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General Schedule:

Day 1:
Session 1: Introduction, experimental design, segregation analysis
Session 2: Introduction to genetic mapping, estimating recombination

Day 2:

Session 2(cont): Introduction to genetic mapping, estimating recombination

Session 3: Introduction to QTL detection, single marker QTL analysis, linkage analysis
Session 4: Introduction to genetic mapping, map estimation exercise

Session 5: Likelihood functions for single marker analysis, interval mapping

Session 6: Computer lab I: QTL-Cartographer

Day 3:

Session 7: Permutation thresholds; example QTL analysis
Session 8: Composite interval mapping

Session 9: Multiple interval mapping

Session 10: Computer lab Il: QTL-Cartographer

Session 11: Introduction to eQTL mapping




Whatisa QTL?
What are QTL?

...and why do we want to find them???

QTL analysis in maize...

= Cross: teosinte and a primitive variety of maize (F,
population).

= Result: The chromosome 1 QTL (30% of the
phenotypic variance) that affects lateral branching.

= mapped to within 0.5 cM of a previously known major
mutation, teosinte branched1 (tb1)

= ***This locus Is the first case of a QTL that has been
cloned on the basis of its map position.




Major Quantitative Trait Locus

5
Doebley & Stec (1991) Genetics

What are the data collected for QTL
experiment?

= Quantitative trait values, or phenotypes, are collected on every
individual in the QTL experiment.

= height, weight, etc.

= tens or hundreds of phenotypes collected

= Genetic marker data are collected from every individual in the
QTL experiment.

= hundreds and hundreds of markers available

= Consider one quantitative trait. Each individual i; has data (in,
Y;) where X is the genotype of marker jand Y is the
phenotype; j=1,..., mandi=1,... n.

= assess variation in the quantitative trait

= map quantitative trait variation/information to the genetic map provided
by the genetic markers
6




Statistical genetics relies on the level of variation
provided by...

meiosis (crossover or recombination)
assessment of genetic variation
genetic map estimation
detecting quantitative trait loci
locating quantitative trait loci

Genetics: the basic unit of study is the gene or genetic
marker, and we are interested in how these “units” are
transmitted from parents to offspring.

Statistical genomics

Genomics: the basic unit of study is the
Individual “base pairs” that make up a gene, and
we are interest in how these base pairs differ
between individuals.
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Quantitative Trait Locus or Loci (QTL): Specific regions of the
genome that are associated with quantitative traits of interest.

Examples:
e QTL controlling grown and wood quality traits in Eucaluptus grandis

= QTL affecting response to short-term selection for abdominal bristle
number in Drosophila melanogaster.

= QTL controlling susceptibility to subtypes of experimental allergic
encephalomyelitis (EAE), the principal animal model of multiple
sclerosis (MS).

= Honey Bee, Tomato, Rice, Sugarcane, Sorgum, Mouse, Wheat, Fern...
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> \NWhy?7??
Marker-based selection
Cloning and characterization of genes.
Connect with functional genomics?
expression QTL (e-QTL)
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Main Goal:

Our main goals in this module are to:

1. examine and understand the statistical issues
surrounding the search for QTL (genes)

2. understand the basic set-up and methodology for QTL
mapping; introduce e-QTL

3. gain experience with QTL-Cartographer software;

4. accumulate a working knowledge of how to analyze
QTL data for experimental populations

5. understand how a working knowledge of QTL
analysis benefits eQTL analysis

16




Current methods for locating QTL:

= Single Marker Methods

= Interval Mapplng (Lander and Botstein 1989)
= Mapping: constructing genetic maps

= Locating QTL: use the genetic map information to locate QTL

= Composite Interval Mapping ansen 1993; zeng 1993, 1994)
= Locating QTL: use the genetic map information to locate QTL

17

Statistical issues surrounding the search for QTL
= Hypotheses
= Distribution of Test Statistics
= Multiple tests
= Multiple QTL

= Significance levels

18




Three Basic Steps
1. Experimental design and genetic data
= vocabulary
= material

= understanding the biological process that provides genetic
variation

2. Building the “Genetic Map”

= agenetic map provides the structure for the eventual location of
QTL (genes)

= need to resolve the “order” of the observable genetic markers

3. Locating QTL (genes) for the trait in which we are interested

19

Experimental Design and Data Structure

Zhao-Bang Zeng

Summer Institute in Statistical Genetics
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QTL Mapping Data

Marker Data:

= Molecular markers: specific patterns of DNA sequences;
polymorphic, abundant, neutral, co-dominant or dominant.
= examples: RFLP, SSR, RAPD, AFLP, VNTR

= Markers data are categorical (i.e., different classifications):
= presence or absence of a band of molecular segment.
= the number of categories depends on mapping population and marker type

= examples:
= two marker types (homozygote or heterozygote) for backcross population
= three marker types for F, population with co-dominant markers.

= Markers contain information about segregation at various
positions of a genome in a population.

21

Quantitative trait data:

= Measurement of a phenotype.
= examples:

= 12 week body weight of mouse
= grain yield of maize
= little size of pigs
= blood pressure
= disease resistant score,
= expression (traits) from microarrays...

= Continuous or discrete data.

= Quantitative trait data contain information about segregation and
effects of QTL in a population.

22




Quantitative Trait Locli

Quantitative Trait Loci (QTL): the regions or genes whose
variation has an effect on a trait in a population.

The statistical task of mapping QTL is to detect and estimate
the association between the variation at the phenotypic level
(trait data) and the variation at genetic level (marker data) in
terms of number, positions, effects and interaction of QTL.

Experimental Designs

Traditional experimental designs for locating QTL start with two
parental inbred lines, P, and P,, differing both in trait values and in
the marker (M, N, ...) variants or alleles (M;, M,, N, N,,...) they
carry.

= in practice, markers are sought that have different variants

arent 1: Py arent 2: Py

(alleles) in the parents.

= Advantage: |
= F, is heterozygote for all loci /W““{
= which differ in P, and P, i h“*
= maximum linkage disequilibrium K A

= for mapping QTL
= this type of experimental design has the maximum power.

24




Backcross and F, Designs

AB ab
P b
AB ab
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' }
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4 2 2 4 2 4 25
= Backcross (BC):
= two genotypes at a locus
= simple to analyze
" F,:
= three genotypes at a locus,
= can estimate both additive and dominance effects
= more complex for data analysis, particularly for multiple

QTL with epistasis (i.e., interaction)

= more opportunity and information to examine genetic
structure or architecture of QTL

= more power than BC for QTL analysis

26




Other commonly used inbred line crosses

Note: QTL-Cartographer deals with the below, and there are additional details in Lynch and Walsh (1998)
Advanced intercross
= selfing (SF): F,=F; xF; F;=F, xF,; F, = F; X F3; - - - through selfing):
= continual selfing (6+ generations) leads to recombinant inbred lines (RI lines)
= random mating (RF)):
= increase recombination
= expand the length of linkage map
= increase the mapping resolution (estimation of QTL position)

Doubled haploid (Rl,): similar to BC and RI in analysis

Repeated backcross:
" By By B1p=Py X By; By3=P; X Byy; B1y=P; X Byg; ...

Testcross of SF, or RF, to P

NC design IlI:

= marker genotype data on SF, and trait phenotype data on both SF, x P, apél
SF,x P,)

Recombinant inbred lines (R1 lines):

= selfing (R1, = SF,, t > 6)
= brother-sister mating (RI.,)

= more mapping resolution as more recombination occurs when
constructing RI lines.

= May improve the measurement of mean phenotype of a line
with multiple individuals, i.e., increase heritability.

= potentially a very big advantage for QTL analysis,
= a big factor for power calculation and sample size requirement.

28




Recombinant Inbred Lines
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Outcross populations

= Cross segregating populations (no inbred available):
= similar model and analysis procedure used as inbred cross, but more complex

in analysis.

= need to estimate the probability of allelic origin for each genomic point from
observed markers.

= less powerful for QTL analysis

= QTL alleles may not be preferentially fixed in the parental populations
= more difficult for power calculation (more unknowns)

30




Half-sib families

analyze the segregation of one parent
= similar to backcross in model and analysis.

less powerful for QTL detection
= more uncontrollable variability in the other parents.

analyze allelic effect difference in one parent, not the allelic
effect difference between widely differentiated inbred lines,
populations and species.

generally the relevant heritability is low for QTL analysis.

31

Full-sib families

dab x cd g a b
ac, ad, bc, bd c ac be
d ad bd

= four genotypes at a locus
= possible to estimate allelic substitution effects for male and female
parents and their interaction (dominance).
4 a=[ac + ad] — [bc + bd]
Q a=[ac + bc] — [ad + bd]
B =[ac + bd] — [ad + bc]
= doubled information for QTL analysis compared to half-sibs
= should be more powerful.
= Note: If we use the double pseudo-backcross approach for mapping analysis,
we do NOT utilize full genetic information,
= it actually uses less than half the information available.
= not powerful for QTL identification.

= Power calculation depends on how the data are analyzed. 32




Human populations

Pedigree :
= limited by sample size
= linkage analysis
= association between markers and

disease locus is due to recent genetic
linkage

= suited for Mendelian diseases, not for
complex diseases

Case-Control:
= large population available for study

= association analysis

= association between markers and
disease locus is due to historical
genetic linkage, and restricted to
short regions

= Can be used for complex diseases

Mational Human Genome Research nstitue

33

Designs to reduce sample size and increase statistical power

= Selective genotyping
= Bulked segregant analysis

= Progeny testing
= Replicated progeny
= Granddaughter design

34




Examples: Mapping Data

" Two data sets are used as examples for various analyses:

= Mouse (Table 1)
= Maize (Table 2)

35

= Mouse data (Dragani et al. 1995 Mammalian Genome 6:778-781).

= backcross population (B,)
= 103 individuals (sample size n =103)

= 181 microsatellite markers (SSR: simple sequence repeats)
distributed across 20 chromosomes

= including 14 markers on chromosome X

= chromosome X is used here as an example

= gquantitative trait is 12 week body weight (BW)

= Throughout, we use the trait data and marker data on chromosome
X to illustrate the analyses of segregation, linkage, single marker
analysis, interval mapping and composite interval mapping (which
also uses some markers on other chromosomes). 36




Table 1: A sample of a mouse data set (backcross, n=103)

Markers (on Chromosome X)

Ind. BW 1 2 3 4 5 6 7 &8 9 10 11 12 13 14
! 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 54 1 1 1 1 1 1 1 1 1 1 1 1 1 0
3 49 o0 1 1 1 1 1 1 1 1 1 1 1 1 1
4 41 o0 0o o o0 0 0 0 0 0 o0 0 0 0 0
> 36 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 48 O 0 0 0 0 0o 0 0 0o o o0 0 o0 o0
7T 3t 0 0 0 O O 0 1 1 1 1 1 1 1 1
& 55 1 1 1 1 1 1 1 1 1 1 1 1 1 0
9 42 o 0o o o0 0 0 0 0 0 O 0 0 0 0

10 46 O O O O O O O O O O 0 0 0 0

1 = AA homozygote genotype; 0 = Aa heterozygote genotype

37

= Maize data:
= F, population.

= 171 lines (sample size n =171)

= 132 markers distributed on 10 chromosomes,
=including 12 markers on a chromosome used as an
example.

= guantitative trait is disease resistant score.

= Eventually, we will use the trait data and the marker data to
illustrate segregation, linkage, single marker analysis, interval
mapping and composite interval mapping (which also uses

some markers on other chromosomes).

= A partial data are shown in Table 2.

38




Table 2: A sample of a maize data set (Fa, n=171)

Markers

Ind. Trait 1 2 3 4 5 6 7 8 9 10 11 12
1 62> 2 1 0 0 0 O 0 1 1 1 0 0
2 300 1 1 1 1 1 2 2 2 2 0 0 1
3 300 1 2 2 2 2 1 1 1 1 2 2 2
4 400 1 O O O O O O O O 1 2 2
5 300 o O 1 1 1 1 1 1 1 1 1 1
6 37 1 0 0 0 o0 1 1 1 1 0 0 0
7T 82, 2 2 2 1 1 0 O O O 1 2 2
8 250 0 O O O O O O 1 1 1 1 2
9 425 1.0 1 1 1 1 1 O O 1 1 1
10 450 o 1 1 1 1 1 1 1 0 O O O

2 = AA homozygote genotype of P1; 1 = Aa heterozygote genotype; 0 = aa homozygote genotype of P2

39

Segregation Analysis

Zhao-Bang Zeng

Summer Institute in Statistical Genetics




Understanding the inheritance of markers:
segregation analysis

= Statistically test whether markers are segregating independently
= no external forces acting on the population
= random mating
= N0 mutation
= no selection

= Employ a chi-square test

41

Testing Mendelian Segregation

Backcross population: cross between A/A and A/a produces the
following zygotes

A/A _Ala
Frequency under H, 1/2 1/2
Expected number n/2 nl2
Observed number n, n,

A test statistic can be constructed by using ¥ * under the null
hypothesis p(A/A) = p(A/a)=1/2 (Mendelian Segregation).

£=3 (Obs.#-Exp.#)° _ (n,—n/2)’ L, -n/2)* _(n,—n,)’
Exp.# n/2 n/2 n

Under the null hypothesis, this statistic is chi-square distributed with 1 degre
freedom. o = 0.05; ¥ = 3.84 42




Table 3: Example of testing Mendelian segregation: Mouse data
Marker Iy 2 P value
1 Hmgl-rs13 41 62 4.282 0.038
2 DXMith7 42 61 3.505 0.061
3 Rpsl7-rs11 43 60 2.806 0.094
4 Rps18rsl7 42 61 3.505 0.061
5 DXMit48 43 60 2.806 0.094

6 DXNdsl 44 59 2184 0.142
7 DXMit109 45 58 1.641 0.20
8 Hmgl4-rs6 49 b4 0.243 0.61
9 DXMit60 50 53  0.087 0.77
10 DXMit16 50 53  0.087 0.77
11 DXMit97 50 53  0.087 0.77
12 Hmgl-rs14 51 52  0.010 0.92

13 DXNMit3 56 47 0.786 0.38

14 Tpm3-rs9 49 54  0.243 0.61 43

F, population: A cross between A/a and A/a. The distribution of
zygotes is as follows:

A/A __Ala___ala
Frequency underH, 1/4 1/2 1/4

Expected number nfd  nl2 nl4

Observed number  n; n, Ng

Under the null hypothesis (Mendelian Segregation)
pP(A/A)=p(Ala)=1/4 and p(A/a)=1/2

, _(n,—n/4)? +(n2—n/2)2 L (n,—n/4 ) s
n/4 n/2 n/4 &

Under the null hypothesis, this statistic is chi-square

distributed with 2 degrees of freedom. .




Table 4: Example of testing Mendelian segregation: Maize data

P value

1

2

3
4

[y |

43
48
43
43
47
41
40
46

86
89
92
89
87
83
83
81
86
94
89

42
34
37
38
41
43

0.018
2.579
1.281
0.708
0.099
0.193
0.146
0.661
0.111
1.795
1.035
0.427

0.99
0.28
0.52
0.70
0.95
0.91
0.93
0.72
0.95
0.40
0.61
0.80
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Segregation Distortion

= Deviation from Mendelian Segregation is called segregation

distortion.

=Significant segregation distortion can
= bias estimation of recombination frequency between markers
= reduce the power to identify QTL
= bias the estimation of QTL position and effect

46




Introduction to Genetic Mapping

R.W. Doerge

Summer Institute in Statistical Genetics

a7

Estimated Genetic Map
(framework for QTL mapping)

101 70 B4 49 49 47 B4 . 3.21.7 oM

***need to understand how each marker segregates, then we can estimate a genetic map

48
Chromosome 11 mouse: Butterfield et al., 1999; Journal of Immunology




Vocabulary

recombination: the transmission to progeny combinations of
alleles different from those received by a parent, due to independent
assortment of crossing over.

crossing over: the exchange of genetic material between
homologous chromosomes.

Morgan (unit): a unit for expressing the relative distance between
genes (or markers) on a chromosome. The distance on a genetic map
between two loci for which one crossover event is expected per
gamete per generation.

Map unit or Centimorgan (cM): a map unit is 0.01 Morgans.

Interference: the lack of independence between crossover events
in different (nearby) regions.

49

Genetic Markers

Genetic markers are specific aspects of DNA. Specific patterns in the
DNA. There are many ways to find these “patterns” or sequences
through molecular genomic techniques.

RFLP: restriction fragment length polymorphism (co-dominant)
RAPD: randomly amplified polymorphic DNA (dominant)
VNTR: variable number of tandem repeats

AFLP, SSR (microsatellites), etc.

SNP: single nucleotide polymorphism

SFP: single feature polymorphism

etc.

50




Genetic Markers, Genotypes, and Statistical VVariation

= The state of specific genetic marker is called the “genotype”.

= Individuals sharing the same parents may have different
genotypes for the same genetic marker.
= these differences provide the variation we need to
statistically estimate the relationship between genetic
markers for the purpose of resolving their “linear”” order (or
genetic map) across chromosomes.

51

Recombination

= During the production of “gametes” an exchange of material (cross
over) between pairs of chromosomes may occur.

= eggs or sperm: each will eventually contain half the normal
chromosome number of a “diploid” organism

= Occurs in the Prophase | stage of Meiosis.

= The result of meiosis is the formation of “haploid” cells containing
one set of “unique chromosomes”.

52




Recombination fraction

r Crossover
v b =Recombination across an
i)

process _ D
Iinterval indicates an odd

Marker number of crossovers

data = |ocations of crossovers are
not observed.

Recombination fraction

Probability of recombination in an interval = Probability of an odd number of
crossovers in interval

_ 53
Illustration: K. Broman

Connecting Genetic Material, Lab Results, and Statistics
1. DNA: long stretches of base pairs.
2. We understand how (basically) the variation occurs during meiosis.

3. The variation (recombination) can be detected using laboratory
techniques (i.e., the genotypes of genetic markers are observed).

54




FACTS:

The closer two markers are the less likely a recombination
event is to occur.

Markers that reside on different chromosomes undergo
free recombination.

Two markers that never experience a recombinant event
between them are said to be “completely linked”.

= they travel together during the meiosis process.

If an even number of crossing over events occurs between
two genetic markers, this event is undetectable.

55

Next step...

= Once each marker is tested for independent segregation (and
passes), then the task becomes (linearly) ordering the markers
into linkage groups or chromosomes.

= equivalent to the traveling salesman problem in mathematics.
= requires a measure of distance between pairs of markers

= this distance is a function of recombination

= A map function translates between recombination and genetic
distance

= Haldane map function
= Kosambi map function

56




Estimating Recombination

R.W. Doerge

Summer Institute in Statistical Genetics
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Estimating Recombination Between Two Genetic Markers

The number of (odd) crossovers (k) in an interval defined by two genetic
markers has a Poisson distribution with mean 6.

Pr(recombination)

call this probability r with limits O < r <

-y 0" exp™”
" k!

9[9 6° J
=exp | —+—+...
11 3l

Cexp” (expg— exp‘g)
- 2

1 _
= E(1—exp 29)

1

@ is the number of map units (M) between two markers

58




Haldane Map Function:

Solving the previous equation for € gives Haldane’s map function:

1
6=—=In(1-2

« Let r = 0,8 =0 (completely linked)

“let r —> l , @ = oo(markers are unlinked)

2
= markers on the same chromosome, far apart

= markers reside on different chromosomes

59

Crossover interference

= Strand choice

= chromatid interference

= Spacing
= crossover interference

= Positive crossover interference:

= crossovers tend not to occur too
close together.

60

K. Broman




Kosambi Map Function:

If interference is taken into account, the Kosambi map function
should be used:

H=—I 1+ 2r
4 1-— 2r

= As two loci (or markers) become further apart, the amount of
interference allowed by the Kosambi map function decreases.

61

Haldane versus Kosambi:

= Haldane map function assumes that crossover events are

independent.
= as the loci (genetic markers) become further apart, recombination
increases from 0.0 to 0.50.

= Kosambi map function assumes there is interference

= one crossover tends to prevent other crossovers in the same or
close regions
= for unlinked loci, interference is O.

= When the genetic distance is small (less than 10cM), both
Kosambi and Haldane map functions provide, essentially the
same values.

62




Estimating Recombination from Experimental Data

= Estimate the probability of recombination between each pair of
genetic markers

= pairwise recombination estimates

= Recall: Recombination occurs in the F, generations, transmitted in
the F, gametes, and is detectable in the final generation.

= backcross, F,

= Use a genetic map function to convert recombination (probability)
to genetic distance (additive).

63

Genetic distance

= The genetic distance between two markers (in cM) is the
average number of crossovers in the interval in 100 meiotic
outcomes.

= Recombination rate varies by
= Qrganism
= sex
= chromosome
= position on chromosome

64




WHAT WE SEE
Backcross: Two Markers (M,N)

P,: M,N,/M,N,

Backcross: M1N1/M1N1 M1N1/M1N2

M,N, /M,N, M;N; /M,N,

65

A View of Crossing Over ...

Recall... recombination occurs in the parents, and the result is observed
in the offspring.

P, < Fiol My N,
\ |
Backcross: game
&~ y* I{
MlNl MlNl Ml 1 MlNl
M, N, M;N, M,N, M;N,
n, n, N, n,

n,+n, = non-recombinant class n,+n;= recombinant class 66




Counting Recombinants Between Two Markers (Backcross)

= Assume we have two markers M and N, each having two alleles:
= My, M, and N, N,.

= The possible “genotypes” of the two genetic markers are:
= M,/M; and M,/M,
= N,/N; and N,/N,

67

Or... we can derive it...

The likelihood function describing the backcross situation:

L(r) — Crn2+n3 (1_ r)n1+n4 ,

where C is the binomial distribution constant n,+n,+n;+n, choose
n2+n3 (i.e., [nl+n2+n3+n4J).

n, +n,

The MLE is
n, + N,

n +n,+n,+n,

=

68




Maximizing the Likelihood:

= The likelihood function:

L(r)=Cr"™™ (1—r)*™
= Take the natural logarithm (or log base 10):
InL(r)=InC+(n,+n,)Inr+(n,+n,)In(1—r)

= The first partial derivative is the slope of a function.

= the slope will be zero at the maximum (global/local and/or minimum)

= check the second derivative to ensure maximum

69

= The partial derivative with respect to r is:

8InL(r)_n2+n3_n1+n4 0
or (1—r)_

= Solve this equation for r:
n,+n, n+n,

r (1-r)

= The MLE is

70




Example Data Set

data type backcross

100 120 1

*M1HAAAHHH

HAHAAAAA
AHAAAAHA

*M2HAAAHHH

HAHAAAAA
AHAAAAHA

*M120 HH AHHH

HHAAAHHA
HHAAHAHH

*trait
9.5512 10.8668 11.0

HHAAAHAAAHAHHAAAAHHHAAHAHH

HHAHAHAHAHAHAHHAHHAHAHHHHAHAHHAH

HAAHHHAHHHHHHAAAHAH

HHAAAHAAAHAHHAAAAHHHAAHAHH

HHAHAHAHAHAHAHHAHHAHAHHHHAHAHHAH

HAAHHHAHHHHHHAAAHAH

HHAHHAAHAAHHAAHHHAAHHAHHHAEH

HHAHHHAAAHAHAHHAAAAHDHAAHHOHHHHHHOHA

HHHAHHAHAHHAAHHHAHHH

566 10.0179

11.1773 11.7145 9.9619 11.2285

11.9308 10.5303 9.8
13.3965 9.8091 11.8

150 11.0253

568 11.8308

11.5215 11.2149 9.4704 10.2907
12.2647 11.4211 10.2202 9.8874
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Example: estimating pairwise recombination

using data example from previous slide

H = Marker is heterozygous:
marker M1: M1,/M1,
marker M2: M2,/M2,

A = Marker is homozygous S H.
marker M1: M1,/M1, M1,/M1, M1,/M1,
marker M2: M2,/M2,

A M2./M2

i 1 1 nl 2
H M2,/M2

i 1 2 n3 n4

= Total number of recombinant eventsis 1, + 1,

n, + Ny

r=

n+n,+n,+n,
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Pairwise recombination between every pair of markers
Consider two markers M and N:
FACTS:

A “linkage group” is a group of markers where each marker is
linked (r < .50) to at least one other marker.

If a marker is not linked to any marker in a linkage group, it does
not belong in that group, and most likely belongs to some other
linkage group.

yy >0 for M =N

SYINERINY
Let O be a third marker, M — N —O; 'vo = Mun + Mo
recombination fractions are not additive 73

Introduction to Quantitative Trait Loci Detection:

Hypotheses and Single Marker QTL Analysis

R.W. Doerge

Summer Institute in Statistical Genetics
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Data Notation
= ASsume:

= backcross experimental design

= Many genetic Markers ...

= consider marker M with alleles M, and M,
= every marker has 2 states:
= homozygous: M,/M,
= heterozygous: M,/M,

=traitY

= The unknown quantity is the genotype of the QTL.
= denote the QTL by Q with alleles Q, and Q,
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Phenotype Data (backcross)

=Measured quantitative trait values can be described via a line:
. _ 2
Yi:BO+B1Xi+8i’ & N(O’G)

= The trait value Y; is related to the QTL genotype,

= the indicator variable X; takes the value 1 or 0 according to whether individual Y;
has QTL genotype Q,/Q, (X; = 0) or Q,/Q, (X;=1)

=ldea: when testing for a relationship between a marker and a QTL

= consider the two QTL genotypic classes
= Q,/Q; and Q,/Q,
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... effect of the QTL

Y= B+ BX

L |
Ql/Ql QI/QZ
..no QTL effect
Y.=0+5X
’I
1
I
1
1
1 }
L |
Q,/Q, Q./Q,
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Reality: QTL genotype is unknown, marker genotypes are known... use
marker information. If the marker (M) is linked to the QTL, knowing the
marker is like knowing the QTL.

Recall:
P, M,Q,/M,Q, P,: M,Q,/M,Q,
F.: M, Q./M,0Q,
Backcross:
79
...effect of QTL RE MM, P MM,
\ J/
Y X \ F: MM,
i 'Bo T ﬁl i /

/ Where  Tyo s the

recombination between
| | the QTL (Q) and the

M1/M1 M1/M2 marker (M).

80




...no QTL effect

Yi:ﬁo_l_ﬁlxi

p,=0= Hyim, — Hum, = (1- 2rMQ)(lu1 — 1)

* Where Tyq isthe
1 recombination between
| | the QTL (Q) and the
M,/M, M,/M, marker (M).
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Traditional Single Marker Methods
= t-test

= Hypotheses:
Hy ! v v, —Hwgm, = 0
H,: M, v, —Hwvgm, 7 0

Test _ _
.. Y —Y
Statistic: t = Ma/My M, /My

tn+n2—2

(1 1 (ny )
syl — +—
nl n2

(n,—1)s; +(n, -1)s;

* Uym, —Bmgm, = (1_2rMQ)(H1 _MMH) =B,
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« effect of allelic substitution: t-test

H,:p=0 v |7 —
H. :B=0 e e
_b-E[b)
b,
LS

MSE
where Sy, = -
\/Z(y- — 7)2
i=1
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WHAT WE SEE
Backcross: One Marker (M)

Pl: M,/ M, PZZ M,/ M,

Backcross:
Mll M, Mll M,
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WHAT WE THINK
Backcross: One Marker (M)

R: M.Q, /M, 0, P,: M,Q,/M,Q,

AN /

Fl : MlQll MZQZ

|

Backcross:
M1Q1/M1Q1 M1Q1/M2Q1
M1Q1/ Mle M1Q1/ MzQz
85
WHAT WE ASSUME
Backcross: One Marker (M)
|:’1 . MlQl /M 1Q1 P2 . M 2Q2 / M ZQZ

N (0% N (k. 02)
/

+_ assume common variance

**The distribution (shape) of the
quantitative trait values in the
backcross population follows a
mixture of normal distributions
within each of the known genotypic
marker classes. 86




= Distribution (shape) of the quantitative trait values within each
backcross genotypic marker class.

= two observable (backcross) marker genotypes

= four possible (observable) marker and QTL (unobservable) genotypes

= the distribution of the trait values:

- MO /MOt f =(1-r)N(w,o°)+rN(u.,o’
VLM {MiQi/MiQii ,=(1-r)N(p,06°)+rN(ng,0%)

M1/M23{ e fo =N (“1’02)+(1_r)N (“H’GZ)
M.,Q, /M,0,:

87

Likelihood approach for single marker analysis (backcross):

= Discussed in more detail later. ..
= Obtain maximum likelihood estimates (MLES) of (Bo Bys 62)

= the MLEs are the values that maximize the likelihood of the observed
values

= or, the probability that the observed data would have occurred

= write the likelihood as

L (oo’ X.r) =TT £ %,
1 1
“where [, = iy, — Mg = (1=20,0)(1, — 1)

f, =(1—r) N (u1,62)+ rN (uFl,GZ)
f,=rN (u1,02)+(1—r)N(uFl,c52) 88




Summary

Single marker analysis is a method of QTL “detection”, not
location.

Testing for differences in the means of the genetic marker
classes actually tests whether @-2n)(« -, ) departs from zero.

The location of the QTL and the effect of the QTL are
confounded.

Single marker analysis can be accomplished with QTL-
Cartographer.

89

Example: single marker analysis. ..

Experimental details:

= mouse F,
= n=291
= chromosomes 11 only

= marker system
= microsatellites (m = 172 genome; my; = 19)

= mouse model ... multiple sclerosis (MS) in humans

= EAE: experimental Allergic encephalomyelitis is the principal animal
model for human MS

= parental lines EAE-susceptible SJL/J and EAE-resistent B 10.S/DvTe
Inbred lines

= quantitative trait is severity of EAE. (Butterfield et. al., 1999. Journal of Immunology.
162:(5)3096-3102).

Analysis: Single Marker Analysis (LRmapqtl) in QTL-Cartographer.
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Estimated Genetic Map for Chromosome 11

e v = - - i =
@ z ] L H ¥ 2 £ B A “
, . . , , . . . — — N .
- o - — = - 2 = — - - - - — e
j = : = = -+ - - z - p ks = o
£
=
<=
(=]
w
=
S
w
=
£
=
=
-
| *
| *
| *
| *
| *
| * * * Here is a histogram for the quantitative trait...
| * * *
| * * *
| % kokk
| eknex *
| ek ok *
| ek ok ok *
| Ak ek *k ok *
| deskokokokok kk Kk k *
| Ak ok Ekk *
| deokokokokok ok dokokok * Min(Y) = 0.02381
| Hkkokokk kok kkkkE K kK Max(Y) = 2.33333
| dekokokokok ok kokokkokdkkkkkk K
| sk sk skk ok ko kkokkokkokdkk % %
| ook e ko ok ko ok Ak R kR K *%
| ook sk o sk ook ok ok ok ok ok ok ok ok ok ok ok ok ok ok kakok
| s e sk e sk ke ok ke ke ok kKR Rk R KRRk kKK K
| ke o e ok o o o o ok ook ok ok ok ok ok ok ok ok ok koK Rk kR ok
| s e sk e sk o ke sk ke sk ke sk ok sk sk ke ke ok kok ok ok ok ke kkokok ok ok ok
| 38 o e ok e e e ko e ok e ke ke K e o o e K o e ok K e ok ok o ook o ok o * *
—m e +
0.02 1.18 2.33
min Y max 92




This output is based on the map in (qtlcart.map)
And the data in (gtlcart.cro)
Sample Size............ 291
This analysis fits the data to the simple linear regression model
¥y = b0 + bl x + e
The results below give the estimates for b0, bl and the F statistic
for each marker. The F statistic is for the hypothesis that the marker
is unlinked to the quantitative trait. The column headed by PR is the
probability that the trait is unlinked to the marker. Significance at
the 5%, 1%, 0.1% and 0.01% levels are indicated by *, **¥, *¥* and
**x%, respectively. LR is -2log(LO/L1).
This trait is: sev, and

-t 1 is the number of trait being analyzed.
Chrom. Marker bo b1l LR F(1,n-2) pr(F)
11 1 0.619 0.113 8.164 8.223 0.004 *x
11 2 0.624 0.115 8.167 8.226 0.004 *x
11 3 0.624 0.110 8.201 8.261 0.004 *x
11 q 0.620 0.127 9.615 9.709 0.002 **
11 5 0.617 0.168 17.372 17.778 0.000 *kk*
11 6 0.621 0.156 14.771 15.048 0.000 **x*
11 7 0.619 0.155 16.221 16.567 0.000 ***x*
11 8 0.620 0.144 13.101 13.308 0.000 *#**
11 9 0.623 0.136 11.191 11.330 0.001 #*#**
11 10 0.622 0.136 12.137 12.308 0.001 #***
11 11 0.622 0.137 12.781 12.976 0.000 *x*x* 93
11 12 0.620 0.165 18.627 19.104 0.000 *kk*
Chrom. Marker Db, b, LR F(1,n-2) pr(F)
11 13 0.620 0.152 15.229 15.527 0.000 **x*
11 14 0.618 0.164 17.762 18.189 0.000 *kkx
11 15 0.619 0.138 12.284 12.461 0.000 #**x*
11 16 0.628 0.046 1.336 1.330 0.250
11 17 0.628 0.050 1.631 1.624 0.204
11 18 0.626 0.068 2.976 2.971 0.086
, 2
N
M, /M, M, /M,
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Recap so far

Introduction to concept of QTL
Experimental designs
Source of data
genotype and phenotype
Checking independent marker segregation
test for segregation distortion

Introduction to concept of genetic map and estimating
recombination

Single marker QTL analysis

95

Linkage Analysis

Zhao-Bang Zeng

Summer Institute in Statistical Genetics
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Linkage Analysis

H,: r = .50 (markers are unlinked)
H,: r <.50 (markers are linked)

Test Statistic: 2 test
= Question: are two markers linked?
= Need to identify recombinant and non-recombinant individuals

= Examples:
= Backcross: 4 genotypic classes (mouse example)
= F,: 9 identifiable genotypic classes (maize example)

97

Backcross population:

AB/AB X  ABlab

%/—/ %/—/

- Py Fy
AB/Ab | AB/aB | AB/AB | AB/ab
Frequency r/2 r/2 (1-r)/2 | (1-n)/2
Observed N, N3 Ny n,

= recombinant: ng= n,+n,; and non-recombinant: nyg= Nn;+n,
= total sample size: n= n;+n,+ng+n, = Ng+nyg

Under the null hypothesis r = .50 (no linkage), the test statistic can
be constructed as

2 2
Ny —N n+n,—n,—n
Zzz( NR R) :(1 4 2 3) ~Z12

n n

Recall: estimate of recombination frequency is F=ng/n 98




Markers are in map order

Example of linkage analysis: Mouse data

Markers nNp NR Y2 7 cM(H) <M(K)
1 Hmgl-rs13 2 DXMit57 96 7 76.903 0.068 7.3 6.8
2 DXMith7 3 Rpsl7-rsll 102 1 99.039 0.010 1.0 1.0
3 Rpsl7-rs11 4 Rpsl8-rsl7 102 1 99.039 0.010 1.0 1.0
4 Rps18-rs17 5 DXMit48 100 3 91.350 0.029 3.0 2.9
5 DXMit48 6 DXNds1 100 3 91.350 0.029 3.0 2.9
6 DXNds1 7 DXMit109 98 5 83.971 0.049 5.1 4.9
7 DXMit109 8 Hmgl4-rs6 99 4  &87.621 0.039 4.0 3.9
8 Hmgl4-rs6 9 DXMit60 102 1 99.039 0.010 1.0 1.0
9 DXMit60 10 DXMit16 101 2 95.155 0.019 2.0 1.9
10 DXMit16 11 DXMit97 101 2 95.155 0.019 2.0 1.9
11 DXMit97 12 Hmgl-rs14 100 3 91.350 0.029 3.0 2.9
12 Hmgl-rs14 13 DXMit3 96 7 76.903 0.068 7.3 6.8
13 DXMit3 14 Tpm3-rs9 92 11 63.699 0.107 12.0 10.8

H denotes Haldane

map function; K denotes Kosambi map function

d

Mouse data: Estimated pairwise recombination frequencies

2 3 4 5 6 7 8 9 10 11
1007 0.08 0.09 012 015 019 0.23 0.24 0.26 0.26
2 0.01 0.02 0.05 008 0.13 0.17 0.17 0.19 0.19
3 0.01 0.04 007 0.12 0.16 0.17 0.18 0.18
4 0.03 0.06 0.11 0.15 0.16 0.17 0.17
5 0.03 0.08 0.12 0.13 0.15 0.17
§ 0.05 0.09 0.10 0.12 0.14
7 0.04 0.05 0.07 0.09
8 0.01  0.03 0.05
9 0.02 0.04
10 0.02
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F, population:

A mating between AB/ab and AB/ab can produce ten genotypes, but
only nine observable genetic classes:

AB
T < P. - EEEi
T AB ' 2

ab

AB x . AB

F:— Fi—

ab v ab

F, :

AB  AB  Ab  AB AB,AD © Ab  aB aB ab
AB Ab AZ\b aB ab aB ab al? ab ab
@—r) r@-r) r- r—r) @—r)2+r? r(—r) r- r(—r) @a—ry?
4 2 4 2 2 2 4 2 4
v
v

AB Ab aB ab
F.: AaB Ab aB ab

= The two double heterozygotes (AB/ab and Ab/aB ) are generally not
distinguishable.

= The specific nine unique genotype expected frequencies follow. o

Genetic class Code Hy:r=.50 H;:r<.50 Rec.Event Observed #

AB/AB 22 1/16 (1-N%4 0 n,
AB/Ab 21 2/16 - 1 n,
Ab/Ab 20 1/16 r2/4 2 N,
AB/aB 12 2/16 r(1-r)/2 1 n,
ABlaD : ? 4/16 [(1-r)?+r?]/2 ° } N5
b/aB 11 2
Ab/ab 10 2/16 r(1-r)/2 1 Ng
aB/aB 02 1/16 r2/4 2 n,
aB/ab 01 2/16 r(1-r)/2 1 ," Ng
ab/ab 00 1/16 (1-r)?/4 ql Ng
re J 102

where C= m




Estimating Recombination in an F, population

= A little more complicated largely because of genetic class 5 (ns).

= When estimating recombination frequency, we can utilize the
genetic classification of recombination events and estimate r as:

1
r:%[(n2+n4+nﬁ+ng)+2(n3+n7+Cn5)] (1)

= Recall:

= genetic classes 2, 4, 6, 8 are the result of a single
recombination event

= genetic classes 3, 7, and 5 (with probability c) are the
result of two recombination events. ..
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Since the probability ¢ is unknown, it has to be estimated. However,
c is a function on recombination r (which is also unknown) :

r2

C:(1—r)2+r2 @

= Therefore, an analysis has to be ferformed in an iteratively
updated loop between equations (2) and (1).

= guess r (usually start with r = 0.25)
= calculate ¢
= stop when estimates converge
= This algorithm is called the EM algorithm (oempter, Laird, and Rubin 1977).
= the E-step (Expectation step; equation (2))
= the M-step (Maximization step equation (1)).
= after a few iterations the estimate usually converges quickly.
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Testing linkage in an F, population

= Given that we can estimate recombination (r) inan F,
= Test for linkage between pairs of genetic markers or loci

= The statistical test for linkage can be performed by LOD
score (log,, of odds, a likelihood ratio test statistic)

= The likelihood function is:

L(r)oc[%(l—r)z} [%r(l—r)} [%rz} [%(1—r)2+%r2}

TN s

Y N Y e
no recombinant events .
1 recombinant event

complicated part
2 recombinant events

Ns
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The statistical test for linkage can be performed by LOD score
(log,, of odds, a likelihood ratio test statistic):

=1lo &
LOD - 910 L(r=1/2)

L(f)oc[%(l—f)z} Bf(l—f)} sz} B(l-f)%%fﬂ

L(r=1/2) OCH H H
16 16 16
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Maize data: Estimated pairwise recombination frequencies

2 3 4 5 6 7 8 9 10 11 12

049 050 046 046 045 045 049 0.50 0.51
0.22 031 0.33 040 039 040 039 042

o

3 L2 028 0.32 044 044 043 042 043
4 0.26 0.39 0.39 041 041 0.42
5 0.39 0.40 041 041 0.43
6 0.34

7

8

9

10

11
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Maize data: example of linkage analysis using estimated recombination

Markers ngr n1p nep ns LOD r cM(H) cM(K)

1 2 39 7 6 49 6.08 A47.7 35.8
2 3 62 37 0 72 30.87 13.1 11.7
3 4 63 33 174 32.08 12.3 11.0
4 5 79 4 2 86 60.60 2.4 2.4
5 6 54 58 3 56 15.92 27.0 22.2
6 775 22 2 72 41.55 8.6 8.0
7 68 40 1 62 29.52 15.2 13.4
8 %19 0 74 48.92 6.1 5.7
9 10 50 58 2 61 15.73 26.1 21.5
10 11 70 19 0 82 46.53 6.1 5
1 12 70 26 174 38.86 9.4 8.6

Recall: ngg=n;+ ng;  Nig =N, +n,+nNg+ Ng; =ng+n, 108




Estimating Genetics Maps

R.W. Doerge

Summer Institute in Statistical Genetics
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Ordering a Set of Genetic Markers

The problem is equivalent to the “Traveling Salesman Problem”.
Methods:
1. Brand and Bound (Thompson, 1984)
2. Simulated Annealing (Weeks and Lange, 1987)
3. Seriation (Buetow and Chakravarti, 1987a,b)
4. Rapid Chain Delineation (RCD) (Doerge, 1993)

5. Many more...
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= Methods 1-3 are “multipoint analysis”, meaning that they rely
on the calculation of all recombinant classes, between chains
of markers (not just two markers).

= Method 4 starts with pairwise recombination estimates
= forms linkage groups and preliminary order

= then resolves local inversions, by “permuting” all
possible n-lets (i.e., triplets, quads, etc.)

= very fast
= RCD implemented in QTL-Cartographer

111

Motivation:

= Building a genetic map quickly.
= some experiments have only 50 individuals, but have 1500
markers
= 10 markers alone, provide 1,814,400 possible orderings

%)
2
= it is not computationally feasible to try all possible orders
of m markers
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Example of RCD

= Assume we have four markers: M, N, T, U

= We learned how to estimate pairwise recombination estimates

= The pairwise recombination between markers is represented
in the following matrix:

M N T U
M (0 .09 .19 .17
N 0 .26 .22
T 0 .32
U 0
= Step 1: chain together M — N; SAR = .09
= Step 2: add U to chain (U —= M — N); SAR =.26

=Step3:add Ttochain(U-M-N-T); SAR=.52

113

= Step 4: Permute overlapping (triplets) markers.
= Final order: U-N-M-T; SAR = .50

= Most of the time, markers very close together may be
transposed. The permutation stage of RCD takes care of this.
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Mapping Software

= MAPMAKER/EXP (version 3.0): Software for the calculation
of genetic maps of certain experimental populations.

= JoinMap: “JoinMap provides high quality tools that allow detailed study of the
experimental data and the generation of publication-ready map charts.”

= One Map (R function): includes RCD Method

115

Summary:

= Determine linkage groups, resolve order within linkage groups.
= Order across all linkage groups.

= A “genetic map” is a collection of all linkage groups.

= if there are enough markers to cover the entire chromosome,
a linkage group is then referred to as a chromosome.

= The genetic map is the structure that we rely on to locate
“quantitative trait loci”” (QTL), the genemic regions affecting
a trait of interest.

= if your estimated genetic map is poor, then your QTL
location will be poor.
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Map Estimation Exercise

Calculate pairwise recombination by hand, and estimate genetic

map of 6 markers for increasing sample size

R.W. Doerge

Summer Institute in Statistical Genetics
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Simulation Setting and Goal

= Simulation Input:
= Experimental design: backcross
= Sample size: n = 25, 50, 100, 500, 1000
= Marker number: 6
= Recombination between markers

= Simulation Output:
= Genotype information on 6 markers

= Goal:

= Estimate pairwise recombination and linear
order (i.e., genetic map) by hand

118




Recall: estimating pairwise recombination
two markers *11 and *12

H = Marker is heterozygous:
marker *11: *11,/*11,
marker *12: *12,/*12,

A = Marker is homozygous A H.
marker *11: *11,/*11, *11,/*11, *11,/*11,
marker *12: *12,/*12,
AL *12, /%12
i 1 1 nl 2
Ho*12,/%12

= Total number of recombinant events is 1, + 1,

. o~ n, +n,
r =
n+n,+n;+n,
119
Individuals= 25, marker number= 6.

Marker name Genotype for each backcross individual
*11 HHHHHHHAHAAAAHAAAHHAHH
*12 AAHHHHHAHAAAAHAAAHHAHH
*13 HHHAAHHHHHAHAAAAHAAAHHAHH
*14 HAHAHAHHHHAAAAAAHAAAHHAHH
*15 HHHAAAHHHAAHAHAAHAAAAHHHH

*16 HAHAAAHHHAAHAHAAHAAHAHHAH
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Individuals= initial 25 4+ 25 additional=50, marker number= 6.

Marker name

Genotype for each backcross individual

*11
*12
*13
*14
*15
*16

HHAHHHHHHHAHAAAAHAAAHHAHH...
HHHAAHHHHHAHAAAAHAAAHHAHH...
HHHAAHHHHHAHAAAAHAAAHHAHH...
HAHAHAHHHHAAAAAAHAAAHHAHH...
HHHAAAHHHAAHAHAAHAAAAHHHH...
HAHAAAHHHAAHAHAAHAAHAHHAH...

*11
*12
*13
*14
*15
*16

JAHAAHAAHAAHAHAAAHAAAHAAHH
JAAAAHAHHAAHAHHHAHAAAHAHHH
CAHAAHAHHAAHAHHHAAAAAHAHHH
JAHAAHAHHAAHAHHHHAAAAHAHHH
CAHAAHAHHAAHAHAHAHAHAAAHHH
JAHAAHAAHAAHAHAHAHAHAAAAHH
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Marker name

Genotype for each backcross individual (n = 100, m = 6)

*11

HHAHHHHHHHAHAAAAHAAAHHAHH...

*12 HHHAAHHHHHAHAAAAHAAAHHAHH...
*13 HHHAAHHHHHAHAAAAHAAAHHAHH...
*14 HAHAHAHHHHAAAAAAHAAAHHAHH...
*15 HHHAAAHHHAAHAHAAHAAAAHHHH...
*16 HAHAAAHHHAAHAHAAHAAHAHHAH...
*11 .,AHAAHAAHAAHAHAAAHAAAHAAHH...
*12 CAAAAHAHHAAHAHHHAHAAAHAHHH...
*13 AHAAHAHHAAHAHHHAAAAAHAHHH...
*14 AHAAHAHHAAHAHHHHAAAAHAHHH...
*15 ..., AHAAHAHHAAHAHAHAHAHAAAHHH...

*16

..,AHAAHAAHAAHAHAHAHAHAAAAHH...
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Marker name

Genotype for each backcross individual (n = 100, m = 6) cont...

*11
*12
*13
*14
*15

*16

. HHAAAAAHHAAAHAAHAHHAAAHAA...
. HAAAAAAHHAAAHAAHAHHAAHHAA...
. HAAAAAHHHAAAHAAHAHHAAHAAA...
. HAAAAAHHHAAAHAAHAHAAAHAAA...
. HAAAAAHHAAAAHAAHAAAAAAAAA...
L HAAAAAHHAAAAHHAHAHAAAAAAA...

*11
*12
*13
*14
*15

*16

GAAAAAHAAHHHHAHAAHAHHAHHHA
AHAHAHAAHHHAHHAAHAAHAHHHH
AHAHAHAAHAAAHHAHHAAHHHHHH
AHAHHHAAAAAAHHHHHAHHHHHHH
AHAHHHAAAAAAHHHHHAHHHHHHH
AHAHHHAAAAAAHHHHHAHHAHHHH
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ANSWERS:

Individuals= 25, marker number= 6.

marker name | *11  *12  *I3  *l4  *I5  *16

*11 0.00 0.12 0.12 0.20 0.32 0.44
*12 0.00 0.00 0.16 0.20 0.32
*13 0.00 0.16 0.20 0.32
*14 0.00 0.28 0.32
*15 0.00 0.12
*16 0.00
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ANSWERS:

Individuals= 50, marker number= 6.

marker name | *11  *12  *I3  *l4  *I5  *16

*11 0.00 0.16 0.16 0.22 0.26 0.28
*12 0.00 0.04 0.14 0.18 0.28
*13 0.00 0.10 0.18 0.28
*14 0.00 0.24 0.30
*15 0.00 0.10
*16 0.00

125
ANSWERS:

Individuals= 100, marker number= 6.
marker name | *I1 *2 0 *13 *l4 *I5 *16
*11 0.00 0.16 0.22 0.28 0.31 0.31
*12 0.00 0.08 0.18 0.23 0.27
*13 0.00 0.10 0.17 0.23
*14 0.00 0.15 0.19
*15 0.00 0.08
*16 0.00
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ANSWERS:

Individuals= 500, marker number= 6.

marker name | *I11  *[2  *13  *l4  *I5  *I6

*11 0.00 0.09 0.16 0.23 0.27 0.30
*12 0.00 0.08 0.17 0.22 0.26
*13 0.00 0.10 0.17 0.24
*14 0.00 0.11 0.18
*15 0.00 0.08
*16 0.00
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ANSWERS:

Individuals= 1000, marker number= 6.
marker name | *11  *12  *I3  *l4  *I5  *16
*11 0.00 0.09 0.17 0.24 0.28 0.32
*12 0.00 0.10 0.18 0.23 0.28
*13 0.00 0.10 0.18 0.25
*14 0.00 0.10 0.18
*15 0.00 0.10
*16 0.00
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Things you can do with a genetic map...

= With a genetic map in place we can rely on the order of the
genetic markers across linkage groups (chromosomes) to
provide additional information to locate QTL.

= incorporate the recombination information from the genetic map into
the search for QTL

= necessary to use genetic map function to translate between
recombination and genetic distance (i.e., probability to additive
distance)
= Haldane
= Kosambi

129

Introduction to QTL-Cartographer

= Download from:
http://statgen.ncsu.edu/qgtlcart/WOTLCart.htm

= Modular based:
= Simulation and analysis

= Simulation:
= Genetic map
= QTL

= Need to understand parameter settings and order of events

= Need to stay organized
= Keep real data and simulated data in separated files/directories

130




Introduction to QTL Detection

single marker likelihood to interval mapping

R.W. Doerge

Summer Institute in Statistical Genetics
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The concept...

likelihood based QTL analysis. ..

moving from single marker analysis to interval mapping
= develop likelihood approach for single marker

incorporate additional marker information into likelihood function
= develop likelihood approach for two markers

= consider two markers M and N, and the distance between them

= each with two alleles

QTL-Cartographer uses likelihood based approaches

= important to understand the parameters that are being estimated
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Recall: Single Marker Backcross QTL Model:

Y. =B, +B. X, +&:1=1..,n
= consider a backcross experiment

= the QTL genotype can be one of two states Q,/Q, or Q,/Q,

= recall the equation for a straight line
= 3, is overall mean
= [}, is the additive effect of the QTL
= allelic substitution at the QTL

B, = Ky im, — Hugm, = 1- 2rMQ)(lul — )
= X is the genotype of the unobservable QTL

= use marker genotype as X; ; maybe QTL and marker are linked -

= Distribution (shape) of the quantitative trait values within each
backcross genotypic marker class.

= two observable (backcross) marker genotypes
= four possible marker and QTL genotypes

= the distribution of the trait values:

MO /MO T f =(1-r)N(u,0?)+rN(u.,0?
M, /M, : {MiQilMinz: 1 ( ) (“1 ) (“Fl )

Ml/Mz{ M,Q,/M,Q, f, = rN(HlaGZ)-I-(l—r)N(HFl,GZ)
M,Q,/M,Q,:
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Likelihood approach for single marker analysis (backcross):
= Obtain maximum likelihood estimates (MLESs) of (BO By 62)

= the MLEs are the values that maximize the likelihood of the observed
values

= or, the probability that the observed data would have occurred

= write the likelihood as

L(Bo.pro?l X ) =TT ] ] ¥,
1 1

= where

P, = My v, —He = (1_2rmq)(,u1 — i)
f,=(1-r)N (u1,62)+ rN (“F1102>
f,=rN (ul,62)+(l— r)N (uFl,GZ)
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R MlQl/MlQ\ P MQ/MQ,
"4
\ Fo MQ/MQ,

Same hypotheses:
MQ,/MQ, MQ,/MQ,

- H,:B,=0and H_:B,#0 MQIMG  MO/MQ,

= Test statistic is:

L (B %)
_ L(ﬁo,o,éz)_

LOD =log,,

=no QTL effect (denominator), implies f;o =y, and G2 = Gﬁ
B

1

= the LOD score demonstrates (statistically) how much more
likely (probable) the data are if there was a QTL present as

compared to the situation when there is no QTL present.
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Extend this idea to interval mapping...
= Consider two markers M and N, each with two alleles.

= The genetic distance d (or, recombination, r) between markers M
and N has been previously estimated (known)

d
M N

= A map function (Haldane or Kosambi) is utilized to translate
between recombination and genetic distance.

= Working in the units of genetic distance, incrementally step
through the defined interval, testing the same hypotheses as before...

=only now we need to incorporate the fact that we have information about
recombination (genetic distance)

= calculate a LOD score at each increment in the interval.
137

= Marker M: alleles M, and M,
= Marker N: alleles N, and N,

= Relationship between M and N defined by recombination r
= the value of r is estimated and known
* M—r—N

= Use the additional information from knowing ‘r’ to locate QTL

= Notation:
= 1, Is the recombination between marker M and the putative QTL
= 1, Is the recombination between the putative QTL and marker N

= any function of both r; and r, will be denoted as k; , i = 1,2.
< rl r2 »
M+ Q >N
“é} q‘{fd‘ & Qqué‘i._?ifo@i‘? effoﬁqg o“{%ﬁ}r&
4 0 o |
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Lander and Botstein (1989)




Locate QTL by stepping through the interval defined by M and N

I "1\ g /rz
M— | N
Q Q
— _/
Y
r

s 0S8 SS Seeeeed & S
|

& ¢ & & & & FF S S FF

(II [lI[I]]I]Il[ llll
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WHAT WE SEE

Backcross: Two Markers (M,N)

Pl: M;N, /M N, Pz: M,N,/M,N,

N e
F @ MN,/M)N,

/

Backcross: M1N1/M1N1 M1N1/M1N2

M,N, / M, N, M;N; /M,N,
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WHAT WE THINK
Backcross: Two Markers (M,N)

P: M,QN,/MOQN, P, :M,Q,N,/M,Q,N,
F: MQN,/M,Q,N,

|

Backcross:
M1Q1N1/M1Q1N1 M1Q1N1/ M1Q2N1
M1Q1N1/M1Q1N2 M1Q1N1/M1Q2N2
M1Q1N1/M2Q1N1 M1Q1N1/M2Q2N1
M1Q1N1/M2Q1N2 M1Q1N1/M2Q2N2 141
WHAT WE ASSUME
Backcross: Two Markers (M,N)
P: M1Q1N1/M1Q1N1 P,: M2Q2Nz_{_!_v| N,
N (H1 152\ / N (“2*62)
Rt MON,/MyON, e—
N (k) 07)

**The distribution (shape) of the quantitative trait values in the
backcross population follows a mixture of normal distributions within
each of the known genotypic marker classes. 142




Backcross classes for two markers, one QTL.:

= Possible backcross genotypes and the distribution of the trait values
(four unique mixtures of distributions):

M,Q;N, /MQN, : f =k N o)+ (1-k )N ,02
M,Q,N,/M,Q,N,: 1 Ny, 07)+( ) (/uF1 )

M,Q.N, / M,Q.N, :
= 1k )N (,07) + kN 2
MON, IMQN,: 2= KNG o) TN, o)
MONIMAON ¢ = (kN (1,07 +N (1,0°)
M,Q,N, / M,Q,N, :
MlQlNllMlQlNZ: 2 2
= kN (4, 62) + (L= k)N (1, 52)
MON,/MQ,N,: ¢ 2 e )
_ (1-1r)(1-r,) K - (1-r)r,
b(1-n)(d-1,)+rr, (1-r)n+r(1-r,) 13
Hypotheses: T A A
A (Im I“]m [541101 Imlwlwlwlﬂlmlmlﬂlml - Imlj‘N
H :noQTL T o

H’: QTL unlinked

0

H_ . QTL present and linked

Likelihood function:

L(ﬂuﬂzigz | X,Y, 1, 15) = 1_1[ f1H sz f3H f,
1 1 1 1

L(&, i ,6°,1,1,)
LOD=lo L
Jio L(, i1 ,6°,1, =0.50,r, :0.50)

fh [l G




Interval Mapping

Zhao-Bang Zeng

Summer Institute in Statistical Genetics
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Interval mapping

The idea of interval mapping is two-fold:

1. by using two markers, both position and effect of a QTL
can be inferred

2. two adjacent markers (and associated genetic distance) are
used to define the position in the search for QTL.
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Interval Mapping

= The analysis is usually based a maximum likelihood analysis.

= Consider a backcross population.
= To analyze a QTL (Q) located in an interval flanked by two markers (M and N)

= (assuming the order MON)

= The interval mapping analysis assumes the following linear model

Y, =B, +B, X, + &1 & ~N(0,6%) ©)

= Y; is the quantitative trait value

= the indicator variable X; takes the value 1 or 0 according to whether individual
Y; has QTL genotype Q,/Q, (X;=0) or Q,/Q, (X;=1)

147

Note: the model is defined based on the QTL genotypes which are
unobserved. However, given the marker genotypes and linkage relationship
between markers and QTL, the probabilities of possible QTL genotypes can
be inferred. Given a backcross design, let

pki = Pr(xr=k|M,N,9) k=0,l.

which is specified as

QTL genotype
Genotype #  Freq Q,/Q, (X;=0) Q,/Q,(X=1)
M.N,/M;N, n 1—% (1_r“£)r(MlN_rQN)*l fugfen _ o
M.N,/M;N, n, fin Oto)ton _y p  Bmlre)
M,N,/M,N, n, Belom) |, Goe)w
M,N,/M N, n, 1—2fMN fuoon (1—nf_>r(jN—rQN)zl

where @ = Mo [Ty - 148




Because there are two possible QTL genotypes each of which can be true with
certain probability, the distribution of the model is a mixture distribution. Thus,

the likelihood function of equation (3) is usually defined as

L(ﬁo,ﬁl,GZ’Q):ﬁ pﬂ{Mj_k po#b(yi ;ﬂo ):|

0
i=1 | o

A8 )

i=1

l&[{ab( Wb —ﬂ1)+(1— ‘9)4’(%%)}1%1%[%%}

i=1

where ¢(z) —Lexp[—z2 /2] is the standard normal density function

R

49(: Mo / Tun ) 149

= In this likelihood function, the parameters include:
= A, the mean of the model
= f, the effect of the putative QTL
= 0(: Mo/ rMN) the position of the putative QTL

= o~ residual variance

= The data are
= Y; the phenotypic value of a quantitative trait for each
individual
= genotypes of markers for each individual that contributes to
the analysisof p,,k=12;i=1,...,n
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Maximum likelihood analysis and EM algorithm

The maximum likelihood analysis of a mixture model is usually
performed via an EM (Expectation and Maximization) algorithm.
The EM-algorithm is an iterative procedure. In each iteration, the
E-step calculates:

Pr(x =1M,NPr(y,x =1)
Pr(y;)

R =Pr(x=1M,N,y,)=

_ pli(l)([yj —,30—,31}/0)
plid)([yj —5 _’81]/0)+ pOi(I)([yi _ﬂo]/c) (4)

151

and the M-step calculates:

ﬁo=i(yi—eﬁlj/n 5)
ﬁAl:i(yi—ﬂAojPi/j P 6)

52:%2{(yi—ﬁoj —F’iﬂ?} Y
5o 2im(1-R)+ >R

(8)

This process is iterated until convergence of estimates.
152




Likelihood ratio test statistic

The test statistic can be constructed using a likelihood ratio in
LOD (likelihood of odds) score

(5%

LOD =log,, —— = (9)
L(ﬂmﬂl =0,0 j

under the hypotheses
H,: =0 ad H,:8 #0

assuming that the putative QTL was located at the point ¢ on the
genetic map, and where 3, 3,, G are the maX|mum likelihood
estimates of S,. Ai.c’under H,,and 3, & “are the estimates of
under H, with 3 constrained to zero. 153

Note: that the LOD score test is the same test as the usual
likelihood ratio test

L(E,ﬂfo,éz)
(7.5.7)

LR =-2In

Therefore,

LOD = %(Iogm e)LR =0.217LR
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Thoughts. ..

= Interval mapping can be performed at any position covered by markers, and
thus the method creates a systematic strategy of searching for QTL.

= The amount of support or evidence for a QTL at a particular map position is
often displayed graphically through the use of likelihood maps or profiles
= plots the likelihood ratio test statistic (or a closely related quantity) as a
function of map position of the putative QTL.

= If the LOD score at a region exceeds a pre-defined critical threshold, a QTL is
indicated at the neighborhood of the maximum of the LOD score with the width
of the neighborhood defined by one or two LOD support interval (Lander and
Botstein 1989).

= By the property of the maximum likelihood analysis, the estimates of
locations and effects of QTL are asymptotically unbiased if the assumption that
there is at most one QTL on a chromosome is true.
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—— Composite Interval Mapping
— — Interval Mapping
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Variance explained by QTL

Sometimes the magnitude of a QTL is also reported as the
proportion of the variance explained by the QTL Gopanea and is

usually estimated as ~2 ~2
62 _ Ototal ~ O reduced
explained ~D
Gtotal
where &2, is an estimate of the total phenotypic variance (éZ of

total

equation (9) at the null hypothesis) and 67 ,,..4iS an estimate of the
residual variance of the interval mapping model ( 52 of equation
(9) at the alternative hypothesis).

Problem: estimates of the proportion of variation explained are
not additive for multiple QTL, and usually overestimate the
variance explained by a QTL.

***A more appropriate way to estimate the variance explained by QTL effects

will be discussed in multiple interval mapping. -

Haley-Knott regression approximation

= A simplified approximation of the model in equation (3) was proposed by
Haley and Knott (1992) and Martinez and Curnow (1992).

= |Instead of treating X; as missing data and using a mixture model via maximum
likelihood for missing data analysis, the Haley-Knott approximation uses

Py :Pr(xi :]JM,N,H)

in the place of X, and simplifies model (3) to

Vi =B+ hpite 1=1...n (10)

= Since this is a simple regression model, and the statistical analysis is straightforward.

= Haley and Knott (1992) and Rebai et al. (1995) have shown that this procedure gives
a very good approximation to the likelihood profile for maximum likelihood interval
mapping.

= Xu (1995) notes that this regression approach tends to overestimate the residual

variance, and presents a correction.
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Advantages and disadvantages

Compared with single marker analysis, interval mapping
has several advantages:

1. The probable position of the QTL can be inferred by a
support interval.

2. The estimated locations and effects of QTL tend to be
asymptotically unbiased if there is only one segregating QTL
on a chromosome.

3. The method requires fewer individuals than single marker
analysis.

159

There are many problems with interval mapping:

1. The test is not an interval test
a test which is able to distinguish whether or not there isa QTL
within a defined interval, independent of the effects of QTL that
are outside a defined region.
2. Even when there is no QTL within an interval, the likelihood profile
for the interval can still exceed the significance threshold if there is
a QTL at some nearby location on the chromosome.
if there is only one QTL on a chromosome, this effect, though
undesirable, may not matter because the QTL is more likely to
be located at the location which shows the maximum likelihood
profile
however, the number of QTL on a chromosome is unknown.
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3. If there is more than one QTL on a chromosome, the test statistic
at the position being tested will be affected by other QTL
the estimated positions and effects of “QTL” identified by
interval mapping are likely to be biased.

4. 1t is not efficient to use only two markers at a time to test for

QTL
the information from other markers is not utilized.
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Permutation Thresholds for QTL Mapping

R.W. Doerge

Summer Institute in Statistical Genetics
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Search for QTL

= Single Marker Methods:

= t-test

= F-test (ANOVA)

= Regression

= Likelihood based tests
= Interval Mapping:

= .OD score (Lander and Botstein)

= LRT (likelihood ratio test)
= Composite Interval Mapping:

= LRT (zeng, Jansen)
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Recall: Interval Mapping...

Hypotheses:
H.':noQTL
HoB -no QTL linked

Ha - QTL present and linked

Likelihood function:

N,

L(BoBy 07l X 1m, ) = Hfll_[sz 3Hf

LOD = log (BO’B“’ :) (
" L(ﬁo,Bl,c,r1=r2=05

\

1
2 log,, e >




Permutation Thresholds

Estimate the distribution of the test statistic
= LODor LRT

Determine statistically significant QTL

Empirically derived QTL thresholds
= gpecific to the experiments

165

1.

2.

Statistical Issues

Distribution of trait values not always N (p,c*).
mixture of distributions: p,N (1, 6?)+ p,N (u,,0?)

Transformation of trait data (get rid of skewing...)
log,, transformation (statistical fix...)
IS it correct?

66




3. Smaller sample sizes

4, Statistical tests (for QTL) are not independent.
= Bonferroni correction
= statistical fix
= does not address genetic issues
= marker order and density
= same hypothesis being tested
= is the type | error (@) correct?

= how do we come up with an appropriate critical value
(from an unknown distribution) that reflects our Type |
error?

167

Experimental Factors

Sample size

= Genome size

= Marker density

= Proportion of missing data
= Segregation distortion

168




Detecting QTL

Single marker methods
compute test statistical at each marker
compare to (known?) statistical distribution
significant genotype-phenotype association?

Multiple marker methods
order markers across genome
calculate test statistic at each position
compare to (known?) statistical distribution
significant genotype-phenotype association?

169

0 02 0.4 0.8 08 1
Position in Morgans

12

14
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Permutation Theory Applied to QTL Analysis

= [t is possible to derive the distribution of any test statistic under an
appropriate null hypothesis by “shuffling” (Fisher 1935) the
quantitative trait values among the individuals in the data set.

= observations need to be “exchangeable”

= If there is a QTL effect at specific location(s) in the genome, there
will be an association between the trait values and the point of
analysis on the genetic map.

= there is a phenotype-genotype association

= |f there is no QTL present in the genome, or it is unlinked to the
point of analysis, there is no phenotype-genotype association

= exactly the situation described under the null hypothesis

171

“Shuffling Trait Data”

Original Trait Values:
Individual trait value summary statistics
1 10.2
2 11.1
3 5.7 n = 200
F = B.TH
s = 2.57
200 9.7
Shuffled Trait Values:
Individual trait value summary statistics
5.7
2 10.2
3 9.7 n = 200
= B8.T5
s = 2.57
200 11.1

“Shuffling” trait values among individuals in the data set

represents the situation under the null hypothesis (1‘&11(:10111119&15;;2).

Churchill and Doerge 1994




Steps for Estimating
Significance Threshold Values

1. Hold the genetic map fixed.
2. “Shuffle” the trait values.
3. Analyze the "shuffled” data set

= t-test
= |ikelihood ratio test
= LOD score

4. Store the test statistic at each analysis point of step 3 in an
“Analysis Matrix”.

5. Repeat steps 2-4 N times (Doerge and Churchill 1996).
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Analysis Matrix

¢ Let N = 1000 shuffles of the original data set.
e Denote test statistic value by ts;;;¢=1,...,1000, j=1,...,k.

e There are k analysis points.

Analysis Points
Shuffle Number 1 2 3 4 - k
1 ts11 ts12 ts13 ts14 e tsyp
2
3
1000 ts10001 cae L5000k

¢ Comparisonwise Threshold Values (per marker)
& Chromosomewise Threshold Values (chromosome specific)

o Experimentwise Threshold Values (experiment specific)
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" Each analysis point is essentially being sampled from the null
distribution of the test statistic.

= From the N sets of analyses, we can develop
= comparisonwise critical values

= experimentwise critical values.

=  We use N =1000 (number of permutations or “shuffles”)
= (o0 =0.05).
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Comparisonwise, Experimentwise, and
Chromosomewise Threshold Values

= Recall... Type I Error: Reject the null hypothesis (no QTL) in favor of the
alternative hypothesis (QTL effect) when there is really no QTL effect
linked to the testing position.

= Comparisonwise Threshold Values (per “marker’):

= order the N test statistics obtained at each analysis point in
the map and find the 100(1-a) percentile

= using this critical value to define a test controls the type |
error rate at that point to be a or less.
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= Experimentwise Threshold Values (“genome’-wise):

= obtain the maximum test statistic over all analysis points for each
of the N analyses.
= order these N values
= the 100(1-«) percentile is the estimated experimentwise critical
value.
= the experimentwise threshold value provides detection of the

presence of a QTL somewhere in the genome while
controlling the overall type | error rate to be o or less.

= Chromosomewise Threshold Values:

= limit the scope of the analysis to one chromosome

= treat this one chromosome as “the experiment” , and estimated
the chromosomewise (“experiment”) threshold. 177

= Using comparisonwise thresholds of this kind increases the type
| error rate over the entire genome to be much higher than

= The experimentwise critical value will be higher than the
comparisonwise value since we are controlling the type | error
rate over the entire genome.
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Summary

= gspecifics of the experiment affect the statistics

= test statistics for real experiments may not follow standard
distribution

= empirical threshold values are specific to experiment

= excellent application for parallel computing

179
QTL mapping methodology
° interval mapping permutation threshold
mposite
interval
single marker mapping
0 T T T T T ]
1] g2 0.4 06 08 1 1.2 14
Position in Morgans
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Fisher 1935; Thoday 1961; Lander and Botstein 1989; Zeng 1994; Churchill & Doerge 1994




Example of QTL Mapping Experiement:
single marker, interval mapping, composite interval
mapping, permutation thresholds

R.W. Doerge

Summer Institute in Statistical Genetics
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Chromosome 11 Data of Mouse: Fine Mapping
Using QTL-Cartographer...

#

-n 291 is the sample size

-p 173 is one more than the number of markers
-cross RF2 is the type of cross

-traits 1 is the number of traits

-Names of the traits...
1 sev
-otraits 0 is the number of other traits
#From here, the first number is the individual
# the second is a 1 or 2 (for BC1l, BC2 in Design I111),
# and then come the 172 marker values and finally the trait wvalues.
-s
1 1
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2.333330000000

2.000000000000

183

184




doerge@rwdstat (NEW_052302.D)% Qstats

QTL Cartographer v. 1.16c, February 2002 for Unix

Copyright (C) 1996-2001 C. J. Basten, B. S. Weir and Z.-B. Zeng.
QTL Cartographer comes with ABSOLUTELY NO WARRANTY.

This is free software, and you are welcome to redistribute it
under certain conditions. For details see the file COPYING.

No Options Values:
0. Continue with these parameters
1. Data Input File severity.cro
2. Dutput File severity.qgst
3. Error File severity.log
4. Genetic Linkage Map File severity.map
5. Random Number Seed 1022191071

Specify Resource File gtlcart.rc
Change Filename stem severity

Quit

6

7

8. Change Working Directory:

9

0. Quit, but update the Resource File

Please enter a number...

185
#* 1022189179 -filetype (Qstats.out
#
#* QTL Cartographer v. 1.16c, February 2002
# This output file (severity.qst) was created by Qstats...
#
# It is 16:26:19 on Thursday, 23 May 2002
#
#
#
# This output is based on the map in (severity.map)
# And the data in (severity.cro)
#
#
This is for -trait 1 called sev
Sample Size........ .0 e.n 291
MCL) . e 0.6284
MC2) . e 0.5992
3 0.7038
MCA) oo e 0.9424
Mean Trait Value........... 0.6284
Variance............uiuun. 0.2050
Standard Deviation......... 0.4528
Coefficient of Variatiom... 0.7205
Average Deviation.......... 0.3764
Skw. .LW(24) .. ... ... ..., 0.0712
..... Sqrt(6/m) ... 0.1436 186




Kur. . LW(29)...............

ce...8qre(24/n) ... ...l
k3...LW(24)..............
k4.. . LW(28)..............
S (6%: 5.99, 1%: 9.21)...

0.1283
0.2872
0.7667
0.0520
28.5460
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Here is a histogram for the quantitative trait...

| *

| *

| *

| *

| *

| * * =

| * * =

| * * =*

| * *%*

| ek *

| ***kk * ok *

| e e e e ke ke * =k *

| kkkkt *% * * *

| etk sk x % *

| seskeoskeskokeoske sk skekok *

| ke ok kokokck *

| skokokokokok kok skkskskok ok kK

| ekkeskokok ok kokdoksdokskkskk ok

| skt koot skeokeske ook ok okesk sk ok ok ok ok ok ok ok 3K * %

| skt koot skeokeske ook ok okesk sk ok ok ok ok ok ok ok 3K * %

| shoskeokeoskoskokokodkok  skokokoskokokokokdkokokok sk kokok

| sk sk sk sk ke s e sk e ok ok ke ok sk ok koK ok ok ko ok kokoR R K

| sk sk sk sk ke s e sk e ok ok ke ok sk ok koK ok ok ko ok kokoR R K

| sk s sk sk ke s e sk e sk ok ke ok sk ok sk ok ok kR ok kR okok skokokok skokok Kok

| sk s sk sk ke sk e sk e sk sk ke ok sk sk sk ok sk ok sk 3k ok s ok sk K sk k ok sk ok o ok K ok ok ok ke K * *

B i e +

0.02 1.18 2.33 188




min Y max

n = 291
Min(Y¥) = 0.02381
Q1 = 0.24109
Median =  0.53659
Q3 = 0.949495
Max(Y¥) = 2.33333

Summary of missing data for trait number 1 (sev)
with 291 individuals

n(m) individuals have marker data, n(m+t) have trait and marker data

Chrom Mark Name type n(m) n(m+t) ¥%(m+t)
----------------------------------------------------------------- -begin missmark 1

11 1 diim72 co 284 284  97.59

11 2 diim2 co 290 200  99.66

11 3 d11m294 co 274 274 94.16

11 4  d1ims3 co 285 285  97.94 189
11 5  d11m307 co 275 2756 94.50
11 6  d11m20 co 263 263  90.38
11 7 d11m140 co 278 278  95.53
11 8  diimi55 co 274 274  94.16
11 9  d1imi56 co 284 284  97.59
11 10 diim29 co 271 271 93.13
11 11 d11b149 co 281 281 96.56
11 12 diimig4 co 288 288  98.97
11 13 d11m36 co 289 289  99.31
11 14  di1im38 co 248 248  85.22
11 15 d11m285 co 285 285  97.94
11 16  d11m330 co 285 285  97.94
11 17  diimi68 co 291 201  100.00
11 18  dilmi67 co 288 288  98.97
11 19  diimi28 co 289 280  99.31

_________________________________________________________________ -end missmark

Here is a summary of missing data for each individual.

There are 172 markers, 1 traits and O categorical traits.
The table below lists the raw number and the percentage of data
points for each individual.

Individual Markers Traits Cat. Traits 190




Number # % # % # %
------------------------------------------------------------ -begin missind
1 167 97.09 1 100.00 o] 0.00
2 170 98.84 1 100.00 4] 0.00
3 166 96.51 1 100.00 o] 0.00
4 170 98.84 1 100.00 4] 0.00
5 168 97 .67 1 100.00 o] 0.00
6 166 96.51 1 100.00 4] 0.00
7 172 100.00 1 100.00 o] 0.00
8 169 98.26 1 100.00 4] 0.00
9 163 94.77 1 100.00 o] 0.00
10 171 99.42 1 100.00 o] 0.00
11 171 99.42 1 100.00 o] 0.00
12 171 99.42 1 100.00 4] 0.00
13 171 99.42 1 100.00 o} 0.00
14 168 97.67 1 100.00 4] 0.00
15 170 08.84 1 100.00 o] 0.00
16 170 98.84 1 100.00 4] 0.00
17 167 97.09 1 100.00 o] 0.00
18 171 99.42 1 100.00 4] 0.00
19 168 97 .67 1 100.00 o] 0.00
20 169 98.26 1 100.00 o] 0.00
21 168 97 .67 1 100.00 o] 0.00
22 169 98.26 1 100.00 o] 0.00
23 168 97 .67 1 100.00 o] 0.00
24 170 98.84 1 100.00 o] 0.00
25 168 97.67 1 100.00 o} 0.00
26 169 98.26 1 100.00 4] 0.00
27 169 98.26 1 100.00 o} 0.00 191
286 161 93.60 1 100.00 0 0.00
287 167 97.09 1 100.00 o] 0.00
288 163 94.77 1 100.00 4] 0.00
289 162 94.19 1 100.00 o] 0.00
290 156 90.70 1 100.00 4] 0.00
291 163 94.77 1 100.00 o] 0.00
———————————————————————————————————————————————————————————— -end missind
Summary of marker segregation
________________________________________________________________________________ fbegj‘n segrl
Chrom Mark Name type n{m) Chi2 LR
11 1 d11im72 co 284 4.8169 5.09356
11 2 dlim2 co 290 6.3517 6.7668
11 3 dl11m294 co 274 3.1971 3.2782
11 4 d1imb3 co 285 1.2737 1.3088
11 5 d11m307 co 275 6.5855 6.9654
11 6 d11m20 co 263 3.8973 4.0959
11 T d11im140 co 278 5.5683 5.7788
11 8 d11mi1b5 co 274 2.1679 2.2048
11 9  d1lm156 co 284 5.0423 5.3047 192




11 10 d1im29 co 271 3.9963 4.1107
11 11 d11b149 co 281 2.4875 2.5779
11 12 di1imi194 co 288 2.2500 2.3331
11 13 d1im36 co 289 2.3356 2.4245
11 14 d11m38 co 248 3.6371 3.4865
11 15 d11im285 co 285 3.8211 4.0110
11 16 d11m330 co 285 4.3895 4.6236
11 17 diimi68 co 291 3.4124 3.4318
11 18 d1im167 co 288 1.8542 1.8702
11 19 diimi28 co 289 2.3910 2.4419

-end |segreg
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Estimated Genetic Map for Chromosome 11 from
MAPMAKER/EXP
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* ok k Here is a histogram for the quantitative trait...
* * ok
* ok ok
*  kokok
ke ok ok ok o *
| kkkkk ok k *
| ek ok * *
| Ekkkkk ko * * *
| ek kk * * *
| dedeseskeodek ek ek *
| deskokokokok ok koo ok * Min(Y) = 0.02381
| dededeskechek ek kedkkokk %k k Max(Y) = 2.33333
| ek ek kkkokkkkkkkk K
| ok ok ok ok K ok Kok kR KKk K *%
| oo ok ook ok ok ok ook ok ook ok ok ok ok ok ok ok K %
I********t Rk kR Rk EE k EE 2
| 8 e ok o e ok o ok o ok o e ok ok ok ok ok sk ok Kk ok ok kok ok ok ok
| dekeske ok sk sk ok k ke k ok kok ok ok kokkkk kkkk Kk
| 38 e o o e ok o o o ok o o ok o ook ok sk ok ok ok ok ok ok ok ok ok ok koK
| s ke e sk e s ke e s e e e o o s ok ok s ok sk s s o e ok ok ok sk ok ok sk ok ok ok ok *
B e et e Fmm e +
0.02 1.18 2.33
min max 195

doerge@rwdstat (NEW_052302.D)% LRmapqtl

QTL Cartographer v. 1.16c, February 2002 for Unix

Copyright (C) 1996-2001 C. J. Basten, B. S. Weir and Z.-B. Zeng.
QTL Cartographer comes with ABSOLUTELY NO WARRANTY.

This is free software, and you are welcome to redistribute it

under certain conditiomns.

For details see the file COPYING.

Options

Values:

Continue with these parameters
Data Input File
Output File

Error File

Random Number Seed

Number of Permutations

Trait to Analyze

0
1
2
3
4. Genetic Linkage Map File
5
6
7

severity.cro
severity.lr
severity.log
severity.map
1022191173

8. Specify Resource File
9. Change Filename stem
10. Change Working Directory:

11. Quit

12. Quit, but update the Resource File

qtlcart.rc

severity

Please enter a number...
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This output is based on the map in (severity.map)
And the data in (severity.cro)

............ 201

Sample Size

This analysis fits the data to the simple linear regression model

The res
for eac

is unli

y = b0 + bl x + e
ults below give the estimates for b0, bl and the F statistic
h marker. The F statistic is for the hypothesis that the marker
nked to the quantitative trait. The column headed by PR is the

probability that the trait is unlinked to the marker. Significance at
the 6%, 14, 0.1% and 0.01% levels are indicated by *, *%, #*** and
**%%  respectively. LR is -2log(L0/L1).
This trait is: sev, and
-t 1 is the number of trait being analyzed.
Chrom. Marker b0 b1 LR F(1,n-2) pr(F)
11 1 0.620 0.113 8.273 8.334 0.004 **
11 2 0.619 0.113 8.164 8.223 0.004 *x*
11 3 0.624 0.115 8.167 8.226 0.004 **
11 4 0.624 0.110 8.201 8.261 0.004 *x*
11 5 0.620 0.127 9.615 9.709 0.002 **
11 6 0.617 0.168 17.372 17.778 0.000 *x*x 197
11 7 0.621 0.156 14.771 15.048 0.000 #*=*
11 8 0.619 0.155 16.221 16.567 0.000 ***xx*
11 9 0.620 0.144 13.101 13.308 0.000 #*=*
11 10 0.623 0.136 11.191 11.330 0.001 #*=*
11 11 0.622 0.136 12.137 12.308 0.001 #*=*
11 12 0.622 0.137 12.781 12.976 0.000 *k*
11 13 0.620 0.165 18.627 19.104 0.000 #*x*
11 14 0.620 0.152 15.229 15.527 0.000 #*=*
11 15 0.618 0.164 17.762 18.189 0.000 sk
11 16 0.619 0.138 12.284 12.461 0.000 #*=*
11 17 0.628 0.046 1.336 1.330 0.250
11 18 0.628 0.050 1.631 1.624 0.204
11 19 0.626 0.068 2.976 2.971 0.086

# Here are th
# Permutation
# Permutation
# Permutation
# Permutation
#end of shuff

e experimentwise significance levels for different sizes

significance level for alpha = 0.1 11.3327
significance level for alpha = 0.05 12.7709
significance level for alpha = 0.025 14.4815
significance level for alpha = 0.01 16.4431

ling results
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doerge@rwdstat (NEW_052302.D)} Zmapqtl

QTL Cartographer v. 1.16c, February 2002 for Unix

Copyright (C) 1996-2001 C. J. Basten, B. S. Weir and Z.-B. Zeng.
QTL Cartographer comes with ABSOLUTELY NO WARRANTY.

This is free software, and you are welcome to redistribute it

under certain conditions. For details see the

file COPYING.

Options

Values:

o e e
B W N = O

15.

O 0 N ;e W = O

Continue with these parameters
Input File

Output File

Error File

Genetic Linkage Map File

LRmapgtl Results file (Models 4&5)
SRmapgtl Results file (Model 6)
Random Number Seed

Model [1-6], 3=>IM

Trait to analyze

Chromosome to analyze (0=>all)
Walking speed in cM

Number of Background Parameters (Model 6)
Window Size in cM (Models 5&6)
Number of Permutations

Number of Bootstraps

severity.cro
severity.z
severity.log
severity.map
severity.lr
severity.sr
1022191318

3

1

11

2.000000

5

10.000000

199

16. Specify Resource File

17. Change Filename stem

18. Change Working Directory:
19. Quit
20. Quit, but update the Resource File

gtlcart.rc

severity

Please enter a number...

200




1022185969 -filetype Zmapqtl.out

#

#

# QTL Cartographer v. 1.16c, February 2002

# This output file (severity.z) was created by Zmapqtl...

#

# It is 15:32:49 on Thursday, 23 May 2002

#

#

#The position is from the left telomere on the chromosome

-window 10.00 Window size for models 5 and 6

-background 5 Background parameters in model 6

-Model 3 Model number

-trait 1 Analyzed trait [sev]

-Cross RF2 Cross

# Test Site * Like. Ratio Test Statistics * Additive * Dominance * Misc. HT
¢ m position HO:H3 H1:H3 H2:H3 Hi:a H3:a H2:d

-8

11 1 0.0001 15.8142936 11.0045756 6.7958738 0.1820874 0.1003515 -0.1589014
11 1 0.0201 17.9706722 13.7760958 6.8457844 0.1983380 0.1043741 -0.184932¢

201
Composite Interval Mapping Model 1: Use all markers as cofactors.
# 1022186131 -filetype Zmapqtl.out
#
# QTL Cartographer v. 1.16c, February 2002
# This output file (severity.z) was created by Zmapqtl...
#
# It is 15:35:31 on Thursday, 23 May 2002
#
#
#The position is from the left telomere on the chromosome
-window 10.00 Window size for models 5 and 6
-background 5 Background parameters in model 6
-Model 1 Model number
-trait i Analyzed trait [sev]
-cross RF2 Cross
# Test Site * Like. Ratio Test Statistics * Additive * Dominance * Misc. HT
¢ m position HO:H3 H1:H3 H2:H3 Hi:a H3:a H2:d
-5
i1 1 0.0001 3.8879597 7.4665236 0.3065377 0.1389767 0.0298707 -0.091827E
11 1 0.0201 5.5459852 11.7529063 0.0779620 0.1835906 0.0174144 -0.117523¢€
11 1 0.0401 7.4420245 17.1386366 0.0001878 0.2387654 0.0016548 -0.1398737
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Single marker,

interval mapping, composite interval mapping, and permutation

thresholds...
. Butterfield et al., 1999 Chromosome 11, trait is severity
| | | | ‘cl'l'lt'l.s' —
ettty @
c11t1.z3
.‘I' Il C" ‘I t'] _ZE' .........
4 - <> '0 |
3+ ’ .
9 H
2+ ° -
1L |
0 I I 1 P |
0 0.2 0.4 0.6 0.8 1 1.2 1.4
Paosition in Morgans
203
Interval Mapping Simulation Exercise
= Backcross

= n=400; m=230

= some missing data

= 5 quantitative traits

]

5QTL
» Chromosome 1, 2, 3 each have one QTL
e Chromosome 4 has no QTL
e Chromosome 5 has two QTL
o All QTL are independent
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Simulation set-up

= 5 chromosomes
= 5 quantitative traits
= 5 independent QTL

g~ N(0,0°)
5, =100

Yi :ﬂo_l_ﬂlxi_l_gi;

chrom 1 2 3 4 5

trait 1QTL 1QTL 1QTL no QTL 2 QTL
trait 1 p30 p195 p36 _ p103, p151
o2 =40 a=5.0 a=2.5 a=1.0 a=2525
trait 2
o’ =20
trait 3
o’ =10
trait 4
o’ =5
trait 5

0_2:25 205

data type 2 backcross

40023050

*nl H A A A A A A A
A A A H H A A A
A H H H H H A
H A H A A H H A
A

*p2 A H H H A H A H
A A A A H H A A
- A A H A H A A
A H A H A A A H
H... H H H A H H

*p3 H - H H A A H A
A H A H A H A H
A H A A A A A H
H H H H H H H -
A A H - H H A A
H A H A H A - H...
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LOD score - Trait 5 (sim5)

280 4
270
360 4
250
240 4
230
220 4
1.0
200 4
10.0
18.0 -
17.0
16.0 -
15.0
1401
13.0
120
110
10.0 -
8.0
8.0+
7.0
6.0
5.0
4.0+
30
1D e e e e e e e e e e e e ——————————
1.0
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LOD score - Trait 5 (sim5)




LOD score - Trait 5 (sim5)

209

LOD score - Trait 5 (sim5)
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200 4
100
15804
17.0
16.0 4
150
1410 4
130
1204
11.0
10,04
o0
5.0+
70
6.0
50
4.0+
in
204
1.0

LOD score - Trait 5 (sim5)
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Composite Interval Mapping

Zhao-Bang Zeng

Summer Institute in Statistical Genetics
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Motivation:

Problem with interval mapping:

searching for a single QTL while there may be multiple
QTL in the genome

the search for a QTL can be complicated and
confounded by multiple QTL.

Solution: Think about multiple QTL.

215

Extension from one QTL to multiple QTL
explicitly model two or multiple linked QTL
multi-dimensional problem

gets complicated (see multiple interval mapping).

Goal: Test for QTL in an interval with a statistic that is
independent of effects from other QTL along the chromosome.
Improved precision and efficiency of mapping multiple QTL.

Idea: Employ interval mapping to scan for single QTL while using
other markers as surrogates to absorb linked QTL effects.
each interval test is independent
assumes no interference!

thus, for an interval, such an approach tests and estimates
only QTL in the interval.

216




This approach simplifies searching for multiple QTL from a
multiple dimensional search problem to one dimensional scan.

Questions:

How are marker cofactors selected?
What considerations should be taken into account?

217

Composite interval mapping

Composite interval mapping (CIM) is an extension of interval
mapping using selected markers that are fitted in the model as
cofactors and used to control the genetic variation of other
possibly linked or unlinked QTL. The model is

Y, =p+b xj+zk:bkxjk+ej:b X;+XB+e, @
where x’; refers to the putative QTL and x;, refers to those

markers selected for genetic background control. Appropriate
selection of markers as cofactors is important for the analysis.

The likelihood function is

) N _—b*—X-B —X.B
L(b ,B’Gz):l—ll:pjld){yj - J J+ pjo(b(yJTjj:|

=1

where P =Pr(x;=1) and  p;,=Pr(x;=0) g




The likelihood ratio test statistic is

LOD =log,,

219

Maximum likelihood analysis and the EM algorithm

The maximum likelihood analysis of a mixture model is usually
via an EM (Expectation-Maximization) algorithm. In each
iteration

E-step calculates: pjlq)([yj -b" - X, B]/c)

J

P =
pud([ ¥, —b =X ,B]/o)+pyed([ v, - X;B]/ o)
M-step calculates:
b"=(Y - XB)'P(L'P)"
Note: vector notation B= (X X )_l X I(Y B Pb*)
o’ :%[(Y —XB)'(Y - XB)-1'Pb* |

This process iterates until the estimates converge. 920




Motivation: use of cofactors

= Cofactors are used to block the effects (outside the testing position)
of other possible QTL along the chromosome.

= Consider three points (either markers or QTL) a, b, and con a
chromosome

= Let I, N Ve e recombination frequencies between a and b, b
and c, and between a and c. For backcross and F, populations, the
correlation coefficients are

Yab :1_2rab; Ve :l_zrbc; Yac :1_2rac

= Assuming no crossing-over interference
e =Ny (1-1 )+ (-1 )r = (1-2r, ) =(1-2r,)(1-2r,,)

= That is, Y.. =YY 221

However, the correlation coefficient between a and ¢ conditional
on b (i.e., the partial correlation coefficient) is

(Yac ~YaV c)
Yach = 2 . 2b =0
\/(1_Yab)(1_ybxl,...,xnc)

This means for

’qul.a = O quz'c — O

= Therefore, conditional on markers a and c, a test on the effect of
b on a trait is unaffected by g, and g, despite the fact there may be
linkage.

= This is the basis of composite interval mapping.
222




The statistical power for the test of b (if it isa QTL) is affected
by cofactors a and c, since the conditional test depends on the
number of recombinants between a and b and between b and c.

The closer the distance between a and b and between b and ¢
becomes, there is less of a chance of recombination in the sample,
and less statistical power for testing b conditional on a and c.

Unlinked markers selected as cofactors (because they are likely
to be close to other QTL) can potentially reduce the residual
variance of the model, and thus increase the statistical power to
search and test for QTL.

223

Marker Selection
Question: Which markers should be added into the model?

The answer to this question depends on the (unknown) number
and (unknown) positions of underlying QTL.

Too few selected markers may not achieve the purpose of
reducing the most residual genetic variation

Too many selected markers may reduce the power of the
analysis.
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QTL-Cartographer

http://statgen.ncsu.edu/qgtlcart/cartographer.html

Zmapgtl (model 6): module in QTL-Cartographer: a two parameter procedure
= n,=number of markers as cofactors
= supplied by user or selected via stepwise regression by SRmapqtl.
= w,= width of testing window
= blocks out a region of the genome on either side of the markers
flanking the test site (supplied by user).

Three step procedure:

1. Cofactor step: select n, markers that are significantly associated with trait
using (forward or backward) stepwise regression.

2. Window marker step: For each interval, the algorithm automatically picks 2
markers as a testing window, at least W.cM beyond the testing interval (one
for each direction).

3. Mapping step: Map QTL for the interval with window markers and a subset of
markers outside the testing window as cofactors. 225

Rules of thumb for Composite Interval Mapping:

= n, can be chosen from the results of the stepwise
regression analysis (SRmapqtl) using F-to-enter (forward)
or F-to-drop (backward) statistic with a specified
significance level o =0.01.

= w, should be as large as possible when there is no
indication of other linked QTL

= otherwise, w can be gradually decreased as long as
the test statistic for a putative QTL is significant.
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Example: Interval mapping and composite interval mapping on
chromosome X of the mouse data.

= experiment design: backcross
= m=181 microsatellite markers (SSR, simple sequence repeats)
= n=103 individuals.
= 20 chromosomes
= this analysis using only 14 markers in chromosome X

= The quantitative trait is 12 week body weight.
= Composite Interval Mapping:

= The boundary markers x- and xR are chosen to be the closest
markers which are at least 10cM away from the testing interval.

= Besides x- and xR, 20 other linked or unlinked markers are also
selected as cofactors (from stepwise regression) to absorb the
effects of other QTL. 227

Interval mapping analysis of (mouse) chromosome X:

= The analysis from interval mapping indicates the existence
of QTL on chromosome X
= the LOD score is significant for a wide region
= the arbitrary threshold is 3.3 for a backcross

= not all significant peaks can be interpreted as QTL
because of

=linkage effects

=the “ghost” gene phenomenon

=statistical sampling effects.
= the fact that a very wide region shows significant and
comparable effects may suggest multiple QTL.
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Composite interval mapping analysis of (mouse) chromosome X:

= The boundary markers x- and xR are chosen to be the closest
markers that are at least 10cM away from the testing interval.
= 20 additional linked or unlinked markers are also selected as
cofactors in the analysis to absorb the effects of other QTL

= markers are selected using stepwise regression

= model 6 is employed via Zmapqtl

= The LOD score from this analysis reveals two distinct major peaks.
= suggesting that there are at least two body weight QTL
= one named Bw1 is mapped near marker Rp18-rsil
= the other, Bw2, mapped near DXMIT60
=(Dragani et al. 1995 Mammalian Genome 6:778-781).
= together the two QTL explain 25% of the phenotypic
variance in the mapping population. In this case, the
= Composite interval mapping achieved much better resolution in
mapping QTL than interval mapping 229

———  Composite Interval Mapping
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Some limitations of composite interval mapping

motivation for multiple interval mapping

The analysis can be affected by an uneven distribution of markers
in the genome
the test statistic in a marker-rich region may not be
comparable to a test statistic in a marker-poor region

It is difficult to estimate the joint contribution of multiple linked
QTL to the phenotypic variance

CIM is not directly extendible to the analysis of epistasis

The use of tightly linked markers (as cofactors) can reduce the
statistical power to detecta QTL

231

Multiple Interval Mapping

Zhao-Bang Zeng

Summer Institute in Statistical Genetics
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Multiple interval mapping

Multiple interval mapping (MIM) is a multiple QTL method that
combines QTL mapping analysis with the analysis of

genetic architecture of quantitative traits through a search algorithm
that searches for

N

= number
n positions t {xs‘,lrmultaneou/s!y/;
= effects J

= interaction of significant QTL

The basic idea is to implement a multiple QTL model and use a
search method to search for number and positions of multiple QTL.

233

Multiple Interval Mapping

MIM consists of four components:

1. An evaluation procedure designed to analyze the likelihood of the data
given a genetic model (number, positions, and epistasis of QTL).

2. Asearch strategy optimized to select the best genetic model (among those
sampled) in the parameter space.

3. An estimation procedure for all parameters of the genetic architecture of
the quantitative traits (number, positions, effects and epistasis of QTL,;
genetic variances and covariances explained by QTL effects) simultaneously
given the selected genetic model.

4. A prediction procedure to estimate or predict the genotypic values of
individuals based the selected genetic model and estimated genetic
parameter values for marker-assisted selection.
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QTL Mapping

Trait Phenotypic Values: Y

I

Genetic Model: P(Y|G,0)

QTL: G Q, Q, i Qm1 Qnm
PGX)Y M N N Y

Markers: X —> M;  erreeaaaa M My My, s M, *

Homologous Chromosomes

Likelihood of Data: P(Y, X) = P(Y|X) P(X) = 3 P(Y|G,0) P(G|X,4)P(X]5)

Infer the relationship between genotypes and phenotypes ..

MIM Model

For m putative QTL, the multiple interval mapping model (for a
backcross population) is defined by

t

yi =H + Z Brs(X;X;)+ei
r=se(1,...,m
where ( )

= y. is the phenotypic value of individual i

= | indexes individuals of the sample; i=1,...,n
= u is the mean of the model

= q, IS the marginal effect of putative QTL r

= X, is a coded variable denoting the genotype of putative QTL r
= defined by % or -¥ for the two genotypes
= is unobserved, but can be inferred from marker data in sense
of probability;

) 236
Continued...




Continued...

t

V=Y ax s Y Ba(xx)+e

r=1 r#se(l,...,m)

" B, is the epistatic effect between putative QTL r and s
" r=se(1---,m) denotes a subset of QTL pairs that each shows a significant
epistatic effect

= avoids the over-parameterization that could result when using all pairs;

= m is the number of putative QTL chosen based on either their significant
marginal effects or significant epistatic effects;

= t is the number of significant pairwise epistatic effects;

= ¢ is the residual effect of the model assumed to be N(0, 6?)

237

Likelihood

The likelihood function of the data given the model is a mixture of normal
distributions

n

L(E,M,52)=HK (vl DjE,GZ)}

The term in square braces is the weighted sum of a series of normal density
functions, one for each of 2™ possible multiple-QTL genotypes

= pj; is the probability of each multilocus genotype conditional on marker
data;

= E is a vector of QTL parameters (a's and 3's)

= D; is a vector specifying the configuration of x™’s associated with each
and 3 for the j* QTL genotype;

*o(ylwo?) denotes a normal density function for y with mean |, and
variance 52
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EM algorithm
E-Step: IO.J<I>(y.| u 4D EY, zm)

[t +l]

ij lepu (Y. —|—DE [])
M-step:

> %, A0, (v )Xo e - 0]
>, A0}

H[Hl Z [ Z Z 7T,Jt+l _r rt+l] ]

E[t+l] _

jor

Gz[t+1] :%{z(yl _“[Hl])z —ZZ(yi _M[Hl])Zzﬁi[jt+l]Der|[t+l] +zzzz [ ]D DJSEI[t 1]E[ ]i|
i i r s i ]
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Posterior genotype probability 7T

Probability of QTL genotype given markers:
Pr(genotype|markers) = Pr(g|M ) = P;

Conditional density of phenotypic given genotype:
Pr(phenotype|genotype) = Pr(y|g) = ¢(yi| n+D;E, 02)

Probability of QTL genotype conditional on markers and phenotype:
Pr (genotype|markers, phenotype) =

Pr(g|M)Pr(y|g)

> Pr(alm)Pr(ylo)

=Pr(gMy)=
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Dealing with many QTL

= mQTL — 2™ possible mixture components.
= can be prohibitive for efficient numerical analysis
= most genotypes have negligible probabilities

= Can we skip these evaluations?

Practical implementation of MIM algorithm:

Select a subset of “significant” mixture components for each
individual for evaluation: (1) set any p; <3&(=0.005) to zero
(drop them); (2) Sum of “significant” p; >0.95 (adjust o if
needed); (3) normalize probs: Z,— p; =1.

Number of “significant” components ~ 10-100, depending on
marker density, number and position of QTL. It has negligible
loss of likelihood evaluation as compared to no selection. 241

Practical implementation of MIM algorithm:

Select a subset of “significant” mixture components for each individual for evaluation:

N

set any p, <3(=0.005) to zero (i.e., drop them);
sum of “significant” p, >0.95 (adjust § if needed);
normalize “significant” probabilities:zj p; =1.

Number of “significant” components ~ 10-100, depending on marker density,
number and position of QTL.

It has negligible loss of likelihood evaluation as compared to no selection.
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Conditional likelihood ratio test

Test for each QTL effect (E,) conditional on other QTL effects:
L(all E; #0)

J10 L(Er =0, all other E, # O)

Proceed if we have positions of m putative QTL and selected m+t
QTL effects.

=How do we search for multiple QTL?
=How do we decide on how many QTL to include?
=How do we select best genetic model?

= number, positions, gene action, epistasis
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Model selection (function in MIM QTL-Cartographer)

1. Initial model (New Model): Use an automatic stepwise selection procedure,
CIM, or stepwise marker selection.
2. Search for new QTL
= Refine Model => Search for New QTL =>Search for QTL
= scan the genome to determine the best position of new QTL based on the
criterion selected.
3. Search for QTL epistasis
= Refine Model => Search for New QTL => Search for Epistasis
= search for epistatic effects among QTL identified based on the selected
criterion.
4. Re-evaluation
= Refine Model => Testing for Existing QTL
= re-evaluate the significance of each QTL effect currently fitted in the
model based on the selected criterion.
= this procedure can remove non-significant effects from the model.
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5. Optimize QTL positions
= Refine Model => Optimizing QTL Position
= Optimize QTL position estimates in the current model.

= QTL position is optimized one by one in a sequential order

6. Return to step 2 and repeat the process as needed.
7. Selection criterion: Currently implemented are BIC and AIC.
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Challenges of searching for multiple QTL

= High, unknown dimension:
= complicated, difficult.
= Search on whole genome,
= not just markers
= Numerous peaks & valleys in likelihood “landscape”;
= danger of selecting a local peak for from maximum.

= Appropriate criteria for model selection?
= Appropriate strategies to search for epistatic QTL?

= Questions:
= Global (genomewide) search for multiple QTL
= Genetic architecture: multiple components.
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Model selection and stopping rule
Akaike information criterion (AIC): minimize —2(log L, —k).
C, method: minimize adjusted R?

Bayes information criterion (BIC): minimize —2(|og L, — kc(n)/2)
with ¢(n)=1log(n), or 2log(logn) or other penalty function.

Final prediction error (FPE) method: minimize prediction error.

Delete-one cross-validation, delete-d cross-validation, and
generalized cross-validation: different ways to implement FPE.

Bootstrap model selection: use bootstrap resampling to
implement FPE.

Minimizing posterior predictive loss: similar to FPE in concept.
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Estimating the variance explained by QTL
Variance explained by QTL effect Er can be estimated as
~ 1 2" _ . A
Ge, == 2. D 7 (Djr - Dr)2 E;
| )
Covariance explained by QTL effect Er and ES IS

n 27

6ér’Es :%ZZﬁij (Djr o I:_)r)(Djs o I:_)s)érés

i=1 j=1

Thus, the total genetic variance explained by QTL is

6y = 2.5, + 2 e e,
r

r#sS
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Estimation of genotypic values

= The genotypic value of an individual can be estimated as:

2™ m+t

Ji =f+2 > 74;D,E,

j=1 r=1

= To predict the genotypic values of quantitative traits based on
marker information only (e.g., in cross-prediction; early
selection), we need to use

as 7; is a function of phenotype y; which is unavailable in early
selection.

= These estimates can be used for marker-assisted selection.
249

Procedure for MIM analysis in QTL-Cartographer

= After opening Windows QTL-Cartographer
=upload a data set
= Open MIM module:
= choose New Model to select an initial model.
= the default search procedure is pretty good
= there are also a few other procedures implemented

= choose Refine Model => Optimizing QTL Position.
= choose Refine Model => Search for New QTL => Search for QTL
= to look for more potential QTL.
= choose Refine Model => Search for New QTL => Search for Epistasis
= to look for QTL epistasis
= note: given the identification of QTL, the criterion for searching
QTL epistasis can be more relaxed
= recommend: select AIC in the box of Criteria for MIM Model
Selection).
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= choose Refine Model => Testing for Existing QTL
= to see whether the selected QTL effects are still significant based on
the selected criterion.

= choose Refine Model => MIM Model Summary => Graphic Result File
= to calculate and display the likelihood profile for each QTL.

= choose Refine Model => MIM Model Summary => Model Summary File
= to show the MIM output result file.
= information includes: position, likelihood ratio and effect of
each QTL, epistatic effects of QTL, partition of the variance
explained by QTL (main and interaction effects), estimates of
genotypic value of individuals based on the model.

= There are also many other interactive functions in MIM module.
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More on epistasis: Why study epistasis?

Experiments show that most QTL have mainly additive (or
marginal, or main) effects

It is difficult to find significant QTL epistasis:
— Small sample size
— Multiple dimensional genome search: low statistical power

In reality, search for QTL has always been biased for main-
effect QTL, and not much effort has been put for searching
for epistatic QTL

Still, OQTL epistasis is ubiquitous biologically

Thus, it is important to be able to identify epistatic QTL
for the purpose of our understanding of genetic
complexity and also for the completeness of statistical
Inference of genotype and phenotype relationship 252




Statistical setting for the problem
(for backcross population):

Vo = H+ D X+ BiXiXy +€  fork=12,.,n

i<]
with
« = 3 for QQ,
W =
" |-z for Qg
1y _1
p(xik _ ?) ) 253
Questions:

= How to find each individual QTL (Q), particularly those Q;
with weak o; but strong f;;?

= How to avoid false positive or incorrect identification of
epistatic QTL?

= Also how to increase the statistical power of identifying
epistatic QTL?

Terminology:
= Main-effect QTL: those QTL that have strong main effects (a)), and may or
may not have strong epistatic effects ()

= Epistatic QTL: those QTL that have strong epistatic interactions (B) (with
other QTL), and may or may not have strong main effects (o)
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A popular approach (simple, but ...)

Perform a 2D genome-scan to search for the best pair of x, and
X, based on the statistical test of a,, a, and p,,, and interpret the
result on the face value.

Statistical model;

Vi = U+ Xy + QXo + ProXy X+ K=12,...,n w0

= test for all combinations of
genome positions for x, and x,

= the upper-triangle shows the
statistical test for o, and o,

= the lower-triangle shows the
statistical test for ,,

Positions
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Problems... if using this simple 2D genome-scan for
searching and interpreting epistatic QTL

= Search for epistatic QTL based on the 2D pattern can be
misleading very easily
= Due to complex linkage and epistatic structure of multiple QTL
= Low statistical power for this 2D genome-scan

= Genetic variation due to other QTL effects is not fitted in the model, thus
remains in the residual

Problems: Potential bias and low statistical power
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= This is a multiple QTL problem (not, a two-QTL problem)
and needs a multiple QTL solution

= The challenge becomes... how to design a better analysis
approach for a multiple epistatic QTL problem?
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Another approach:

Extend the 2D search to multiple-D search for multiple epistatic QTL

= Potential problems:
= unknown dimension in the search

= need to assess and control statistical noise in a multiple
dimensional search
= multiple-D search is not necessarily powerful statistically

= computational burden
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A Power Comparison between 2D Locus Pair Search
and Sequential Search (Storey et al. 2005)

Statistical power to detect 2 eQTL Statistical power to detect 2 eQTL epistasis

4000

2000

3500
1500

3000

2500

number of significant linkages

- Sequential
- = 2D

Sequential
-=- 2D
Expected false pos.

2000
|

number of traits significant for epistasis
1000
I

1500

T | T T
0.00 0.05 0.10 0.15

T I T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30

p-value cut-off p-value cut—off
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An important genetic property
Cov(x;,x;)=0 if linkage = LD
Cov(x,X;, %% ) =0 if linkage = LD
b( ik ) g N _ COV(Xi,Xj) 0
-~ Ut 0 COV(X;X;, X X)
Cov(x;, XX;) =0;

Cov(x;, X;x,) =0 even with linkage

No covariance

— —
Y = ﬂ+205ixik +Z/Bijxikxjk + €
i

<]

Implication: The search for QTL with main effects can proceed
separately from the search for QTL with epistasis without bias. 260




Our solution: A three-stage search strategy

1. First search for main-effect QTL

= either sequentially or other approach, each step uses 1-D genome
scan),

= then test for epistasis of identified QTL => identifying x;’s

2. Search for epistatic QTL that interact with main-effect QTL
= each 1-D genome scan => identifying xx;’s

3. Search for additional epistatic QTL pairs
= each 2-D genome scan => identifying xx;’s with weak o; and o;, but
significant g;

Y = /u+zaixik +Zﬁijxikxjk + €
i I<]
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Justification and advantages:

1. Most QTL effects are due to “main effect” QTL that explain
most genetic variance, thus need to be searched and fitted in
the model first (before the subsequent analysis).

2. The search for main effect QTL does not bias the search for
epistatic QTL.
3. After the main effect QTL are mapped and fitted in the

model, further search for epistatic QTL has more statistical
power.

Advantages:
Minimize the bias and increase the statistical power
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How it works ...

MIM Model and Likelihood
Model (for m putative QTL in a backcross population):

i
Yi =+ E ApTip + E Ot YrIT ik T + 4
k=1 kB£le{l,..., m}
where x;; is unobserved QTL genotype with known conditional
probability from genetic markers and =; ~ N(0,4). Likelihood:

n 2™ T 2T
Le:v) =D PG| xa)PyilGH) =] {Z pi;d (vil o+ G,E, gﬂ)]

i=1 5=1 i=1 | j=1

T m 2™
W(O:v) =D 1;(8:v) => In {Zpue-‘b(yzlpyffi’)}
i=1

i=1 j=1
We have worked out an efficient algorithm that combines
generalized EM and Newton-Raphson method (GEM-NR) to

maximize the likelihood for complex genetic models.
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= Since the method is based on a number of sequential searches
(for main or epistatic QTL), and in each step of the search we
test for significance of the searched QTL effects (main or
epistatic effects). We need to figure out a way to compute the
null distribution of the searched test statistic in each step
efficiently.

= |n each step we are testing the hypothesis (conditional on the
other parameters): H,: =0 vs. H;: p#0.

Let D be a set of indices representing the set of models examined. For
a given model (represented by d € D), assume that the model has ¢
parameters, split into two groups, 8 = (1. ) = (#1,- - .0c—1. 3. 1, 0°),
where [ is the parameter to be tested for significance and

n=(#1. -+ ,0c_1. 4, 0°) is considered the vector of nuisance
parameters. In the following, 77 denotes the maximum likelihood

estimator of 7 for the reduced model with 5 = 0.
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How to assess the relevant threshold in the search process

Score Statistic

Zou et al. (2004 Genetics 168:2307-2316) proposed using score
statistic to test QTL effect and a resampling procedure for
determining the appropriate threshold.

Suppose we have identified the m — 1 QTL with parameters 1 and

th

want to test for adding the m™ QTL with parameter /3.

Let U(d) denote the score function for 3, at genomic position d,

evaluated at 3 = 0 and 7.

— ] _ D20, d)\ (OO0, d)\ _
Ui(d)y =Ug(0,77:d) — ( 550 o U,.i(0,7:d)

oli(3,m:d)
-"93'3

Br’.@- (IJ'S, s d} . -"i')t]:j -‘9{]:5 l‘j’f; l‘j’fi ;
an 00, T 90,1 O o2

Ugi(B.,m:d) =

{"T?,r.i (3- 17 d) -
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The score statistic for Hy: 3 = 0 against Hy: 3 £ 0 at location d is

Wi(d) = U (d)V-"(d)U(d)

where f»}(d) =5, ﬁ(d)ﬁ‘-’(d)r
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Resampling with Score Statistic

An efficient way to simulate conditional null distribution

1. Generate G;.,i=1.,2. -, n from N(0,1).

2. Calculate U*(d) = Z{ (d)G;, W*(d) = U* (d)V ~1U*(d), and

S* = max W*(d).

3. Repeat step 1 and 2 for N times to find S," for £ =1,---,N.

4. Compute the 100(1 — o) percentile of {S;* : k=1,---,N} to

determine the threshold value.

o

the observed score statistic for the position exceeds the
threshold value.

Accept the position being tested as identifying a new QTL if

267

Note that the E';(d) and ﬁ(d) used in the resampling calculations are

based on the original data and are evaluated once and used

repeatedly in step 2; only the G;'s are changed in each resample.

Since it does not involve refitting the model in each iteration, the

proposed method is computationally much more efficient than the

permutation method.
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Implementation in QTL-Cartographer
MIM procedures

1 MIM forward search procedure (a pre-model selection): This is an
automatic QTL search procedure that is intended for generating an initial
MIM model for further analysis only. QTL is searched sequentially based
on its main effect and added into the model subject to a score-statistic test
with a genome-wise threshold. Upon detecting a new QTL, interaction
effects of the new QTL with the previously identified QTL are tested and
added into the model using a score-statistic test with a point-wise
threshold.

2 Optimizing QTL positions with or without interaction effects: This
procedure optimizes position estimate of each QTL in turn. When the
option with interaction effects is chosen, both the main effect of the QTL
and interaction effects with other QTL are used for optimizing the estimate
of position. Otherwise, only the main effect of the QTL is used for

optimizing the QTL position. 269

3 Search for New QTL:

(a) QTL with main effects: This procedure searches for a new QTL
based on a score-statistic test on the main effect with a

genome-wise threshold.
(b) QTL with interaction effects:

I Search for interaction effects among identified QTL: This
procedure searches for significant interaction effects among
identified QTL using a point-wise threshold.

i Search for new QTL that have significant interaction effects with
identified QTL: This procedure searches for a new QTL based on
its interaction effect with an identified QTL. A one-dimensional
genome scan is performed to search for the best position for a new
QTL that has an interaction effect with any identified QTL. This
interaction effect is tested by a score-statistic test subject to a
threshold that takes into account the search space (genome-wide
with multiple identified QTL).

i Search for new QTL in pair that have significant interaction effects:
This procedure performs a two-dimensional genome scan that
searches for the best positions for a pair of. new.QTL that have 270




4 Testing QTL effects:

(a) Testing QTL main effects: This procedure tests for significance
the main effects of QTL in the current MIM model. If a QTL main
effect is not significant at a genome-wise significant level, the
QTL will be eliminated from the model. The procedure can be
used only for those QTL that do not have interaction effects with
other QTL to avoid to eliminate QTL that have weak main effects
but significant interaction effects with other QTL.

(b) Testing QTL interaction effects: This procedure tests for
significance the interaction effects of QTL in the current MIM
model. If an interaction effect is not significant at a point-wise
significant level, the interaction effect will be eliminated from the
model.

5 Estimating QTL effects: This procedure produces test statistics
(log-likelihood ratio test statistic and score statistic) and empirical p-value
of the score statistic for each QTL effect in the current MIM model.  ,4;

6 Producing summary output: This procedure produces a comprehensive
report of information of the current MIM model in two output files. One
output file includes estimates of QTL number, positions, main and
interaction effects, A2 value of the model (an estimate of the broad-sense
heritability) and partition of the R? value into the variance components due
to individual QTL main and interaction effects and the covariance
components due to a pair of QTL effects (due to linkage disequilibrium),
Equation (19) of Zeng et al. (1999). It also includes estimates of QTL
genotypes and genotypic values of the trait for each individual, Equation
(14) of Zeng et al. (1999)). The other output file includes information for
generating the log-likelihood profile of each QTL in the MIM model in
graphic which displays automatically. The log-likelihood profile for each
QTL utilizes the combined information of the main effect of that QTL and
interaction effects of the QTL with other QTL in the model.
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For practical data analysis, we recommend use these procedures in the
following way.

¢ Procedure 1 can be used to search for an initial model.

e Procedure 2 can be used next to optimize QTL position estimates.
Procedure 2 can be used repeatedly when the model structure is
changed by adding or removing a QTL during the model fitting process.

e Before searching for new QTL, current QTL effects should be checked
by first using procedure 4(b), then 4(a).

e Procedure 3(a) can be used to search for new QTL based on main
effects. This procedure can be used for multiple times in conjunction
with procedure 2 until not new QTL based on main effects can be found.

e Procedure 3(b)(i) can be used to search for significant interaction
effects among identified QTL.

e Then procedure 3(b)(ii) can be used to search for additional QTL that
have significant interaction effects with the other identified QTL. If an
additional QTL is identified, procedure 2, 4(b) and 4(a) can be used to
optimize the model and check the model again. 273

e Only after other procedures have been used repeatedly, i.e. QTL that
have significant main effects or have significant interaction effects with
the main effect QTL have already been identified and fitted in the
model, should procedure 3(b)(iii) be used to search for additional new
QTL that have significant interaction effects only. Procedure 3(b)(iii)
should be used only in the last stage to minimize the risk of mapping
epistatic QTL in wrong positions due to other unaccounted linked QTL
effects. This point cannot be overemphasized enough.

e Procedure 6 can be used to generate a report for a MIM model.

274




Example 1 (MIM): Genetic architecture of a morphological shape difference
between two Drosophila species:

= Population: two backcrosses between Drosophila simulans and D. mauritiana,
each having two independent samples of sizes 200 and 300.
= total sample size about 1000.

= Trait: morphology of the posterior lobe of the male genital arch
= analyzed as the first principal component in an elliptical Fourier analysis.

af w w w we ond -The effect of harmonic number on the accu-
racy of reconstruction of a posterior lobe outline by elliptical
Fourier analysis. 275
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FIGURE 2.—The effect of harmonic number on the accu-
racy of reconstruction of a posterior lobe outline by elliptical
Fourier analysis.
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Results:
= There is an overall good agreement between CIM and MIM.
= MIM identified more QTL
=19 in total
= the test statistics under MIM are higher than those under CIM
= MIM tends to have more power.

= There is a good agreement between the sums of individual QTL effects and the
observed parental line differences
=demonstrating the power of MIM in partitioning parental differences.

= Most QTL effects are additive.
= Dominant effects of QTL are substantial,
= put marginal as compared to additive effects.

= There are some epistatic effects in the backcross to D. mauritiana.
= overall, epistasis does not seem to be very significant for the trait

= QTL effects together explain
= 93.2% of the total variance in the backcross to D. simulans
= 91.6% in the backcross to D. mauritiana.
=There is a good predictive power of the model in the cross-validation analysis>’®
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Testing Position (cM)

Estimates of QTL positions, effects and variance components by MIM on

PC1 in the two Drosophila backerosses

QTL Posi BM (%) BS (%) BM (%) BS (%)
(Chro:eM)  (a+d)® (a—d)* a° de 5267 5252

1 X:3 54 - 38 -f 4.4 4.4
2 X:23 8.3 - e f 4.5 3.0
3 ITI:0 -0.6 4.3 21 -26 0.1 2.8
4 Ir17 5.1 6.5 59 -1.2 3.8 5.9
5 Ir:27 9.0 7.0 7.9 0.3 6.7 5.7
6 II:69 4.6 7.9 6.4 -2.2 3.3 5.0
7 II:114 4.7 2.4 35 0.8 2.5 0.9
8 I1:135 -2.6 0.3 1.0 14 -0.7 0.3
9 I1:143 5.0 3.1 44 1.0 3.2 0.9
10 IIT:5 5.0 5.1 50 -0.5 4.5 3.5
i1 IIr:21 8.0 7.7 78 05 7.7 6.8
12 IIT:47 10.2 123 114 -2.0 12.7 11.6
18 IIL:75 0.7 8.4 49 43 0.7 9.1
14 IIT:83 12.4 -1.2 50 6.3 14.9 -0.3
15 IIT:94 1.7 7.0 46 -3.0 2.6 7.6
16 III1:117 44 5.6 51 -1.1 4.3 6.4
17 II1:139 4.8 8.3 6.8 4.7 4.2 8.9
18 II1:160 1.6 7.1 46 -3.2 1.3 5.5
19 II1:172 7.5 7.2 73 05 44 5.2

Total 99.1 09.0 992 -188  85.1 03.2

% As percentages of the phenotypic difference between Fi and D. mauritiana.

* As percentages of the phenotypic difference hetween D. simulans and F.

° As percentages of half the difference between D. simulans and D. mauritiana.
4 QTL in chromosome X does not contribute to the observed difference.

¢ Only half of the additive effect contributes to the observed difference. 280

I There is no dominance effect for (QTL in chromosome X.




Estimates of QTL epistatic effects and variance components

in D. mauritiana backcross

QTL 1 QTL2 LOD Epis. Effect 62/62 (%)

1 12 3.29 0.89 2.2
S 15 3.44 1.48 1.0
1 17 7.32 2.01 0.8
3 17 3.01 1.17 0.8
6 17 4.22 1.41 0.6
12 17 7.57 2.00 1.1
Total 6.5
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Example 2 (MIM): Genetic architecture of wing size of Drosophila
melanogaster on chromosome 3

= Population: 519 recombinant inbred lines (RILs) originating from a cross
between high and low selected lines on wing size.
= only QTL on chromosome 3 are segregating in the population
= other chromosomes are identical for all RIL

= Trait: wing size measured in radians in an allometric analysis.
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= Results:

11 QTL are identified by MIM analysis.

there is a good agreement between the sum of estimated additive effects
of QTL and the observed parental genotype difference

there are some significant additive by additive interaction effects
between QTL

the interaction pattern is complex

together, 11 additive and 9 additive by additive QTL effects
96% of the total variance in the population explained

Multiple Interval Mapping
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Estimates of QTL positions and effects

QTL Posi (cM)

LOD Effect

Eﬁeczt %

1 3 8.1 041 6.7
2 20 286  1.15 18.9
3 28 172 091 14.9
4 35 2.5 053 8.7
5 40 2.8  0.22 3.6
6 44 4.8  0.62 10.3
7 48 11.0  0.81 13.3
58  26.3 0.86 14.1

9 72 103 043 7.0
10 78 1.2 -0.14 -2.3
11 100 13.3 047 7.7
Total 102.9
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Estimates of QTL epistatic effects

QTL pair

LOD Effect

(1&2)

1.53  -0.33
1.73  -0.36
2.85  -0.81
7.65 1.38
1.47  -0.56
2.85 0.88
5.60  -1.29
1.14 0.31
4.08  -047
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Estimated variances and covariances of QTL main effects in ratio of total

phenotypic variance

1 2 3 4 5 6 7 8 9 10 11 Sum

i 0.009 0.018 0.009 0.003 0.001 0.001 0.000 -0.002 -0.002 0.001 -0.004 0.034

2 0.018 0.075 0.044 0.018 0.006 0.011 0.011 0.006 -0.002 0.001 -0.009 0.179

3 0.009 0.044 0.047 0.020 0.007 0.014 0.016 0©0.011 0.002 0.000 -0.005 0.163

4 0.003 0.018 0.020 0.016 0.005 0.012 0.013 0.010 0.003 0.000 -0.002 0.097

5 0.001 0.006 0.007 0.005 0.003 0.006 0.007 0.006 0.002 0.000 0.000 0.042

6 0.001 0.011 0.014 0.012 0.006 0.022 0.025 0.020 0.007 -0.001 0.000 0.117

7 0.000 0.011 0.016 0.013 0.007 0.025 0.037 0.028 0.009 -0.002 0.000 0.145

8 -0.002 0.006 0.011 0.010 0.006 0.020 0.028 0.042 0.015 -0.004 0.005 0.136

9 -0.002 -0.002 0.002 0.003 0.002 0.007 0.009 0.015 0.011 -0.003 0.005 0.045

10 0.001 0.001 0.000 0.000 0.000 -0.001 -0.002 -0.004 -0.003 0.001 -0.002 -0.010
11 -0.004 -0.009 -0.005 -0.002 0.000 0.000 0.000 0.005 0.005 =-0.002 0.012 -0.001
Total 0.947

Sum of variance components: .009+.075+.047+.016+.003+.022+.037+.042+.011+.001+.012=0.275
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Estimated variances and covariances of QTL epistatic effects in ratio of

total phenotypic variance

1-2 2-4 3-8 3-9 4-5 5-8 5-9 6-10 8-11 Sum

1-2 0.001 0.000 0.000 0.001 0.000 0.000 -0.001 0.000 0.000 0.001
2-4 0.000 0.001 0.000 0.000 0.000 0.001 -0.001 0.000 0.000 0.001
3-8 0.000 0.000 0.009 -0.011 ©0.001 -0.005 0.004 0.000 -0.001 -0.004
3-9 0.001 0.000 -0.011 0.027 -0.001 0.005 -0.014 0.002 0.001 0.009
4-5 0.000 0.000 0.001 -0.001 0.002 0.000 -0.001 0.000 0.000 0.001
5-8 0.000 0.001 -0.005 0.005 0.000 0.008 -0.008 0.001 0.001 0.004
5-9 -0.001 -0.001 0.004 -0.014 -0.001 -0.008 0.021 -0.003 0.000 -0.003
6-10 0.000 0.000 0.000 0.002 0.000 0.001 -0.003 0.001 -0.001 0.001

8-11 0.000 0.000 -0.001 0.001 0.000 0.001 0.000 -0.001 0.003 0.002
Total 0.012

Sum of variance components; .001+.001+.009+.027+.002+.008+.021+.001+.003+.003=0.073
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Pattern of genetic variance partition in recombination
inbred lines (RILS) of selected populations

Additive Variance Epistatic Variance
RI lines (Strong LD) 0.947 0.012
At equilibrium (without LD) 0.275 0.073

Recombination

Mutation

~

Stabilizing
selection

Hidden variability
stored in negatively
correlated linked
combinations of alleles

Expressed
variability

Stabilizing
selection

Fig. 1. Flow diagram of genetic variability. See text for explanation.

Lande R. (1975) The maintenance of genetic variability by mutation in a polygenic character with linked 293
loci. Genet Res. 26(3):221-35

Advantages of multiple interval mapping

= More efficient and precise in the identification of QTL
= Helps to identify patterns and individual elements of QTL epistasis

= Provides appropriate estimation of individual QTL effects, variance and
covariance contribution

= Improves the efficiency of marker-assisted selection,

= particularly when the information of epistasis is used for MAS

= Multiple interval mapping helps bring QTL mapping, the study of genetic
architecture, and marker assisted selection together

= Composite Interval Mapping (CIM) and Multiple Interval Mapping (MIM)
= applied for expression QTL analysis
=eQTL
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Connecting QTL Analysis and Microarrays
expression QTL (eQTL) analysis

R.W. Doerge

Summer Institute in Statistical Genetics
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enter array technology
example... Affymetrix Gene Chips
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The first use of microarray technology:
Differential (Gene) Expression

= when, where, and in what quantity each gene is expressed
= compare expression under different conditions
= (protein-coding) genes direct the synthesis of protein
= many features simultaneously

=  DNA == mRNA = Protein
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The next use of microarray technology/(next gen)
Associate gene expression variation to a genetic map

Use QTL methodology with gene

expression data
Works best for fully sequenced
organism [-\\ JA
= map order known
= Yeast
= Arabidopsis

Requires array(s) for each
individual

= each gene’s “expression”

treated as quantitative trait
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Old methods for new ideas. ..

= Quantitative dissection of natural (expression) variation is
likely to reveal different aspects of regulatory networks

i

structural gew’

= This combined approach benefits directly from existing QTL
methodology and microarray methods
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Summary of selected eQTL studies based on model species since 2005. IM, CIM and MOM represent interval

mapping, composite interval fmapping and mixture over marker, respectively.

Reference Brem & Krugl_va.lk\ Brem et al. Bystrykh et al. Chesler et al.
Population 112 Fy yeast haploids 112 Fy yeast haploids 30 RI mice 35 RI mice
Genotyping 2,957 SFPs 2,957 3FPs 779 SNPs 779 SNPs
Microarrays cDNA spotted cDNA spotted oligonueleotide oligonueleotide
F#etraits 5,727 6,216 12,422 12,422
eQ)TL identification marker-based marker-based interval-based interval-based
Wilcoxon & t-tests two-locus linkage scan  simple-regression IM - IM, CIM
Fpermutations if used \ 10-100 5 100-1000 100-1000
Reference Schadt et al. Hubner et al. Lan et al. Kendziorski et al.
Population 111 F; mice 30 RI rats 60 F5 mice 60 F5 mice
Genotyping microsatellites 1,011 antosomal markers 194 microsatellites 194 microsatellites
Microarrays oligonucleotide  oligonucleotide oligonueleotide oligonueleotide
#etraits 23,574 15,923 45,037 45,037
eQ)TL identification interval-based  interval-based interval-based marker-based
M simple-regression IM M MOM model
Fpermutations if used =1000 5
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Molecular dissection of complex traits

= A combined QTL and microarray approach
quantitative genetic framework
microarray technology

statistical methodology

take advantage of Expression Level Polymorphism: per-
gene expression level differences between genotypes.

= Differentiate between
= CIS-
= trans-

= Molecularly dissect complex expression (e-)traits
= One gene at a time
= networks of genes 302




Example 1 (eQTL): Composite Interval Mapping eQTL analysis

= Population: Arabidopsis Bay-0 x Sha
= RNA from 211 RILs assayed on 844 Affymetrix ATH1
= ‘whole genome’ GeneChips (~ 22,810 genes)

= 2 treatments: salicylic acid (SA) and silwet (control)
= 28 hours post-treatment

= 2 biological reps per treatment per RIL
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= among genetically
| dlstlnct%ndlwduals.

1 i
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I gene expression into:
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Composite Interval Mapping Results (Control)

Chromosome 1

e-traits not in physical order

22,810 e-traits

Statistically significant
LRT values above the
global permutation
threshold (GPT)

red = Sha

marker intervals — 306




Single Marker Analysis vs. Composite Interval Mapping

Single Marker Analysis
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e-traits not in physical order

eQTL (Control) Variation:
75% of 22,746 genes have at least 1 eQTL
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number of etraits having eQTL at each testing locus ContrOI - C I M
(scale: x 100, e.g., 20 on z-axis means 2000) Sha: red

Bay: blue

Cyan = number of eQTLs across genome per etrait (-trans)
e Yellow = number of eQTLs in a chromosome per etrait (-cis)
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Transcript expression heritabilities (control) in RILs versus Bay and Sha parents.
= Histogram: estimated broad-sense heritability (H?) in RILs and parents.
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= Composite Interval Mapping 310




Number of eQTL

Treatment = Control
Composite Interval Mapping

6000 R2
5000 - = 0307
i J 02-0.
4000 O 03704
3000 = 0500
trans-eQTL is-eQTL m _
2000 - rans-eQ cis-eQ — 8:9—8:g
— _
1000 = 0510
O T U T U T U T T T
00 01 02 03 04 05 06 07 08 09 10
RZ
Distribution of percent phenotypic effect (R?) for all eQTLs.
Histogram: distribution of R2 values for all 36,904 eQTLs: max(R?) = 0.97
Pie Charts: RZ distributions for eQTLs that are
trans- (31,777 total trans-eQTL)
cis- (5127 total cis-eQTL) to the gene’s physical position. 311

Multiple Interval Mapping
eQTL Analysis

Zhao-Bang Zeng

Summer Institute in Statistical Genetics
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Goals and Issues
eQTL Mapping Analysis

= Identify and map genomic regions that significantly affect expression levels
of different genes
= statistical methods and power to map eQTL
= justification of mapping procedures and results
= e.g., false discovery rate (FDR)
= epistasis of eQTL
= multiple trait analysis

= Identify cis- and trans-regulation of eQTL
= ldentify gene expression co-regulation patterns
= eQTL hot-spots
= why are they co-regulated?
= is there any functional relationship among those co-regulated genes?

= Prioritize candidate genes

= from eQTL to genes

= by using regulative and functional relationship between candidate genes in eQTL
regions and genes whose expressions being regulated

= prioritize and suggest candidate causal genes for some eQTL.
= Moving toward network and pathway analysis 313

Genetic Effect Network
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Gene Expression (y)
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Example 2 (eQTL): Multiple Interval Mapping eQTL analysis

Population: BY (lab strain) x RM (natural strain)
= n=112 F, segregants.
Markers: m=3312 using yeast oligoarrays

Gene expression traits:

= F, individuals were labeled and hybridized to cDNA microarrays, containing 6215 open
reading frames (ORF)

Reference design: Each two-color experiment involved one sample and one reference,
= BY RNA was the reference for all experiments

Dye swap: Two hybridizations were carried out for each sample,
= hybridization 1: sample labeled with Cy3 (green) and reference with labeled with Cy5 (red)
= hybridization 2: sample labeled with Cy5 (red) and reference with labeled with Cy3 (green)
= for each gene, the two log ratios were averaged.
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An eQTL study on a yeast hybrid segregant population

BY RM
Lab Strain X Natural Strain

Fl ‘ ‘
Diploid
4‘ ’ \
I
I I
1|

S1 S2 S3 S4 S112
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Brem and Kruglyak (2005) PNAS 102:1572-1577




Yeast experiment data structure

Markers Expressions
Ind 1234567891011 ...... 3312 1234567891011 ...... 6215

BY 1111111111 1....... 1 XXXXXXXX X X ... X
RM 0000000000 O....... 0 XXXXXXXX XX ...... X
S1 1111000001 1....... 0 XXXXXXXX XX ...... X
S2 0001111100 O....... I XXXXXXXX XX ...... X
S3 0000001111 O....... 0 XXXXXXXX XX ...... X
S112 1110000001 1....... 0 XXXXXXXX X X....... X

Data: Fori=1, 2, ..., 112+2

X;; (marker j on individual i) j=1,2, ..., 3312
Y, (expression trait k for individual i) k=1,2,...,6215
317

Multiple interval mapping for eQTL analysis

= Model: |
Yip — @ + E Brxa, + E Vst Tql Tl T+ €y
T

s<T

= Sequential search for each eQTL conditional on the significance
in the previous cycle for each eTrait

= For each etrait:
= Incycle 1, if the max test statistic > threshold
= the first eQTL is identified and continue the next step
= otherwise stop the search.
= Incycle t+1, if the conditional max test statistic > threshold
= one more eQTL is added and continue the search;
= otherwise stop.

= After the search for the main effects
= epistatic effects of eQTL are tested based on the threshold and then added to
the model.

= Obtain 1.5-LOD support interval for each identified eQTL
Churchill and Doerge (1994); Doerge and Churchill (1996); Storey et al. (2005); Zou and Zeng (2006)




MIM for eQTL analysis

The significance threshold is first determined by a permutation
test with a controlled type | error rate for the genome scan

95 percentile of test statistic in a genome scan under the null

The threshold is then evaluated or adjusted based on the
calculation of False Discovery Rate (FDR) in the sequential
genome scans for the whole detected eQTL for all the
expression traits.

Churchill and Doerge (1994); Doerge and Churchill (1996); Storey et al. (2005); Zou and Zeng (2608)

The role of threshold in MIM-eQTL

In the later cycles of the genome scans, the search is restricted
within the parameter space where the chance of detecting a
strong association is high

focus is on those traits that have shown significant QTL in the previous
cycles

The threshold serves as a stopping rule for deciding how many
QTL are found for each trait.
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N

Sequential genome scan using MIM

Cycle # Scanned!

# Retained?

#Claimed?

6195

3367

3354

3367

1617

1242

1617

578

422

578

197

122

197

66

37

(OB [WDN

66

10

5

# of etraits in each cycle

# of etraits in the initial genome scans using the 10% genome-wide type | error rate
# of etraits in the final result using the 5% genome-wide type | error rate

With the 5% genome-wide type | error in each genome scan,
= the False Discovery Rate (FDR) for all the detected eQTL is

estimated at about 8%
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Re-analysis of Brem & Kruglyak (2005)

Overlay Plot
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Summary and thoughts...

= Transcript variation, when measured across a
segregating population, can be used to map cis- and
trans- effects.

= jdentify hot spots

= use hotspots to reduce dimension?
= use markers from hotspots as co-factors

= There are differences in eQTL activity between
environments/conditions

= differing cis- and trans-acting effects
= some shared
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Inclusion:

Day 1:
Session 1: Introduction, experimental design, segregation analysis
Session 2: Introduction to genetic mapping, estimating recombination

Day 2:

Session 2(cont): Introduction to genetic mapping, estimating recombination

Session 3: Introduction to QTL detection, single marker QTL analysis, linkage analysis
Session 4: Introduction to genetic mapping, map estimation exercise

Session 5: Likelihood functions for single marker analysis, interval mapping

Session 6: Computer lab I: QTL-Cartographer

Day 3:

Session 7: Permutation thresholds; example QTL analysis
Session 8: Composite interval mapping

Session 9: Multiple interval mapping

Session 10: Computer lab Il: QTL-Cartographer

Session 11: Introduction to eQTL mapping Thank you
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OTL mapping methodology
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Fisher 1935; Thoday 1961; Lander and Botstein 1989; Zeng 1994; Churchill & Doerge 1994
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