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Introduction to Quantitative Trait Locus 
(QTL) Mapping 

R.W. Doerge

Zhao-Bang Zeng

Summer Institute in Statistical Genetics
1

General Schedule:

Day 1:
Session 1: Introduction, experimental design, segregation analysis
Session 2: Introduction to genetic mapping, estimating recombination

Day 2:
Session 2(cont): Introduction to genetic mapping, estimating recombination
Session 3: Introduction to QTL detection, single marker QTL analysis, linkage analysis
Session 4: Introduction to genetic mapping, map estimation exercise
Session 5: Likelihood functions for single marker analysis, interval mapping
Session 6: Computer lab I: QTL-Cartographer

Day 3:
Session 7: Permutation thresholds; example QTL analysis
Session 8: Composite interval mapping
Session 9: Multiple interval mapping
Session 10: Computer lab II: QTL-Cartographer
Session 11: Introduction to eQTL mapping
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What is a QTL?
What are QTL?

…and why do we want to find them???

3

QTL analysis in maize…
Cross: teosinte and a primitive variety of maize (F2
population).

Result: The chromosome 1 QTL (30% of the 
phenotypic variance) that affects lateral branching.

mapped to within 0.5 cM of a previously known major 
mutation, teosinte branched1 (tb1)

***This locus is the first case of a QTL that has been 
cloned on the basis of its map position.

4



Major Quantitative Trait Locus

Doebley & Stec (1991) Genetics
5

What are the data collected for QTL 
experiment?

Quantitative trait values, or phenotypes, are collected on every 
individual in the QTL experiment.

height, weight, etc.
tens or hundreds of phenotypes collected

Genetic marker data are collected from every individual in the 
QTL experiment.

hundreds and hundreds of markers available 

Consider one quantitative trait.  Each individual i; has data (Xji,
Yi) where X is the genotype of marker j and Y is the 
phenotype; j=1,…, m and i = 1,… n.

assess variation in the quantitative trait
map quantitative trait variation/information to the genetic map provided 
by the genetic markers

6



Statistical genetics relies on the level of variation 
provided by…

meiosis (crossover or recombination)

assessment of genetic variation

genetic map estimation

detecting quantitative trait loci

locating quantitative trait loci

Genetics: the basic unit of study is the gene or genetic 
marker, and we are interested in how these “units” are 
transmitted from parents to offspring.

7

Statistical genomics

Genomics: the basic unit of study is the 
individual “base pairs” that make up a gene, and 
we are interest in how these base pairs differ 
between individuals.

8
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Nature Reviews Genetics.2002. 3:43-52
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Quantitative Trait Locus or Loci (QTL): Specific regions of the 
genome that are associated with quantitative traits of interest.

Examples:
QTL controlling grown and wood quality traits in Eucaluptus grandis

QTL affecting response to short-term selection for abdominal bristle 
number in Drosophila melanogaster.

QTL controlling susceptibility to subtypes of experimental allergic 
encephalomyelitis (EAE), the principal animal model of multiple 
sclerosis (MS).

Honey Bee, Tomato, Rice, Sugarcane, Sorgum, Mouse, Wheat, Fern…

11
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Nature Reviews Genetics.2002. 3:43-52
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QTL mapping methodology

interval mapping

composite 
interval 
mapping

permutation threshold

single marker

Fisher 1935; Thoday 1961; Lander and Botstein 1989; Zeng 1994; Churchill & Doerge 1994

14



Why???

Marker-based selection

Cloning and characterization of genes.

Connect with functional genomics?

expression QTL (e-QTL)

15

Main Goal:

Our main goals in this module are to:

1. examine and understand the statistical issues 
surrounding the search for QTL (genes)

2. understand the basic set-up and methodology for QTL 
mapping; introduce e-QTL

3. gain experience with QTL-Cartographer software;

4. accumulate a working knowledge of how to analyze 
QTL data for experimental populations

5. understand how a working knowledge of QTL 
analysis benefits eQTL analysis

16



Current methods for locating QTL:

Single Marker Methods 

Interval Mapping (Lander and Botstein 1989)

Mapping: constructing genetic maps

Locating QTL: use the genetic map information to locate QTL

Composite Interval Mapping (Jansen 1993; Zeng 1993, 1994)

Locating QTL: use the genetic map information to locate QTL

17

Statistical issues surrounding the search for QTL

Hypotheses

Distribution of Test Statistics

Multiple tests

Multiple QTL

Significance levels

18



Three Basic Steps
1. Experimental design and genetic data

vocabulary

material

understanding the biological process that provides genetic 
variation

2. Building the “Genetic Map”

a genetic map provides the structure for the eventual location of 
QTL (genes)

need to resolve the “order” of the observable genetic markers

3. Locating QTL (genes) for the trait in which we are interested

19

Experimental Design and Data Structure

Zhao-Bang Zeng

Summer Institute in Statistical Genetics
20



QTL Mapping Data

Marker Data:
Molecular markers: specific patterns of DNA sequences; 
polymorphic, abundant, neutral, co-dominant or  dominant.

examples: RFLP, SSR, RAPD, AFLP, VNTR

Markers data are categorical (i.e., different classifications):
presence or absence of a band of molecular segment. 
the number of categories depends on mapping population and marker type

examples: 
two marker types (homozygote or heterozygote) for backcross population
three marker types for F2 population with co-dominant markers.

Markers contain information about segregation at various 
positions of a genome in a population.

21

Quantitative trait data:

Measurement of a phenotype. 
examples: 

12 week body weight of mouse
grain yield of maize
little size of pigs
blood pressure
disease resistant score, 
expression (traits) from microarrays… 

Continuous or discrete data. 

Quantitative trait data contain information about segregation and 
effects of QTL in a population. 

22



Quantitative Trait Loci

Quantitative Trait Loci (QTL): the regions or genes whose 
variation has an effect on a trait in a population.

The statistical task of mapping QTL is to detect and estimate 
the association between the variation at the phenotypic level 
(trait data) and the variation at genetic level (marker data) in 
terms of number, positions, effects and interaction of QTL.

23

Experimental Designs
Traditional experimental designs for locating QTL start with two 
parental inbred lines, P1 and P2, differing both in trait values and in 
the marker (M, N, …) variants or alleles (M1, M2, N1, N2,…) they 
carry. 

in practice, markers are sought that have different variants 
(alleles) in the parents.

Advantage:
F1 is heterozygote for all loci

which differ in P1 and P2
maximum linkage disequilibrium. 
for mapping QTL

this type of experimental design has the maximum power.

m. 

marker and trait 
information

24
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Backcross (BC):
two genotypes at a locus 
simple to analyze

F2:
three genotypes at a locus, 

can estimate both additive and dominance effects

more complex for data analysis, particularly for multiple 
QTL with epistasis (i.e., interaction)

more opportunity and information to examine genetic 
structure or architecture of QTL

more power than BC for QTL analysis
26



Other commonly used inbred line crosses
Note: QTL-Cartographer deals with the below, and there are additional details in Lynch and Walsh (1998)

Advanced intercross
selfing (SFt): F2 = F1 × F1; F3 = F2 × F2; F4 = F3 × F3; · · · through selfing): 

continual selfing (6+ generations) leads to recombinant inbred lines (RI lines)
random mating (RFt): 

increase recombination
expand the length of linkage map
increase the mapping resolution (estimation of QTL position)

Doubled haploid (RI0): similar to BC and RI  in analysis

Repeated backcross:
B1t, B2t; B12=P1 × B1;  B13=P1 × B12; B14=P1 × B13; …

Testcross of SFt or RFt to Pj

NC design III:
marker genotype data on SFt and trait phenotype data on both SFt × P1 and 
SFt × P2)

27

Recombinant inbred lines (RI lines):

selfing (RI1 = SFt, t > 6)
brother-sister mating (RI2)

more mapping resolution as more recombination occurs when 
constructing RI lines.

May improve the measurement of mean phenotype of a line 
with multiple individuals, i.e., increase heritability.

potentially a very big advantage for QTL analysis,
a big factor for power calculation and sample size requirement.

28
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Outcross populations

Cross segregating populations (no inbred available):
similar model and analysis procedure used as inbred cross, but more complex 

in analysis. 

need to estimate the probability of allelic origin for each genomic point from 
observed markers.

less powerful for QTL analysis 
QTL alleles may not be preferentially fixed in the parental populations
more difficult for power calculation (more unknowns)

30



Half-sib families

analyze the segregation of one parent
similar to backcross in model and analysis.

less powerful for QTL detection
more uncontrollable variability in the other parents.

analyze allelic effect difference in one parent, not the allelic 
effect difference between widely differentiated inbred lines, 
populations and species. 

generally the relevant heritability is low for QTL analysis.

31

four genotypes at a locus
possible to estimate allelic substitution effects for male and female 

parents and their interaction (dominance).
= [ac + ad] – [bc + bd]
= [ac + bc] – [ad + bd] 
= [ac + bd] – [ad + bc]

doubled information for QTL analysis compared to half-sibs
should be more powerful.

Note: If we use the double pseudo-backcross approach for mapping analysis, 
we do NOT utilize full genetic information,

it actually uses less than half the information available.
not powerful for QTL identification. 

Power calculation depends on how the data are analyzed.

ab

ac, ad, bc, bd

cd
Full-sib families

a b

c ac bc
d ad bd
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Human populations 
Pedigree :

limited by sample size
linkage analysis

association between markers and 
disease locus is due to recent genetic 
linkage

suited for Mendelian diseases, not for 
complex diseases

Case-Control:
large population available for study
association analysis

association between markers and 
disease locus is due to historical 
genetic linkage, and restricted to 
short regions

Can be used for complex diseases

33

Designs to reduce sample size and increase statistical power

Selective genotyping
Bulked segregant analysis

Progeny testing
Replicated progeny
Granddaughter design

34



Examples: Mapping Data

Two data sets are used as examples for various analyses:
Mouse (Table 1)
Maize (Table 2)

35

Mouse data (Dragani et al. 1995 Mammalian Genome 6:778-781):

backcross population (B1)

103 individuals (sample size n =103)

181 microsatellite markers (SSR: simple sequence repeats) 
distributed across 20 chromosomes

including 14 markers on chromosome X 
chromosome X is used here as an example

quantitative trait is 12 week body weight (BW)

Throughout, we use the trait data and marker data on chromosome 
X to illustrate the analyses of segregation, linkage, single marker 
analysis, interval mapping and composite interval mapping (which 
also uses some markers on other chromosomes). 36



1 = AA homozygote genotype;  0 = Aa heterozygote genotype 37

Maize data:
F2 population.

171 lines (sample size n =171)

132 markers distributed on 10 chromosomes, 
including 12 markers on a chromosome used as an 

example.

quantitative trait is disease resistant score.

Eventually, we will use the trait data and the marker data to 
illustrate segregation, linkage, single marker analysis, interval 
mapping and composite interval mapping (which also uses 
some markers on other chromosomes). 

A partial data are shown in Table 2.
38



2 = AA homozygote genotype of P1; 1 = Aa heterozygote genotype; 0 = aa homozygote genotype of P2 
39

Segregation Analysis

Zhao-Bang Zeng

Summer Institute in Statistical Genetics
40



Understanding the inheritance of markers: 
segregation analysis

Statistically test whether markers are segregating independently
no external forces acting on the population

random mating
no mutation
no selection

Employ a chi-square test

41

Testing Mendelian Segregation
Backcross population: cross between A/A and A/a produces the 
following zygotes

A/A A/a

Frequency under H0 1/2 1/2

Expected number n/2 n/2

Observed number n1 n2

A test statistic can be constructed by using       under the null 
hypothesis                                           (Mendelian Segregation).

Under the null hypothesis, this statistic is chi-square distributed with 1 degree of 
freedom.

2 2 2 2
2 1 2 1 2( .# .#) ( / 2) ( / 2) ( )

.# / 2 / 2
Obs Exp n n n n n n

Exp n n n

( / ) ( / ) 1/ 2p A A p A a

2

2
10.05; 3.84 42



n1 n2

43

F2 population: A cross between A/a and A/a.  The distribution of 
zygotes is as follows:

A/A A/a a/a

Frequency under H0 1/4 1/2 1/4

Expected number n/4 n/2 n/4

Observed number n1 n2 n3

Under the null hypothesis (Mendelian Segregation)

and( / ) ( / ) 1/ 4p A A p A a ( / ) 1/ 2p A a

2 2 2
2 1 2 3( / 4) ( / 2) ( / 4 )

/ 4 / 2 / 4
n n n n n n

n n n

Under the null hypothesis, this statistic is chi-square 
distributed with 2 degrees of freedom. 44



n2 n1 n3

45

Segregation Distortion

Deviation from Mendelian Segregation is called segregation 
distortion. 

Significant segregation distortion can
bias estimation of recombination frequency between markers
reduce the power to identify QTL
bias the estimation of QTL position and effect

46



Introduction to Genetic Mapping

R.W. Doerge

Summer Institute in Statistical Genetics

47

Estimated Genetic Map
(framework for QTL mapping)

Chromosome 11 mouse: Butterfield et al., 1999; Journal of Immunology

***need to understand how each marker segregates, then we can estimate a genetic map

48



Vocabulary
recombination:  the transmission to progeny combinations of 

alleles different from those received by a parent, due to independent 
assortment of crossing over.

crossing over:  the exchange of genetic material between 
homologous chromosomes.

Morgan (unit): a unit for expressing the relative distance between 
genes (or markers) on a chromosome. The distance on a genetic map 
between two loci for which one crossover event is expected per 
gamete per generation.

Map unit or Centimorgan (cM): a map unit is 0.01 Morgans.

Interference:  the lack of independence between crossover events 
in different (nearby) regions.

49

Genetic Markers
Genetic markers are specific aspects of DNA. Specific patterns in the 
DNA. There are many ways to find these “patterns” or sequences 
through molecular genomic techniques.

RFLP: restriction fragment length polymorphism (co-dominant)

RAPD: randomly amplified polymorphic DNA (dominant)

VNTR: variable number of tandem repeats

AFLP, SSR (microsatellites), etc.

SNP: single nucleotide polymorphism

SFP:  single feature polymorphism

etc.

50



Genetic Markers, Genotypes, and Statistical Variation

The state of specific genetic marker is called the “genotype”.

Individuals sharing the same parents may have different 
genotypes for the same genetic marker.

these differences provide the variation we need to 
statistically estimate the relationship between genetic 
markers for the purpose of resolving their “linear” order (or 
genetic map) across chromosomes.

51

Recombination
During the production of “gametes” an exchange of material (cross 

over) between pairs of chromosomes may occur.

eggs or sperm: each will eventually contain half the normal 
chromosome number of a “diploid” organism

Occurs in the Prophase I stage of Meiosis.

The result of meiosis is the formation of “haploid” cells containing 
one set of “unique chromosomes”.

52



Recombination fraction

Recombination across an 
interval indicates an odd
number of crossovers 

locations of crossovers are 
not observed. 

Recombination fraction:
Probability of recombination in an interval = Probability of an odd number of 
crossovers in interval

Illustration: K. Broman
53

Connecting Genetic Material, Lab Results, and Statistics
1. DNA: long stretches of base pairs.
2. We understand how (basically) the variation occurs during meiosis.
3. The variation (recombination) can be detected using laboratory 

techniques (i.e., the genotypes of genetic markers are observed).

54



FACTS:

The closer two markers are the less likely a recombination 
event is to occur.

Markers that reside on different chromosomes undergo 
free recombination.

Two markers that never experience a recombinant event 
between them are said to be “completely linked”.

they travel together during the meiosis process.

If an even number of crossing over events occurs between 
two genetic markers, this event is undetectable.

55

Next step…

Once each marker is tested for independent segregation (and 
passes), then the task becomes (linearly) ordering the markers 
into linkage groups or chromosomes.

equivalent to the traveling salesman problem in mathematics.
requires a measure of distance between pairs of markers

this distance is a function of recombination
A map function translates between recombination and genetic 
distance

Haldane map function
Kosambi map function

56



Estimating Recombination 

R.W. Doerge

Summer Institute in Statistical Genetics 57

Estimating Recombination Between Two Genetic Markers
The number of (odd) crossovers (k) in an interval defined by two genetic 
markers has a Poisson distribution with mean .

Pr(recombination)
exp

!

k

k k
3

exp ...
1! 3!

exp exp exp
2

21 1 exp
2

call this probability r with limits

is the number of map units (M) between two markers

10
2

r
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Haldane Map Function:
Solving the previous equation for      gives Haldane’s map function:

1 ln 1 2
2

r

Let                             (completely linked)

Let                                       (markers are unlinked)

markers on the same chromosome, far apart

markers reside on different chromosomes

0, 0r
1 ,
2

r
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Crossover interference

Strand choice
chromatid interference

Spacing
crossover interference

Positive crossover interference:
crossovers tend not to occur too 

close together.

K. Broman
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Kosambi Map Function: 
If interference is taken into account, the Kosambi map function 
should be used:

As two loci (or markers) become further apart, the amount of 
interference allowed by the Kosambi map function decreases.

1 1 2ln
4 1 2

r
r

61

Haldane versus Kosambi:

Haldane map function assumes that crossover events are 
independent.

as the loci (genetic markers) become further apart, recombination 
increases from 0.0 to 0.50.

Kosambi map function assumes there is interference
one crossover tends to prevent other crossovers in the same or 

close regions
for unlinked loci, interference is 0.

When the genetic distance is small (less than 10cM), both 
Kosambi and Haldane map functions provide, essentially the 
same values.
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Estimating Recombination from Experimental Data

Estimate the probability of recombination between each pair of 
genetic markers

pairwise recombination estimates

Recall: Recombination occurs in the F1 generations, transmitted in 
the F1 gametes, and is detectable in the final generation.

backcross, F2

Use a genetic map function to convert recombination (probability) 
to genetic distance (additive).

63

Genetic distance

The genetic distance between two markers (in cM) is the 
average number of crossovers in the interval in 100 meiotic 
outcomes.

Recombination rate varies by
organism 
sex
chromosome
position on chromosome

64



WHAT WE SEE
Backcross: Two Markers (M,N)

1 :P
2 :P

1 :F

1 1 1 1/M N M N
2 2 2 2/M N M N

1 1 2 2/M N M N

1 1 1 1/M N M N

1 1 2 1/M N M N 1 1 2 2/M N M N

1 1 1 2/M N M NBackcross:

1 :P
2 :P

1 :F

1 1 1 1/M N M N
2 2 2 2/M N M N

1 1 2 2/M N M N

1 1 1 1/M N M N

1 1 2 1/M N M N 1 1 2 2/M N M N

1 1 1 2/M N M NBackcross:

65

P1:    M1 N1 F1:   M1 N1

M1 N1 M2 N2

Backcross:

A View of Crossing Over…
Recall… recombination occurs in the parents, and the result is observed 
in the offspring.

M1N1 M1N1 M1N1 M1N1

gametes

M1N1 M1N2 M2N1
M2N2

n1 n2 n3 n4

n1+n4 = non-recombinant class n2+n3= recombinant class 66



Counting Recombinants Between Two Markers (Backcross)

Assume we have two markers M and N, each having two alleles: 
M1, M2 and N1, N2.

The possible “genotypes” of the two genetic markers are: 
M1/M1 and M1/M2

N1/N1 and N1/N2

If an offspring’s genotype differs from the parental genotype (at that 
marker), then a recombination is observed.

total number of recombinant events is n2+n3

1 2 3

2 3

4

r̂
n

n n
n n n

N1/N1 N1/N2

M1/M1 n1 n2

M1/M2 n3 n4

67

The likelihood function describing the backcross situation:

1 42 3( ) 1 ,n nn nL r Cr r

where C is the binomial distribution constant n1+n2+n3+n4 choose
n2+n3 (i.e.,                 ).  

The MLE is

1 2 3

2 3

4

r̂
n

n n
n n n

Or… we can derive it…

1 2 3 4

2 3

n n n n
n n
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Maximizing the Likelihood:
The likelihood function:

Take the natural logarithm (or log base 10):

The first partial derivative is the slope of a function. 
the slope will be zero at the maximum (global/local and/or minimum) 

check the second derivative to ensure maximum

2 3 1 4ln ( ) ln ( ) ln ( ) ln(1 )L r C n n r n n r

1 42 3( ) 1 n nn nL r Cr r
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The partial derivative with respect to r is:

Solve this equation for r:

The MLE is

1 2 3

2 3

4

r̂
n

n n
n n n

2 3 1 4ln
0

1
L r n n n n
r r r

2 3 1 4

1
n n n n

r r
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Example: estimating pairwise recombination
using data example from previous slide

Total number of recombinant events is 2 3n n

1 2 3

2 3

4

r̂
n

n n
n n n

H = Marker is heterozygous: 
marker M1: M11/M12
marker M2: M21/M22

A = Marker is homozygous
marker M1: M11/M11
marker M2: M21/M21

1n 2n
3n 4n

M11/M11 M11/M12

M21/M21

M21/M22

H

H

A

A
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Pairwise recombination between every pair of markers
Consider two markers M and N:

FACTS:

A “linkage group” is a group of markers where each marker is 
linked (r < .50) to at least one other marker.

If a marker is not linked to any marker in a linkage group, it does 
not belong in that group, and most likely belongs to some other 
linkage group.

rMN > 0  for

rMN = 0 for

rMN = rNM

Let O be a third marker,

recombination fractions are not additive

M N

M N

MO MN NOr r r;M N O
73

Introduction to Quantitative Trait Loci Detection:

Hypotheses and Single Marker QTL Analysis

R.W. Doerge

Summer Institute in Statistical Genetics
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Data Notation 
Assume: 

backcross experimental design

Many genetic Markers …

consider marker M with alleles M1 and M2

every marker has 2 states:

homozygous: M1/M1

heterozygous: M1/M2

trait Y

The unknown quantity is the genotype of the QTL.

denote the QTL by Q with alleles Q1 and Q2
75

Phenotype Data (backcross)
Measured quantitative trait values can be described via a line:

The trait value Yi is related to the QTL genotype,
the indicator variable Xi takes the value 1 or 0 according to whether individual Yi

has QTL genotype Q1/Q1 (Xi = 0) or Q1/Q2 (Xi = 1) 

Idea: when testing for a relationship between a marker and a QTL

consider the two QTL genotypic classes

Q1/Q1 and Q1/Q2

0 1 ;i i iY X 2~ 0,N
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… effect of the QTL

0 1i i
Y X

Q1/Q1 Q1/Q2

Y

*

*

77

…no QTL effect

0 1i iY X

Q1/Q1 Q1/Q2

Y

* *

78



Reality: QTL genotype is unknown, marker genotypes are known… use 
marker information.  If the marker (M) is linked to the QTL, knowing the 
marker is like knowing the QTL.

Recall:

P1: M1Q1/M1Q1 P2: M2Q2/M2Q2

F1: M1Q1/M2Q2

Backcross:

79

…effect of QTL

0 1i i
Y X

M1/M1 M1/M2

Y

*

*

1 1 1 21 / / 1 2(1 2 )( )M M M M MQr

Where MQr is the
recombination between
the QTL (Q) and the 
marker (M).

1 :P
2 :P

1 :F

1 1/M M
2 2/M M

1 2/M M

1 1/M M 1 2/M MBackcross:
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…no QTL effect

0 1i iY X

Y

M1/M1 M1/M2

* *

1 1 1 21 / / 1 20 (1 2 )( )M M M M MQr

Where MQr is the  
recombination between
the QTL (Q) and the 
marker (M).
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Traditional Single Marker Methods
t-test

Hypotheses:

Test 
Statistic:

1 1 20 / /: 0M M MH

1 1 2/ /: 0a M M MH

where
2 2

1 1 2 22

1 2

1 1
2p

n s n s
s

n n

•
1 1 1 2 1/ / 1 11 2

FM M M M MQ Mr

1 1 1 2

1 2

/ /
2

2

1 2

~
1 1

M M M M
n n

p

Y Y
t t

s
n n
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• effect of allelic substitution: t-test

where

0 : 0H

: 0aH

1

1 1

b

b E b
t

s

1 2

1

1
2 2~ n n n

b

b t t
s

1 2

1

b n

i
i

MSEs
y y

Y

M1/M1 M1/M2

* *
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WHAT WE SEE
Backcross: One Marker (M)

1 :P
2 :P

1 :F

1 1/M M

1 2/M M

Backcross:

1 :P
2 :P

1 :F

2 2/M M

Backcross:
1 1/M M 1 2/M M
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WHAT WE THINK

Backcross: One Marker (M)

1 :P 2 :P

1 :F

Backcross:

1 11 1/M MQ Q 2 22 2/M MQ Q

1 21 2/M MQ Q

1 11 1/M MQ Q 1 21 1/M MQ Q

1 11 2/M MQ Q 1 21 2/M MQ Q

85

1 11 1/M MQ Q 2 22 2/M MQ Q

1 21 2/M MQ Q
1 :F

2 :P
1 :P

WHAT WE ASSUME

Backcross: One Marker (M)

**The distribution (shape) of the 
quantitative trait values in the 
backcross population follows a 
mixture of normal distributions
within each of the known genotypic 
marker classes.

1

2,FN

2
1,N 2

2 ,N

assume common variance
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11 11 / :M MQ Q
21 11 / :M MQ Q

11 21 / :M MQ Q

21 21 / :M MQ Q

Distribution (shape) of the quantitative trait values within each 
backcross genotypic marker class.

two observable (backcross) marker genotypes

four possible (observable) marker and QTL (unobservable) genotypes

the distribution of the trait values:

1

2 2
1 11 , ,Ff r N rN

1

2 2
2 1, 1 ,Ff rN r N

1 1/ :M M

1 2/ :M M
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Likelihood approach for single marker analysis (backcross):
Discussed in more detail later…

Obtain maximum likelihood estimates (MLEs) of

the MLEs are the values that maximize the likelihood of the observed 
values 

or, the probability that the observed data would have occurred

write the likelihood as

where

2
0 1, ,

1 2
2

0 1 2
1 1

, , , ,
n n

L Y X r f f

1

2 2
1 11 , ,Ff r N rN

1

2 2
2 1, 1 ,Ff rN r N

1 1 11 / 1 2(1 2 )( )M M QMF r
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Summary

Single marker analysis is a method of QTL “detection”, not 
location.

Testing for differences in the means of the genetic marker 
classes actually tests whether                       departs from zero.

The location of the QTL and the effect of the QTL are 
confounded.

Single marker analysis can be accomplished with QTL-
Cartographer.

11(1 2 )( )
FMQ Mr
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Example: single marker analysis…

Experimental details:
mouse F2 
n = 291
chromosomes 11 only
marker system

microsatellites (m = 172 genome; m11 = 19)

mouse model … multiple sclerosis (MS) in humans
EAE: experimental Allergic encephalomyelitis is the principal animal 

model for human MS
parental lines EAE-susceptible SJL/J and EAE-resistent B 10.S/DvTe 
inbred lines

quantitative trait is severity of EAE. (Butterfield et. al., 1999. Journal of Immunology. 
162:(5)3096-3102).

Analysis: Single Marker Analysis (LRmapqtl) in QTL-Cartographer.
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Chrom. Marker       b0 b1 LR F(1,n-2) pr(F)

Y

M1/M1 M1/M2

* *
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Recap so far…

Introduction to concept of QTL
Experimental designs
Source of data

genotype and phenotype
Checking independent marker segregation

test for segregation distortion
Introduction to concept of genetic map and estimating 
recombination
Single marker QTL analysis

95

Linkage Analysis

Zhao-Bang Zeng

Summer Institute in Statistical Genetics
96



Linkage Analysis

H0: r = .50 (markers are unlinked)
H1: r < .50 (markers are linked)

Test Statistic:          test

Question: are two markers linked?

Need to identify recombinant and non-recombinant individuals

Examples:
Backcross: 4 genotypic classes (mouse example)
F2: 9 identifiable genotypic classes (maize example)

2

97

Backcross population:

Under the null hypothesis r = .50 (no linkage), the test statistic can 
be constructed as

Recall: estimate of recombination frequency is

2 2
2 21 4 2 3

1~NR Rn n n n n n
n n

ˆ /Rr n n

AB/Ab AB/aB AB/AB AB/ab

r/2 r/2 (1-r)/2 (1-r)/2
n2 n3 n1 n4

Frequency

Observed

recombinant: nR= n2+n3 and non-recombinant: nNR= n1+n4

total sample size: n= n1+n2+n3+n4 = nR+nNR

P1
F1

AB/AB AB/ab
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Markers are in map order

H denotes Haldane map function;    K denotes Kosambi map function
99

Mouse data: Estimated pairwise recombination frequencies

100



F2 population:
A mating between AB/ab and  AB/ab can produce ten genotypes, but 

only nine observable genetic classes:

The two double heterozygotes (AB/ab and Ab/aB ) are generally not 
distinguishable.

The specific nine unique genotype expected frequencies follow.

2 :P ab
ab

1 :F AB
ab

1 :F AB
ab

1 :P AB
AB

2 :F
AB
AB

AB
Ab

Ab
Ab

AB
aB

ab
ab

aB
ab

aB
aB

Ab
ab

AB
ab

2(1 )
4
r (1 )

2
r r

2

4
r (1 )

2
r r 2 2(1 )

2
r r (1 )

2
r r

2

4
r (1 )

2
r r 2(1 )

4
r

:F
AB
AB

Ab
Ab

aB
aB

ab
ab

or
Ab
aB
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Genetic class Code H0: r = .50 H1: r < .50 Rec. Event Observed #

AB/AB 2 2 1/16 (1-r)2/4 0 n1

AB/Ab 2 1 2/16 r(1-r)/2 1 n2

Ab/Ab 2 0 1/16 r2/4 2 n3

AB/aB 1 2 2/16 r(1-r)/2 1 n4

AB/ab 1 1 0 (1-c)

Ab/aB 1 1 2    c

Ab/ab 1 0 2/16 r(1-r)/2 1 n6

aB/aB 0 2 1/16 r2/4 2 n7

aB/ab 0 1 2/16 r(1-r)/2 1 n8

ab/ab 0 0 1/16 (1-r)2/4          0 n9

4/16 [(1-r)2+r2]/2 n5

where
2

2 2
r

[(1-r) +r ]
c 102



Estimating Recombination in an F2 population

A little more complicated largely because of genetic class 5 (n5). 

When estimating recombination frequency, we can utilize the 
genetic classification of recombination events and estimate r as:

2 4 6 8 3 7 5
1 2
2

r n n n n n n cn
n

Recall:  
genetic classes 2, 4, 6, 8 are the result of a single 

recombination event
genetic classes 3, 7, and 5 (with probability c) are the 

result of two recombination events…

(1)
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Since the probability c is unknown, it has to be estimated.  However, 
c is a function on recombination r (which is also unknown) :

Therefore, an analysis has to be performed in an iteratively 
updated loop between equations (2) and (1).

guess r (usually start with r = 0.25)
calculate c
stop when estimates converge

This algorithm is called the EM algorithm (Dempter, Laird, and Rubin 1977).

the E-step (Expectation step; equation (2)) 
the M-step (Maximization step equation (1)).
after a few iterations the estimate usually converges quickly.

(2)
2

2 21
rc

r r
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Testing linkage in an F2 population

Given that we can estimate recombination (r) in an F2

Test for linkage between pairs of genetic markers or loci
The statistical test for linkage can be performed by LOD 
score (log10 of odds, a likelihood ratio test statistic)
The likelihood function is:

1 9 2 4 6 8 3 7 5
2 22 21 1 1 1 11 1 1

4 2 4 2 2

n n n n n n n n n

L r r r r r r r

no recombinant events
1 recombinant event

2 recombinant events
complicated part
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The statistical test for linkage can be performed by LOD score 
(log10 of odds, a likelihood ratio test statistic):

with

and

LOD 10

ˆ
log

1/ 2
L r

L r

1 9 2 4 6 8 3 7 5
2 22 21 1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 1 1

4 2 4 2 2

n n n n n n n n n

L r r r r r r r

1 3 7 9 2 4 6 8 51 2 41/ 2
16 16 16

n n n n n n n n n

L r
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Maize data: Estimated pairwise recombination frequencies

107

Recall: n0R = n1 + n9;    n1R = n2 + n4 + n6 + n8;    n2R = n3 + n7

Maize data: example of linkage analysis using estimated recombination

108



Estimating Genetics Maps

R.W. Doerge

Summer Institute in Statistical Genetics
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Ordering a Set of Genetic Markers

The problem is equivalent to the “Traveling Salesman Problem”.

Methods:

1. Brand and Bound (Thompson, 1984)

2. Simulated Annealing (Weeks and Lange, 1987)

3. Seriation (Buetow and Chakravarti, 1987a,b)

4. Rapid Chain Delineation (RCD) (Doerge, 1993)

5. Many more…

110



Methods 1-3 are “multipoint analysis”, meaning that they rely 
on the calculation of all recombinant classes, between chains 
of markers (not just two markers).

Method 4 starts with pairwise recombination estimates
forms linkage groups and preliminary order
then resolves local inversions, by “permuting” all 
possible n-lets (i.e., triplets, quads, etc.)
very fast
RCD implemented in QTL-Cartographer

111

Motivation:

Building a genetic map quickly.
some experiments have only 50 individuals, but have 1500 
markers
10 markers alone, provide 1,814,400 possible orderings

it is not computationally feasible to try all possible orders 
of m markers

10!
2
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Example of RCD
Assume we have four markers: M, N, T, U

We learned how to estimate pairwise recombination estimates

The pairwise recombination between markers is represented 
in the following matrix:

Step 1: chain together M – N; SAR = .09

Step 2: add U to chain (U – M – N); SAR = .26

Step 3: add T to chain (U – M – N – T); SAR = .52

M 0 .09 .19 .17
0 .26 .22

0 .32
0

M     N     T     U

N

T

U
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Step 4: Permute overlapping (triplets) markers.

Final order: U – N - M – T ; SAR = .50

Most of the time, markers very close together may be   
transposed. The permutation stage of RCD takes care of this.

114



Mapping Software

MAPMAKER/EXP (version 3.0): Software for the calculation 
of genetic maps of certain experimental populations.

JoinMap: “JoinMap provides high quality tools that allow detailed study of the 
experimental data and the generation of publication-ready map charts.”

One Map (R function): includes RCD Method

115

Summary:
Determine linkage groups, resolve order within linkage groups.

Order across all linkage groups.

A “genetic map” is a collection of all linkage groups.

if there are enough markers to cover the entire chromosome, 
a linkage group is then referred to as a chromosome.

The genetic map is the structure that we rely on to locate 
“quantitative trait loci” (QTL), the genemic regions affecting 
a trait of interest.

if your estimated genetic map is poor, then  your QTL 
location will be poor.
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Map Estimation Exercise
Calculate pairwise recombination by hand, and estimate genetic 

map of 6 markers for increasing sample size

R.W. Doerge

Summer Institute in Statistical Genetics
117

Simulation Setting and Goal

Simulation Input:
Experimental design: backcross
Sample size: n = 25, 50, 100, 500, 1000
Marker number: 6
Recombination between markers

Simulation Output:
Genotype information  on 6 markers

Goal:
Estimate pairwise recombination and linear 
order (i.e., genetic map) by hand

118



Recall: estimating pairwise recombination
two markers *l1 and *l2

Total number of recombinant events is 2 3n n

1 2 3

2 3

4

r̂
n

n n
n n n

H = Marker is heterozygous: 
marker *l1: *l11/*l12
marker *l2: *l21/*l22

A = Marker is homozygous
marker *l1: *l11/*l11
marker *l2: *l21/*l21

1n 2n
3n 4n

*l11/*l11 *l11/*l12

*l21/*l21

*l21/*l22

H

H

A

A
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Things you can do with a genetic map…

With a genetic map in place we can rely on the order of the 
genetic markers across linkage groups (chromosomes) to 
provide additional information to locate QTL.

incorporate the recombination information from the genetic map into 
the search for QTL
necessary to use genetic map function to translate between 
recombination and genetic distance (i.e., probability to additive 
distance)

Haldane
Kosambi

129

Introduction to QTL-Cartographer

Download from: 
http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

Modular based:
Simulation and analysis

Simulation:
Genetic map
QTL

Need to understand parameter settings and order of events

Need to stay organized
Keep real data and simulated data in separated files/directories
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Introduction to QTL Detection
single marker likelihood to interval mapping

R.W. Doerge

Summer Institute in Statistical Genetics
131

The concept…

likelihood based QTL analysis…

moving from single marker analysis to interval mapping
develop likelihood approach for single marker

incorporate additional marker information into likelihood function
develop likelihood approach for two markers

consider two markers M and N, and the distance between them

each with two alleles 

QTL-Cartographer uses likelihood based approaches
important to understand the parameters that are being estimated
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0 1 ; 1,...,i i iY X i n

Recall: Single Marker Backcross QTL Model:

consider a backcross experiment

the QTL genotype can be one of two states Q1/Q1 or Q1/Q2

recall the equation for a straight line
is overall mean

is the additive effect of the QTL

allelic substitution at the QTL 

Xi is the genotype of the unobservable QTL

use marker genotype as Xi ; maybe QTL and marker are linked

0

1

1 1 1 21 / / 1 2(1 2 )( )M M M M QMr
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11 11 / :M MQ Q
21 11 / :M MQ Q

11 21 / :M MQ Q

21 21 / :M MQ Q

Distribution (shape) of the quantitative trait values within each 
backcross genotypic marker class.

two observable (backcross) marker genotypes

four possible marker and QTL genotypes

the distribution of the trait values:

1

2 2
1 11 , ,Ff r N rN

1

2 2
2 1, 1 ,Ff rN r N

1 1/ :M M

1 2/ :M M
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Likelihood approach for single marker analysis (backcross):
Obtain maximum likelihood estimates (MLEs) of

the MLEs are the values that maximize the likelihood of the observed 
values 

or, the probability that the observed data would have occurred

write the likelihood as

where

2
0 1, ,

1 2
2

0 1 2
1 1

, , , ,
n n

L Y X r f f

1

2 2
1 11 , ,Ff r N rN

1

2 2
2 1, 1 ,Ff rN r N

1 1 11 / 1 2(1 2 )( )M M QMF r
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Same hypotheses:

and

Test statistic is:

no QTL effect (denominator), implies

the LOD score demonstrates (statistically) how much more 
likely (probable) the data are if there was a QTL present as 
compared to the situation when there is no QTL present.

0 1: 0H 1: 0aH

2
0 1

10

0

ˆ ˆ ˆ, ,
log

ˆ ˆ,0,

L
LOD

L

0
ˆ and ˆ2ˆ

1 :P 2 :P

1 :F

1 1 1 1/M Q M Q 2 2 2 2/M Q M Q

1 1 2 2/M Q M Q

1 1 1 1/M Q M Q 1 1 2 1/M Q M Q

1 1 1 2/M Q M Q 1 1 2 2/M Q M Q
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Extend this idea to interval mapping…
Consider two markers M and N, each with two alleles. 

The genetic distance d (or, recombination, r) between markers M 
and N has been previously estimated (known)

A map function (Haldane or Kosambi) is utilized to translate 
between recombination and genetic distance.

Working in the units of genetic distance, incrementally step 
through the defined interval, testing the same hypotheses as before…

only now we need to incorporate the fact that we have information about 
recombination (genetic distance)

calculate a LOD score at each increment in the interval.

d
M                               N
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Marker M: alleles M1 and M2
Marker N: alleles N1 and N2

Relationship between M and N defined by recombination r  
the value of r is estimated and known
M        r        N

Use the additional information from knowing ‘r’ to locate QTL
Notation:      

r1 is the recombination between marker M and the putative QTL
r2 is the recombination between the putative QTL and marker N
any function of both r1 and r2 will be denoted as ki , i = 1,2.

Lander and Botstein (1989)

M                Q N
r1 r2
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M N
Q Q

r

Locate QTL by stepping through the interval defined by M and N

1r 2r1r 2r
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WHAT WE SEE
Backcross: Two Markers (M,N)

1 :P
2 :P

1 :F

1 1 1 1/M N M N
2 2 2 2/M N M N

1 1 2 2/M N M N

1 1 1 1/M N M N

1 1 2 1/M N M N 1 1 2 2/M N M N

1 1 1 2/M N M NBackcross:

1 :P
2 :P

1 :F

1 1 1 1/M N M N
2 2 2 2/M N M N

1 1 2 2/M N M N

1 1 1 1/M N M N

1 1 2 1/M N M N 1 1 2 2/M N M N

1 1 1 2/M N M NBackcross:
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WHAT WE THINK

Backcross: Two Markers (M,N)

1 :P 2 :P

1 :F

Backcross:

1 1 11 11 /M M QN NQ 2 2 22 22 /M M QN NQ

1 2 21 21 /M M QN NQ

1 1 11 11 /M M QN NQ

1 1 21 11 /M M QN NQ

1 2 11 11 /M M QN NQ

1 2 21 11 /M M QN NQ

1 1 11 21 /M M QN NQ

1 1 21 21 /M M QN NQ

1 2 11 21 /M M QN NQ

1 2 21 21 /M M QN NQ 141

1 1 11 11 /M M QN NQ 2 2 22 22 /M M QN NQ

1 2 21 21 /M M QN NQ1 :F

2 :P1 :P

WHAT WE ASSUME

Backcross: Two Markers (M,N)

**The distribution (shape) of the quantitative trait values in the 
backcross population follows a mixture of normal distributions within 
each of the known genotypic marker classes.

1

2,FN

2
1,N 2

2 ,N

assume common variance
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Backcross classes for two markers, one QTL:
Possible backcross genotypes and the distribution of the trait values 

(four unique mixtures of distributions):

1 1 11 11/ :M N M NQ Q
1 1 11 12/ :M N M NQ Q

1 1 21 21/ :M N M NQ Q

1 1 21 12/ :M N M NQ Q

1 1 21 22/ :M N M NQ Q

1 1 21 11/ :M N M NQ Q

1

2 2
1 1 1 1( , ) (1 ) ( , )Ff k N k N

1

2 2
2 1 1 1(1 ) ( , ) ( , )Ff k N k N

1

2 2
3 2 1 2(1 ) ( , ) ( , )Ff k N k N

1 1 11 21/ :M N M NQ Q

1 1 11 22/ :M N M NQ Q 1

2 2
4 2 1 2( , ) (1 ) ( , )Ff k N k N

1 2
1

1 2 1 2

1 1
1 1

r r
k

r r r r
1 2

2
1 2 1 2

1
1 1

r r
k

r r r r 143

Interval  Mapping
A

0

B

0

a

31 2 4

1

1

2
1 2 1 2 1 2 3 4

1 1 1 1
2

1 F 1 2
10 2

1 F 1 2

    H : no QTL

    H : QTL unlinked

    H QTL present and linked

Hypotheses:

:

Likelihood function:

( , , | X,Y, , )

ˆ ˆ ˆ( , , , , )
LOD=log

ˆ ˆ ˆ( , , , 0.50, 0

nn n n

L r r f f f f

L r r
L r r

? ~ ?
.50) 144



Interval Mapping

Zhao-Bang Zeng

Summer Institute in Statistical Genetics
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Interval mapping

The idea of interval mapping is two-fold:

1. by using two markers, both position and effect of a QTL 
can be inferred 

2. two adjacent markers (and associated genetic distance) are 
used to define the position in the search for QTL.
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Interval Mapping

The analysis is usually based a maximum likelihood analysis. 
Consider a backcross population. 
To analyze a QTL (Q) located in an interval flanked by two markers (M and N)

(assuming the order MQN)

The interval mapping analysis assumes the following linear model

Yi is the quantitative trait value 

the indicator variable Xi takes the value 1 or 0 according to whether individual 
Yi has QTL genotype Q1/Q1 (Xi = 0) or Q1/Q2 (Xi = 1) 

0 1 ;i i iY X 2~ 0,i N
(3)
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Note: the model is defined based on the QTL genotypes which are 
unobserved. However, given the marker genotypes and linkage relationship 
between markers and QTL, the probabilities of possible QTL genotypes can 
be inferred. Given a backcross design, let

*Pr , , 0,1.ki ip X k M N k

which is specified as

QTL genotype
Genotype #       Freq Q1/Q1 (Xi=0)                 Q1/Q2(Xi=1)

where

1 1 1 1/M N M N

1 1 1 2/M N M N

2 1 1 1/M N M N

2 2 1 1/M N M N

1n

2n

3n

4n

1 1
1

1
MQ QN

MN

r r

r

1
1MQ QN

MN

r r

r

1MQ QN

MN

r r

r

0
1

MQ QN

MN

r r
r

1 1
1

1
MQ QN

MN

r r

r

1
1MQ QN

MN

r r

r

1MQ QN

MN

r r

r

0
1

MQ QN

MN

r r
r

1
2

MNr

1
2

MNr

2
MNr

2
MNr

/ .MQ MNr r 148



Because there are two possible QTL genotypes each of which can be true with 
certain probability, the distribution of the model is a mixture distribution. Thus, 
the likelihood function of equation (3) is usually defined as

2 0 1 0
0 1 1 0

1
, , ,

n
i i

i i
i

y yL p p

1 2
0 1 0 1 0

1 1
1

n n
i i i

i i

y y y

3 4
0 1 0 0

1 1
1

n n
i i i

i i

y y y

where 21 exp / 2
2

z z is the standard normal density function

/MQ MNr r 149

In this likelihood function, the parameters include:

the mean of the model

the effect of the putative QTL

the position of the putative QTL

residual variance

The data are

the phenotypic value of a quantitative trait for each 
individual

genotypes of markers for each individual that contributes to 
the analysis of

1

/MQ MNr r

iy

, 1,2; 1, ,kip k i n
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Maximum likelihood analysis and EM algorithm
The maximum likelihood analysis of a mixture model is usually 
performed via an EM (Expectation and Maximization) algorithm. 
The EM-algorithm is an iterative procedure. In each iteration, the 
E-step calculates:

Pr 1 , Pr 1
Pr 1 , ,

Pr
i i i

i i i
i

x M N y x
P x M N y

y

1 0 1

1 0 1 0 0

/

/ /
i j

i j i i

p y

p y p y (4)
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and the M-step calculates:

This process is iterated until convergence of estimates.

(5)

(6)

(7)

(8)

0 1
1

/
n

i i
i

y P n

1 0
1 1

/
n n

i i i
i i

y P P

2
2 2

0 1
1

1 n

i i
i

y P
n

2 3

1 1

2 3

ˆ ˆ1ˆ
n n

i ii i
P P

n n
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Likelihood ratio test statistic

The test statistic can be constructed using a likelihood ratio in 
LOD (likelihood of odds) score

(9)

2

0 1

10
2

0 1

, ,
log

, 0,

L
LOD

L

under the hypotheses

assuming that the putative QTL was located at the point         on the  
genetic map, and where                  are the maximum likelihood 
estimates of                   under       , and             are the estimates of        
under        with      constrained to zero.

0 1: 0H and 1 1: 0H

2
0 1 ˆ, ,

2
0 1,

1H
0H 1

2

0,
153

Note: that the LOD score test is the same test as the usual 
likelihood ratio test

Therefore,

2
0 1

2
0 1

ˆ̂, 0,
2 ln

ˆ, ,

L
LR

L

10
1 log 0.217
2

LOD e LR LR
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Interval mapping can be performed at any position covered by markers, and 
thus the method creates a systematic strategy of searching for QTL. 

The amount of support or evidence for a QTL at a particular map position is 
often displayed graphically through the use of likelihood maps or profiles

plots the likelihood ratio test statistic (or a closely related quantity) as a 
function of map position of the putative QTL. 

If the LOD score at a region exceeds a pre-defined critical threshold, a QTL is 
indicated at the neighborhood of the maximum of the LOD score with the width 
of the neighborhood defined by one or two LOD support interval (Lander and 
Botstein 1989). 

By the property of the maximum likelihood analysis, the estimates of 
locations and effects of QTL are asymptotically unbiased if the assumption that 
there is at most one QTL on a chromosome is true.

Thoughts…
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Variance explained by QTL
Sometimes the magnitude of a QTL is also reported as the 
proportion of the variance explained by the QTL            and is 
usually estimated as 2 2

2 total reduced
explained 2

total

ˆ ˆˆ
ˆ

where is an estimate of the total phenotypic variance (       of 
equation (9) at the null hypothesis) and            is an estimate of the 
residual variance of the interval mapping model (        of equation 
(9) at the alternative hypothesis).

Problem: estimates of the proportion of variation explained are 
not additive for multiple QTL, and usually overestimate the 
variance explained by a QTL. 
***A more appropriate way to estimate the variance explained by QTL effects 
will be discussed in multiple interval mapping.

2
totalˆ 2ˆ̂

2
reducedˆ

2ˆ

2
explainedˆ
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Haley-Knott regression approximation
A simplified approximation of the model in equation (3) was proposed by 

Haley and Knott (1992) and Martinez and Curnow (1992). 

Instead of treating Xi as missing data and using a mixture model via maximum 
likelihood for missing data analysis, the Haley-Knott approximation uses

in the place of Xi and simplifies model (3) to 

Since this is a simple regression model, and the statistical analysis is straightforward. 

Haley and Knott (1992) and Rebai et al. (1995) have shown that this procedure gives 
a very good approximation to the likelihood profile for maximum likelihood interval 
mapping. 

Xu (1995) notes that this regression approach tends to overestimate the residual 
variance, and presents a correction.

1 Pr 1 , ,i ip x M N

1 1, ,i i iy p i n (10)
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Advantages and disadvantages

Compared with single marker analysis, interval mapping 
has several advantages:

1. The probable position of the QTL can be inferred by a 
support interval.

2. The estimated locations and effects of QTL tend to be 
asymptotically unbiased if there is only one segregating QTL 
on a chromosome.

3. The method requires fewer individuals than single marker 
analysis.
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There are many problems with interval mapping: 

1. The test is not an interval test 
a test which is able to distinguish whether or not there is a QTL 
within a defined interval, independent of the effects of QTL that 
are outside a defined region. 

2. Even when there is no QTL within an interval, the likelihood profile 
for the interval can still exceed the significance threshold if there is 
a QTL at some nearby location on the chromosome. 

if there is only one QTL on a chromosome, this effect, though 
undesirable, may not matter because the QTL is more likely to 
be located at the location which shows the maximum likelihood 
profile
however, the number of QTL on a chromosome is unknown.
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3. If there is more than one QTL on a chromosome, the test statistic 
at the position being tested will be affected by other QTL

the estimated positions and effects of “QTL” identified by 
interval mapping are likely to be biased.

4. It is not efficient to use only two markers at a time to test for 
QTL

the information from other markers is not utilized.
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Permutation Thresholds for QTL Mapping

R.W. Doerge

Summer Institute in Statistical Genetics
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Search for QTL
Single Marker Methods:

t-test

F-test (ANOVA)

Regression

Likelihood based tests

Interval Mapping:

LOD score (Lander and Botstein)

LRT (likelihood ratio test)

Composite Interval Mapping:

LRT (Zeng, Jansen)
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Recall: Interval Mapping…

Hypotheses:

no QTL

no QTL linked

QTL present and linked

Likelihood function:

0 :AH

0 :BH

:aH

31 2 4
2

0 1 2 1 2 3 4
1 1 1 1

, , , , ,
nn n n

L Y X r r f f f f

2
1

2
0 1 1 2

10 102
0 1 1 2

ˆ ˆ ˆ, , , , 1log ? ~ ? log .
ˆ ˆ 2ˆ, , , 0.5 x

L r r
LOD e

L r r
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Permutation Thresholds
Estimate the distribution of the test statistic

LOD or LRT

Determine statistically significant QTL

Empirically derived QTL thresholds
specific to the experiments

165

Statistical Issues

1. Distribution of trait values not always 
mixture of distributions: 

2. Transformation of trait data (get rid of skewing…)
log10 transformation (statistical fix…)
is it correct?

2, .N
2 2

1 1 2 2, ,p N p N
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3. Smaller sample sizes

4. Statistical tests (for QTL) are not independent.
Bonferroni correction

statistical fix
does not address genetic issues

marker order and density
same hypothesis being tested
is the type I error        correct?
how do we come up with an appropriate critical value 

(from an unknown distribution) that reflects our Type I 
error?

167

Experimental Factors

Sample size
Genome size
Marker density
Proportion of missing data
Segregation distortion
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Detecting QTL

Single marker methods
compute test statistical at each marker
compare to (known?) statistical distribution
significant genotype-phenotype association?

Multiple marker methods
order markers across genome
calculate test statistic at each position
compare to (known?) statistical distribution
significant genotype-phenotype association?

169

QTL-CartographerQTL-Cartographer
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Permutation Theory Applied to QTL Analysis
It is possible to derive the distribution of any test statistic under an 
appropriate null hypothesis by “shuffling” (Fisher 1935) the 
quantitative trait values among the individuals in the data set.

observations need to be “exchangeable”

If there is a QTL effect at specific location(s) in the genome, there 
will be an association between the trait values and the point  of 
analysis on the genetic map.

there is a phenotype-genotype association

If there is no QTL present in the genome, or it is unlinked to the 
point of analysis, there is no phenotype-genotype association

exactly the situation described under  the null hypothesis
171

Churchill and Doerge 1994
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Steps for Estimating
Significance Threshold Values

1. Hold the genetic map fixed.
2. “Shuffle” the trait values.
3. Analyze the ”shuffled” data set

t-test
likelihood ratio test
LOD score

4. Store the test statistic at each analysis point of step 3 in an 
“Analysis Matrix”.

5. Repeat steps 2-4 N times (Doerge and Churchill 1996).
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Each analysis point is essentially being sampled from the null 
distribution of the test statistic.

From the N sets of analyses, we can develop 
comparisonwise critical values
experimentwise critical values.

We use N = 1000 (number of permutations or “shuffles”)
( 0.05).

175

Comparisonwise, Experimentwise, and 
Chromosomewise Threshold Values

Recall… Type I Error: Reject the null hypothesis (no QTL) in favor of the 
alternative hypothesis (QTL effect) when there is really no QTL effect 
linked to the testing position.

Comparisonwise Threshold Values (per “marker”):
order the N test statistics obtained at each analysis point in 
the map and find the 100(1-a) percentile
using this critical value to define a test controls the type I 
error rate at that point to be a or less.
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Experimentwise Threshold Values (“genome”-wise):

obtain the maximum test statistic over all analysis points for each 
of the N analyses.
order these N values
the 100(      ) percentile is the estimated experimentwise critical 
value.

the experimentwise threshold value provides detection of the 
presence of a QTL somewhere in the genome while 
controlling the overall type I error rate to be    or less.

Chromosomewise Threshold Values:

limit the scope of the analysis to one chromosome
treat this one chromosome as “the experiment” , and estimated 
the chromosomewise (“experiment”) threshold.

1
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Using comparisonwise thresholds of this kind increases the type 
I error rate over the entire genome to be much higher than    .  

The experimentwise critical value will be higher than the 
comparisonwise value since we are controlling the type I error 
rate over the entire genome.
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Summary

specifics of the experiment affect the statistics

test statistics for real experiments may not follow standard 
distribution

empirical threshold values are specific to experiment

excellent application for parallel computing

179

QTL mapping methodology

interval mapping

composite 
interval 
mapping

permutation threshold

single marker

Fisher 1935; Thoday 1961; Lander and Botstein 1989; Zeng 1994; Churchill & Doerge 1994
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Example of QTL Mapping Experiement:
single marker, interval mapping, composite interval

mapping, permutation thresholds

R.W. Doerge

Summer Institute in Statistical Genetics
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Interval Mapping Simulation Exercise

Backcross
n=400; m=230
some missing data
5 quantitative traits
5 QTL

• Chromosome 1, 2, 3 each have one QTL
• Chromosome 4 has no QTL
• Chromosome 5 has two QTL
• All QTL are independent
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5 chromosomes
5 quantitative traits
5 independent QTL

1 2 3 4 5

trait 1 p30
a=5.0

p195
a=2.5

p36
a=1.0

- p103, p151 
a=2.5,2.5

trait 2

trait 3

trait 4

trait 5

chrom

trait

2 20

2 40

2 10

2 5

2 2.5

no QTL1 QTL 1 QTL 1 QTL 2 QTL

0 100

2~ (0, )N

0 1
;

i i iY X
Simulation set-up
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data type f2 backcross
400 230 5 0
*p1 H A A A A A A A

A A A H H A A A
… A H H H H H A
H A H A A H H A
A

*p2 A H H H A H A H
A A A A H H A A
- A A H A H A A
A H A H A A A H
H... H H H A H H

*p3 H - H H A A H A
A H A H A H A H
A H A A A A A H
H H H H H H H -
A A H - H H A A
H A H A H A - H…

…
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chrom. 2 chrom. 3 chrom. 4 chrom. 5chrom. 1
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Composite Interval Mapping

Zhao-Bang Zeng

Summer Institute in Statistical Genetics
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Motivation:

Problem with interval mapping: 
searching for a single QTL while there may be multiple 

QTL in the genome 
the search for a QTL can be complicated and 

confounded by multiple QTL.

Solution: Think about multiple QTL.

215

Extension from one QTL to multiple QTL
explicitly model two or multiple linked QTL 

multi-dimensional problem
gets complicated (see multiple interval mapping).

Goal: Test for QTL in an interval with a statistic that is 
independent of effects from other QTL along the chromosome.

Improved precision and efficiency of mapping multiple QTL.

Idea: Employ interval mapping to scan for single QTL while using 
other markers as surrogates to absorb linked QTL effects.

each interval test is independent
assumes no interference!

thus, for an interval, such an approach tests and estimates 
only QTL in the interval. 
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This approach simplifies searching for multiple QTL from a 
multiple dimensional search problem to one dimensional scan.

Questions:
How are marker cofactors selected? 
What considerations should be taken into account?
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Composite interval mapping
Composite interval mapping (CIM) is an extension of interval 
mapping using selected markers that are fitted in the model as 
cofactors and used to control the genetic variation of other 
possibly linked or unlinked QTL. The model is

where        refers to the putative QTL and        refers to those 
markers selected for genetic background control. Appropriate 
selection of markers as cofactors is important for the analysis.

The likelihood function is

where and

* * * *
i j k jk j j j j

k

y b x b x e b x X B e (11)

*
jx jkx

*
* 2

1 0
1

, ,
n

j j j j
j j

j

y b X B y X B
L b B p p

*
1 Pr 1j jp x *

0 Pr 0j jp x 218



The likelihood ratio test statistic is

* 2

10 * 2

ˆ ˆ ˆ, ,
log ˆ ˆ0, ,

L b B
LOD

L b B

219

Maximum likelihood analysis and the EM algorithm
The maximum likelihood analysis of a mixture model is usually 
via an EM (Expectation-Maximization) algorithm. In each 
iteration

E-step calculates:

M-step calculates:

This process iterates until the estimates converge.

*
1

*
1 0

/

/ /
j j j

j

j j j j j j

p y b X B
P

p y b X B p y X B

1* ' 1'b Y XB P P
1 *' 'B X X X Y Pb

2 *21 ' 1'Y XB Y XB Pb
n

Note: vector notation

220



Motivation: use of cofactors
Cofactors are used to block the effects (outside the testing position) 

of other possible QTL along the chromosome. 

Consider three points (either markers or QTL) a, b, and c on a 
chromosome

- - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - -

Let                      be recombination frequencies between a and b, b
and c, and between a and c. For backcross and F2 populations, the 
correlation coefficients are

Assuming no crossing-over interference

That is,

, ,ab bc acr r r

1 2 ; 1 2 ; 1 2ab ab bc bc ac acr r r

1 1 1 2 1 2 1 2ac ab bc ab bc ac ab bcr r r r r r r r

ac ab bc

a b c

221

However, the correlation coefficient between a and c conditional 
on b (i.e., the partial correlation coefficient) is

This means for

- - - - - q1 - - - - - - - a - - - - - - - - - b - - - - - - - - - c- - - - - - - - - - q2 - - - - - -

Therefore, conditional on markers a and c, a test on the effect of       
b on a trait is unaffected by q1 and q2 despite the fact there may be 
linkage. 

This is the basis of composite interval mapping.

1
0bq a 2

0bq c

1

2 2
, ,

(
(1 )(1 )

n

ac ab bc
ac b

ab bX X c
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The statistical power for the test of b (if it is a QTL) is affected 
by cofactors a and c, since the conditional test depends on the 
number of recombinants between a and b and between b and c.

The closer the distance between a and b and between b and c
becomes, there is less of a chance of recombination in the sample, 
and less statistical power for testing b conditional on a and c.

Unlinked markers selected as cofactors (because they are likely 
to be close to other QTL) can potentially reduce the residual 
variance of the model, and thus increase the statistical power to 
search and test for QTL.
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Marker Selection
Question: Which markers should be added into the model? 

The answer to this question depends on the (unknown) number 
and (unknown) positions of underlying QTL. 

Too few selected markers may not achieve the purpose of 
reducing the most residual genetic variation

Too many selected markers may reduce the power of the 
analysis.
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QTL-Cartographer
http://statgen.ncsu.edu/qtlcart/cartographer.html

Zmapqtl (model 6): module in QTL-Cartographer: a two parameter procedure 
np= number of markers as cofactors

supplied by user or selected via stepwise regression by SRmapqtl.
ws= width of testing window

blocks out a region of the genome on either side of the markers 
flanking the test site (supplied by user).

Three step procedure:

1. Cofactor step: select np markers that are significantly associated with trait 
using (forward or backward) stepwise regression.

2. Window marker step: For each interval, the algorithm automatically picks 2 
markers as a testing window, at least  WscM beyond the testing interval (one 
for each direction).

3. Mapping step: Map QTL for the interval with window markers and a subset of      
markers outside the testing window as cofactors. 225

Rules of thumb for Composite Interval Mapping:
np can be chosen from the results of the stepwise 

regression analysis (SRmapqtl) using F-to-enter (forward) 
or F-to-drop (backward) statistic with a specified 
significance level

ws should be as large as possible when there is no 
indication of other linked QTL

otherwise,  ws can be gradually decreased as long as 
the test statistic for a putative QTL is significant.

0.01.
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Example: Interval mapping and composite interval mapping on 
chromosome X of the mouse data.

experiment design: backcross 

m=181 microsatellite markers (SSR, simple sequence repeats) 

n=103 individuals. 

20 chromosomes

this analysis using only 14 markers in chromosome X 

The quantitative trait is 12 week body weight.

Composite Interval Mapping:

The boundary markers xL and xR are chosen to be the closest 
markers which are at least 10cM away from the testing interval.

Besides xL and xR, 20 other linked or unlinked markers are also 
selected as cofactors (from stepwise regression) to absorb the 
effects of other QTL. 227

The analysis from interval mapping indicates the existence 
of QTL on chromosome X 

the LOD score is significant for a wide region
the arbitrary threshold is 3.3 for a backcross

not all significant peaks can be interpreted as QTL 
because of 

linkage effects 
the “ghost” gene phenomenon
statistical sampling effects. 

the fact that a very wide region shows significant and 
comparable effects may suggest multiple QTL. 

Interval mapping analysis of (mouse) chromosome X:
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The boundary markers xL and xR are chosen to be the closest 
markers that are at least 10cM away from the testing interval.

20 additional linked or unlinked markers are also selected as 
cofactors in the analysis to absorb the effects of other QTL

markers are selected using stepwise regression
model 6 is employed via Zmapqtl

The LOD score from this analysis reveals two distinct major peaks. 
suggesting that there are at least two body weight QTL 

one named Bw1 is mapped near marker Rp18-rs11
the other, Bw2, mapped near DXMIT60

(Dragani et al. 1995 Mammalian Genome 6:778-781).

together the two QTL explain 25% of the phenotypic 
variance in the mapping population. In this case, the

Composite interval mapping achieved much better resolution in 
mapping QTL than interval mapping

Composite interval mapping analysis of (mouse) chromosome X:
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Some limitations of composite interval mapping
… motivation for multiple interval mapping

The analysis can be affected by an uneven distribution of markers 
in the genome

the test statistic in a marker-rich region may not be 
comparable to a test statistic in a marker-poor region

It is difficult to estimate the joint contribution of multiple linked 
QTL to the phenotypic variance 

CIM is not directly extendible to the analysis of epistasis

The use of tightly linked markers (as cofactors) can reduce the 
statistical power to detect a QTL
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Multiple Interval Mapping

Zhao-Bang Zeng

Summer Institute in Statistical Genetics
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Multiple interval mapping

Multiple interval mapping (MIM) is a multiple QTL method that 
combines QTL mapping analysis with the analysis of
genetic architecture of quantitative traits through a search algorithm 
that searches for

number
positions 
effects 
interaction of significant QTL

The basic idea is to implement a multiple QTL model and use a
search method to search for number and positions of multiple QTL.

simultaneously
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Multiple Interval Mapping

MIM consists of four components:

1. An evaluation procedure designed to analyze the likelihood of the data 
given a genetic model (number, positions, and epistasis of QTL).

2. A search strategy optimized to select the best genetic model (among those 
sampled) in the parameter space.

3. An estimation procedure for all parameters of the genetic architecture of 
the quantitative traits (number, positions, effects and epistasis of QTL; 
genetic variances and covariances explained by QTL effects) simultaneously 
given the selected genetic model.

4. A prediction procedure to estimate or predict the genotypic values of 
individuals based the selected genetic model and estimated genetic 
parameter values for marker-assisted selection.
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Mk-1 Mk Mk+1

Homologous Chromosomes

Genetic Model: 

Trait Phenotypic Values: Y

Q1 Q2 Qm-1 QmQTL: G …...

….....……..Markers: X M1 Mn

QTL Mapping

Likelihood of Data:  P(Y, X) = P(Y|X) P(X) = G

Infer the relationship between genotypes and phenotypes 235

where
yi is the phenotypic value of individual i
i indexes individuals of the sample; i=1,…,n

is the mean of the model
is the marginal effect of putative QTL r

is a coded variable denoting the genotype of putative QTL r
defined by ½ or -½ for the two genotypes
is unobserved, but can be inferred from marker data in sense 

of probability;

MIM Model
For m putative QTL, the multiple interval mapping model (for a 
backcross population) is defined by

* * *

1 1, ,

m t

i r ir rs ir is i
r r s m

y x x x e

r

*
irx

Continued…
236



is the epistatic effect between putative QTL r and s
denotes a subset of QTL pairs that each shows a significant 

epistatic effect
avoids the over-parameterization that could result when using all pairs;

m is the number of putative QTL chosen based on either their significant 
marginal effects or significant epistatic effects;

t is the number of significant pairwise epistatic effects;

is the residual effect of the model assumed to be

rs

1, ,r s m

ie 2 )

* * *

1 1, ,

m t

i r ir rs ir is i
r r s m

y x x x e

Continued…
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Likelihood
The likelihood function of the data given the model is a mixture of normal 
distributions

The term in square braces is the weighted sum of a series of normal density 
functions, one for each of 2m possible multiple-QTL genotypes

pij is the probability of each multilocus genotype conditional on marker 
data;

E is a vector of QTL parameters
Dj is a vector specifying the configuration of x*’s associated with each          

and    for the jth QTL genotype;
denotes a normal density function for y with mean      and 

variance 

2
2 2

11

, , ,
mn

ij i j
ji

L E p y D E

'  and ' )s s

y
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EM algorithm

E-Step: 2

1
2 2

1

,

,
m

t t t
ij i jt

ij t t t
ij i jj

p y D E

p y D E

M-step:
11 1
1 11

1 2

r m tt t t t
ij jr i js s js si j s s rt

r t
ij jri j

D y D E D E
E

D

1 1 11t t t
i ij jr r

i j r

y D E
n

22 1 1 t+1 1 1 1 1 11 2t t t t t t t
i i ij jr r ij jr js r s

i i j r r s i j

y y D E D D E E
n
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ijPosterior genotype probability

Probability of QTL genotype given markers:
Pr genotype markers Pr ijg M p

Conditional density of phenotypic given genotype:
2Pr phenotype genotype Pr y g ,i jy D E

Probability of QTL genotype conditional on markers and phenotype:

Pr genotype markers, phenotype ij

g

Pr g M Pr g
Pr g M,

Pr g M Pr g

y
y

y
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possible mixture components.
can be prohibitive for efficient numerical analysis
most genotypes have negligible probabilities

Can we skip these evaluations?

Practical implementation of MIM algorithm:

2mm QTL

Select a subset of “significant” mixture components for each 
individual for evaluation: (1) set any                             to zero 
(drop them); (2) Sum of “significant”                  (adjust      if 
needed);   (3) normalize probs:

Number of “significant” components ~ 10-100, depending on 
marker density, number and position of QTL. It has negligible 
loss of likelihood evaluation as compared to no selection.

0.005ijp
0.95ijp

1.ijj
p

Dealing with many QTL
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Practical implementation of MIM algorithm:

Select a subset of “significant” mixture components for each individual for evaluation: 

1. set any                      to zero (i.e., drop them); 
2. sum of “significant”                (adjust     if needed); 
3. normalize “significant” probabilities: 

Number of “significant” components ~ 10-100, depending on marker density, 
number and position of QTL. 

It has negligible loss of likelihood evaluation as compared to no selection.

0.005ijp

0.95ijp
1.ijj

p
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Conditional likelihood ratio test
Test for each QTL effect (Er) conditional on other QTL effects:

Proceed if we have positions of m putative QTL and selected m+t
QTL effects.

How do we search for multiple QTL?
How do we decide on how many QTL to include?
How do we select best genetic model? 

number, positions, gene action, epistasis

10

0
log

0, 0
s

r s

L all E
LOD

L E all other E
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Model selection (function in MIM QTL-Cartographer)

1. Initial model (New Model): Use an automatic stepwise selection procedure, 
CIM, or stepwise marker selection.

2. Search for new QTL 
Refine Model => Search for New QTL =>Search for QTL
scan the genome to determine the best position of new QTL based on the 
criterion selected.

3. Search for QTL epistasis
Refine Model => Search for New QTL => Search for Epistasis
search for epistatic effects among QTL identified based on the selected 
criterion.

4. Re-evaluation
Refine Model => Testing for Existing QTL
re-evaluate the significance of each QTL effect currently fitted in the 
model based on the selected criterion. 

this procedure can remove non-significant effects from the model.
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5. Optimize QTL positions 

Refine Model => Optimizing QTL Position
Optimize QTL position estimates in the current model.
QTL position is optimized one by one in a sequential order

6. Return to step 2 and repeat the process as needed.
7. Selection criterion: Currently implemented are BIC and AIC.
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High, unknown dimension: 
complicated, difficult.

Search on whole genome, 
not just markers

Numerous peaks & valleys in likelihood “landscape”;
danger of selecting a local peak for from maximum.

Appropriate criteria for model selection?
Appropriate strategies to search for epistatic QTL?

Questions:
Global (genomewide) search for multiple QTL
Genetic architecture: multiple components.

Challenges of searching for multiple QTL
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Model selection and stopping rule
Akaike information criterion (AIC): minimize

method: minimize adjusted 

Bayes information criterion (BIC): minimize                             
with                                                   or other penalty function.

Final prediction error (FPE) method: minimize prediction error.

Delete-one cross-validation, delete-d cross-validation, and 
generalized cross-validation: different ways to implement FPE.

Bootstrap model selection: use bootstrap resampling to 
implement FPE.

Minimizing posterior predictive loss: similar to FPE in concept.

2 log .kL k

pC 2R
2 log / 2kL kc n

log ,  or 2 log(log )c n n n
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Estimating the variance explained by QTL
Variance explained by QTL effect         can be estimated as

Covariance explained by QTL effect         and         is

Thus, the total genetic variance explained by QTL is

2 22 2

1 1
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Estimation of genotypic values
The genotypic value of an individual can be estimated as:

To predict the genotypic values of quantitative traits based on 
marker information only (e.g., in cross-prediction; early 
selection), we need to use

as        is a function of phenotype yi which is unavailable in early 
selection.

These estimates can be used for marker-assisted selection.

1

ˆˆ ˆ ˆ
m m t

i ij jr r
j r

y D E

1 1

ˆˆ ˆ ˆ
m m t

i ij jr r
j r

y p D E

ˆij
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After opening Windows QTL-Cartographer
upload a data set

Open MIM module:
choose New Model to select an initial model. 

the default search procedure is pretty good
there are also a few other procedures implemented

choose Refine Model => Optimizing QTL Position.
choose Refine Model => Search for New QTL => Search for QTL

to look for more potential QTL.
choose Refine Model => Search for New QTL => Search for Epistasis

to look for QTL epistasis
note: given the identification of QTL, the criterion for searching 

QTL epistasis can be more relaxed
recommend: select AIC in the box of  Criteria for MIM Model 

Selection).

Procedure for MIM analysis in QTL-Cartographer 
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choose Refine Model => Testing for Existing QTL
to see whether the selected QTL effects are still significant based on 

the selected criterion.

choose Refine Model => MIM Model Summary => Graphic Result File
to calculate and display the likelihood profile for each QTL.

choose Refine Model => MIM Model Summary => Model Summary File
to show the MIM output result file. 

information includes: position, likelihood ratio and effect of 
each QTL, epistatic effects of QTL, partition of the variance 
explained by QTL (main and interaction effects), estimates of 
genotypic value of individuals based on the model. 

There are also many other interactive functions in MIM module.
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More on epistasis: Why study epistasis?

• Experiments show that most QTL have mainly additive (or 
marginal, or main) effects

• It is difficult to find significant QTL epistasis:
– Small sample size
– Multiple dimensional genome search: low statistical power

• In reality, search for QTL has always been biased for main-
effect QTL, and not much effort has been put for searching 
for epistatic QTL

• Still, QTL epistasis is ubiquitous biologically

Thus, it is important to be able to identify epistatic QTL 
for the purpose of our understanding of genetic 
complexity and also for the completeness of statistical 
inference of genotype and phenotype relationship 252



Statistical setting for the problem
(for backcross population):
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Questions:

How to find each individual QTL (Q), particularly those Qi
with weak i but strong ij?
How to avoid false positive or incorrect identification of 
epistatic QTL?
Also how to increase the statistical power of identifying 
epistatic QTL? 

Terminology: 
Main-effect QTL: those QTL that have strong main effects ( ), and may or  
may not have strong epistatic effects ( )

Epistatic QTL: those QTL that have strong epistatic interactions ( ) (with 
other QTL), and may or may not have strong main effects ( )
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A popular approach (simple, but …)

Perform a 2D genome-scan to search for the best pair of x1 and 
x2 based on the statistical test of 1, 2 and 12, and interpret the 
result on the face value.

nkexxxxy kkkkkk ,...,2,1;21122211

Statistical model:

test for all combinations of 
genome positions for x1 and x2

the upper-triangle shows the 
statistical test for 1 and 2

the lower-triangle shows the 
statistical test for 12
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Problems… if using this simple 2D genome-scan for 
searching and interpreting epistatic QTL

Search for epistatic QTL based on the 2D pattern can be 
misleading very easily

Due to complex linkage and epistatic structure of multiple QTL

Low statistical power for this 2D genome-scan
Genetic variation due to other QTL effects is not fitted in the model, thus 
remains in the residual

Problems: Potential bias and low statistical power
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This is a multiple QTL problem (not, a two-QTL problem) 
and needs a multiple QTL solution

The challenge becomes… how to design a better analysis 
approach for a multiple epistatic QTL problem?  
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Another approach:

Extend the 2D search to multiple-D search for multiple epistatic QTL

Potential problems: 
unknown dimension in the search
need to assess and control statistical noise in a multiple 
dimensional search

multiple-D search is not necessarily powerful statistically

computational burden
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A Power Comparison between 2D Locus Pair Search 
and Sequential Search (Storey et al. 2005)

Statistical power to detect 2 eQTL Statistical power to detect 2 eQTL epistasis
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An important genetic property
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Implication: The search for QTL with main effects can proceed 
separately from the search for QTL with epistasis without bias. 
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Our solution: A three-stage search strategy

1. First search for main-effect QTL
either sequentially or other approach, each step uses 1-D genome 
scan), 
then test for epistasis of identified QTL => identifying xi’s

2. Search for epistatic QTL that interact with main-effect QTL
each 1-D genome scan => identifying xixj’s

3. Search for additional epistatic QTL pairs
each 2-D genome scan  => identifying xixj’s with weak i and j, but 
significant ij

ji
kjkikij

i
ikik exxxy
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Justification and advantages:

1. Most QTL effects are due to “main effect” QTL that explain 
most genetic variance, thus need to be searched and fitted in 
the model first (before the subsequent analysis).

2. The search for main effect QTL does not bias the search for 
epistatic QTL.

3. After the main effect QTL are mapped and fitted in the 
model, further search for epistatic QTL has more statistical 
power.

Advantages: 
Minimize the bias and increase the statistical power
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How it works …

2

263

Since the method is based on a number of sequential searches 
(for main or epistatic QTL), and in each step of the search we 
test for significance of the searched QTL effects (main or 
epistatic effects). We need to figure out a way to compute the 
null distribution of the searched test statistic in each step 
efficiently.
In each step we are testing the hypothesis (conditional on the 
other parameters): H0: =0   vs.   H1: 0.
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How to assess the relevant threshold in the search process

265

266



267

268



Implementation in QTL-Cartographer 

269

270



271

272



273

274



Example 1 (MIM): Genetic architecture of a morphological shape difference 
between two Drosophila species:

Population: two backcrosses between Drosophila simulans and D. mauritiana, 
each having two independent samples of sizes 200 and 300.

total sample size about 1000.

Trait: morphology of the posterior lobe of the male genital arch 
analyzed as the first principal component in an elliptical Fourier analysis. 
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Results:
There is an overall good agreement between CIM and MIM. 

MIM identified more QTL 
19 in total

the test statistics under MIM are higher than those under CIM 
MIM tends to have more power.

There is a good agreement between the sums of individual QTL effects and the 
observed parental line differences

demonstrating the power of MIM in partitioning parental differences.

Most QTL effects are additive. 
Dominant effects of QTL are substantial, 

but marginal as compared to additive effects. 

There are some epistatic effects in the backcross to D. mauritiana.
overall, epistasis does not seem to be very significant for the trait

QTL effects together explain 
93.2% of the total variance in the backcross to D. simulans
91.6% in the backcross to D. mauritiana.

There is a good predictive power of the model in the cross-validation analysis.278
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Study genetic basis of selection 
response on wing size in D. 
melanogaster

Weber et al. (Genetics 1999, 2001)
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Example 2 (MIM): Genetic architecture of wing size of Drosophila 
melanogaster on chromosome 3

Population: 519 recombinant inbred lines (RILs) originating from a cross 
between high and low selected lines on wing size. 

only QTL on chromosome 3 are segregating in the population
other chromosomes are identical for all RIL

Trait: wing size measured in radians in an allometric analysis.
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Results:
11 QTL are identified by MIM analysis. 
there is a good agreement between the sum of estimated additive effects 

of QTL and the observed parental genotype difference

there are some significant additive by additive interaction effects 
between QTL
the interaction pattern is complex

together, 11 additive and 9 additive by additive QTL effects
96% of the total variance in the population explained
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Sum of variance components: .009+.075+.047+.016+.003+.022+.037+.042+.011+.001+.012=0.275
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Sum of variance components: .001+.001+.009+.027+.002+.008+.021+.001+.003+.003=0.073
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Pattern of genetic variance partition in recombination 
inbred lines (RILs) of selected populations

Additive Variance Epistatic Variance
RI lines (Strong LD) 0.947 0.012
At equilibrium (without LD) 0.275 0.073

Lande R. (1975) The maintenance of genetic variability by mutation in a polygenic character with linked 
loci. Genet Res. 26(3):221-35 293

More efficient and precise in the identification of QTL

Helps to identify patterns and individual elements of QTL epistasis

Provides appropriate estimation of individual QTL effects, variance and 
covariance contribution

Improves the efficiency of marker-assisted selection, 

particularly when the information of epistasis is used for MAS

Multiple interval mapping helps bring QTL mapping, the study of genetic 
architecture, and marker assisted selection together

Composite Interval Mapping (CIM) and Multiple Interval Mapping (MIM)

applied for expression QTL analysis

eQTL

Advantages of multiple interval mapping
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Connecting QTL Analysis and Microarrays
expression QTL (eQTL) analysis

R.W. Doerge

Summer Institute in Statistical Genetics
295

…enter array technology
example… Affymetrix Gene Chips
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The first use of microarray technology:
Differential (Gene) Expression

when, where, and in what quantity each gene is expressed
compare expression under different conditions

(protein-coding) genes direct the synthesis of protein
many features simultaneously

DNA            mRNA            Protein
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The next use of microarray technology/(next gen)
Associate gene expression variation to a genetic map

Use QTL methodology with gene 
expression data 
Works best for fully sequenced 
organism

map order known
Yeast
Arabidopsis

Requires array(s) for each 
individual

each gene’s “expression” 
treated as quantitative trait
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Old methods for new ideas…

Quantitative dissection of  natural (expression) variation is 
likely to reveal different aspects of  regulatory networks

This combined approach benefits directly from existing QTL 
methodology and microarray methods

regulatory region
regulatory

gene structural gene

299

QTL

microarray

quantitative

expression

trait mapping 
(QTL)

Doerge; Nat Rev Gene.2002. 3:43-52
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A combined QTL and microarray approach
quantitative genetic framework
microarray technology
statistical methodology
take advantage of Expression Level Polymorphism: per-
gene expression level differences between genotypes.

Differentiate between
cis-
trans-

Molecularly dissect complex expression (e-)traits
one gene at a time
networks of genes 

Molecular dissection of complex traits
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Example 1 (eQTL): Composite Interval Mapping eQTL analysis

Population: Arabidopsis Bay-0 x Sha 
RNA from 211 RILs assayed on 844 Affymetrix ATH1 

‘whole genome’ GeneChips (~ 22,810 genes) 

2 treatments: salicylic acid (SA) and silwet (control) 
28 hours post-treatment
2 biological reps per treatment per RIL
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Arabidopsis Bay-0 x Sha: Recombinant Inbred (RI) Line Population

There is allelic variation 
in a segregating 

population, or
among genetically 

distinct individuals.

Partition the variation in 
gene expression into:

genetic sources
non-genetic sources
interaction between 

genetic and non-genetic 
components

technical
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95 genetic markers (<5cM framework map)

92 SFP markers: Single Feature Polymorphisms: 
difference in hybridization signal between the two 
genotypes (per probe). 

3 microsatellites 305

Composite Interval Mapping Results (Control)

22
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its

marker intervals

Chromosome 1

Statistically significant 
LRT values above the 
global permutation 
threshold (GPT)

green = Bay-0
red = Sha

e-traits not in physical order
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Single Marker Analysis
22

,8
10

 e
-t

ra
its

markers

Composite Interval Mapping

22
,8
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 e

-t
ra

its

marker intervals

Ch I Ch II Ch III Ch IV Ch V

Ch I Ch II Ch III Ch IV Ch V

Single Marker Analysis vs. Composite Interval Mapping
(Control)

green = Bay-0
red = Sha

e-traits not in physical order
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eQTL (Control) Variation:
75% of 22,746 genes have at least 1 eQTL
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Control: CIM
Sha: red

Bay: blue
Cyan  = number of eQTLs across genome per etrait (-trans) 

Yellow  = number of eQTLs in a chromosome per etrait (-cis)

number of etraits having eQTL at each testing locus
(scale: x 100, e.g., 20 on z-axis means 2000)
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Transcript expression heritabilities (control) in RILs versus Bay  and Sha parents.

Histogram: estimated broad-sense heritability (H2) in RILs and parents. 

H2= Vgenetic / Vphenotypic

Composite Interval Mapping
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trans-eQTL cis-eQTL

0.0 – 0.1
0.1 – 0.2
0.2 – 0.3
0.3 – 0.4
0.4 – 0.5
0.5 – 0.6
0.6 – 0.7
0.7 – 0.8
0.8 – 0.9
0.9 – 1.0

R2

0
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Distribution of percent phenotypic effect (R2) for all  eQTLs.

Histogram: distribution of R2 values for all 36,904 eQTLs: max(R2) = 0.97

Pie Charts:  R2 distributions for eQTLs that are 
trans- (31,777 total trans-eQTL)
cis- (5127 total cis-eQTL) to the gene’s physical position. 

Treatment = Control
Composite Interval Mapping
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Multiple Interval Mapping 
eQTL Analysis

Zhao-Bang Zeng

Summer Institute in Statistical Genetics
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Goals and Issues
eQTL Mapping Analysis

Identify and map genomic regions that significantly affect expression levels 
of different genes

statistical methods and power to map eQTL
justification of mapping procedures and results

e.g.,  false discovery rate (FDR)
epistasis of eQTL
multiple trait analysis

Identify cis- and trans-regulation of eQTL
Identify gene expression co-regulation patterns

eQTL hot-spots
why are they co-regulated?
is there any functional relationship among those co-regulated genes?

Prioritize candidate genes
from eQTL to genes

by using regulative and functional relationship between candidate genes in eQTL 
regions and genes whose expressions being regulated

prioritize and suggest candidate causal genes for some eQTL.   
Moving toward network and pathway analysis 313
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Example 2 (eQTL): Multiple Interval Mapping eQTL analysis

Population: BY (lab strain) x RM (natural strain) 
n=112 F1 segregants.

Markers: m=3312 using yeast oligoarrays 

Gene expression traits:
F1 individuals were labeled and hybridized to cDNA microarrays, containing 6215 open 
reading frames (ORF)

Reference design: Each two-color experiment involved one sample and one reference, 
BY RNA was the reference for all experiments

Dye swap: Two hybridizations were carried out for each sample, 
hybridization 1: sample labeled with Cy3 (green) and reference with labeled with Cy5 (red)
hybridization 2: sample labeled with Cy5 (red) and reference with labeled with Cy3 (green)
for each gene, the two log ratios were averaged. 
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XBY
Lab Strain

RM
Natural Strain

F1
Diploid

……
S1 S2 S3 S112S4

Brem and Kruglyak (2005) PNAS 102:1572-1577

An eQTL study on a yeast hybrid segregant population
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Markers Expressions         
Ind 1 2 3 4 5 6 7 8 9 10 11 …… 3312     1 2 3 4 5 6 7 8 9 10 11 ……  6215

BY 1 1 1 1 1 1 1 1 1  1   1 …….    1        X X X X X X X X  X  X  ……     X    
RM 0 0 0 0 0 0 0 0 0  0   0 …….    0       X X X X X X X X  X  X  ……      X

S1 1 1 1 1 0 0 0 0 0  1   1 …….    0       X X X X X X X X  X  X  ……      X
S2 0 0 0 1 1 1 1 1 0  0   0 …….    1       X X X X X X X X  X  X  ……      X
S3 0 0 0 0 0 0 1 1 1  1   0 …….    0       X X X X X X X X  X  X  ……      X
….
….
S112 1 1 1 0 0 0 0 0 0  1   1 …….    0       X X X X X X X X  X  X …….      X

Yeast experiment data structure

Data: For i = 1, 2, …, 112+2

Xij (marker j on individual i) j = 1, 2, …, 3312
Yik (expression trait k for individual i) k = 1, 2, …, 6215  
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Multiple interval mapping for eQTL analysis

Model: 

Sequential search for each eQTL conditional on the significance 
in the previous cycle for each eTrait
For each etrait:

In cycle 1, if the max test statistic > threshold
the first eQTL is identified and continue the next step
otherwise stop the search.

In cycle t+1, if the conditional max test statistic > threshold
one more eQTL is added and continue the search; 
otherwise stop.

After the search for the main effects
epistatic effects of eQTL are tested based on the threshold and then added to 
the model.

Obtain 1.5-LOD support interval for each identified eQTL
Churchill and Doerge (1994); Doerge and Churchill (1996); Storey et al. (2005); Zou and Zeng (2006)

318



MIM for eQTL analysis

The significance threshold is first determined by a permutation 
test with a controlled type I error rate for the genome scan

95 percentile of test statistic in a genome scan under the null

The threshold is then evaluated or adjusted based on the 
calculation of False Discovery Rate (FDR) in the sequential 
genome scans for the whole detected eQTL for all the 
expression traits.

Churchill and Doerge (1994); Doerge and Churchill (1996); Storey et al. (2005); Zou and Zeng (2006)319

The role of threshold in MIM-eQTL

In the later cycles of the genome scans, the search is restricted 
within the parameter space where the chance of detecting a 
strong association is high

focus is on those traits that have shown significant QTL in the previous 
cycles

The threshold serves as a stopping rule for deciding how many 
QTL are found for each trait.
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1. # of etraits in each cycle
2. # of etraits in the initial genome scans using the 10% genome-wide type I error rate
3. # of etraits in the final result using the 5% genome-wide type I error rate

With the 5% genome-wide type I error in each genome scan, 
the False Discovery Rate (FDR) for all the detected eQTL is 
estimated at about 8%

Cycle # Scanned1 # Retained2 #Claimed3

1 6195 3367 3354
2 3367 1617 1242
3 1617 578 422
4 578 197 122
5 197 66 37
6 66 10 5

Sequential genome scan using MIM
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Re-analysis of Brem & Kruglyak (2005)
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Summary and thoughts…
Transcript variation, when measured across a 
segregating population, can be used to map cis- and 
trans- effects.

identify hot spots
use hotspots to reduce dimension?

use markers from hotspots as co-factors 

There are differences in eQTL activity between 
environments/conditions

differing cis- and trans-acting effects
some shared 
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Inclusion:

Day 1:
Session 1: Introduction, experimental design, segregation analysis
Session 2: Introduction to genetic mapping, estimating recombination

Day 2:
Session 2(cont): Introduction to genetic mapping, estimating recombination
Session 3: Introduction to QTL detection, single marker QTL analysis, linkage analysis
Session 4: Introduction to genetic mapping, map estimation exercise
Session 5: Likelihood functions for single marker analysis, interval mapping
Session 6: Computer lab I: QTL-Cartographer

Day 3:
Session 7: Permutation thresholds; example QTL analysis
Session 8: Composite interval mapping
Session 9: Multiple interval mapping
Session 10: Computer lab II: QTL-Cartographer
Session 11: Introduction to eQTL mapping
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QTL mapping methodology

interval mapping

composite 
interval 
mapping

permutation threshold

single marker

Fisher 1935; Thoday 1961; Lander and Botstein 1989; Zeng 1994; Churchill & Doerge 1994
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