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Overview

This material comes in several parts:

Part One – background

• Primer/reminder of significance testing – why we use this

approach, what it tells us

• A little more about confounding (see earlier material on

structure)

• Review of multiple testing
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Overview

Part Two – single variant association tests

• How tests work
• Adjusting for covariates; how and why
• Trait transformation (briefly)
• Issues of mis-specification, and small samples
• Binary outcomes (briefly)

– then a hands-on session, with discussion

Part Three – multiple variant association tests

• Burden tests, as an extension of single-variant methods
• Introduction to SKAT and why it’s useful
• Some issues/extensions of SKAT (also see later material on

variant annotation)

– then another hands-on session, with discussion
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Overview

Part Four – faster/cheaper ways to compute

Probably not discussed in class, but some ideas & links for you

to explore:

• Why are these tests slow?

• Exploiting sparsity

• Hand-coding projections

• FastSKAT, and related ideas

– no exercises for this material
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Part 1: Background
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About you: hands up please!

I have used: P -values
Linear regression

Logistic regression
Mixed models

I have experience with: WGS/GWAS/expression data

I honestly understand p-values: Yes/No (...honestly!)

I last took a stats course: 1/2/4/10+ years ago

p < 5× 10−8 gets me into Nature: Yes/No
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Aims

Teaching inference in ≈ 30 minutes is not possible. But using

some background knowledge – and reviewing some important

fundamental isses – we can better understand why certain

analysis choices are good/not so good for WGS data.

• Hands-on material also shows you how to implement par-

ticular analyses – mostly familiar, if you’ve run regressions

before

• Some advanced topics may be skipped – but see later

sessions, and consult these slides back home, if you have

problems

• There are several ways to think about this material – the

version you’ll see connects most directly with WGS analysis,

in my opinion

Please interrupt! Questions are helpful, and welcome.
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Testing

Before the formalities, an example to make you quiver;
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Testing
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Testing

Before the formalities, an example to make you quiver;
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Testing: more formally

You must have something to test – a null hypothesis, describing
something about the population. For example;

• Strong Null: Phenotype Y and genotype G totally unrelated
(e.g. mean, variance etc of Y identical at all values of G)
• Weak Null: No trend in mean Y across different values of
G (e.g. β = 0 in some regression)

The strong null seems most relevant, for WGS ‘searches’ – but
it can be hard to pin down why a null was rejected, making
interpretation and replication difficult.

Testing the weak null, it’s easier to interpret rejections, and
replication is straightforward – but have to carefully note that
tests catch trends in the mean Y and nothing else.

(One-sided nulls, e.g. β ≤ 0 are not considered here.)
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Testing: more formally

Having establish a null hypothesis, choose a test statistic for
which;

1. We know the distribution, if the null holds

2. We see a different distribution, if the null does not hold

For example, in a regression setting;

1. Z = β̂1/est std error ∼ N(0,1), if β1 = 0

2. Z = β̂1/est std error is shifted left/right, on average, if β1 <

0, β1 > 0 respectively

Particularly for strong null hypotheses, there are many reason-
able choices of test statistic – more on this later.

1.8



Testing: calibration

1. We know the distribution, if the null holds

This is important! It means;

• We can say how ‘extreme’ our data is, if the null holds

• If we ‘reject’ the null hypothesis whenever the data is in

(say) the extreme 5% of this distribution, over many tests

we control the Type I error rate at ≤ 5%

For a test statistic T – with the observed data on LHS;

Replications (infinitely many, and under the null)

50 100 150
Your data

(truth unknown)

T
(Y

)
c
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Testing: calibration

P -values are just another way of saying the same thing. A p-value

answers the following questions;

• Running the experiment again under the null, how often

would data look at least as extreme as our data?

• What is the highest Type I error rate at which our data

would not lead to rejection of the null hypothesis?

(These are actually equivalent.) All definitions of p-values involve

replicate experiments where the null holds.

In WGS, we (or someone) will do replicate experiments, in which

the null holds∗, so this concept – though abstract – is not far

removed from real, tangible concerns.

* ...or something very close to it, though we hope not
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Testing: calibration

Picturing the ‘translation’ between the test statistic T and p-
value;

Replications (infinitely many, and under the null)

50 100 150Your data

T
(Y

)

and p-value scale;

Replications (infinitely many, and under the null)

p(
Y

)

50 100 150
Your data

(truth unknown)

0
1

It’s usually easiest to implement tests by calculating p, and seeing
whether p < α. And as our choice of α may not match the
reviewer’s, we should also always report p from our data.
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Interpreting tests

Everyone’s favorite topic;

... a puzzle with missing peas?
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Interpreting tests

The version of testing we do in WGS is basically significance

testing, invented by Fisher.

We interpret results as;

• p < α: Worth claiming there is something interesting going
on (as we’re then only wrong in 100× α% of replications)
• p ≥ α: Make no conclusion at all

... for a small value of α, e.g. α = 0.00000001 = 10−8

For p ≥ α, note we are not claiming that there is truly zero
association, in the population – there could be a modest signal,
and we missed it, due to lack of power.

So, don’t say ‘accept the null’ – the conclusion is instead, that
it’s just not worth claiming anything, based on the data we have.
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Interpreting tests

Just not worth claiming anything, based on the data we have

• This is a disappointing result – but will be a realistic and
common one
• More positively, think of WGS as ‘searching’ for signals –

needles in haystacks – and finding a few
• We focus on the signals with highest signal:noise ratios – the

low-hanging fruit
• We acknowledge there are (plausibly) many more nee-

dles/fruit/clichés out there to be found, when more data
become available – and we are not ‘wrong’, because not
claiming anything is not ‘accepting the null hypothesis’ and
so can’t be incorrectly accepting the null, a.k.a. ‘making a
Type II error’

Beware! This is all not the same as a negative result in well-
powered clinical trial – which not all stat courses acknowledge.

1.14



Interpreting tests

Let’s play Name that Cliché! (Seattle edition)

In WGS, there are almost certainly many “signals” we will not

find: we just focus on the few we can reliably identify – and

replicate, often.
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Interpreting tests

Slightly more optimistically, say we do get p < α. Is our ‘hit’ a

signal? It’s actually difficult to tell, based on just the data;

• Most p-values are not very informative;

– There’s at least (roughly) an order of magnitude ‘noise’ in

small p-values; even for a signal where we expect p ≈ 10−6,

expect to see anything from 10−5–10−7; a broad range

– Confounding by ancestry possible (i.e. we found a signal

but not an interesting one)

– If you do get p = 10−ludicrous, there may be issues with

the validity of your reported p-values

• Does the signal look like ones we had power to detect? Good

question, but hard to answer because of Winners’ Curse

• So most journals/other scientists rely on replication – quite

sensibly – and are not interested in the precise value of p < α
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Interpreting tests

What does my WGS have power to detect?

• Do power calculations. These found that, for plausible∗

situations, doing efficient tests, we might have e.g. 20%
power
• This means;

– 1 in 5 chance of finding that signal, rejecting its null
– Have to be lucky to find that particular true signal
– P -values for this signal look quite similar to those from

noise – a little smaller, on average
• However, if there are e.g. 50 variants for which we have 20%

power, we expect to find 50×0.2 = 10 signals, and we would
be very unlucky not to find any.

So WGS is worth doing – but won’t provide all the true signals,
or even most of them. (For single variant tests, Quanto is
recommended for quick power calculations)

*... we don’t know the truth; these are best guesses
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Interpreting tests

Most problems with p-values arise when they are over -interpreted

• Getting p < α is not ‘proof’ of anything. p < α is entirely

possible, even if no signals exist

• p-values measure signal:noise, badly;

– β̂ and its std error measure signal and noise much better

– Smaller p-values in one study do not indicate that study

is ‘better’ – even if the difference is not noise, that study

may just be larger

– Smaller p-values in one analysis have to be checked

carefully – are they calibrated accurately, under the null?

Is the difference more than noise?

• p-values are not probabilities that the null hypothesis is true.

This is “simply a misconception” [David Cox]
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Confounding

Confounding: the ‘pouring

together’ of two signals.

In WGS: finding a signal, but not one that leads to novel

understanding of the phenotype’s biology.
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Confounding

A population where there is a real association between phenotype
and genotype;

G

Y

AA Aa aa

Linear regression (or other regressions) should find this signal.
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Confounding

But the same population looks much less interesting genetically,
broken down into ancestry groups;

G

Y

AA Aa aa

This effect is population stratification a form of confounding.

1.21



Confounding

Of course, this association is not interesting – within each group,

there is no association.

• It’s still an association! Confounding – getting the wrong

answer to a causal question – does not mean there’s ‘nothing

going on’

Suppose, among people of the same ancestry, we see how mean

phenotype levels differ by genotype;

• Imagine ancestry-specific regressions (there may be a lot of

these)

• Average the β1 from each ancestry group

• If we test whether this average is zero, we’ll get valid tests,

even if there is stratification
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Confounding

In practice, we don’t have a fixed number of ancestry groups.

Instead we fit models as follows;

Mean(Y ) = β0 + β1G+ γ1PC1 + γ2PC2 + γ3PC3 + ...

... i.e. do regression adjusting for PC1, PC2, PC3 etc. (Logistic,

Cox regression can be adjusted similarly)

• Among people with the same ancestry (i.e. the same PCs)

β1 tells us the difference in mean phenotype, per 1-unit

difference in G

• If the effect of G differs by PCs, β1 tells us a (sensible)

average of these genetic effects

• If the PCs don’t capture all the confounding effects of

ancestry on Y – for example through non-linear effects –

then this approach won’t work perfectly. But it’s usually

good enough

1.23



Confounding

Why not adjust for other variables? Ancestry (and/or study)
affects genotype, and often phenotype – through e.g. some
environmental factor;

G Y

A

?
G Y

A E

?

If we could adjust (adequately) for E, the confounding would be
prevented. But genotype is very well-measured, compared to
almost all environmental variables∗ – so adjusting for ancestry
(and study) is a better approach.

* the relevant ‘E’ may not even be known, let alone measured
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Confounding

What about other confounders? (Er... there aren’t any)

G Y

A

C

?
G Y

A

S

?
G Y

A

S

?

Any other confounder C affects G and Y – and is not ancestry.

Adjusting for sex (or smoking, or age) can aid precision – though

often not much – but also removes any real genetic signals that

act through that pathway, i.e. reduces power. Plan carefully!
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Multiple tests: small α

A classical view;
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Multiple tests: small α

Why does α have to be so small?

• We want to have very few results that don’t replicate

• Suppose, with entirely null data, we test 10M variants at

α = 1/10M ; we expect = 1/10M × 10M = 1 false positives,

by chance alone, regardless of any correlation

• If we are well-powered to detect only 10 true signals, that’s

a false positive rate around 1/11 ≈ 9%. If there was just one

such true signal, the false positive rate would be about 50%,

i.e. about half the results would not be expected to replicate

Thresholds have to be roughly 1/n.tests; this threshold is only

conservative because our haystack contains a lot of non-needles

we search through.

(See also upcoming empirical work by Chen, Mukherjee & Boehnke, arguing

that 5× 10−8 is about right for lipids.)
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Multiple tests: small α

But ‘multiple testing is conservative’

• No it’s not, here

• Bonferroni correction is conservative, if;

– We care about the probability of making any Type I errors

(‘Family-Wise Error Rate’)

– High proportion of test statistics are closely correlated

– We have modest α, i.e. α = 0.05

• If we have all three of these, Bonferroni corrects the actual

FWER well below the nominal level. But we don’t have all

three, so it’s not.

(A corollary from this: filters to reduce the multiple-testing

burden must be severe and accurate if they are to appreciably

improve power – see later material on annotation.)
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Multiple tests: Winners’ curse

A consequence of using small α is that Winner’s Curse∗ – effect

estimates in ‘hits’ being biased away from zero – is a bigger

problem than we’re used to in standard epidemiology

• Why is it such a big problem?

• Roughly how big a problem is it?

*...also known as regression towards the mean, regression toward mediocrity,

the sophomore slump, etc etc
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Multiple tests: Winners’ curse

We reject the null when observed signal:noise is high; this isn’t

100% guaranteed, even in classic Epi;
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Multiple tests: Winners’ curse

In rare-variant work, much bigger datasets and much smaller

signals;
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Multiple tests: Winners’ curse

In rare-variant work, much bigger datasets and much smaller

signals; (zoom)
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Multiple tests: Winners’ curse

Now restrict to everything we called significant – which is all we

focus on, in practice;
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Multiple tests: Winners’ curse

The ‘significant’ results are the ones most likely to have
exaggerated estimates – a.k.a. bias away from the null;

Objects in the rear-view mirror are vastly less important than
they appear to be. The issue is worst with lowest power (see
previous pics) – so β̂ from TOPMed/GWAS ‘discovery’ work are
not and cannot be very informative.
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Multiple tests: Winners’ curse

How overstated? Zhong and Prentice’s p-value-based estimate;

This is a serious concern, unless you beat α by about 2 orders

of magnitude.
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Multiple tests: Winners’ curse

Winner’s curse doesn’t just affect point estimates;

• If we claim significance based on unadjusted analyses,

adjusted analyses may give reduced estimates even when the

other covariates do nothing – because the second analysis is

less biased away from the null

• In analysis of many studies, significant results will tend to

appear homogeneous unless we are careful to use measures

of heterogeneity are independent of the original analysis

1.36



Part 1: Summary

• P -values assess deviations from a null hypothesis

• ... but in a convoluted way, that’s often over-interpreted

• Associations may be real but due to confounding; need to

replicate and/or treat results with skepticism

• Power matters and will be low for many TOPMed signals

(though not all)

• At least for discovery work, point estimates β̂ are often not

very informative. When getting p < α ‘exhausts’ your data,

it can’t tell you any more.
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Part 2: Single Variant Assocation Tests
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Overview

• How single variant tests work

• Adjusting for covariates; how and why

• Trait transformation (briefly)

• Issues of mis-specification, and small sample

• Binary outcomes (briefly)
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How single variant tests work

Regression tells us about differences. How do the phenotypes

(Y ) of these people differ, according to their genotype (G)?
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How single variant tests work

Here’s the same sample of data, displayed as a boxplot – how

do the medians differ?

●
●

●
●
●
●
●

●

●
●

G

AA Aa aa

Y
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How single variant tests work

Formally, the parameter being estimated is ‘what we’d get with

infinite data’ – for example, differences in means;

G

Y

AA Aa aa
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How single variant tests work

Particularly with binary genotypes (common with rare variants)

using the difference in mean phenotype as a parameter is natural;
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How single variant tests work

To summarize the relationship between quantitative phenotype
Y and genotype G, we use parameter β1, the slope of the least
squares line, that minimizes

(Y − β0 − β1G)2,

averaged over the infinite ‘population’.

• β1 is an ‘average slope’, describing the whole population
• ... β1 describes how much higher the average phenotype is,

per 1-unit difference in G

• For binary G, β1 is just the difference in means, comparing
the parts of the population with G = 1 to G = 0

This ‘averaging’ is important; on its own, β1 says nothing about
particular, individual values of Y or G.

But if Y and G are totally unrelated, we know β1 = 0, i.e. the
line is flat – and this connects the methods to testing.
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Inference for single variant tests

Of course, we never see the whole population – n is finite.

But it is reasonable to think that our data are one random sample

(size n) from the population of interest.

We have no reason to think our size-n sample is ‘special’, so;

• Computing the population parameter β1 using just our data

Y1, Y2, ...Yn and G1, G2, ...Gn provides a sensible estimate of

β1 – which we will call β̂1. This empirical estimate is (of

course) not the truth – it averages over our observed data,

not the whole population.

• As we’ll see a little later, this empirical approach can also

tell us how much β̂1 varies due to chance in samples of size

n – and from this we obtain tests, i.e. p-values
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Inference for single variant tests

For estimation, the empirical version of β0 and β1 are estimates
β̂0 and β̂1, that minimize

n∑
i=1

(Yi − β0 − β1Gi)
2.

With no covariates or relatedness, this means solving
n∑
i=1

Yi =
n∑
i=1

β0 + β1Gi

n∑
i=1

YiGi =
n∑
i=1

Gi(β0 + β1Gi),

and for β1 – the term of interest – gives

β̂1 =
Cov(Y,G)

Var(G)
=

∑n
i=1(Yi − Ȳ )(Gi − Ḡ)∑n

i=1(Gi − Ḡ)2
=

∑n
i=1

Yi−Ȳ
Gi−Ḡ

(Gi − Ḡ)2∑n
i=1 (Gi − Ḡ)2

.

• β̂1 is a weighted average of ratios; how extreme each
outcome is relative to how extreme its genotype is
• Weights are greater for extreme genotypes – i.e. heterozy-

gotes, for rare alleles
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Inference for single variant tests

But how noisy is

estimate β̂1?

To approximate

β̂1’s behavior in

replicate studies,

we could use

each point’s

actual residual

– the vertical

lines – as the

empirical std

deviation of their

outcomes; n.copies coded allele
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In replicate studies, slope estimate β̂1 would vary (pale purple

lines) but contributions from each Yi are not all equally noisy.
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Inference for single variant tests

In unrelateds, this ‘robust’ approach gives three main terms;

̂StdErr(β̂1) =
1√
n− 2

1

StdDev(G)
StdDev

(
G− Ḡ

StdDev(G)
(Y − β̂0 − β̂1G)

)
.

... sample size, spread of G, and (weighted) spread of residuals.

Because of the Central Limit Theorem∗, the distribution of β̂1
in replicate studies is approximately Normal, with

β̂1
approx∼ N

(
β1,

̂StdErr(β̂1)
2
)
.

The corresponding Wald test of the null that β1 = 0 compares

Z =
β̂1

EstStdErr(β̂1)
to N(0,1).

The tail areas beyond ±Z give the two-sided p-value. Equiva-
lently, compare Z2 to χ2

1, where the tail above Z2 i s the p-value.

* ... the CLT tells us approximate Normality holds for essentially any sum or

average of random variables.
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Inference for single variant tests

But the CLT’s

approximate

methods, for

these ‘robust’

standard errors

don’t work well

with small n

– when minor

allele count is

low and/or tiny

p-values are

needed;

0 2 4 6 8

0
2

4
6

8
10

12

True significance (−log10)

N
om

in
al

 s
ig

ni
fic

an
ce

 (
−

lo
g1

0)

2*n*MAF=40
2*n*MAF=60
2*n*MAF=80
2*n*MAF=100
Proper p−values

• Some smarter approximations are available, but hard to make

them work with family data

• Instead, we use a simplifying assumption; we assume

residual variance is identical for all genotypes
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Inference for single variant tests

n.copies coded allele
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We assume the residual variance is the same for all observations,

regardless of genotype (or covariates)
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Inference for single variant tests

Using the stronger assumptions (in particular, the constant

variance assumption) we can motivate different estimates of

standard error;

̂StdErr(β̂1) =
1√
n− 2

1

StdDev(G)
StdDev

(
(Y − β̂0 − β̂1G)

)
– compare to the robust version;

̂StdErr(β̂1) =
1√
n− 2

1

StdDev(G)
StdDev

(
G− Ḡ

StdDev(G)
(Y − β̂0 − β̂1G)

)
.

• Tests follow as before, comparing ±Z to N(0,1) distribution

– or slightly heavier-tailed tn−2, though it rarely matters

• Known as model-based standard errors, and tests

• These happen to be exact tests if the residuals are indepen-

dent N(0, σ2) for some σ2, but are large-sample okay under

just homoskedasticity – constant residual variance
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Adjusting for covariates

Suppose you want to adjust for Ancestry, or (perhaps) some

environmental variable;

G Y

A

?
G Y

A E

?
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Adjusting for covariates

As mentioned in Part 1, typically ‘adjust’ for confounders by
multiple regression;

Mean(Y ) = β0 + β1G+ γ1PC1 + γ2PC2 + γ3PC3 + ...

... so β1 estimates the difference in mean outcome, in those with
identical PC values. (Treat other covariates like PCs)

Two equivalent∗ ways to estimate β̂1;

1. Minimize
∑n
i=1(Yi − β̂0 − β̂1Gi − γ̂1PC1i − γ̂2PC2i)

2

2. Take residuals regressing Y on PCs, regress them on residuals
from regressing G on PCs; slope is β̂1

• Either way, we learn about the association of Y with G after
accounting for linear association of Y with the PCs.
• Average slope of Y with G, after accounting for linear effects

of confounding

* This equivalence is the Frisch-Waugh-Lovell theorem
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Adjusting for covariates

We often ‘adjust for study’. What does this mean? For a purple

signal confounded by red/blue-ness...

n.copies coded allele
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Adjusting for covariates

We often ‘adjust for study’. What does this mean?

One way: β̂1 is the slope of two parallel lines;

n.copies coded allele
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Adjusting for covariates

We often ‘adjust for study’. What does this mean?

Or: residualize out the mean of one study, then regress on G;

n.copies coded allele
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Adjusting for covariates

We often ‘adjust for study’. What does this mean?

Or: rinse and repeat for the other study;

n.copies coded allele
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Adjusting for covariates

We often ‘adjust for study’. What does this mean?

Or: average the two study-specific slopes;

n.copies coded allele
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Adjusting for covariates

Notes:

• Adjusting for study only removes trends in the mean out-

come. It does not ‘fix’ any issues with variances

• Different ‘slopes’ (genetic effects) in different studies don’t

matter for testing; under the null all the slopes are zero

• The average slope across all the studies is a weighted average

– the same precision-weighted average used in fixed-effects

meta-analysis, common in GWAS

The two-step approach to adjustment is used, extensively,

in our pipeline code – because fitting the null is the same

for all variants.

Note: variance estimates ignoring the first step don’t work well,

even though the β̂ estimates are okay (Sofer et al, 2019)
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Adjusting for covariates

The math for standard error estimates gets spicy ( ) but;

n.copies coded allele
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• Residuals (vertical lines) used empirically as std dev’ns, again
• Homoskedasticity: residual variance is the same for out-

comes, regardless of study (or PC values, etc)
• For testing, can estimate residual standard deviation with G

effect fixed to zero, or fitted
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Allowing for relatedness (later!)

With relateds, linear regression minimizes a different criterion;

Unrelated
∑n
i=1 (Yi − β0 − β1Gi − ...)2

Related
∑n
i,j=1R

−1
ij (Yi − β0 − β1Gi − ...)(Yj − β0 − β1Gj − ...)

where R is a relatedness matrix – seen in other sessions.

• If we think two outcomes (e.g. twins) are highly positively
correlated, should pay less attention to them than two
unrelateds
• But those in affected families may carry more causal variants,

which provides power
• Residual variance assumed to follow pattern given in R –

though minor deviations from it don’t matter

Math-speak for this criteria is (Y−XXXβββ)TR−1(Y−XXXβββ)T ,

and the estimate is β̂ββ = (XXXTR−1XXX)−1XXXTR−1Y. The

resulting β̂1 generalizes what we saw before – and is

not hard to calculate, with standard software.
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Allowing for relatedness (later!)

If σ2R is the (co)variance of all the outcomes, the

variance of the estimates is

Ĉov(β̂ββ) = σ2(XXXTR−1XXX)−1

This too doesn’t present a massive computational

burden – but we skip the details here.

• Regardless of chili-pepper math, tests of β1 = 0 can be

constructed in a similar way to what we saw before

• Can allow for more complex variance/covariance than just R

scaled – see next slide. To allow for estimating σ2 terms,

recommend using REML when fitting terms in variance,

a.k.a. fitting a linear mixed model (LMM)

• Use of LMMs is model-based and not ‘robust’; we do assume

the form of the variance/covariance of outcomes

• Robust versions are available, but work poorly at small n
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Allowing for relatedness (later!)

R can be made up of multiple variance components. For each

pair of observations it can be calculated with terms like...

R = + +

= σ2
G× Kinship + σ2

Cluster + σ2
ε (noise).

• The σ2 terms – for familial relatedness, ‘random effects’

for clusters such as race and/or study, and a ‘nugget’ for

individual noise – are fit using the data

• Can get σ̂2 = 0; do check this is sensible with your data
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Allowing for relatedness (later!)

Note: using GRM ≈ adding random effects – blocks in R – for
AA/non-AA. Kinship matrices don’t do this;
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Allowing for non-constant variance

What happens if a variant affects trait variance, not the mean?

Genomic Control λ measures over-significance of p, near p = 0.5.
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Allowing for non-constant variance

Standard linear regression methods assume trait variances are

always constant. But they aren’t!

• Importantly, variance can also differ by study – a proxy for

ancestry – which also causes ‘inflation’, i.e. false positives

• We’ve found it plays an important role in TOPMed analyses

– see Rice et al 2017, Sofer et al, 2018, and applied papers

• Examine study- or ancestry-specific residual variances from

a model with confounders only, and see if they differ

• If they do, allow for strata-specific variances (Example

coming in the hands-on material). Or allow for them anyway,

there is little downside to being cautious in this way
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Trait transformations

Some traits have heavy tails

– this is, extreme obser-

vations that make the ap-

proximations used in p-value

calculations less accurate.

• Positive skew here – heavy right tail

• Here, the genotype of the individuals with CRP≈10 will affect

β̂1 much more than those with CRP≈1

• Effectively averaging over fewer people, so approximations

work less well
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Trait transformations

For positive skews, log-transformations are often helpful – and
already standard, so Working Groups will suggest them anyway.
Another popular approach (after adjusting out confounders) is
inverse-Normal transformation of residuals;

Raw residuals

Inv−Normal transformed

The basic idea is that this is as close as we can get

to having the approximations work perfectly, at any

sample size. For details ( ) see Chapter 13...
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Trait transformations

Under a strong null hypothesis, inv-N works well for testing;

phenotype (heavy−tailed)

non−carrier
carrier
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Trait transformations

Under a strong null hypothesis, inv-N works well for testing;

Inv−normal phenotype

−3 −2 −1 0 1 2 3

non−carrier
carrier
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Trait transformations

Under a strong null hypothesis, inv-N works well for testing;

Inv−normal phenotype

−3 −2 −1 0 1 2 3

non−carrier
carrier
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Trait transformations

But it can cost you power;

phenotype

non−carrier
carrier
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Trait transformations

But it can cost you power;

Inv−normal phenotype

−3 −2 −1 0 1 2 3

non−carrier
carrier
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Trait transformations

But it can cost you power;

Inv−normal phenotype

−3 −2 −1 0 1 2 3

non−carrier
carrier
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Trait transformations

Under weak nulls, it can even make things worse;

phenotype (non−constant variance)

carrier
non−carrier
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Trait transformations

Under weak nulls, it can even make things worse;

Inv−normal phenotype (still heteroskedastic!)

−3 −2 −1 0 1 2 3

non−carrier
carrier
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Trait transformations

Under weak nulls, it can even make things worse;

Inv−normal phenotype (still heteroskedastic!)

−3 −2 −1 0 1 2 3

non−carrier
carrier
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Trait transformations

What we do in practice, when combining samples from groups
with different variances for a trait (e.g., study or ancestry)

• Fit null model; effects for confounders, kinship/GRM terms
in R, allowing for heterogeneous variances by group
• Inv-N transform the (marginal) residuals
• Within-group, rescale transformed residual so variances match

those of untransformed residuals
• Fit null model (again!) – effects for confounders, kin-

ship/GRM terms, but now allowing for heterogeneous vari-
ances by group

The analysis pipeline implements this procedure – examples
follow in the hands-on session.

Why adjust twice? Adjustment only removes linear terms in
confounding signals – and inv-Normal transformation can be
strongly non-linear
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When things go wrong

Non-constant variance again! Suppose you had a mix of variants,
of these 3 types. What would the overall QQ look like?

(Could also see this for more/less frequent variants in populations
with greater/smaller trait variance.)
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When things go wrong

‘Try it both ways and see’ doesn’t always help;

• We don’t know the truth, and have few ‘positive controls’
(if any – we want to find new signals!)
• We have fairly crude tools for assessing WGS results – just

QQ plots, genomic control λ
• With one problem fixed, others may still remain

Planning your analysis really does help;

• What known patterns in the trait should we be aware of?
(What was the design of the studies? How were there
measurements taken?)
• What confounding might be present, if any?
• What replication resources do we have? How to ensure our

discoveries are likely to also show up there?

If problems persist, seek help! It’s better than having results not
replicate!
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Binary outcomes

Cardiovascular researchers love binary outcomes!
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Binary outcomes

Counts of genotype, for people with pink/green outcomes;

G

Y

AA Aa aa

0
1
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Binary outcomes

Coding the outcome as 0/1, ‘mean outcome’ just means

‘proportion with 1’, i.e. ‘proportion with disease’;

G

AA Aa aa
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Binary outcomes

Logistic regression estimates an odds ratio, describing (aver-
aged over the whole population) how the odds of the event are
multiplied, per 1-unit difference in G;

G

AA Aa aa
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With unrelated Y , G, this slope is flat; OR = 1, log(OR) = 0.
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Binary outcomes

The math of that logistic-linear curve;

P[Y = 1|G = g ] =
eβ0+β1g

1 + eβ0+β1g

or equivalently

logit (P[Y = 1|G = g ]) = log (Odds[Y = 1|G = g ])

= log

(
P[Y = 1|G = g ]

1− P[Y = 1|G = g ]

)
= β0 + β1g.

When adjusting for covariates, we are interested in the β1 term;

P[Y = 1|G,PC1, PC2... ] =
eβ0+β1g+γ1pc1+γ2pc2+...

1 + eβ0+β1g+γ1pc1+γ2pc2+...

logit(P[Y = 1|G,PC1, PC2... ]) = β0 + β1g + γ1pc1 + γ2pc2 + ...
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Binary outcomes

Logistic regression is the standard method for fitting that curve –

and testing whether it is flat. Unlike linear regression, it doesn’t

minimize squared discrepancies, i.e.

n∑
i=1

(Yi − p̂i)2

but instead minimizes the deviance

2
n∑
i=1

Yi log(1/p̂i)︸ ︷︷ ︸
Large if Y=1 and p̂ small

+ (1− Yi) log(1/(1− p̂i))︸ ︷︷ ︸
Large if Y=0 and p̂ large

,

– which is actually quite similar.

To get tests, we don’t calculate β̂1 and its standard error, as

in Wald tests. Instead, we calculate the slope of the deviance

under the null with β1 = 0. This slope is called the score and

comparing it to zero is called a score test.
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Binary outcomes

Notes on score tests:

• Score tests make allowing variance components for family

structure much faster. The GMMAT software provides this,

and is part of our pipeline

• Score tests only fit the null model, which is also faster than

fitting each β̂1

• Score tests produce no β̂1. But if you do need an estimate

– say for a ‘hit’ – just go back and re-fit that variant

• Like Wald tests, score tests rely on approximations; the score

test approximations are generally at least no worse than the

Wald test ones

• For rare outcomes (very unbalanced case-control studies)

Wald test are terrible; score tests are still not good. For

independent outcomes the Firth version of logistic regression

is better. Likelihood ratio tests are also worth trying
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Binary outcomes

Putting binary

outcomes into

LMMs (assuming

constant variance)

tends to work badly

– because binary

outcomes don’t have

constant variance,

if confounders are

present. How badly

depends on MAF

across studies...

... but please don’t do it. For more see the GMMAT paper.
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Binary outcomes

Still-more sophisticated saddlepoint approximations give better
approximations of the reference distribution, used to get the p-
values. They are an old method (1954) but new to genetics:
(here for CAD in Biobank, n ≈400k, 1:12 matching)

• Zhou et al, Nature Genetics
• Biggest differences are for rarest variants
• SAIGE now available in GENESIS
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Part 2: Summary

Single variant analyses in TOPMed...

• Have a heavy testing focus – sensibly – but use tools from

linear and logistic regression

• Must account for relatedness

• Should account for study-specific trait variances, where these

differ

• Must be fast!

• Do face challenges, particularly for very rare variants and

binary outcomes. We may give up interpretability (β̂1’s

‘meaning’) in order to get more accurate p-values
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Pt 3: Multiple Variant Association Tests

3.0



Overview

• Burden tests, as an extension of single-variant methods

• Introduction to SKAT and why it’s useful

• Some issues/extensions of SKAT

• Simple calculations for how much annotation helps

– then another hands-on session, with discussion
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Why test multiple variants together?

Most GWAS work focused on analysis of single variants that were
common – MAF of 0.05 and up. For rare variants, power is a
major problem;
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(Even worse for binary outcomes!)
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Why test multiple variants together?

Increasing n is

(very!) expensive,

so instead consider

a slightly different

question.

Which question?

Well...

We care most about the regions – and genes – not exact variants
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Burden tests

This motivates burden tests; (a.k.a. collapsing tests)

1. For SNPs in a given region, construct a ‘burden’ or ‘risk

score’, from the SNP genotypes for each participant

2. Perform regression of participant outcomes on burdens

3. Regression p-values assess strong null hypothesis that all

SNP effects are zero

• Two statistical gains: better signal-to-noise for tests and

fewer tests to do

• ‘Hits’ suggest the region contains at least one associated

SNP, and give strong hints about involved gene(s)

• ... but don’t specify variants, or what their exact association

is – which can slow some later ‘downstream’ work
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Burden tests: counting minor alleles

A simple first example; calculate the burden by adding together

the number of coded∗ alleles. So for person i, adding over m

SNPs...

Burdeni =
m∑
j=1

Gij

where each Gij can be 0/1/2.

• Burden can take values 0,1, ...,2m

• Regress outcome on Burden in familiar way – adjusting for

PCs, allowing for relatedness, etc

• If many rare variants have deleterious effects, this approach

makes those with extreme phenotypes ‘stand out’ more than

in single SNP work

* ...usually the same as minor allele
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Burden tests: counting minor alleles

Why does it help? First a single SNP analysis; (n = 500, and
we know the true effect is β = 0.1 per copy of the minor allele)

Single SNP analysis β = 0.1 SDs
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Burden tests: counting minor alleles

With same outcomes, analysis using a burden of 10 SNPs each
with the same effect.

Burden analysis, 10 SNPs each with β = 0.1 SDs

n.copies minor allele
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The signal size is identical – but with less noise get p = 0.02
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Burden tests: does it help power?

Back to our miserable single SNP power;
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Burden tests: does it help power?

What happens with x10 less noise? x10 fewer tests?
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Burden tests: does it help power?

The signal size β is unchanged. The extra power is almost all

due to reduced noise in β̂, not fewer tests. To see this it may

help to look at the sample size formula;

nneeded ≥
(Z1−α + ZPower)

2

β2 Var(genotype)

• Using a burden increases the spread (variance) of the

‘genotypes’ by a factor of m, compared to 0/1/2 single SNPs

• Increasing α from 5 × 10−8 to 5 × 10−7 changes Z1−α from

≈ 5.5 to 5.0 – which is helpful, but not as helpful

However, the assumption that all m SNPs have the same

effect is implausible, even as an approximation. Power to

find an ‘average’ effect is often low – when we average

effects in both directions, and/or with many effects ≈ zero.
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Burden tests: other burdens

Many other burdens are available; all are ‘uni-directional’

• Cohort Allelic Sum Test (CAST) uses

Burdeni =

{
1 if any rare variant present
0 otherwise

... much like the ‘dominant model’ of inheritance
• Risk scores;

Burdeni =
m∑
j=1

β̂jGij

... where, ideally, the β̂j come from external studies. (Can
estimate them from data – see Lin & Tang 2011 – but
getting p-values is non-trivial)
• Which variants to include at all can depend on MAF, putative

function, and other factors – see annotation material

Which to choose? The one that best separates high/low
phenotypes, at true signals – choosing is not easy.
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Burden tests: other burdens

Weighting also generalizes the available burdens;

Burdeni =
m∑
j=1

wjGij.

– genotype at variants with higher wj affect total burden more
strongly than with lower wj.

Two simple &

popular MAF-

based weights;

(right)

(Only relative

weight matters)
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Wu weights, ∝ (1−MAF)24

Madsen Browning weights, ∝ MAF−1/2(1−MAF)−1/2
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SKAT

...and the Sequence Kernel Association Test
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SKAT: recall score tests

We met score tests in Section 2. For linear or logistic regression,

the score statistic for a single SNP analysis can be written;

n∑
i=1

(Yi − Ŷi)(Gi − Ḡ)

• ... where Ŷi comes from fitting a null model, with no genetic

variants of interest

• Values of the score further from zero indicate stronger

association of outcome Y with genotype G

• Reference distribution for this test statistic involves variance

of outcomes Y, which may allow for relatedness
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SKAT: scores2 for many variants

With m SNPs, to combine the scores without the averaging-to-

zero problem, the SKAT test squares them and adds them up.

In other words, its test statistic is

Q =
n∑
i=1

m∑
j=1

(Yi − Ŷi)2G2
ijw

2
j

with variant-specific weights wj, as in burden tests.

In math-speak this is

Q = (Y − Ŷ)TGGGWWWWWWGGGT (Y − Ŷ)

where GGG is a matrix of genotypes and WWW a diagonal matrix of

variant-specific weights.

Standard results about the distribution of many squared, added-

up Normal distributions can be used to give a reference distribu-

tion for Q...
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SKAT: scores2 for many variants

It turns out the approximate distribution of Q is under usual

assumptions (e.g. constant variance);

Q ∼
min(m,n)∑
k=1

λkχ
2
1

i.e. a weighted convolution of many independent χ2
1 distribu-

tions, each weighted by λk. (The λk are eigenvalues of a matrix

involving GGG,WWW, confounders, and variance of Y under a fitted null

model.)

This approximate distribution can be calculated approximately

(!) – and we get p-values as its tail areas, beyond Q.

SKAT has quickly become a standard tool; see hands-on

session for examples/implementation.
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Comparing SKAT and Burden tests

• Burden tests are more powerful when a large percentage of

variants are associated, with similar-sized effects in the same

direction

• SKAT is more powerful when a small perentage of variants

are associated and/or the effects have mixed directions

• Both scenarios can happen across the genome – best test to

use depends on the underlying biology, if you have to pick

one

• With tiny α a factor of 2 in multiple testing is not a bit deal

– so generally okay to run both

• If you can’t pick, can let the data help you: SKAT-O does

this (for details see Lee et al 2012)
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Comparing SKAT and Burden tests

Examples of power comparisons (for details see Lee et al 2012)
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SKAT: other notes

• As with burden tests, how to group and weight variants can

make a big difference – see annotation sessions

• Allowing for family structure in SKAT is straightforward; put

kinship, non-constant variance etc into the variance of Y.

• For heavy-tailed traits, inverse-Normal transforms will help –

a lot!

• Various small-sample corrections are also available – but may

not be quick. In particular for binary traits see Lee, Emond

et al – available soon in GENESIS

• When both m and n get large, constructing the reference

distribution takes a lot of memory. But it can be (well!)

approximated by using random methods; see fastSKAT –

available now, brought into latest version of GENESIS
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How does annotation help?

Annotation-based filters are popular for WGS work. They can

help by:

• Reducing the multiple testing problem for single variant work

• Concentrating on the true signals, for e.g. SKAT

Earlier we saw how simple burden tests can improve power over

single-variant work – but not, primarily, by reducing the number

of tests. This is non-intuitive – so we provide some “back of

envelope” calculations about how power is affected, to help

understand the impact of good/bad filters.
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How does annotation help? Single var’ts

For these, if we know/assume both:

• Power for a single variant analysis with a true signal

• ‘Unfiltered’ significance threshold, i.e. α/m = 0.05/106 =

5× 10−8

...then we can obtain power for that signal, at the lower value

of m that filtering provides.
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How does annotation help? Single var’ts
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How does annotation help? Single var’ts
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How does annotation help? SKAT

There are more ‘moving parts’ in SKAT, so here assume

• Testing 20,000 regions, using α = 5× 10−5

• Have one true (effective) signal in a region

• Any weights used do not up/down weight signal/non-signal

variants and yes this is debatable

With these, we can obtain the power if k independent non-signals

are added to a region where the true signal has a specified power.
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How does annotation help? SKAT
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How does annotation help? SKAT
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How does annotation help? SKAT

Summary of these calculations;

Filtering needs to be very aggressive and correct to

move analyses from hopeless to hopeful.

• ‘Correct’ means ‘actually selecting the SNPs where there are

true signals’

• Milder (non-aggressive) filtering doesn’t hurt

• Incorrect filtering (omitting SNPs with true signals) does

hurt

• Situations with multiple small signals in a region may behave

somewhat better -– not studied here
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Part 3: Summary

• In WGS, power for single variant analyses can be very limited

• Multiple-variant tests enable us to answer region-specific

questions of interest, not variant-specific – and power is

better for them

• Burden/collapsing tests are conceptually simple, but only

provide best power against very specific alternatives

• SKAT (and relatives) give better power for many other

alternatives

• With very small signals, neither approach is guaranteed to

give actually-good power. Accuracy of approximate p-values

can also be an issues. Treat results with skepticism, and try

to replicate
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Part 4: Faster/Cheaper ways to
compute

4.0



Motivation

The methods we’ve discussed are (good) defaults for WGS data.

But...

• Fitting the null model, as currently implemented, now takes

considerable computing resources

• For subsequent releases, we expect that the computational

burden will become all but intolerable

• Need to fit null model faster and/or using less memory

• Actually running tests is also not cheap!

We’ll describe some solutions developed locally.

Jen Brody (and others) have trialed some ‘fixes’ on

the Analysis Commons.
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Why is this hard?

For outcomes Y, covariates XXX, fixed effects βββ and covariance

matrix VVV we assume

Y︸ ︷︷ ︸
n×1

∼ N

 XXX︸ ︷︷ ︸
n×p

βββ︸︷︷︸
p×1

, VVV︸ ︷︷ ︸
n×n

 ,
where VVV is the sum of several variance components.

• In TOPMed’s use of LMMs, we fit a null model – with no

single SNPs in XXX, say (although PCs may be present)

• The fitted null model’s estimates β̂ββ and V̂VV are then used to

perform tests, for individual variants. In this second step, no

extra fitting takes place

(Similar results hold for GLMMs, so are omitted here)
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Why is this hard?

With two groups, these might be;

VVV | in group A = +

VVV | in group B = +

so we can write VVV = σ2
G × kinship (relatedness) + σ2

group (noise)

... and we need to estimates σ̂2
G, σ̂2

A and σ̂2
B.
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Why is this hard?

The log-likelihood for the model specifies

l(βββ,VVV) = −
n

2
log |VVV| −

1

2
(Y −XXXβββ)TVVV−1(Y −XXXβββ) + p log(2π)

Optimizing this with respect to βββ, for a fixed VVV matrix, is

conceptually simple; we want to optimize a weighted version

of sum of square residuals, where the weight given to each pair

of observations i, j is given by the i, j element of VVV−1.

To do the optimization for βββ, we have to minimize a quadratic.

This is easy to write; the resulting estimate is

β̂ββ = (XXXVVV−1XXX)TXXXTVVV−1Y,

but calculating VVV−1 is slow, taking of the order of n3 steps for

general VVV.
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A fix: exploiting sparsity

Just storing general VVV, or its inverse, uses substantial memory;
for n = 6000 it takes 274 Mb. For n = 50,000 this would be
18.6 Gb – it scales with n2

But typically our variance

matrices are roughly

block-diagonal (kinship

plus some diagonal

elements).

For n = 6000 in 30

blocks of 200, kinship

might look something like

this;
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A fix: exploiting sparsity

R’s Matrix package provides matrix utilities (addition, multipli-

cation, inversion, etc) that can exploit this sparsity.

• Storage is much cheaper; 20.7 Mb for n = 6000 in 30 blocks

of 200 – and for n = 50,000 in blocks of 200, this scales

linearly – so 20.7 Mb × 50/6 = 172.5 Mb

• Matrix arithmetic steps for block-diagonal matrices are also

much faster – they grow with nlargest block, not overall n.

This makes a big difference; 10003 is smaller than 50,0003

by a factor of 125,000.

In practice, this step solves the difficulty of VVV being n × n, and

slow to invert – provided we are willing to use sparse relatedness

matrices.

MMAP uses the same idea, known as “adding over the pedigrees”
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A fix: exploiting sparsity in practice

Taking this approach, we have to determine a threshold for

‘unrelated’ – when do we set kinships equal to zero, so we can

have a block-diagonal VVV?

Empirical results from analysis of n = 25077 TOPMed partici-

pants, setting ‘unrelated’ to be ‘at least nth-degree relative’

Kinship
Sparsity degree 3 4 5 6 7
Max block size 794 1007 1836 7717 20783
# of blocks 19592 18503 17289 14219 4173

Null Model
Time (s) 67 91 156 7457 187266
Max Memory (GB) 16 15 18 15 37

Test
Time (s) 7676 8189 8505 12891 43406
Max Mem (GB) 2 2 2 3 8
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A fix: exploiting sparsity in practice

And how do the results compare? Comparing -log10(p) from the

blocks obtained zeroing out below 7th-degree:
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A 2nd fix: hand-coding projections

For the σ2 estimates, we use restricted maximum likelihood
(REML) which estimates them using only the parts of Y
orthogonal to (unaffected by) the fixed effects.

• There is no closed-form solution for the σ̂2 estimates; we
have to solve equations iteratively
• The equations feature many uses of this matrix;

PPP = VVV−1 −VVV−1XXX(XXXTVVV−1XXX)−1XXXTVVV−1

... and n×n, non-sparse matrix. Our current code calculates
it and stores it explicitly
• But we don’t need to. For example

PPPY︸︷︷︸
n×1

= VVV−1Y︸ ︷︷ ︸
n×1

−VVV−1XXX︸ ︷︷ ︸
n×p

(XXXTVVV−1XXX)−1︸ ︷︷ ︸
p×p

XXXTVVV−1Y︸ ︷︷ ︸
p×1

... and the elements here use sparse VVV−1 that we’re storing
anyway. We get exactly the same arithmetic, using much
less memory. (Keen people: for matrix traces we use other
tricks)
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A 2nd fix: hand-coding in practice

For the n = 6000 example, with 20 blocks of 300 people – and

fitting non-constant variance for two groups (15 blocks:5 blocks)

using data that takes 7 iterations to fit the null;

• ∼740 seconds (12m 20s) with the current code

• 11 seconds with the new version

Scaling these linearly (×50/6 ≈ 8.33) fitting the null should

present no major challenge.

Code is now available.
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Related: fastSKAT

We discussed and used SKAT in Part 3. For m variants and n

steps, the compute time to implement a SKAT test grows with

m× n×min(m,n). For 100k people and 100k markers, this is a

problem.

• Computing the test statistic is not the bottleneck, instead

we must compute a specific convolution:

λ1χ
2
1+ λ2χ

2
1+ λ3χ

2
1+ λ4χ

2
1+ λ5χ2

1+...+ λmin(m,n)χ
2
1

• fastSKAT approximates in two ways: first, use

λ1χ
2
1+ λ2χ

2
1+ λ3χ

2
1+ λ4χ

2
1+ ... λ100χ2

1+ remainder term

... where the remainder term comes from survey-sampling

methods
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Related: fastSKAT

fastSKAT’s second speed-up is to approximate the large λj
(eigenvalues of the LD matrix, basically) by Stochastic Singular

Value Decomposition:

With these ‘fixes’, compute time grows with m × n, so can be

several orders of magnitude faster than standard methods.
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Related: fastSKAT

Some examples of fastSKAT in practice:

• Group SNPs in SKAT by their Topologically Associating

Domains (TADs) – taking 260 CPU days to 16 CPU hours

• Group SNPs by histone class across whole chromosomes –

infeasible with standard methods, about 1 CPU day with

fastSKAT

For details see Lumley et al (2018) – code available, also

incorporated in latest release of GENESIS.

4.13

https://onlinelibrary.wiley.com/doi/abs/10.1002/gepi.22136


A 3rd fix: screen out uninteresting tests

We usually focus on getting the analysis ‘right’ with very high

precision – for p ≈ 10−8 or smaller. But:

• Some imperfect analyses (e.g. ignoring relatedness, using

LMMs not GLMMs, using meta-analysis, using very sparse

kinships) are good enough for screening

• If results don’t reach, say, p = 0.01 with these (true for

≈ 99% of results) we can safely ignore them

• GENESIS does this for linear models, via genesis dscan()

• Particularly useful for n < 20,000 and binary outcomes
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A 3rd fix: screen out uninteresting tests

An example: screen with

linear regression (LM) of

GRM-adjusted residuals, if

p < 0.001 run full LMM:

• Grey box shows (no) false negatives – or anything close

• Compute time ×10 better – 7h 25 min LMM vs 43 min

double-scan

• QQ plots can look odd – a minor issue
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Bonus track: Cholesky decomposition

To invert VVV, we use Cholesky decomposition

• ... i.e. writing VVV as LLLLLLT for some lower-triangular LLL –

analogous to taking a square root

• Our code saves and uses chol(V)

• This is easier to invert than VVV – using chol2inv() and also

permits taking the inverse of a subset of VVV

• The subset property is very useful in GWAS, but may not be

needed if everyone is included in analysis of every variant –

e.g. when genotypes imputed

• Not using chol2inv() at each variant (just under the null)

speeds up the association tests hugely—as most of the CPU

time is used running chol2inv()

G×E interactions are not so amenable to speed-ups.
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Bonus track: fewer iterations?

Compared to ‘full’ REML, the algorithm we use to fit the null

has a few missing terms, in the information matrix – which

determines how far to ‘step’ as we update the σ̂2 terms.

• This method is called AIREML. The missing steps average to

zero (in a sense) and omitting them saves a lot of computing

steps

• Omitting them is not critical – we just fit the null taking

more iterations

• If we can do them cheaply, using full REML updates might

lead to e.g. 4 iterative steps, not 7 – perhaps at the cost of

using slightly more memory

• Worth revisiting if fitting null models takes considerable time

More generally: expect to have to hand-inspect null model fits,

particularly if some σ̂2 terms go to zero.
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