This license does not permit commercial exploitation or the creation of derivative works without
specific permission.

Introduction

Distant metastases are the main cause of death among breast
cancer patients (Weigelt et al, 2005). Clinical and pathological
risk factors, such as patient age, tumor size, and steroid
receptor status, are commonly used to assess the likelihood of
metastasis development. When metastasis is likely, aggressive
adjuvant therapy can be prescribed which has led to significant
decreases in breast cancer mortality rates (Weigelt et al, 2005).
However, for the majority of patients with intermediate-risk
breast cancer, the traditional factors are not strongly predictive
(Wang et al, 2005). Accordingly, approximately 70–80%
of lymph node-negative patients may undergo adjuvant
chemotherapy when it is in fact unnecessary (van ‘t Veer
et al, 2002). Moreover, it is believed that many of the current
risk factors are likely to be secondary manifestations rather
than primary mechanisms of disease. An ongoing challenge is
to identify new prognostic markers that are more directly
related to disease and that can more accurately predict the risk
of metastasis in individual patients.

In the recent years, an increasing number of disease markers
have been identified through analysis of genome-wide
expression profiles (Golub et al, 1999; Alizadeh et al, 2000;
Ben-Dor et al, 2000; Ramaswamy et al, 2003). Marker sets are
selected by scoring each individual gene for how well its
expression pattern can discriminate between different classes
of disease. In breast cancer, two large-scale expression studies
by van ‘t Veer et al (2002) and Wang et al (2005) each identified
a set of B70 gene markers that were 60–70% accurate for
prediction of metastasis, rivaling the performance of clinical
criteria. Strangely, however, these marker sets shared only
three genes in common, with the first set of markers predicting
metastasis less successfully when scoring patients from the
second study, and vice versa (Ein-Dor et al, 2006). One
possible explanation for the different marker sets is that
changes in expression of the relatively few genes governing
metastatic potential may be subtle compared to those of the
downstream effectors, which may vary considerably from
patient to patient (Symmans et al, 1995; Ein-Dor et al, 2005;
Tomlins et al, 2005).

& 2007 EMBO and Nature Publishing Group Molecular Systems Biology 2007 1

Molecular Systems Biology 3; Article number 140; doi:10.1038/msb4100180
Citation: Molecular Systems Biology 3:140
& 2007 EMBO and Nature Publishing Group All rights reserved 1744-4292/07
www.molecularsystemsbiology.com
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Why Do We Need Network Inference?

I Despite progress, our knowledge of interactions in the genome
is limited.

I The entire genome is a vast landscape, and experiments for
discovering networks are very expensive

I From a statistical point of view, network estimation is related
to estimation of covariance matrices, which has many
independent applications in statistical inference and prediction
(more about this later)

I Finally, and perhaps most importantly, gene and protein
networks are dynamic and changes in these networks have
been attributed to complex diseases.

c©Ali Shojaie SISG: Pathway & Networks 14
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Networks: A Short Premier
I A network is a collection of nodes V and edges E .
I We assume there are p nodes in the network, and that the

nodes correspond to random variables X1, . . .Xp.
I Edges in the network can be directed X → Y or undirected

X − Y .

1 2

3

1 2

3

1 2

3

G1 G2 G3

I In all these example, the nodes are V = {1, 2, 3}.
I The edges are:

E1 = {1− 2, 2− 3}
E2 = {1→ 3, 3→ 2}
E3 = {1− 2, 1→ 3}
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Networks: A Short Premier

I A convenient way to represent the edges of the network is to
use an adjacency matrix A

I A matrix is a rectangular array of data (similar to a table)

I Values in each entry are shown by indeces of row and column

A =



. x .
. . .
. . .


Here, x is in row 1 and column 2

I Adjacency matrix is a square matrix, which has a 1 if there is
an edge from a node in one row to a node in another column,
and 0 otherwise

I For undirected edges, we add a 1 in both directions

c©Ali Shojaie SISG: Pathway & Networks 16
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Networks: A Short Premier

1 2

3

1 2

3

1 2

3

G1 G2 G3

A =




0 1 0
1 0 1
0 1 0


A =




0 0 1
0 0 0
0 1 0


A =




0 1 1
1 0 0
0 0 0



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What Do Edges in Biological Networks Mean?

I In gene regulatory networks, an edge from gene i to gene j
often means that i affects the expression of j ; i.e. as i ’s
expression changes, we expect that expression of j to
increase/decrease.

I In protein-protein interaction networks, an edge between
proteins i and j often means that the two proteins bind
together and form a protein complex. Therefore, we expect
that these proteins are generated at similar rates.

I In metabolic networks, an edge between compound i and j
often means that the two compounds are involved in the same
reaction, meaning that they are generated at relative rates.

I Thus, edges represent some type of association among genes,
proteins or metabolites, defined generally to include linear or
nonlinear associations; more later....

c©Ali Shojaie SISG: Pathway & Networks 18
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Statistical Models for Biological Networks

I We use the framework of graphical models

I In this setting, nodes correspond to “random variables”
I In other words, each node of the network represents one of

the variables in the study
I In gene regulatory networks, nodes ≡ genes
I In PPI networks, nodes ≡ proteins
I In metabolic networks, nodes ≡ metabolites

I In practice, we observe n measurements of each of the
variables (genes/proteins/ metabolites) for say different
individuals, and want to determine which variables are
connected, or use their connection for statistical analysis

c©Ali Shojaie SISG: Pathway & Networks 19
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An Overview of Methods for Network Inference

Network Inference Methods Can be categorized into two general
classes:

I Methods based on marginal measures of association:
I Co-expression Networks (uses linear measures of association)
I Methods based on mutual information (can accommodate

non-linear associations)

I Methods based on conditional measures of association:
I Methods assuming multivariate normality/normality (glasso,

etc)
I Generalizations to allow for nonlinear dependencies

(nonparanormal, etc)

c©Ali Shojaie SISG: Pathway & Networks 20
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Our Plan

In the remainder of this module, we will cover the following topics
I Methods for reconstructing undirected networks

I Co-expression Networks (WGCNA)
I ARACNE
I Conditional Independence Graphs

I Gaussian Observations (glasso, etc)
I Non-Gaussian and Non-Linear Data (nonparanormal, etc)

I Methods for reconstructing directed networks
I Bayesian Networks (basic concepts, reconstruction algorithm)
I Reconstructing directed networks from time-course data

(dynamic Bayesian networks)
I Reconstructing directed networks from perturbation screens

I Topology-based pathway enrichment analysis

c©Ali Shojaie SISG: Pathway & Networks 21



Pathway & Network Analysis of Omics Data:
Undirected Graphical Models - I

Ali Shojaie
Department of Biostatistics

University of Washington
faculty.washington.edu/ashojaie

Summer Institute for Statistical Genetics – 2016

c©Ali Shojaie SISG: Pathway & Networks 1

An Overview of Network Reconstruction Methods

Network reconstruction methods can be categorized into two
general classes:

I Methods based on marginal measures of association:
I Co-expression Networks (uses linear measures of association)
I Methods based on mutual information (can accommodate

non-linear associations)

I Methods based on conditional measures of association:
I Methods assuming multivariate normality/normality
I Generalizations to allow for nonlinear dependencies

c©Ali Shojaie SISG: Pathway & Networks 2



Co-Expression/Correlation Networks

I This is the simplest (and most-widely used!!) method for
estimating networks; it assumes that edges correspond to
large correlation magnitudes

I Let r(i , j) be correlation between Xi and Xj ; we claim an edge
between i and j if |r(i , j)| > τ .

I Correlation is a simple measure of linear association between
two random variables.

I Here, τ is a user-specified threshold, and is the tuning
parameter for this method.

I By construction, this is an undirected network (correlation is
symmetric).

c©Ali Shojaie SISG: Pathway & Networks 3

Limitations of Co-Expression Networks

I The estimation is highly dependent on the choice of τ .

I They may not correctly detect the edges in biological
networks: two genes/proteins can have high correlations, even
if they don’t interact with each other!

I Correlation is a measure of linear association, but many
biological relationships are nonlinear

c©Ali Shojaie SISG: Pathway & Networks 4



Limitations of Co-Expression Networks

I The estimation is highly dependent on the choice of τ .
I We can instead test H0 : rxy = 0
I A commonly used test is given by the Fisher transformation

Z =
1

2
ln

(
1 + r

1− r

)
= artanh(r) ∼H0 N(0,

1√
n − 3

)

I Alternatively, we can work with “weighted” co-expression
networks

c©Ali Shojaie SISG: Pathway & Networks 5

Weighted Gene Co-expression Network Analysis1

I Measure concordance of gene expression
using Pearson correlation

I Continuously transform the Pearson
correlations into an (soft) adjacency
function → weighted network

I using the sigmoid adjacency function

Aij =
1

1 + e−α(rij−τ0)

I using the power adjacency function

Aij = |rij |β

I Perform downstream network analysis
(clustering, etc) on weighted networks

1Zhang and Horvath, A General Framework for Weighted Gene Co-Expression
Network Analysis, Stat App in Gen and Mol Bio, 2005

c©Ali Shojaie SISG: Pathway & Networks 6



Choice of Parameters

I By changing the tuning parameters, adjacency functions
behave similar to hard thresholding

I Power and sigmoid adjacency functions lead to similar results
if the parameters are chosen to achieve scale-free topology

I We focus on power adjacency function

c©Ali Shojaie SISG: Pathway & Networks 7

Choice of Parameters

I Using β ≈ 6 gives a scale free network

c©Ali Shojaie SISG: Pathway & Networks 8



Software

I Implemented in the R-package WGCNA
install.packages(’WGCNA’,lib=NULL,repos=’http://cran.us.r-project.org’)

I Main estimation function
adjacency(datExpr,

selectCols = NULL,

type = "unsigned",

power = if (type=="distance") 1 else 6,

corFnc = "cor", corOptions = "use = ’p’",

distFnc = "dist", distOptions = "method = ’euclidean’")

I To determine the power so that the network has scale-free
distribution, need to search for multiple powers

c©Ali Shojaie SISG: Pathway & Networks 9

Limitations of Co-Expression Networks

I Correlation is a measure of linear association, but many
biological relationships are nonlinear
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Limitations of Co-Expression Networks

I Correlation is a measure of linear association, but many
biological relationships are nonlinear

I We can use other measures of association, for instance,
Spearman correlation or Kendal’s τ .

I These methods define correlation between two variables, based
on the ranking of observations, and not their exact values

I They can better capture non-linear associations

I We can instead use mutual information; this has been used in
many algorithm, including ARACNE

c©Ali Shojaie SISG: Pathway & Networks 11

ARACNE: Algorithm for the Reconstruction of Accurate
Cellular NEtworks2

1. Identifies statistically significant gene-gene co-regulation
based on mutual information

2. It then eliminates indirect relationships in which two genes are
co-regulated through one or more intermediates

2ARACNE: An algorithm for the reconstruction of gene regulatory networks in a
mammalian cellular context, Margolin et al, BMC Bioinfo, 2006
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ARACNE

c©Ali Shojaie SISG: Pathway & Networks 13

Data Processing Inequality (DPI)

I (A,C ) ≤ min[I (A,B), I (B,C )]

where
I (gi , gj) = logP(gi , gj)/P(gi )P(gj)

I Look at every triplet and remove the weakest link

I Need to estimate marginal and joint (pairwise) probabilities
(using Gaussian Kernel)

c©Ali Shojaie SISG: Pathway & Networks 14



Algorithm Details

I Starts with a network where each triplet of genes is connected
by an edge.

I The algorithm then examines each gene triplet for which all
pairwise MIs are greater than a cut-off and removes the edge
with the smallest value based on DPI.

I Each triplet is analyzed irrespectively of whether its edges have
been selected for removal by prior DPI applications to different
triplets.

I The least of the three MIs can come from indirect interactions
only, and checking against the DPI may identify gene pairs
that are not independent but still do not interact.

c©Ali Shojaie SISG: Pathway & Networks 15

Rationale and Guarantees

I If MIs can be estimated with no errors, then ARACNE
reconstructs the underlying interaction network exactly,
provided this network is a tree and has only pairwise
interactions.

I The maximum MI spanning tree is a subnetwork of the
network built by ARACNE.
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Rationale and Guarantees
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Performance on Synthetic Data
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Application: B-lymphocytes Expression Data

c©Ali Shojaie SISG: Pathway & Networks 19

Application: B-lymphocytes Expression Data

I MYC (proto-oncogene) subnetwork (2063 genes)

I 29 of the 56 (51.8%) predicted first neighbors biochemically
validated as targets of the MYC transcription factor.

I New candidate targets were identified, 12 experimentally
validated.

I 11 proved to be true targets.

I The candidate targets that have not been validated are
possibly also correct.
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Software

I Implemented in the R-package minet:
source("http://bioconductor.org/biocLite.R")

biocLite("minet")

I Main estimation function aracne(mim, eps=0)

I mim: mutual information matrix
mim <- build.mim(syn.data, estimator="spearman")

I eps: threshold for setting an edge to zero, prior to searching
over triplets
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Limitations of Co-Expression Networks

I The estimation is highly dependent on the choice of τ

I They may not correctly detect the edges in biological
networks: two genes/proteins can have high correlations, even
if they don’t interact with each other!
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Limitations of Co-Expression Networks

I The estimation is highly dependent on the choice of τ

I They may not correctly detect the edges in biological
networks: two genes/proteins can have high correlations, even
if they don’t interact with each other!

c©Ali Shojaie SISG: Pathway & Networks 25

Partial Correlation

I Partial correlation measures the correlation between i and j
after the effect of the other variables are removed.

I In our example, this means that we would be taking into
account that the “information” was passed through mutual
friends, and not directly.

I This gives a more direct connection to biological networks; in
PPI networks: if protein A binds with B and C , but B and C
don’t bind, then the correlation between B and C will be
removed once conditioned on A.

I Mathematically, the partial correlation between Xi and Xj

given Xk is given by:

ρij ·k ≡ ρ(Xi ,Xj |Xk) =
ρij − ρikρjk√

1− ρ2ik
√

1− ρ2jk
.
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Partial Correlation

I Partial correlation is also symmetric

I Partial correlation is also a number between -1 and 1

I In partial correlation networks, we draw an edge between X
and Y , if the partial correlation between them is large

I Calculation of partial correlation is more difficult

I Again, we can determine this using testing, however, we need
a larger sample size

I New statistical methods have been proposed in the past
couple of years to make this possible...(active area of research)
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A simple example

Correlation =




1 −.8 .7
−.8 1 −.8
.7 −.8 1


PartialCorr =




1 .6 0
.6 1 .6
0 .6 1




1

2

3

True Network

1

2

3

Correlation

1

2

3

Partial Correlation
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A larger example

I A network with 10 nodes and 20 edges

I n = 100 observations

I Estimation using correlation & partial correlation (20 edges)

1

2

34

5

6

7

8 9

10

True Network

1

2

34

5

6

7

8 9

10

Correlation

1

2

34

5

6

7

8 9

10

Partial Correlation
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Partial Correlation for Gaussian Random Variables

I It turns out, we can calculate the partial correlation between
Xi and Xj given all other variables, by calculating the inverse
of the empirical covariance matrix S .

I In other words, the (i , j) entry in Σ−1 gives the partial
correlation between Xi and Xj given all other variables X\i ,j .

I Now suppose the variables are connected by a graph G , then
if X ∼ N(0,Σ), the nonzero entries in the inverse covariance
matrix correspond to the edges of G : (i , j) ∈ E iff Σ−1ij 6= 0
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Partial Correlation for Gaussian Random Variables
17.2 Markov Graphs and Their Properties 627

X

X

X X

Y

Y

Y
Y

Z

Z

Z

Z

W

W

W

(a) (b)

(c) (d)

FIGURE 17.2. Examples of undirected graphical models or Markov networks.
Each node or vertex represents a random variable, and the lack of an edge between
two nodes indicates conditional independence. For example, in graph (a), X and
Z are conditionally independent, given Y . In graph (b), Z is independent of each
of X, Y , and W .

A longer list of useful references is given in the Bibliographic Notes on
page 645.

17.2 Markov Graphs and Their Properties

In this section we discuss the basic properties of graphs as models for the
joint distribution of a set of random variables. We defer discussion of (a)
parametrization and estimation of the edge parameters from data, and (b)
estimation of the topology of a graph, to later sections.
Figure 17.2 shows four examples of undirected graphs. A graph G consists

of a pair (V,E), where V is a set of vertices and E the set of edges (defined
by pairs of vertices). Two vertices X and Y are called adjacent if there
is a edge joining them; this is denoted by X ∼ Y . A path X1,X2, . . . ,Xn

is a set of vertices that are joined, that is Xi−1 ∼ Xi for i = 2, . . . , n. A
complete graph is a graph with every pair of vertices joined by an edge.
A subgraph U ∈ V is a subset of vertices together with their edges. For
example, (X,Y,Z) in Figure 17.2(a) form a path but not a complete graph.
Suppose that we have a graph G whose vertex set V represents a set of

random variables having joint distribution P . In a Markov graph G, the
absence of an edge implies that the corresponding random variables are
conditionally independent given the variables at the other vertices. This is
expressed with the following notation:



− x 0
x − x
0 x −







− x x 0
x − x 0
x x − 0
0 0 0 −







− x 0 x
x − x 0
0 x − x
x 0 x −







− 0 0 x
0 − x 0
0 x − x
x 0 x −



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Estimation
Therefore, to estimate the edges in the graph G ,

I First, calculate the empirical covariance matrix of the
observations S = 1/(n − 1)X TX (remember X is n × p).

I Then, find the inverse of S . Non-zero values of this matrix
determine where there are edges in the network.

I This seems pretty simple, however, in practice this may not
work that well, even if the sample size is very large!!

True Graph

●

●

●

●

●

1

2

3

4

5

Est Graph

●

●

●

●

●

1

2

3

4

5
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Difficulties in HD

I A number of problems arise in high dimensional settings,
especially when p � n.

I First, S is not invertible if p > n!

I Even if p < n, but n is not very large, we may still get poor
estimates, and we may get more false positives and false
negatives.

True Graph
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Estimation in High Dimensions – Method 1

I A number of methods have been proposed for estimation of
conditional independence graphs from Gaussian observations
in high dimensions.

I The main idea in most of these methods is to use a
regularization penalty, like the lasso.

I The idea in the first method, called neighborhood selection, is
to estimate the graph by fitting a penalized regression of each
variable on all other variables.

I In other words, we solve, for j = 1, . . . , p

‖Xj −
∑

k 6=j

Xkβk‖2 + λ
∑

k 6=j

|βk |

I The final estimate of the graph is obtained by getting all of
the edges fond from these individual regression problems.
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Estimation in High Dimensions – Method 2

I In the second approach, called graphical lasso, we directly
estimate the inverse covariance matrix by maximizing the `1
penalized log likelihood

I It is easy to see that, the log likelihood function of (mean 0)
Gaussian random variables can be written as

logdet(Θ)− tr(SΘ),

where Θ is the p × p inverse covariance matrix (also known as
precision matrix).

I Therefore, we can estimate Θ by maximizing the penalized
log-likelihood objective function

logdet(Θ)− tr(SΘ)− λ‖Θ‖1,

I Here, logdet gives the logarithm of determinant of matrix; tr
gives the trace of the matrix, or some of its diagonal values;
and λ is the tuning parameter.

c©Ali Shojaie SISG: Pathway & Networks 35

Comparing the Two Approaches

I It turns out that the neighborhood selection approach is an
approximation to the graphical lasso problem:

I Consider regression of Xj on Xk , j 6= k
I Then the regression coefficient for neighborhood selection is

related to the j , k element of Θ:

βk = −Θjk

Θjj

I A main difficulty with the neighborhood selection approach is
that the resulting graph is not necessarily symmetric.

I To deal with this, we can take the union or intersection of
edges from regressing Xk on Xk and Xj on Xk ; however, this
is an ad hoc solution.

I On the other hand, neighborhood selection is computationally
more efficient, and may gives better estimates.
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A Real Example
I Flow cytometry allows us to obtain measurements of proteins

in individual cells, and hence facilitates obtaining datasets
with large sample sizes.

I Sachs et al (2003) conducted an experiment and gathered
data on p = 11 proteins measured on n = 7466 cells

17.3 Undirected Graphical Models for Continuous Variables 637

λjk = ∞ will force θ̂jk to be zero, this algorithm subsumes Algorithm 17.1.
By casting the sparse inverse-covariance problem as a series of regressions,
one can also quickly compute and examine the solution paths as a function
of the penalty parameter λ. More details can be found in Friedman et al.
(2008b).
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FIGURE 17.5. Four different graphical-lasso solutions for the flow-cytometry
data.

Figure 17.1 shows the result of applying the graphical lasso to the flow-
cytometry dataset. Here the lasso penalty parameter λ was set at 14. In
practice it is informative to examine the different sets of graphs that are
obtained as λ is varied. Figure 17.5 shows four different solutions. The
graph becomes more sparse as the penalty parameter is increased.

Finally note that the values at some of the nodes in a graphical model can
be unobserved; that is, missing or hidden. If only some values are missing
at a node, the EM algorithm can be used to impute the missing values
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Choice of tuning parameter
I Unlike supervised learning, choosing the right λ is very

difficult in this case.

I As the previous example shows, as λ gets larger, we get
sparser graphs.

I However, there is no systematic way of choosing the right λ.

I A number of methods have been proposed, based on the idea
of trying to control the false positives, but this is still the
topic of ongoing research.

I One option for choosing λ controls the probability of falsely
connecting disconnected components at level α (Banerjee et
al, 2008). When variables are standardized, this gives:

λ(α) =
tn−2(α/2p2)√

n − 2 + tn−2(α/2p2)
,

where tn−2(α) is the (100− α)% quantile of t-distribution
with n − 2 d.f.
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Some Comments

I The penalized estimation methods discussed above allow
estimation of graphical models in the p � n settings, e.g.
when p is in 1000’s and n is in 100’s.

I However, both of these methods, and most other methods for
estimation of conditional independence networks, work when
the network is sparse.

I Sparsity means that there are not many edges in the network,
and the network is far from fully connected.

I Good news is that biological networks are believed to be
“sparse”. However, all of these concepts are theoretical and it
is difficult to assess how things work on real networks.
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Computation

I As we saw previously, the neighborhood selection problem is
an approximation to the graphical lasso problem.

I It turns out that this relationship can be used for solving the
graphical lasso problem efficiently.

I The idea is to turn the problem into iterating over P
regression problems, one for each column of the precision
matrix.

I This results in a very efficient algorithm for solving this
problem, and in practice, we can solve problems with p in
1000’s and n in 100’s in a few minutes.

I The algorithm, as well as the approximation for the
neighborhood selection problem, is implemented in the
R-package glasso.

I In practice, it is often better to use the empirical correlation
matrix
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An Example in R

I Download the empirical covariance matrix from
http://www-stat.stanford.edu/~tibs/ElemStatLearn/

I Install the R-package glasso

library(glasso)

##Read the covariance matrix

sachs <- as.matrix(read.table("sachscov.txt"))

dim(sachs)

##glasso

est.1 <- glasso(s=sachs, rho=5, approx=FALSE, penalize.diagonal=FALSE)

##neighborhood selection

est.2 <- glasso(s=sachs, rho=5, approx=TRUE, penalize.diagonal=FALSE)
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Exercise

I Estimate the graph from the previous example with different
values of tuning parameter (Note: this is denoted by rho in
the code).

I Try the estimation with and without setting
penalize.diagonal=FALSE. What do you see?

I Try the estimation with the empirical correlation matrix
instead (you may find the function cov2cor() useful). What
do you see?
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Marginal vs Conditional Associations

I Partial correlations provide a better representation of edges in
biological networks.

I Computationally, estimating the conditional independence
graph is almost as costly as estimating the co-expression
network (we can obtain a good approximation using the
neighborhood selection approach at similar computational
cost).

I Estimation and inference using marginal associations can be
done with much smaller samples

I The most important difference, however, is the idea of
conditioning! Partial correlation works if we condition on the
right set of variables. Marginal associations on the other
hand, is independent of conditioning.
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Final Thoughts

I Estimation of graphical models is an important but
challenging problem.

I The appropriate method depends on the design of experiment,
available data and sample size

I Choosing the tuning parameter is a challenging problem in
both cases

I It is often difficult to validate the estimates; however, in case
of biological networks, we can compare our findings with
known interactions from literature.
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Non-linear associations

I Recall that correlation is a measure of linear dependence, this
is also true about partial correlation.

I However, many real-world associations are non-linear

I Therefore, (partial) correlation may miss non-linear
associations among variables

I Mutual information-based methods (ARACNE etc) try to
address this issue

I calculating conditional mutual information is computationally
expensive

I ARACNE’s solution for removing indirect associations is ad-hoc
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Linearity and Normality

I Need methods for estimation of graphical models with
non-linear associations

I Interestingly, assuming linear associations is closely related to
multivariate normality (MVN):

I MVN ⇒ linear relationships
I linear dependencies (+ extra mild assumptions) ⇒ MVN1

I Both of these are strong assumptions and may not hold in
real-world applications!

1Khatri & Rao (1976) & Fisk (1970)
c©Ali Shojaie SISG: Pathway & Networks 3

Our Plan

I We will start by discussing the general notion of conditional
independence graphs (aka Markov Random Fields)

I We will then discuss three classes of models:
I Transformation-based and robust methods for handling

non-Gaussianity
I Parametric graphical models with non-Gaussian variables
I Semi- and non-parametric approaches for flexible estimation of

graphical models
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Conditional Independence Graphs

I In case of Gaussian variables, Θjk = 0 implies that Xj and Xk

are conditionally independent.
I Conditional dependence is a general notion that defines the

class of conditional independent graphs (CIG). In CIG,
I X⊥⊥Y | Z iff

P(X = x ,Y = y |Z = z) = P(X = x |Z = z)P(Y = y |Z = z)
I If X and Y are neighbors (X − Y ), they are conditionally

dependent
I X is conditionally independent of all other nodes, given

neighbors(X): Z /∈ neighbors(X), then X⊥⊥Z | neighbors(X)
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Nonparanormal (Gaussian Copula) Models

I Suppose X � N(0,Σ), but there exists monotone functions
fj , j = 1, . . . p such that [f1(X1), . . . fp(Xp)] ∼ N(0,Σ)

I We say that X has a nonparanormal distribution
X ∼ NPNp(f ,Σ).

I f and Σ are parameters of the distribution, and need to be
estimated from data.

I For continuous distributions, the nonparanormal family is
equivalent to the Gaussian copula family

I To estimate the nonparanomal network:

i) transform the data: [f1(X1), . . . fp(Xp)]
ii) estimate the network of the transformed data (e.g. calculate

the empirical covariance matrix of the transformed data, and
apply glasso or neighborhood selection)

c©Ali Shojaie SISG: Pathway & Networks 6



A Related Procedure

I Liu et al (2012) and Xue & Zou (2012) proposed a closely
related idea using rank-based correlation

I Let r ij be the rank of x ij among x1j , . . . , x
n
j and r̄j = (n + 1)/2

be the average rank
I Calculate Spearman’s ρ or Kendall’s τ

ρ̂jk =

∑n
i=1 (r ij − r̄j)(r ik − r̄k)

√∑n
i=1 (r ij − r̄j)2

∑n
i=1 (r ik − r̄k)2

τ̂jk =
2

n(n − 1)

∑

1≤i<i ′≤n
sign

(
(x ij − x i

′
j )(x ik − x i

′
k )
)

I If X ∼ NPNp(f ,Σ), then Σjk = 2 sin(ρjkπ/6) = sin(τjkπ/2)

I Therefore, we can estimate Σ−1 by plugging in rank-based
correlations into graphical lasso (R-package huge)
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A Real Data Example

• Protein cytometry data for cell signaling data (Sachs et al,
2005)

• Transform the data using Gaussian copula (Liu et al, 2009),
giving marginal normality

• Pairwise relationships seem non-linear

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●●

●

● ●●

●●
●

●

●

●●

● ●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●●
●

●●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

● ●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●●

●

●●

●

● ●

●●

●

●●

●
●●

●

●

●

●●

●

●

●

●

●

●

●
●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●
●
●

● ●

●

●

●

●

●
●

●

●

● ●●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−3
−1

0
1

2
3

PJNK

P3
8

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

● ●

●

●●●

●●
●

●

●

● ●

● ●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●●
●

● ●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

● ●

●

●●

●

● ●

●●

●

●●

●
●●

●

●

●

●●

●

●

●

●

●

●

●
● ●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●
● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

● ●

●

●
●

●
●

●

● ●

●

●

●

●

●
●

●

●

●●●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−3
−1

0
1

2
3

PKC

P3
8

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

●
● ●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

● ●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●●
●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●
● ●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●

● ●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●●

●

●
●

●

●

●

●

●●

●

●

●●

●

● ●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●
●

●●
●●

●
●●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

PKC

PJ
NK

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●● ●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●

●
●●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●
●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●● ●

●

●

●
●

●

● ●

●

●

●

●
●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●
● ●

●
●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
● ●

●

●

●●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●●

●
●

●
●

●

●

●

●●

●

●●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●

●
●

●

●

●

● ●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

● ●

●

●

●

● ●
● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●●

●
●

●

●

●

●
●

●

●

●
● ●

●●

●

●

●

●
●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−2
−1

0
1

2
3

PKC

Pa
rti

al
 re

s.

(a)	
   (d)	
  (b)	
   (c)	
  
• Shapiro-Wilk test rejects multivariate normality:
p < 2× 10−16
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Graphical Models for Discrete Random Variables

I In many cases, biological data are not Gaussian: SNPs,
RNAseq, etc

I Need to estimate CIG for other distributions: binomial,
poisson, etc

I Unfortunately, for these distribution, the problem does not
have a closed-form!

I A special case, which is computationally more tractable, is the
class of pairwise MRFs

c©Ali Shojaie SISG: Pathway & Networks 9

Pairwise Markov Random Fields

I The idea of pairwise MRFs is to “assume” that only two-way
interactions among variables exist

I The pairwise MRF associated with the graph G over the
random vector X is the family of probability distributions P(X )
that can be written as

P(X ) ∝ exp
∑

(j,k)∈E
φjk(xj , xk)

I For each edge (j , k) ∈ E , φjk is called the edge potential
function

I For discrete random variables, any MRF can be transformed
to an MRF with pairwise interactions by introducing
additional variables (Wainwright & Jordan, 2008)
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Graphical Models for Binary Random Variables

I Suppose X1, . . . ,Xp are binary random variables,
corresponding ot e.g. SNPs, or DNA methylation

I A special case of discrete graphical models is the Ising model
for binary random variables

Pθ(x) =
1

Z (θ)
exp




∑

(j ,k)∈E
θjkxjxk





I A pairwise MRF for binary data, with φjk(xj , xk) = θjkxjxk
I x i ∈ {−1,+1}p
I The partition function Z (θ) ensures that distribution sums to 1
I (j , k) ∈ E iff θjk 6= 0!

c©Ali Shojaie SISG: Pathway & Networks 11

Graphical Models for Binary Random Variables

I We can consider a neighborhood selection2 approach with an
`1 penalty to find the neighborhood of each node
N(j) = {k ∈ V : (j , k) ∈ E}

I For j = 1, . . . , p, need to solve (after some algebra)

minθ



n−1

n∑

i=1


f (θ; x i )−

∑

k∈−j
θjkx

i
j x

i
k + λ‖θ−j‖1







I f (θ; x) = log
{
exp

(∑
k∈−j θjkxk

)
+ exp

(
−∑k∈−j θjkxk

)}

I It turns out this is equivalent to solving p penalized logistic
regression problems, which is rather easy (R-package glmnet)

2Ravikumar et al (2010)
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Other Non-Gaussian Distributions

I Assume a pairwise graphical model

P(X ) ∝ exp




∑

j∈V
θjφj(Xj) +

∑

(j ,k)∈E
θjkφjk(Xj ,Xk)





I Then, similar to the Ising model, graphical models can be
learned for other members of the exponential family

I Poisson graphical models (for e.g. RNAseq), Multinomial
graphical models, etc

I All of these can be learned using a neighborhood selection
approach, using the glmnet package3

I We can even learn networks with multiple types of nodes (gene
expression, SNPs, and CNVs)4

3Yang et al (2012)
4Yang et al (2014), Chen et al (2015)
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A General Approach for Estimation of Graphical Models

• Consider n iid observations from a p-dimensional random
vector x = (X1, . . . ,Xp) ∼ P
• Consider the (undirected) graph G = (V ,E ) with vertices
V = {1, . . . , p}
• Want to estimate edges E ⊂ V × V that satisfy
∀j ∈ V , ∃N(j) such that:

pj(Xj | {Xk , k 6= j}) = pj(Xj | {Xk : k ∈ N(j)}) = pj(Xj | {Xk : (k, j) ∈ E})

• N(j) is the minimal set of variables on which the conditional
densities depend

c©Ali Shojaie SISG: Pathway & Networks 14



Estimating Conditional Independencies

Question: how to condition?

• Approach 1: Estimate the joint density f (X1, . . . ,Xp); then
get the conditionals fj(Xj | X−j)

I Efficient, coherent
I Computationally challenging
I Restrictive: how many joint distributions do you know?
I Hard to check if assumptions hold!

• Approach 2: Estimate the conditionals directly fj(Xj | X−j)
I Computationally easy
I Leads to easy & flexible models (regression)!
I May not be efficient or coherent

c©Ali Shojaie SISG: Pathway & Networks 15

A Semi-parametric Approach

I Consider additive non-linear relationships (additive model):

Xj | X−j =
∑

k 6=j

fjk(Xk) + ε

I Then if fjk(Xk) = fkj(Xj) = 0, we conclude that Xj and Xk are
conditionally independent, given the other variables

I In other words, we assume that conditional distributions and
conditional means depend on the same set of variables

I We then use a semi-parametric approach for estimating the
conditional dependencies
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SpaCE JAM5

I Sparse Conditional Estimation with Jointly Additive Models
(SpaCE JAM)

minimize
fjk∈F

1

2n

p∑

j=1

‖~xj−
∑

k 6=j

fjk(~xk)‖22+λ
∑

k>j

(
‖fjk(~xk)‖22 + ‖fkj(~xj)‖22

)1/2

I fjk(~xk) = Ψjkβjk
I Ψjk is a n × r matrix of basis functions for fjk
I βjk is an r -vector of coefficients
I The standardized group lasso penalty for functions ‖fjk‖2

I This is a convex problem, and block coordinate descent
converges to the global minimum

5Voorman et al (2014) Biometrika, R-package spacejam
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SpaCE JAM

Estimating fjk and fkj seems redundant...

SpaCE JAM

Estimating fjk and fkj seems redundant...
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Other Flexible Procedures

I Forest density estimation (Liu et al, 2011) assumes that
underlying graph is a forest, and estimates the bivariate
densities non-parametrically.

I Graphical random forests (Fellinghauer et al, 2013) uses
random forests to flexibly model conditional means

I They consider conditional dependencies through conditional
mean

I They allow for general random variables, discrete or continuous
I Use a random forest to estimate E [Xj | X\j ] non-parametrically
I Theoretical properties have not yet been justified
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Comparison on Simulated Data
non-linear relationships (p = 100, n = 50)
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Comparison on Simulated Data
linear relationships (p = 100, n = 50)
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Estimation of Cell Signaling Network
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Summary - I

I Multivariate normality & linear conditional relationships are
strong assumptions that may not hold in practice

I Marginal transformations (and rank-based methods) also
assume linear relationships in the transformed scale

I Estimation of graphical models for general non-Gaussian
distributions is a difficult problem, and often requires
additional assumptions (pairwise interactions, dependency via
conditional means etc)

c©Ali Shojaie SISG: Pathway & Networks 23

Summary - II

I Assuming pairwise interactions, graphical models for members
of the exponential family can be estimated efficiently

I This idea can also be extended to graphs with multiple node
types, however, the pairwise graphical model becomes
restrictive in that setting

I Considering conditional means and additive models is a
tractable alternative with good empirical and theoretical
properties

I GraFo uses random forests to solve this problem
I SpaCE JAM applies a standardized group lasso penalty, suited

for functional data, to enforce “symmetry” in terms of edge
selection
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Bayesian Networks

I Bayesian networks are a special class of graphical models
defined on directed acyclic graphs.

I Directed acyclic graphs (DAGs) are defined as graphs that:

i) only have directed edges, i.e. if Aij 6= 0, Aji = 0;
ii) there are no cycles in the network.

I Bayesian networks are widely used to model causal
relationships between variables.

I Note that correlation 6= causation!

I Therefore, we (usually) cannot estimate Bayesian networks
from (partial) correlations

c©Ali Shojaie SISG: Pathway & Networks 2



Why Bayesian Networks?
Many biological networks include directed edges:

I In gene regulatory networks, protein products of transcription
factors can alter the expression of target genes, but the target
genes (usually) don’t have a direct effect on the expression of
transcription factors

c©Ali Shojaie SISG: Pathway & Networks 3

Why Bayesian Networks?
Many biological networks include directed edges:

I In cell signaling networks, the signal from the cell’s
environment is transducted into the cell, and results e.g. in
(global) changes in gene expression, but gene expression may
not affect the environmental factors
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Why Bayesian Networks?

Many biological networks include directed edges:

I Biochemical reactions in metabolic networks, may not
reversible, and in that case, one metabolite may affect the
other, but the relationship is ont reciprocated

c©Ali Shojaie SISG: Pathway & Networks 5

Why Bayesian Networks?

However, biological networks may not be DAGs:

I Gene regulatory networks, signaling networks and metabolic
networks, may all contain feedback loops (positive/negative)

which make estimation even more difficult!
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What’s the Difference?

I Bayesian networks are widely used to model causal
relationships between variables.

I Undirected networks (e.g. GGM) provide information about
associations among variables; while this greatly helps in the
study of biological systems, in some cases, they are not
enough (e.g. drug development).

I The main difference is of course the direction of the edges;
however, it turns out that there are also some differences in
terms of structure/skeleton of the network (more on this
later).

I We can estimate undirected networks from observational data,
i.e. steady-state gene expression data, but usually they are not
enough for estimation of directed networks

I Finally, estimation of directed networks is often much more
difficult

c©Ali Shojaie SISG: Pathway & Networks 7

Why is estimation more difficult?

I Estimation of Bayesian networks requires estimating both the
skeleton of the network (i.e. whether there is an edge between
i and j) and also the direction of the edges.

I While estimation of skeleton is possible, direction of edges
cannot be in general learned from observational data, no
matter how many samples we have (this is referred to as
observational equivalence). Consider this simple graph:

X1 X2

I Then, no matter what n is, we cannot distinguish between
X1 → X2 and X2 → X1, so basically what we see is:

X1 X2

c©Ali Shojaie SISG: Pathway & Networks 8



Outline

I Basics of Bayesian networks, including
I directed acyclic graphs (DAGs)
I conditional independence in DAGs, d-separation, and moral

graphs
I probability distributions over DAGs
I structural equation models (SEM)
I additional topics (faithfulness, Markov equivalence, ...)

I Estimation of Bayesian networks from observational data

I Estimation of Bayesian networks from perturbation and
time-course data

c©Ali Shojaie SISG: Pathway & Networks 9

Directed Graphs: Some Terminology

I nodes in directed networks represent random variables; we
denote the set of nodes by V

I edges are directed, and represent causal relationships among
variables; we denote the set of edges by E

I The parents of node j are {k : k → j}, we denote this by paj
or pa(j)

I The children of node j are {k : j → k}
I Two vertices connected by an edge are called adjacent
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Directed Graphs: Some Terminology

1 2

3

4

5 6

I pa(1) = ∅, pa(2) = 1, pa(3) = pa(4) = {2}, pa(5) = {3, 4}
I What are children of {1, . . . 5}?
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Directed Graphs: Some Terminology

I A path between two nodes i and j is a sequence of distinct
adjacent nodes:

I e.g. i ← k1 → k2 → k3 ← j
I In a DAG with p nodes, there cannot be a path longer than

p − 1 (why?)
I There can be multiple paths between two nodes

I i is an ancestor of j if there is a directed path of length ≥ 1
from i to j : i → · · · → j (or if i = j)

I If i is an ancestor of j , then j is said to be a descendant of i
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Directed Graphs: Some Terminology

1 2

3

4

5 6

I What are paths between 1&4, 3&4, 2&6?

I What are ancestors of {1, . . . 5}?
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Directed Graphs: Some Terminology

An important concept in DAGs is that of colliders (aka “inverted
forks”):

I k is a collider on a path between i and j if it is a not an
end-point of the path, and the path is of the form

i . . .→ k ← . . . j

I k is an non-collider if it is not an end-point, and is not a
collider on a path:

I i . . .← k ← . . . j
I i . . .→ k → . . . j
I i . . .← k → . . . j

I Note: colliders and non-colliders are defined w.r.t. paths; a
collider in one path can be a non-collider in another!
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Directed Graphs: Some Terminology

1 2

3

4

5 6

I What are the colliders on paths between 1&4, 3&4, 2&6?

I What are the non-colliders on paths between 1&4, 3&4, 2&6?
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Factorization of Probability Distributions over DAGs

I First, note that for any set of random variables, not
necessarily on a DAG, we can write:

P(X1,X2,X3) = P(X1 | X2,X3)P(X2|X3)P(X3)

= P(X3 | X1,X2)P(X2|X1)P(X1)

= · · ·

I Now, consider this simple DAG

I Then, the probability distribution can be factorized as

P(X1,X2,X3) = P(X3 | X2)P(X2|X1)P(X1)
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Factorization of Probability Distributions over DAGs

I In general, for any set of random variables on a DAG
G = (V ,E ), and for any probability distribution P (Markov
relative to G ) we have

P(V ) =
∏

j∈V
P(Xj | paj)

I Compare this with the general probability decomposition

P(V ) =
∏

j∈V
P(Xj | X1, . . . ,Xj−1)

I This means that on DAGs we have

P(Xj | X1, . . . ,Xj−1) = P(Xj | paj)

I In other words, the probability distribution for each variable
depends only on its parents

c©Ali Shojaie SISG: Pathway & Networks 17

Independence (unconditional)

I Recall the following (equivalent) characterizations of
independence, X⊥⊥Y :

I P(X = x ,Y = y) = P(X = x)P(Y = y)
I P(X = x |Y = y) = P(X = x) (is symmetric)

I Intuitively, if X⊥⊥Y then knowledge of X provides no
information about Y .

I These can be generalized for vectors.

I If X and Y are jointly Gaussian X⊥⊥Y iff Corr(X ,Y ) = 0.

I If X and Y are binary, X⊥⊥Y iff logOR(X ,Y ) = 0.

c©Ali Shojaie SISG: Pathway & Networks 18



Conditional Independence

I Conditional independence X⊥⊥Y | Z has similar
characterizations:

i) P(X = x ,Y = y |Z = z) = P(X = x |Z = z)P(Y = y |Z = z)
ii) P(X = x |Y = y ,Z = z) = P(X = x |Z = z) (is symmetric)

I We also have,

P(X = x ,Y = y ,Z = z) =
P(X = x ,Z = z)P(Y = y ,Z = z)

P(Z = z)
.

I Intuitively, if X⊥⊥Y then if Z is known, knowledge of X
provides no information about Y .

I These can be generalized for vectors.
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Conditional Independence

I If X & Y are binary, X⊥⊥Y |Z iff logOR(X ,Y |Z ) = 0
I This is the coefficient in logistic regression of (say) Y on X ,Z .

I If X & Y are jointly Gaussian, X⊥⊥Y |Z iff Corr(X ,Y |Z ) = 0.
I This is the coefficient in linear regression of (say) Y on X ,Z .
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The Toy Example, Revisited

I Recall that P(X1,X2,X3) = P(X3|X2)P(X2|X1)P(X1)

I This implies that X3⊥⊥X1|X2 (by (i))

I However, this is not always the case on DAGs!

I How can we read conditional independence relations from the
graph?

I We can do this using a concept called d-separation?
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An example from genetics

Consider an example from population genetics:

M F

S D

I We have genetic information for Mother, Father, Daughter
and Son in form of dominant/recessive genotype (A/a) for a
single gene

I Then each individual can have one of three states: AA, aa, Aa
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An example from genetics

Consider an example from population genetics:

M F

S D

I Now, it is natural to assume that given the parents’ genetic
information, the genotypes of Son and Daughter are
independent ⇒ S⊥⊥D | {M,F}
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An example from genetics

Consider an example from population genetics:

M F

S D

I Also, one can assume independence among genotypes of M
and F ⇒ M⊥⊥F

I However, if we know that e.g. Son has Aa, and Mother has
aa, then Father should have Aa or AA ⇒ M⊥�⊥F |S
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d-separation

A path π is said to be d-separated (or blocked) by a set of nodes
Z , iff

1. π includes a chain i → m→ j or a fork i ← m→ j such that
the middle note is in Z , or

2. π contains a collider (or inverted fork) i → m← j such that
neither the middle node m nor its descendants are NOT in Z .

How is this used?

I If i and j are d-separated given Z , then Xi⊥⊥Xj |Z for any
probability distribution P factorizing according to G

I If i and j are d-separated given ∅, then Xi⊥⊥Xj for any
probability distribution P factorizing according to G
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Genetics example, revisited

Consider an example from population genetics:

M F

S D

I {M,F} block all paths from S to D ⇒ D⊥⊥S | {M,F}
I Is M⊥⊥F?

I Is M⊥⊥F | {S ,D}, | S , | D?
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Moral Graphs

I Reading conditional independence relations from DAGs can be
difficult

I An alternative approach is to use a modified version of the
network, called the moral graph of DAG

I To get the moral graph G̃ of G
I join (“marry”) common parents of each node
I remove all the directions

I Then, Xi⊥⊥Xj |Z iff Z separates i and j in G̃
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Genetics example, revisited (again)

Consider an example from population genetics:

M F

S D

I Is S⊥⊥D | {M,F}
I Is M⊥⊥F?

I Is M⊥⊥F | {S ,D}, | S , | D?
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Genetics example, revisited (again)

Consider an example from population genetics:

M F

S D

I Is S⊥⊥D | {M,F}
I Is M⊥⊥F?

I Is M⊥⊥F | {S ,D}, | S , | D?
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A More Complex Example

What are conditional independence relations in this graph?

1 2

3

4

5 6
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A More Complex Example

What are conditional independence relations in this graph?

1 2

3

4

5 6

c©Ali Shojaie SISG: Pathway & Networks 31

Structural Equation Models

I A popular way to represent causal relationships on DAGs is via
structural equation models

Xj = fj(paj , γj), j = 1, . . . , p

I fj can be in general any function relating j to its parents
I γj ’s represent the independent component of jth variable (i.e.

the part that doesn’t depend on paj

I For Gaussian random variables, fi is linear

Xj =
∑

j ′∈paj
ρjj ′Xj ′ + γj , j = 1, . . . , p

I here, ρjj′ denotes the magnitude of effect of j ′ on j , or their
partial correlation
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A Toy Example

Assuming normality we can write:

X1 = γ1

X2 = ρ12X1 + γ2 = ρ12γ1 + γ2

X3 = ρ23X2 + γ3 = ρ23ρ12γ1 + ρ23γ2 + γ3

For non-Gaussian variables, these equations will involve non-linear
relationships.
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Estimation of DAGs in Biological Settings

I Estimation of DAGs is (in general) computationally very hard
(in fact, it’s NP-hard): there are ∼ 2p

2
DAGs with p nodes!

I Three different types of biological data can be used for
estimation of directed graphs:

i) observational data: steady-state data, or data comparing
normal & cancer cells

ii) time-course data: time-course gene expression data
iii) perturbation data: data from knockouts experiments

I This lecture, we will cover (i), next lecture we will cover (ii)
and (iii)
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Estimation of DAGs from Observational Data

Algorithms for estimation of DAGs can be broadly categorized into
two groups:

I constraint-based methods
I often based on tests for CI & provide theoretical guarantees
I PC algorithm, Grow-Shrink

I score & search methods
I They assign a “score” to each estimated graph (e.g. based on

likelihood, Bayes factor, AIC etc)
I Then do a (greedy) search to find the best scoring graph
I Hill Climbing algorithm

I “hybrid” methods
I Usually first find the Markov blanket (e.g. the moral graph)
I Then perform a search in a restricted space
I Max-Min Hill Climbing algorithm

c©Ali Shojaie SISG: Pathway & Networks 3

Constraint-Based Methods

I Need a conditional independence test (to test if X⊥⊥Y | Z )
I For Gaussian data, we can use partial correlation (or the

Fisher’s Z-transformation of it)
I For Binary data, we can use logOR
I In general, we can use conditional mutual information

I The idea is to see if there exists a set S , for each pair of
nodes j , j ′, such that Xj⊥⊥Xj ′ | S

I S can have 0 to p-2 members! usually stop at some k � p

I I.e., for each pair of variables (all

(
p
2

)
of them), we need to

look at all possible subsets of remaining variables!!

I Recall that conditional independence is symmetric ⇒
undirected graph!!

I So, these methods find the structure/skeleton of the DAG
(will talk about direction later)
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PC Algorithm (Spirtes et al, 1993)

I One of the first algorithms for learning structure of DAGs
I Efficient implementations that allow for learning DAG

structures with p up to ∼ 1000
I R-package pcalg (Kalisch & Buhlmann, 2007)

I The algorithm starts with a complete graph (i.e. a fully
connected graph)

I Then for each pair of nodes j , j ′ it finds a separating set, S
such that Xj⊥⊥Xj ′ | S

I If a set is found, then remove the edge, otherwise, j − j ′

c©Ali Shojaie SISG: Pathway & Networks 5

PC Algorithm (Spirtes et al, 1993)

Start with a complete undirected graph, and set i = 0
Repeat

I For each j ∈ V

I For each j ′ ∈ ne(j)
I Determine if ∃S ⊂ ne(j)\{j ′} with |S | = i

I Test for CI: is Xj⊥⊥Xj′ | S?
I If such an S exists, then set Sjj′ = S , remove j − j ′ edge

I i = i + 1

Until |ne(j)| < i for all j
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Example
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i = 2 S1,5 = {3, 4}

S2,5 = {3, 4}
i = 3 STOP (|nej | < 3∀j)
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S2,5 = {3, 4}
i = 3 STOP (|nej | < 3 ∀ j)
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Analysis of Protein Flow Cytometry using pcalg

> dat <- read.table(’sachs.data’)

> p <- ncol(dat)

> n <- nrow(dat)

## define independence test (partial correlations)

> indepTest <- gaussCItest

## define sufficient statistics

> suffStat <- list(C=cor(dat), n=n)

## estimate CPDAG

> pc.fit <- pc(suffStat, indepTest, p, alpha=0.1, verbose=FALSE)

> plot(pc.fit, main=’PC Algorithm’)

I Need to determine the type of CI test (indepTest), and
sufficient statistics (suffStat)

I Also need to choose α (alpha), the probability of false
positive for selecting edges.

I Larger values of α allow more edges (not adjusted for multiple
comparisons)

I The algorithm works faster when α is small
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Analysis of Protein Flow Cytometry using pcalg

PC Algorithm

praf

pmek

plcg
PIP2

PIP3

P44

pakts

PKA

PKC
P38

pjnk

But wait, where did the directions come from? And why are only
some of the edges directed?
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Markov Equivalence

Consider the following 4 graphs

● ● ●1 2 3

● ● ●1 2 3

● ● ●1 2 3

● ● ●1 2 3

Which graphs satisfy X1⊥⊥X3 | X2?
Two graphs that imply the same CI relationships via d-separation
are called Markov equivalent
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Markov Equivalence

Consider the following 4 graphs

● ● ●1 2 3

● ● ●1 2 3

● ● ●1 2 3

● ● ●1 2 3

In the first 3 graphs, X1⊥⊥X3 | X2?
Two graphs that imply the same CI relationships via d-separation
are called Markov equivalent

c©Ali Shojaie SISG: Pathway & Networks 37

Representation of Markov Equivalence

I Markov equivalent graphs correspond to the same probability
distribution and cannot be distinguished from each other
based on observations!

I Therefore, the direction of edges that correspond to Markov
equivalent graphs cannot be determined

I We show these edges using undirected edges in the graph

I The resulting graph is a CPDAG (completed partially directed
acyclic graph), and is really the best we can do!
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CPDAGs
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Finding Partial Directions in DAGs

I Partial directions in DAGs can be determined from unmarried
colliders:

I For each unmarried collider i − k − j
I If k /∈ Sij , orient i − k − j as i → k ← j

I In addition to the above rule
I Orient each remaining unmarried collider i → k − j as

i → k → j
I If i → k → j and i − j then orient as i → j
I If i −m − j and i → k ← j are unmarried colliders and m − k,

then orient as m→ k
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Example
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i = 2 S1,5 = {3, 4}

S2,5 = {3, 4}
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The bnlearn package

I There are a number of R-packages for learning the structure
of DAGs, including pclag, bnlearn, deal

I bnlearn implements a number of estimation methods, both
constraint-based and search-based:

I constraint-based:
I Grow-Shrink (GS);
I Incremental Association Markov Blanket (IAMB);
I Fast Incremental Association (Fast-IAMB);
I Interleaved Incremental Association (Inter-IAMB);

I the following score-based structure learning algorithms:
I Hill Climbing (HC);
I Tabu Search (Tabu);

I the following hybrid structure learning algorithms:
I Max-Min Hill Climbing (MMHC);
I General 2-Phase Restricted Maximization (RSMAX2);
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Analysis of Protein Flow Cytometry using bnlearn

> dag1 <- gs(dat, alpha=0.01) #GS method

> dag2 <- hc(dat2) #Hill-Climbing search

>

> par(mfrow= c(1,2))

> plot(dag1)

> plot(dag2)

>

> compare(dag1, dag2) #compare the two DAGs

I For GS need to choose α (alpha), the false positive
probability for selecting edges

I gs (and other structure-based methods) find a PCDAG
I hc gives a directed graph (with highest score)

I A number of criteria for choosing the “best” graph are
implemented

I To “search” the space either a new edge is added, or a current
edge is removed, or reversed (if no cycles)
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Analysis of Protein Flow Cytometry using bnlearn

> dag1

Bayesian network learned via Constraint-based methods

model:

[partially directed graph]

nodes: 11

arcs: 26

undirected arcs: 3

directed arcs: 23

average markov blanket size: 6.00

average neighbourhood size: 4.73

average branching factor: 2.09

learning algorithm: Grow-Shrink

conditional independence test: Pearson’s Linear Correlation

alpha threshold: 0.01

tests used in the learning procedure: 2029

optimized: TRUE
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Analysis of Protein Flow Cytometry using bnlearn

> dag2

Bayesian network learned via Score-based methods

model:

[PKC][pjnk|PKC][P44|pjnk][pakts|P44:PKC:pjnk][praf|P44:pakts:PKC][PIP3|pakts]

[plcg|praf:PIP3:P44:pakts:pjnk][pmek|praf:plcg:PIP3:P44:pakts:pjnk]

[PIP2|plcg:PIP3:PKC][PKA|praf:pmek:plcg:P44:pakts:pjnk]

[P38|pmek:plcg:pakts:PKA:PKC:pjnk]

nodes: 11

arcs: 35

undirected arcs: 0

directed arcs: 35

average markov blanket size: 8.00

average neighbourhood size: 6.36

average branching factor: 3.18

learning algorithm: Hill-Climbing

score:

Bayesian Information Criterion (Gaussian)

penalization coefficient: 4.459057

tests used in the learning procedure: 505

optimized: TRUE
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Analysis of Protein Flow Cytometry using bnlearn

Grow−Shrink

praf

pmek

plcg

PIP2

PIP3 P44

pakts

PKA

PKC

P38

pjnk

Hill Climbing

praf

pmek

plcg

PIP2

PIP3 P44

pakts

PKA

PKC

P38

pjnk

The two graphs are quite different

> compare(dag1,dag3)

$tp

[1] 9

$fp

[1] 26

$fn

[1] 17
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Comparison of Results for Protein Flow Cytometry Data

PC Algorithm

praf

pmek

plcg
PIP2

PIP3

P44

pakts

PKA

PKC
P38

pjnk

Grow−Shrink

praf

pmek

plcg
PIP2

PIP3

P44

pakts

PKA

PKC
P38

pjnk

Hill Climbing

praf

pmek

plcg
PIP2

PIP3

P44

pakts

PKA

PKC
P38

pjnk

I The estimated graphs are quite different

I The constrained-based methods seem to have more similarities
(at least in terms of structure)

I The estimate from HC has more edges; we can change e.g.
the score, but cannot directly control the sparsity
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Penalized Likelihood Estimation of DAGs

I Recall that structural equation models can be used to
represent causal relationships (and probability distributions)
on DAGs

Xi = fi (pai , γi ), i = 1, · · · , p
I And, for Gaussian random variables, we can write

Xi =
∑

j∈pai
ρjiXj + γi , i = 1, · · · , p

c©Ali Shojaie SISG: Pathway & Networks 48



Penalized Likelihood Estimation of DAGs

X1 = γ1

X2 = ρ12X1 + γ2 = ρ12γ1 + γ2

X3 = ρ23X2 + γ3 = ρ23ρ12γ1 + ρ23γ2 + γ3

Thus X = Λγ where

Λ =




1 0 0
ρ12 1 0

ρ12ρ23 ρ23 1



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Penalized Likelihood Estimation of DAGs

I It turns out that Λ = (I − A)−1, where A is the weighted
adjacency matrix of the DAG1

I Thus, for Gaussian random variables, if we know the ordering
of the variables (which is a BIG assumption!)

after some math...

we can estimate the adjacency matrix of DAGs, by minimizing
the log-likelihood as a function of A:

Â = arg min
A∈A

{
tr
[
(I − A)T(I − A)S

]}

1Shojaie & Michailidis (2010)
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Penalized Likelihood Estimation of DAGs

I In high dimensions, we can solve a penalized version of this
problem, e.g. by adding a lasso penalty λ

∑
i<j |Aij |

I It turns out that, the problem can be reformulated as (p − 1)
lasso problems, where we regress each variable, on those
appearing earlier in the ordering:

Âk,1:k−1 = arg min
θ∈Rk−1



n−1‖X1:k−1θ − X,k‖22 + λ

k−1∑

j=1

|θj |wj





I As in glasso, λ is a tuning parameter that controls the
amount of sparsity; λ = 2√

n
Zα/(2p2) controls a false positive

probability at level α
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Computational Complexity

I Compared to pcalg, this method runs much faster: ∼ np2

operations vs ∼ pq (q is the max degree)

I Can be easily implemented in R as p − 1 regressions using
glmnet. A more general version is available in the spacejam

package, which also includes estimation for non-Gaussian data

● ●

●

●

C
P

U
 ti

m
e

● pcalg
lasso
Alasso

p=100, n=100 p=100, n=1000 p=1000, n=100 p=1000, n=1000

0
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00
30

00
50

00
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Simulation Studies

• Settings:
p = 50, 100, 200
n = 100
Total number of edges in the network = n
100 repetitions

• Performance Criteria

1. Matthew’s Correlation Coefficient (MCC): ranges between −1
(worst fit) and 1 (best fit), similar to F1

2. Structural Hamming Distance (SHD): sum of false positive
and false negatives

3. True positive and false positive rates

• Tuning parameter for both PC-Algorithm and penalized likelihood
method based on false positive error α
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Gaussian Observations
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Random Ordering of Variables
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Regulatory Network of E-Coli

I Regulatory network of E-coli with p = 49 genes (7 TFs)

I Want to identify regulatory interactions among TFs and
regulated genes
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Summary

• Estimation of DAGs from observational data is both conceptually
and computationally difficult

• Constraint-based and search-based algorithms become slow in high
dimensions

• Also, may not be able to distinguish DAGs from observational data
(Markov equivalence)

• Efficient penalized likelihood methods can estimate DAGs if the
ordering is known

• Efficient implementations in R available for most methods

• Different methods need different tuning parameters...
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Estimation of Gene Regulator Networks

I Using steady-state gene expression data:
I undirected association graphs: Graphical lasso (glasso),

ARACNE, ...
I DAGs or CPDAGs: PC-Algorithm, ...

I Using time-course gene expression data
I Dynamic Bayesian networks
I Granger causality

I Using perturbation screens, obtained by “perturbing” the
biological system, often in the form of knockout or knockdown
experiments, where in each experiment one or more genes are
perturbed.

I Model-based approaches: Nested Effect Models (NEM),
methods of causal inference

I Heuristic approaches: e.g. Pinna et al (2010),

c©Ali Shojaie SISG: Pathway & Networks 3

Gene Regulatory Networks
Consider a simple regulatory network, with two transcription
factors and one gene:

g1

g2

g3

I g1 : Inducer

I g2 : Inhibitor

I g3 : Regulated Gene
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Gene Regulatory Networks

The temporal expressions patterns of g1, g2 and g3 may look like:
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Gene Regulatory Networks
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Temporal patterns in Gene Regulatory Networks

I g1 : Inducer

I g2 : Inhibitor

I g3 : Regulated Gene
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Goal: discover the regulatory interactions from time-course gene
expression data.
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Temporal patterns in Gene Regulatory Networks
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I g3 : Regulated Gene

g1

g2

g3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

time

lo
g(

ex
p)

g1

g2

g3

Goal: discover the regulatory interactions from time-course gene
expression data.

c©Ali Shojaie SISG: Pathway & Networks 8



Temporal patterns in Gene Regulatory Networks

I g1 : Inducer
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I g3 : Regulated Gene

g1

g2

g3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

time

lo
g(

ex
p)

g1

g2

g3

Goal: discover the regulatory interactions from time-course gene
expression data.

c©Ali Shojaie SISG: Pathway & Networks 9

Estimation of Gene Regulatory Networks from Time-Course Data

I The goal is Discover interactions among genes from
time-course data

I This is achieved by observing the patterns of expressions over
time

I A suitable framework for inferring such mechanisms is Granger
causality:

I the idea is to see if changes in expression of gene X are
predictive of those in Y

I this model is closely related to the Dynamic Bayesian Networks
(DBNs)

I can handle self-regulatory effects and feedback loops
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Granger Causality
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We say X is Granger-causal for Y

Xt = 0.7Xt−1 + 0.4Yt−1 + 0.2Yt−2 + εt
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Granger Causality
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Granger Causality
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Granger Causality
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Granger Causality

I A time series X is said to be Granger-causal for Y if past
values of X provide statistically significant information about
future values of Y

I This is traditionally checked using a series of F -tests, on
lagged values of X

I Granger causality 6= causality : Granger causality is about
prediction and does not imply true causal effects

I Recent work extends this framework beyond Gaussian random
variables

I We focus on extension of this idea to high dimensional
settings, which we refer to as Network Granger Causality

c©Ali Shojaie SISG: Pathway & Networks 17

Network Granger Causality: Illustration

p variables observed over T time points
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d = 2
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Network Granger Causality: Illustration
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Network Granger Causality: Definition

I X1, . . . ,Xp stochastic processes and Xt = (X t
1 , . . . ,X

t
p)T

I Network Granger Causality Model:

XT = A1XT−1 + · · ·+ AdXT−d + εT

I XT−t
j is Granger-causal for XT

i if At
i ,j 6= 0.

I DAG with (d + 1)× p variables

I alternatively, a vector autoregressive model of order d
(VAR(d)) with p variables.

I Often d � T , but not known:
I usually, d is “guessed”, and is set to d = 1 (especially in

applications of DBN), which can result in loss of information
I the alternative is to include all previous time points (set

d = T − 1) but that would result in too many variables

I Recent work has focused on simultaneous estimation of d and
network.
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Previous work on NGC in high dimensional settings

I The concept of Granger causality has been used in discovering
gene regulatory interactions by Fujita et al (2007) and
Mukhopadhyay and Chatterjee (2007)

I A number of recent work have considered penalized regression
models for estimation of Granger-causal models:

I lasso regression used in Arnold et al (2007) in a financial
application

I group lasso used in Lozano et al (2009) for grouping effects
over time

I truncating lasso Shojaie & Michailidis (2010) to estimate d
and network simultaneously

I lasso w adaptive thresholding used in Shojaie, Basu &
Michailidis (2012) for improved estimation of d and network
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Truncating Lasso Penalty

1
X t : data at time t

arg min
θt∈Rp

n−1‖XT
i −

d∑

t=1

XT−tθt‖2
2 + λ

d∑

t=1

Ψt
p∑

j=1

|θtj |w t
j

Ψ1 = 1, Ψt = M I{‖A(t−1)‖0<p2β/(T−t)}, t ≥ 2

where M is a large constant, and β is the user-specified false
negative rate (FNR).

I Can use the following value of λ that controls a version of
false positive rate (FPR) at the level α:

λ(α) = 2n−1/2Z ∗α
2dp2

I This method assumes that influences decay over time
1Shojaie & Michailidis (2010)
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An Illustrative Example

True

lasso

Alasso

Tlasso

TAlasso
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Example I: Gene Network of HeLa Cells

9 genes, 47 time points
d = 3
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P= 0.3, R= 0.33, F1= 0.32
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P= 0.24, R= 0.44, F1= 0.3

CCNA2

CCNB1

CCNE1
CDC2

CDC6

CDKN3

E2F1
PCNA

RFC4

CNET
P= 0.36, R= 0.44, F1= 0.4
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Example II: Gene Regulatory Networks of Yeast

5 Transcription Factors, 37 genes (p = 42), 8 time points
d = 2
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Non-decaying Granger-causal effects
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Non-decaying Granger-causal effects
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Regulatory Network of T-Cell Activation

I Data from Rangel et al (2004) on activation of T-cells

I p = 58 genes, n = 44 samples, and T = 10 time points

I Goal is to estimate the regulatory interactions
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Adjacency Matrices of Estimated Networks
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Estimated Regulatory Networks
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Adaptively Thresholded Lasso Estimate: Main Idea

I Logic: Lasso is in general biased, and cannot achieve structure
and norm consistency simultaneously

I In short, the idea is to start with lasso estimates, and then
remove “small” values from the adjacency matrix

I Consider two levels of thresholding, one for each element of
adjacency matrix, and the second for whole adjacency
matrices at a given time point

c©Ali Shojaie SISG: Pathway & Networks 31

Method Details

(i) Obtain the regular lasso estimate Ãt(λn) by solving

arg min
θt∈Rp

n−1‖XT
i −

d∑

t=1

XT−tθt‖2
2 + λ

T−1∑

t=1

p∑

j=1

|θtj |w t
j

(ii) Let Ψt = exp
(
M1{‖Ãt‖0<p2β/(T−1)}

)
, and define the

thresholded estimate:

Ât
ij = Ãt

ij1{|Ãt
ij |≥ τ Ψt}

Here M is a large constant and τ is tuning parameter for
thresholding.

(iii) Estimate the order of the time series by setting

d̂ = maxt
{
t : ‖Ât‖0 ≥ p2β/(T − 1)

}
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Illustrative Ex I: Under Decay Assumption
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Illustrative Ex II: Decay Assumption Violated
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Comments

I Benefits:
I The optimization problem is convex, and can be solved

efficiently.
I Does not require structural assumptions (no decay assumption)

I Drawbacks:
I Requires more tuning parameters
I Can be less efficient than truncating lasso if the decay

assumption holds

I The tuning parameters can be chosen so that the method has
desirable performance

I Penalized methods implemented in the R package ngc
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Data from Perturbation Screens

I Steady-state data are easy to obtain, but only represent
association among genes and hence have insufficient
informational content

I Perturbation data provide direct evidence on causal directions,
but are expensive to obtain. This becomes more complicated
if perturbing a particular gene is lethal.

I Data is obtained by knockout or knockdown experiments on
one or more genes at a time. The data then measures the
effect of the experiments on other genes in the network.
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Data from Perturbation Screens

I In practice, due to limited sample size, the perturbation data
are often discretized: genes are categorized as up/down
regulated or active/inactive.

1

3
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1

3

2

1

3

2

1

3

2

I The discretized perturbation data

(i) do not provide enough information to construct the structure
of regulatory networks.

(ii) provide enough information to determine causal (topological)
ordering(s) of nodes.
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Methods for Estimation of Regulatory Networks from
Perturbation Data

I Nested Effect Model (NEM): defines a probability distribution
for perturbed (knockout) genes, and estimates the networks
using a Bayesian framework

I Heuristic approaches: start with the network of significant
effects of genes on all other genes (based on the perturbation
data) and try to trim this network using features of observed
networks

I Causal inference methods: in particular, using the intervention
calculus (Pearl, 2000) which describes the joint probability
distribution of random variables in the setting of experiments
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Nested Effect Models

I Motivated by RNAi experiment settings: few knocked-out
genes (called S genes), and a larger number of affected genes
(called E genes) BMC Bioinformatics 2007, 8:386 http://www.biomedcentral.com/1471-2105/8/386

Page 3 of 15
(page number not for citation purposes)

Please note that the edges in network Φ can either repre-
sent transcriptional regulation events or phosphorilation
or post-translational effects, as we reconstruct the signal
flow in the network based on the nested structure of the
measured effects. The effects on the E-genes that are meas-
ured are transcriptional effects, which are ultimately regu-
lated by transcription factors. Some E-genes may be
regulated by kinases, as due to the inherent nature of
microarray measurements, it is impossible to distinguish
between direct and indirect effects.

Our Approach
Generalized Inference Framework
In their original work Markowetz et al. suppose the data
matrix D to consist of counts, how often a specific E-gene
shows an effect in � experiment repetitions. This requires
a data discretization step, for which user specified type-I
and type-II error rates are assumed. The choice of these
parameters is certainly critical for the inference procedure,
because it directly influences (5) and appears to be diffi-
cult to estimate. Markowetz et al. suppose to have both,
positive and negative controls (pathway stimulated/not
stimulated) for this procedure, which for our data is not
available (see Section "Methods"). In contrast, in our
approach we make the assumption that D is an m × n
matrix of (raw) p-values, which specify the likelihood of E-
gene i being differentially expressed after knock-down of
S-gene k. The p-values are calculated using a method for
detecting differential gene expression, e.g. limma [4]. This

way various experimental designs, including dye swaps,
on arbitrary chip platforms can be used in a simple man-
ner.

We now suppose a decomposition of P(Di|Φ,θi) as fol-
lows:

In accordance to [2] this makes the assumption that
knock-down experiments are statistically independent
from each other. Hence, Eq. (5) can be written down as

The only thing missing is the definition of P(Dik|Φ,θi). For
this purpose we suppose the Dik to be drawn from a mix-
ture of a uniform [0, 1] distribution reflecting the null
hypothesis and another distribution f1 reflecting the alter-
native hypothesis [5-7]:

P(Dik) = γk + (1 - γk)·f1(Dik), γk ∈ (0,1) (8)

Under the alternative hypothesis there is a high density for
small p-values and a strong decrease for increasing p-val-
ues. Both distributions overlap with mixing coefficient γk.
P(Dik|Φ,θi) can therefore be decomposed as:

= = =
==
∑∏ P D j P ji i i
j

n

i

m
( | , ) ( | )Φ Φθ θ

11

(5)

P D P Di i ik i
k

n
( | , ) ( | , )Φ Φθ θ=

=
∏

1

(6)

P D P D j P jik i i
k

n

j

n

i

m
( | ) ( | , ) ( | )Φ Φ Φ= = =

===
∏∑∏ θ θ
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(7)

Main idea of the inference framework by Markowetz et alFigure 1
Main idea of the inference framework by Markowetz et al.: A network hypothesis is a directed graph between S-genes. 
Attached to each S-gene are several E-genes. Knocking down S-gene S2 interrupts signal flow in the downstream pathway, and 
hence an effect of E-genes attached to S2 and to S1 is expected.

I Assumes that each S gene affect few E genes
I More importantly, assumes that each E genes is only affected

by one S gene
I The network of S gens is arbitrary, but there is no association

among E genes (condition on S genes)

I Considers the setting where S genes are (potentially) not
observable, but E genes are observed

I The goal is to learn the relationship among S genes, based on
the patterns of E genes, which is a difficult problem!
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(and write x! y) if the set of effects in Py is a subset of the set

of effects in Px:

x! y , fi : PyðEiÞ ¼ 1g � fi : PxðEiÞ ¼ 1g: ð1Þ

A subset relation is reflexive and transitive, and thus defines

a quasi-order on phenotypic profiles. We depict the quasi-order

in a directed graph in which nodes correspond to gene

perturbations and edges indicate subset relations according to

Equation (1). The reflexive self-loops at nodes are usually

omitted. Transitivity is the key feature of our model: whenever

there is a path from one node to another, we also have a

directed edge between these two nodes in the graph.

2.1 Bayesian inference for NEM models

Posterior probability A Bayesian score to evaluate how well a

candidate NEM fits to the observed data can be obtained in

two steps (Markowetz et al., 2005). First, assume that it is

known which effect is specific for which perturbed gene. We call

this the complete model, and an example is given in Figure 2.

A complete model M0 ¼ ðM,�Þ consists of a transitively closed

graph, M, and parameters � ¼ f�1, . . . , �mg. The nodes of M

correspond to perturbed genes, and the parameters � describe

the allocation of specific effects to perturbed genes (i.e. the

dashed arrows in the left plot of Fig. 2). The complete model

defines which effects we expect to observe (see the middle plot

of Fig. 2). We can directly compute the complete likelihood of

the actually observed data D under the model ðM,�Þ by:

PðDjM,�Þ ¼
Ym

i¼1

Yl

k¼1

PðeikjM, �iÞ, ð2Þ

where, the first product is over all effects E1, . . . ,Em and the

second over all replicates of gene perturbation experiments. The

probability PðeikjM, �iÞ depends on two parameters: a FP rate

of seeing a spurious effect, � (type-I error rate), and a FN rate

of missing an effect, � (type-II error rate).
However, in real data, it is not known which effect is specific

for which intervention, i.e. � is unknown. Thus, in a second

step, we average over � to gain the likelihood of the data,

which is proportional to the posterior probability of the NEM

and can be written as:

PðDjMÞ /
Ym

i¼1

Xn

j¼1

Yl

k¼1

PðeikjM, �i ¼ jÞ, ð3Þ

where the two products are the same as in Equation (2), and the

sum is due to marginalization over �.
Size of model space. NEMs are defined in terms of quasi-

orders, i.e. transitively closed graphs. The number of quasi-

orders is known for up to 16 nodes (Sloane, 2007, seq. A000798).

For n¼ 7, we already have almost 107 possible quasi-orders and

for n¼ 8 the number is > 6 � 109. Thus, exhaustive enumeration

is infeasible even for medium-sized studies. For large-scale

screens, we need search heuristics to explore model space. Our

approach to this problem is to concentrate on small sub-models

involving only pairs or triples of nodes.

2.2 Inference of pairwise relations

The smallest possible sub-model consists of pairs of genes. We

infer pairwise relations by choosing between four models for

each gene pair (x, y): either x! y (‘‘upstream’’, effects of x are

a superset of the effects of y), or x y (‘‘downstream’’, effects

of x are a subset of the effects of y), or x$ y (the effects of x

and y are undistinguishable) or x � � y (x and y are unrelated).

For every pair (x, y), we compute the Bayesian score detailed

above and select the maximum aposteriori (MAP) model

Mxy 2 fx y, x! y, x$ y, x � � yg.

The greatest advantage of this procedure is the increase in

speed. The number of models we have to score for n genes is
n
2

� �
� 4, which grows quadratically in the number of perturbed

genes and remains feasible even for hundreds of genes.

Additionally, building up the final graph is easy, since it is

defined by the set of all pairwise MAP models.

These advantages come at a cost. The most serious problem

is that pairwise learning treats all edges independently of each

other. But in a transitive graph, there must be a shortcut x! y

whenever there exists a longer path from x to y. To see how

easily mistakes can be introduced in pairwise inference,

consider the example in Figure 2. In the observed data

(rightmost plot), the profiles of x and z seem non-overlapping

(because of the FNs at E5 and E6), so the edge x! z could be

missed. One can also think of scenarios, where noise in

the data induces spurious edges in pairwise inference. To

address these problems, we concentrate on triples of nodes in

the next section.

2.3 Inference of triple relations

Inference from triples of genes instead of pairs is a natural way

to extend our inference method beyond the independence

M′xyz:

X Y Z

Expected Observed

X X

E1 E2 E3 E4 E5 E6E1E1 E2E2 E3E3 E4E4 E5E5 E6E6

FN FN

FN

FPY Y
Z Z

Fig. 2. A complete model. The left part of the figure shows a complete model M0xyz consisting of a transitively closed graph between genes and

assignments of genes to specific effects (the dashed arrows). Given the complete model, we can formulate a prediction of what effects to expect:

perturbing x should cause all effects, while perturbing y should only cause E3–E6, and perturbing z only E5 and E6 (middle plot). In reality, our

observations will be noisy: there can be false positive (FP) and false negative (FN) effect observations (right plot).

Nested effects models for high-dimensional phenotyping screens
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I Works with discretized data: there is either an effect (1) from
knocking out of Si on Ej or not (0)

I Assumes there are positive and negative control samples

I Allows for presence of false positives and false negatives in the
discretized data
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[13:32 16/12/2010 Bioinformatics-btq631.tex] Page: 239 238–244

Dynamic nested effects models

This article complements the attempt of Anchang et al. (2009)
to extend static NEMs to the modeling of perturbation time series
measurements. Most importantly, this allows for the resolution
of feedback loops in the signaling cascade, as well as for the
discrimination of direct and indirect signalling. In contrast to
Anchang et al. the key idea in our model is to unroll the signal
flow over time. This allows for a computation showing some
similarity to Dynamic Bayesian Networks and naturally extends
the classical NEM formulation introduced by Markowetz et al. Our
model circumvents the need for time consuming Gibbs sampling,
which makes it also computationally attractive.

2 METHODS

2.1 NEMs
For self-containedness, we start with a brief review of the original statistical
inference framework by Markowetz et al. (2005). In this framework, one
distinguishes between silenced/perturbed entities (genes or proteins, which
cannot be observed directly), called S-genes (S) and other entities (genes or
proteins) showing a measurable downstream effect (E-genes, E). The idea of
NEMs is to separate the upstream signaling pathway (the graph connecting
the S-genes) from the downstream signaling (the graph connecting S-genes to
E-genes). Consequently, the edge set of a NEM is partitioned into a directed
edge set connecting S-genes among themselves, and another one describing
the connections between the S-genes and the E-genes. It is assumed that each
E-gene is attached to at most one S-gene only. Knocking down a specific
S-gene Sk interrupts the signal flow in the downstream pathway, and hence
an effect on the E-genes attached to Sk or one of the S-genes depending on Sk

is expected. Perturbing each S-gene once will thus result in a nested subset
structure of effects, which can be used to reverse engineer the upstream
signal flow graph (Fig. 1).

The linking of E-genes to S-genes is formally represented by a binary
|S|×|E | matrix �= (�ij) with �ij =1, if effect j is linked to S-gene i and
�ij =0 otherwise. The cross-talk between S-genes (our network hypothesis)
is given by a binary |S|×|S| matrix �= (�ij), with �ij =1 whenever
S-gene i is upstream of S-gene j, and the convention �ii =1 for all i∈S.
A (static) NEM assumes that perturbing S-gene s∈S leads to an observable
downstream effect for E-gene e∈E , if there is a path from s to e, i.e. there
exists an s′ ∈S, such that �ss′ =1 and �s′e =1. Hence, matrices � and �

together determine whether a perturbation of s∈S has an effect on a E-gene
e∈E . Similarly, if several S-genes S ⊆S have been perturbed simultaneously,
an E-gene is affected if there is a path from at least one of the S-genes in S to
the respective E-gene. Suppose we have conducted a set K of perturbation
experiments. For each experiment k ∈K, let Sk ⊆S denote the set of S-genes
that has been actively perturbed. Note that at this point we generalize the
original formulation of NEMs (Markowetz et al., 2005) in a way that allows
for the integration of combinatorial perturbations.

Let D= (Dkj) be a |K|×|E | matrix of experimentally observed effects.
The entry of Dkj is a collection of all observations of E-gene j under the
perturbation(s) of Sk . It may consist of counts of how often a specific
gene showed a knockdown effect among � experiment repetitions, as
originally proposed by Markowetz et al. (2005). Alternatively, Fröhlich et al.
(2007, 2008) and Tresch and Markowetz (2008) suggested using log P-value
densities and log odds ratios, respectively, which are closely related to each
other (Fröhlich et al., 2009).

In general, a NEM model can be scored according to a likelihood function
of the form:

p(D |�,�)=
∏
i∈E

∏
k∈K

p(Dik |�,�) (1)

The local likelihoods p(Dik |�,�) are the building blocks of the NEM.
A meaningful way to define these local likelihoods and calculate them
efficiently is described in the Supplementary Material.

(a)

(b)

Fig. 1. Main idea of the inference framework by Markowetz et al. (a) A static
NEM is parametrized by a directed graph between S-genes encoded by �,
together with a directed graph attaching each E-gene to an S-gene given
by �. (b) Relation of perturbations and observable effects. A perturbation
of S-gene S2 affects the downstream signaling pathway (S3), and hence an
effect on the E-genes attached to S2 and to S3, namely E2 respectively E3, is
predicted (grey shading).

2.2 Dynamic NEMs (dynoNEMs)
The above model monitors static perturbation effects. Specifically, a
perturbation signal is supposed to propagate deterministically through the
whole S-gene network �. Cycles in � imply that perturbation effects are
indistinguishable within this model. As a matter of principle, it is impossible
to detect feedback loops in �. Thus, it is highly desirable to have time series
measurements of perturbation effects, which help resolve biological feedback
loops and distinguish direct from indirect effects.

From now on we suppose our data D to consist of a time series, i.e. D=
{Dij(t) | t =1,...,T}. These measurements could be P-values, counts or any
other kind of statistics quantifying the effect of a knockdown for E-gene i
under perturbation of S-gene j at time t (see Supplementary Material). The
time variable t here denotes the index of a time point in a discrete time series,
but not the time point itself.

As an example, suppose the biological ‘truth’ is given by the signaling
pathway shown in Figure 1a. We unroll the signal flow in this network
over time (Fig. 2) in the following way: the node set E(t)={E(t),E ∈E},
S(t)={S(t), S ∈S} of the dynamic network consists of a copy of the static
network nodes, one for each timepoint t =1,...,T . An E-gene E(t) is linked
to S(t) whenever E is linked to S in the static situation, i.e. it is determined
by the same matrix � as in the static case. The actual unrolling takes
place in the wiring of the S-genes. Informally, the static adjacency matrix
� is converted to a |S|×|S| weighted adjacency matrix � = (�ij), where
0 means no edge and a value �ij >0 implies an influence of node i on
E-genes downstream of node j delayed by �ij time steps. Specifically, we
have T ≥�ij ≥�ij for i,j∈S. A non-zero entry �ij �=0 implies that there
are edges Si(t)→Sj(t+�ij), t =1,...,T −�ij . Furthermore, we make the
convention �ii =1. Please note again that we neither aim to model physical
signaling nor downstream transcription times. Instead, a positive time lag
between nodes i and j in our model describes the number of time steps, after
which a knockdown of node i results in an observed effect downstream of
node j. This specifically implies that we do not need any assumptions about
the physical time it takes a signal at node j to produce a downstream effect
at an E-gene.

In contrast to classical Dynamic Bayesian Networks (Ghahramani, 1997),
an edge in our model may not connect consecutive time layers, but it may
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I In the simplest form (a) a chain
with 3 nodes is assumed, and the
model tries to learn the relationship
between S genes based on the E
genes that are affected by each
perturbation (b)

I The matrix Φ is the influence
matrix discussed before

I To simplify computation, the task
of structure learning is broken
down into triplets of S genes
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Clustering defines groups of genes with similar phenotypic

profiles, but may miss the hierarchy in the observed perturba-

tion effects, as is exemplified in Figure 1. Perturbing some genes

may have an influence on a global process, while perturbing

others affects subprocesses of it. Imagine, e.g. a signaling

pathway activating several transcription factors (TFs). Blocking

the entire pathway will affect all targets of the TFs, while

perturbing a single downstream TF will only affect its direct

targets, which are a subset of the phenotype obtained by

blocking the complete pathway. Boutros et al. (2002) show that

by this reasoning non-transcriptional features of signaling

pathways can be recovered from gene-expression profiles.

However, no previous computational method is applicable to

infer models from biological subset relations on data sets

screening whole pathways.
Nested effects models. We will call a model encoding the

(noisy) subset relations between the effects observed after

perturbing the target genes a Nested Effects Model (NEM).

It can be seen as a generalization of similarity-based clustering,

which orders (clusters of) genes according to subset relation-

ships between the sets of phenotypes. In this article, we develop

a Bayesian method to infer NEM from large-scale data sets.
Our method builds on preliminary work by Markowetz et al.,

(2005), which is specifically designed for inference from indirect

information and also takes the imbalance between spurious

and missed effects into account. Previously, this method was

limited to small-scale scenarios of up to six genes, where model

search can be done by exhaustive enumeration. Scaling upmodel

search to larger numbers of perturbed genes is a non-trivial

problem due to the constraints imposed on the model by

having only indirect information of the underlying genetic

network. Here, we approach the problem of inferring a hierarchy
on the set of all perturbed genes by constructing it from smaller

sub-models containing only pairs or triples of genes. Such ‘divide-
and-conquer’-like approaches are regularly used in high-

dimensional statistical inference, e.g. for estimating large

phylogenetic trees (Strimmer and von Haeseler, 1996) or
learning Gaussian graphical models for regulatory networks

(Wille et al., 2004). Our resulting method is the first one to make

inference of NEMs feasible on a pathway-wide scale.
The next section introduces our novel methodology in detail.

In Section 3, we demonstrate the applicability of our methods

in a controlled simulation study, and in Section 4 we describe

results for two experimental data sets. We show that the subset
relations retrieved actually reflect the regulatory functions of

the genes involved.

2 ALGORITHM

Data. We assume that data is given in the form of a binary
matrix D with columns corresponding to perturbation experi-

ments on one of n genes (replicates are possible) and rows to
one of m possible effects E1, . . . ,Em. A phenotypic profile Px of

gene x consists of a binary vector of length m with a PxðEiÞ ¼ 1

denoting that effect Ei occurred after perturbing gene x, and
PxðEiÞ ¼ 0 denoting that it did not.

Subset relations between phenotypic profiles. Instead of
similarity, we will consider subset relations between phenotypic

profiles. We say that gene x is upstream of gene y

(c) Nested Effects Model(a) Data (b) Clustering

A B C D GFE H

A B

C D E F

G H

A B

C D

E F

(d) Subset structure

G H

G HA B C D EF

Fig. 1. An introduction to Nested Effects Models. Plot (a) shows a toy dataset consisting of phenotypic profiles for eight perturbed genes (A, . . . ,H).

Each profile is binary with black coding for an observed effect and white for an effect not observed. The eight profiles are hierarchically clustered,

showing that they fall into four pairs of genes with almost identical phenotypic profiles: (A,B), (C,D), (E,F) and (G,H), as shown in plot (b). An

important feature of the data missed by clustering is the subset structure visible between the profiles in the data set: the effects observed when

perturbing genes A or B are a superset to the effects observed for all other genes. The effects of perturbing G or H are a subset to all other genes’

effects. The pairs (C,D) and (E,F) have different but overlapping effect sets. The directed acyclic graph (DAG) shown in plot (c) represents these

subset relations, which are shown in plot (d). Compared to the clustering result in plot (b) the NEM additionally elucidates relationships between the

clusters and thus describes the dominant features of the data set better.

F.Markowetz et al.
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I Reconstruction of network of S genes is performed by first
clustering the E genes into groups with similar patterns

I It is then decided whether a cluster is up-stream or
down-stream the other one based on the patterns of effects
(subset relationships)
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> library(nem)

> data("BoutrosRNAi2002")

> disc <- nem.discretize(D=BoutrosRNAiExpression,neg=1:4,pos=5:8)

> res <- nem(D=disc$dat,para=disc$para,inference="search")

nem(D, ...)

D data matrix with experiments in the columns (binary or continuous)

I R package nem implements the original NEM model, as well as
some of its extensions

I The package works well for up to ∼ 100 S genes (though very
slow), but may not work for larger experiments
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The RIPE Algorithm2

MC-DFS/Backtracking 

SCC 

Influence Graph 

Constrained PLDAG (S. & Michailidis, 2010) 

2Regulatory Network Inference from joint Perturbation and Expression data
(Shojaie et al, 2014), package ripe on github
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The RIPE Algorithm

RIPE integrates two sources of data, from perturbation screens
and steady-state expression profiles, to give better estimates of
regulatory networks

I) Use perturbation data to determine causal ordering(s) among
nodes

II) For each ordering from step (I), use steady-state gene
expression data to estimate the structure of the graph

III) Use model averaging to construct a consensus graph
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Step I) Determining Causal Orderings
I First, obtain the influence graph P from the perturbation data

(this can be done many different ways: p-value
cutoff/fold-change cutoff etc)

In absence of noise, the influence graph is obtained from the
original graph by connecting node i to j if there is a directed
path from i to j

In practice, the estimated influence graph will likely include
false positive and false negative edges.

g1
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g3

g2
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c©Ali Shojaie SISG: Pathway & Networks 46



Step I) Determining Causal Orderings
I First, obtain the influence graph P from the perturbation data

(this can be done many different ways: p-value
cutoff/fold-change cutoff etc)

I In absence of noise, the influence graph is obtained from the
original graph by connecting node i to j if there is a directed
path from i to j

In practice, the influence graph will likely include false positive
and false negative edges.
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Step I) Determining Causal Orderings
I First, obtain the influence graph P from the perturbation data

(this can be done many different ways: p-value
cutoff/fold-change cutoff etc)

I In absence of noise, the influence graph is obtained from the
original graph by connecting node i to j if there is a directed
path from i to j

I In practice, the influence graph will likely include false positive
and false negative edges.
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Step I) Determining Causal Orderings

I Create a hyper-graph of strong
connected components (SCC),
where each node is a collection of
≥ 1 nodes that cannot be further
ordered (i.e. there is a cycle).

I Find an ordering (topological
sorting) of the SCC graph (note,
this is by construction a DAG)
using Depth First Search
algorithm (DFS).

I Find all possible orderings of each
connected component (using
backtracking algorithm of Knuth,
or Monte Carlo DFS MC-DFS)

�
�

�

�

�

�

�
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Step II) Estimation of the Structure

I Given a topological ordering of nodes, the nodes of the graph
can be rearranged to form a DAG

I For each ordering, estimate (the structure of) one DAG using
the penalized likelihood method of the previous lecture, (by
solving p − 1 lasso regression problems):

Âk,1:k−1 = arg min
θ∈Rk−1



n−1‖X1:k−1θ − X,k‖2

2 + λ
k−1∑

j=1

|θj |wj




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Step III) Building a Consensus Graph

I For each ordering, the
estimated graph is a DAG

I However, the true graph may
include cycles. Also, results
from one ordering may be
inaccurate (noise...).

HHistogram of Negativve penalizeed log‐Likeelihoods 

 

I Solution: average over edges with the best scores:

Âc
i ,j =

1

|Q|
∑

k∈Q
1{|Ak

i,j |>0} Ê = {(i , j) : Âc
i ,j ≥ τ}

I Lq: lower qth quantile of (penalized) negative log-likelihoods
I Q = {o ∈ O : `(o) ≤ Lq} set of orderings for these likelihoods
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Simulate Network: DAG of size p = 20
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Data Generation

Perturbation data: Adjacency matrices of true and noisy influence
graphs

P0 P1 P2 P3

Steady-state expression data: generated n = 50 Gaussian
observations according to the true DAG.
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Comparison of F1 measures
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How Many Orderings?

For P3, there are a total of 3962 orderings using the backtracking
algorithm.
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High Dimensional Cyclic Graphs (p = 1000)
Effect of FP and FN errors New Simulation, p=100
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A More Complicated Example: DREAM-4 Challenge

I The DREAM project (Dialogue for Reverse Engineering
Assessments and Methods) is an attempt to construct realistic
regulatory networks

I DREAM-4 challenge had multiple competitions, including
reverse engineering 5 networks of size 100 selected from true
regulatory components of yeast and E-coli.

I The perturbation data is simulated based on the true network
(using coupled ODE)

I Two types of perturbation data are available: knockout and
knockdown experiments

I The algorithm of Pinna et al (PINNA) was the winner of the
high dimensional reconstruction challenge (on networks of size
100)
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DREAM Network 1 (Simplest)
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DREAM Network 5 (Most Difficult!)
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Comparison of F1 Measures
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Example of estimated modules
Largest cyclic component in DREAM1 network

When the perturbation data includes cycles, the consensus graph
will be cyclic.

True Graph
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Estimated Graph
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Network of Yeast Transcription Factors

I 269-node corresponding to known yeast TF’s (p = 269)

I Perturbation data: knockout experiments from Hu et al
(2007, Nat Genetics)

I Steady-state expression data: n = 200 day-to-day variation
samples of yeast (publicly available), not really iid!

I Used 10,000 orderings

I To evaluate: use available data on yeast regulatory network,
which is (most likely) incomplete. Therefore, “false positives”
may be true edges
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Network of Yeast Transcription Factors

I Significance of true positives (TP), in comparison to the
BioGrid network

I Histograms show number of TP’s in random networks of
equal sizes
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Extension: k � p

I In many biological experiments, perturbation screens are only
run on a subset of genes (k out of p)

I If perturbation is available on TFs, the RIPE algorithm can be
modified to estimate the network

RIPE Performance in yeast regulatory network (6051 genes)

no of TP
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15
0

20
0
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TP =134, |E|=10014 (p−value<0.001)
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Summary

• Estimation of regulatory networks is difficult! In addition to need for
causal inference, the presence of feedback loops, and the small
sample size of biological experiments hinder estimation of directed
regulatory networks

• Available data differ in informational content and available sample
size (and hence noise level)

• Time-course and perturbation data offer greater potential for
learning the structure of DAGs; however, they also introduce new
challenges.

• Computational complexity is a bottleneck of many proposed
methods, many existing methods are approximations of the biology,
or make strong assumptions

• This is an active area of research, with many methods being
developed and implemented...
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Yeast GAL Pathway
Ideker et al, 2001
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Issues of Interest

I Incorporate the network information

I Consider changes in the gene (protein, metabolite) expressions

I Consider changes in the network structure

I Test the “effect” of pre-specified subnetwork/pathway, sharing
common biological function, chromosomal location etc

I A general framework for inference in complex experiments
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Recap: Gene Set Enrichment Analysis

Subramanian et al. (2005) proposed gene set enrichment analysis
(GSEA); Efron & Tibshirani (2007) formalized the GSEA
approach, and proposed a more efficient test statistic

I Test the significance of a priori defined gene sets

I Preserve the correlation among genes in the gene set

I Based on a competitive null hypothesis, where activity of each
pathway is compared with other pathways, often using a
permutation test

I Competitive tests of enrichment assume that a small number
of genes have differential activity, and are very sensitive to the
choice of gene sets, they also problem with

I Self-contained tests address these issues, but may be less
efficient or sensitive to model assumptions (Goemen &
Buhlmann (2007), Ackermann & Strimmer (2009))
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Signaling Pathway Impact Analysis (SPIA)

I Combines classical overrepresentation analysis (ORA) with
measure of perturbation of a given pathway under a given
condition

I A bootstrap procedure is used to assess the significance of the
observed pathway perturbation (difficult to extend to
comparison of > 2 conditions)

I Currently not applicable to all pathways (more later)

I Models each pathway separately (ignores connections among
pathways)

I Implemented in the Bioconductor package SPIA
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The SPIA Methodology

SPIA combines two types of evidence

(i) the overrepresentation of DE genes in a given pathway

I measured by the p-value for the given number of DE genes
PNDE = P(X ≥ NDE | H0)
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The SPIA Methodology

SPIA combines two types of evidence

(ii) the abnormal perturbation of the pathway
I the perturbation for each gene in the pathway is defined as

PF (gi ) = ∆E (gi ) +
∑p

j=1 βij
PF (gj )
NDS (gj )

I PF (gi ) is the perturbation factor of gene i (not known)
I βij is the magnitude of effect of gene j on gene i ; currently,

betaij = 1 if j → i
I ∆E (gi ) is the fold change in expression of gene i
I NDS(gj) is the number of downstream genes from gene j
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The SPIA Methodology

I The accumulated activity of each gene can then be calculated
as ACC (gi ) = B · (I − B)−1∆E

I B is the normalized matrix of β’s: Bij = βij/NDS(gj)
I ∆E is the vector of fold changes
I Requires B to be invertible; would not work otherwise

I The total accumulated perturbation of the pathway is then
given by tA =

∑
i ACC (gi )

I The p-value for pathway perturbation is given by
PPERT = P(TA ≥ tA | H0), which is calculated using a
bootstrap approach
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The SPIA Methodology
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The SPIA Methodology

SPIA combines two types of evidence
I The final p-value for each pathway is calculated based on the

p-values from parts (i) and (ii):
I PG (i) = ci − ci ln(ci )
I ci = PNDE (i)PPERT (i)
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An Example in R: Data on Colorectal Cancer

data(colorectalcancer)

#pathway analysis using SPIA

#use nB=2000 or higher for more accurate results

#uses older version of KEGG signaling pathways graphs

res <- spia(de=DE_Colorectal, all=ALL_Colorectal, organism="hsa", beta=NULL,

nB=2000, plots=FALSE, verbose=TRUE, combine="fisher")

#now combine pNDE and pPERT using the normal inversion method without

#running spia function again

res$pG=combfunc(res$pNDE,res$pPERT,combine="norminv")

res$pGFdr=p.adjust(res$pG,"fdr")

res$pGFWER=p.adjust(res$pG,"bonferroni")

plotP(res,threshold=0.05)

#highlight the colorectal cancer pathway in green

points(I(-log(pPERT))~I(-log(pNDE)),data=res[res$ID=="05210",],col="green",

pch=19,cex=1.5)
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The SPIA Methodology
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Network-Based Gene Set Analysis (NetGSA)

I Combines the ideas of gene set analysis methods, and
network-based single gene analysis

I Generalizes SPIA, to allow for more complex experiments &
incorporate interactions among pathways

I Assesses the overall behavior of arbitrary subnetworks
(pathways): changes in gene expression & network structure

I Uses latent variables to model the interaction between genes
defined by the network

I Uses mixed linear models for inference in complex data

I Computationally challenging for large networks (e.g. not
applicable to whole genome sequencing data) unless,
pathways separated (similar to SPIA)
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Problem Setup

I Gene (protein/metabolite) expression data for K experimental
conditions and Jk time points

I Network information (partially) available in the form of a
directed weighted graph G = (V ,E ), with vertex set V
corresponding to the genes/proteins/metabolites and edge set
E capturing their associations

I Edges in the network can be directed j → k or undirected
j ↔ k

I Edges defines the effect of nodes on their immediate
neighbors; the weight associated with each edge corresponds
to the value of partial correlation

I Represent the network by its adjacency matrix A: Ajk 6= 0 iff
k → j & for undirected edges, Ajk = Akj

I Pathways defined a priori based on common biological
functions, etc
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The Latent Variable Model: Main Idea

X1 = γ1

X2 = ρ12X1 + γ2 = ρ12γ1 + γ2

X3 = ρ23X2 + γ3 = ρ23ρ12γ1 + ρ23γ2 + γ3

Thus X = Λγ where

Λ =




1 0 0
ρ12 1 0

ρ12ρ23 ρ23 1




c©Ali Shojaie SISG: Pathway & Networks 15

The Latent Variable Model

I Let Y be the ith sample in the expression data

I Let Y = X + ε, with X the signal and ε ∼ Np(0, σ2
ε Ip) the

noise

I The influence matrix Λ measures the propagated effect of
genes on each other through the network, and can be
calculated based on the adjacency matrix A

I Using X = Λγ, we get

Y = Λγ + ε, ⇒ Y ∼ Np(Λµ, σ2
γΛΛ′ + σ2

ε Ip)

where γ ∼ Np(µ, σ2
γ Ip) are latent variables
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Mixed Linear Model Representation

Rearranging the expression matrix into np-vector Y, we can write

Y = Ψβ + Πγ + ε

where β and γ are fixed and random effect parameters and

ε ∼ Nnp(0,R(θε)), γ ∼ Nnp(0, σ2
γInp)

• Temporal Correlation incorporated through R

In general, the design matrices, Ψ and Π depend on the
experimental settings (similar to ANOVA), and are functions of Λ
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Estimation of MLM Parameters

MLE for β:

β̂ = (Ψ′Ŵ−1Ψ)
−1

Ψ′Ŵ−1Y

where W = σ2
γΠΠ′ + R.

β̂ depends on estimates of σ2
γ and θ2

ε (estimated using restricted
maximum likelihood (REML)).
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Inference using MLM

I Let ` be a contrast vector (a linear combination of fixed
effects), and consider the test:

H0 : `β = 0 vs. H1 : `β 6= 0

I Use t-test to test the significance of each hypothesis
separately

T =
`β̂√
`Ĉ`′

where C = (Ψ′W−1Ψ)
−1

I Under the null hypothesis, T is approximately t-distributed
with degrees of freedom that needs to be estimated
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“Optimal” Choice of Contrast Vector

I One intuitive choice is to use the indicator vector for the
members of pathway b, but this only reflects changes in the
mean vector

I Need to de-couple the effect of each subnetwork from other
nodes

I Can be shown that (bΛ · b)γ is not affected by nodes outside
b, but includes the effects of nodes in b on each other

I In the case-control case, the optimal contrast vector is:

`∗ =
(
−b · bΛC ,b · bΛT

)

c©Ali Shojaie SISG: Pathway & Networks 20



“Optimal” Choice of Contrast Vector

Λ =




1 0 0
ρ12 1 0

ρ12ρ23 ρ23 1




Consider the set, b = (0, 1, 1); then

(bΛ) = (ρ12 + ρ12ρ23, 1 + ρ23, 1)

On the other hand,

(bΛ · b) = (0, 1 + ρ23, 1)
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Comparison in Simulated Data

Subnetwork Mean Network Influence
1 µ1 = µ2 = 1 ρ1 = ρ2 = 0.2
2 µ1 = 1, µ2 = 2 ρ1 = ρ2 = 0.2
3 µ1 = µ2 = 1 ρ1 = 0.2, ρ2 = 0.7
4 µ1 = 1, µ2 = 2 ρ1 = 0.2, ρ2 = 0.7
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Yeast Galactose Utilization Pathway

Ideker et al (2001) data on yeast Galactose Utilization Pathway

I Gene expression data for 2 experimental conditions: (gal+)
and (gal–)

I Gene-gene and protein-gene interactions as well as association
weights found from previous studies

I Q: which pathways respond to the change in growth medium?
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Analysis of Yeast GAL Data

I Data:
I gene expression data for 343 genes
I 419 interactions found from previous studies and integration

with protein expression (association among genes also
available)

I Results:
I GSEA finds Galactose Utilization Pathway significant
I NetGSA finds several other pathways with biologically

meaningful functions related to survival of yeast cells in gal–

c©Ali Shojaie SISG: Pathway & Networks 24



c©Ali Shojaie SISG: Pathway & Networks 25

c©Ali Shojaie SISG: Pathway & Networks 26



Environmental Stress Response in Yeast

Gene expression data on Yeast Environmental Stress Response
(ESR) (Gasch et al., 2000)

I 3 combinations of experimental factor, heat shock and
osmotic changes (sorbitol), over 3 time points

I Temporal correlation

I Network correlation
I Q: Which pathways indicate response to environmental stress

I in different experimental conditions
I over time
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Yeast ESR Data
Gasch et al (2000)

I Gene Expression Data

Experiment Obs. Time (after 33C)
Mild heat shock (29C to 33C), no sorbitol 5, 15, 30 min
Mild Heat Shock, 1M sorbitol at 29C & 33C 5, 15, 30 min
Mild Heat Shock, 1M sorbitol at 29C 5, 15, 30 min

I Network Data
I Use YeastNet (Lee et al., 2007) for gene-gene interactions (102,000

interactions among 5,900 yeast genes)
I Use independent experiments of Gasch et al. to estimate weights
I Pathways are defined using GO functions
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Model and Results

I Model: Let j and k be indices for time and levels of sorbitol

EY11 = Λµ, EYjk = Λ(µ+ αj + δk) j , k = 2, 3

I Temporal correlation is modeled directly via R (as AR(1) process)

I Results:

I ∼ 3000 genes,
I 47 pathways showed significant changes of expression
I 24 pathways showed changes over time
I 29 pathways showed changes in response to different sorbitol levels
I 12 pathways showed both types of changes
I Significant pathways overlap with the gene functions recognized by

Gasch et al.
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Yeast ESR Network

Non-DE 
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Significant subnetworks

a) Cell Cycle

b) Secretion

c) Signaling

d) Respiration
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Expression Profiles
Average Standardized Expression Levels of Pathways

I Induced and Suppressed Pathways

I Can observe the transient patterns of expressions as predicted by
Gasch et al.
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Effect of Noise In Network Information

I Let Ã be observed network information, and A be the truth.

I It can be shown that, if ‖Ã− A‖ is small then, NetGSA still
works (is asymptotically most powerful unbiased test)
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Metabolic Profiling in Bladder Cancer

Targeted metabolic profiling of bladder cancer (BCa) (Putluri et
al., 2012)

I 58 bladder cancer and adjacent benign samples

I Pathways information obtained from KEGG

I Varying number of identified metabolites per pathway (3-15)

I Q: Which pathways show differential activity in BCa?
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Metabolic Profiling in BCa

I 63 metabolites identified, mapped to 70 pathways

I 27 pathways with at least 3 members

Fatty acid biosynthesis
Biosynthesis of unsaturated fatty acids
Sulfur metabolism
Lysine degradation
Alkaloid biosynthesis II
Methionine metabolism
Valine, leucine and isoleucine biosynthesis
Pyrimidine metabolism
Valine, leucine and isoleucine degradation
Pantothenate and CoA biosynthesis
Phenylalanine, tyrosine and tryptophan biosynthesis

−4 0
Row Z−Score

Color Key
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Metabolic Profiling in BCa

I Small pathway sizes & significant overlap among pathways
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I Existing methods may not work well...
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Metabolic Interaction Network
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Significant Pathways

I GSEA does not identify any pathway as differential

I GSA identifies Fatty Acid Biosynthesis as differential

I NetGSA identifies another 7 pathways corresponding to role of
Amino Acid Metabolism in BCa, also observed by Putluri et al
(2012)
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R package netgsa

I Basic usage:

NetGSA(A1, A2, x, y, B)

I A1,A2: p × p weighted adjacency matrices for condition 1 and
2 (e.g. normal vs cancer), to allow for changes in the network

I B: a K × P 0-1 matrix of pathway membership: Bk,j = 1 if
gene/protein/metabolite j in pathway k

I Output: test statistics and p-values for each pathway

I In the current version, only two conditions are supported (e.g.
cancer vs. normal); extension for multiple conditions will be
released (hopefully) soon

I The code above takes weighted A1, A2 as input. However,
the package includes functions that allow you to enter a
(partial) edge list as input, and estimate A1, A2 for the case
of undirected networks
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Summary

I Network-based enrichment analysis methods (SPIA, NetGSA)
can be more powerful (if their assumptions are not violated!)

I Active area of research: a number of other methods have been
recently proposed

I Focus is shifting towards estimating changes in the structure
of networks: differential network biology1

1Ideker & Krogan (2012)
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