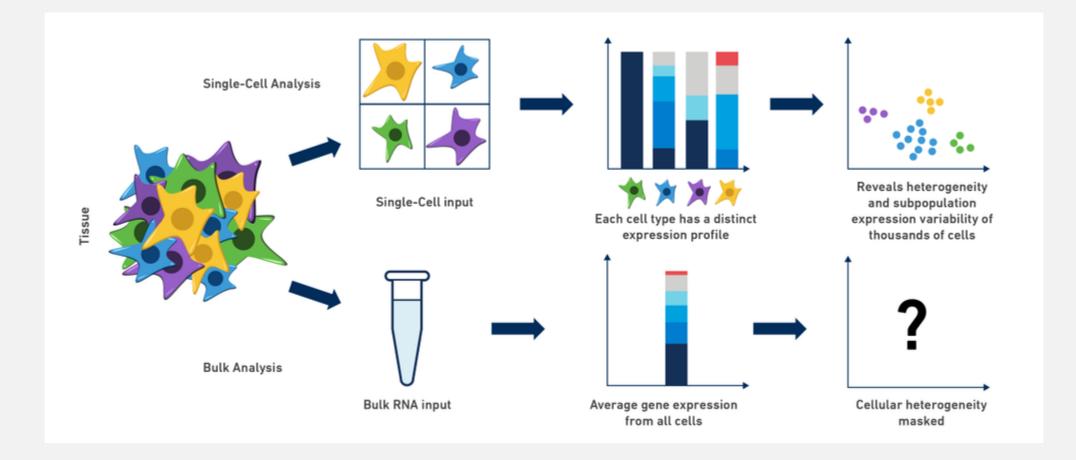
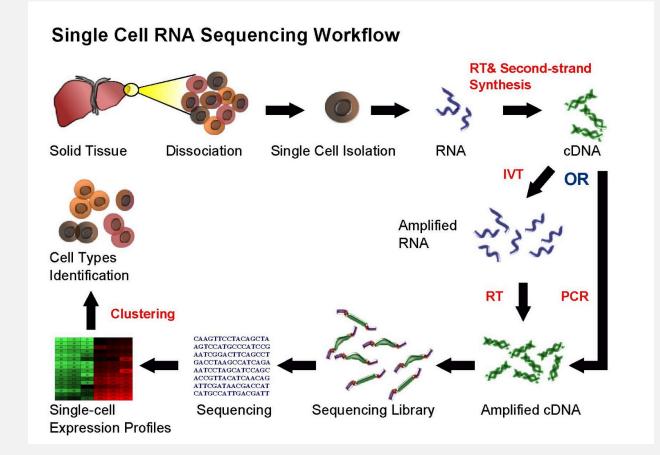
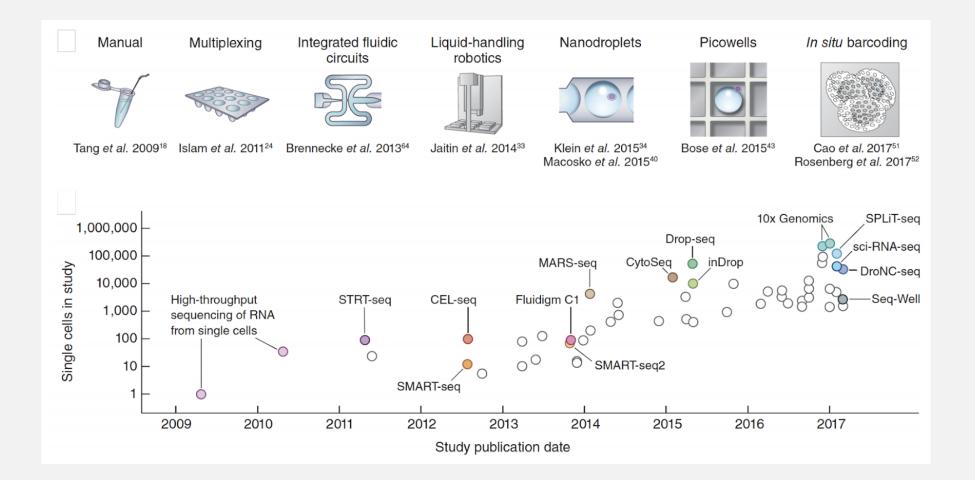
SINGLE CELL SEQUENCING

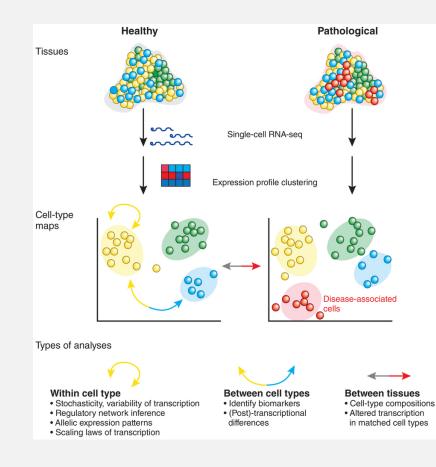

Joseph Powell

SISG-2018


CONTENTS

- 1. Introduction to the techniques of getting scRNA-seq data
- 2. Considerations in generating scRNA-seq data
- 3. Key computational analysis steps
- 4. Using genetic barcodes to demultiplex cells

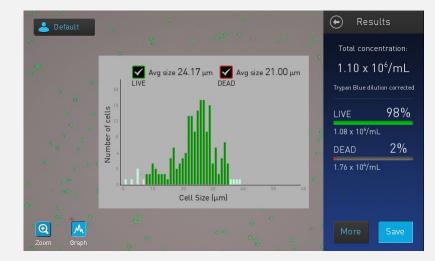

WHY SINGLE CELLS?


TYPICAL WORKFLOW

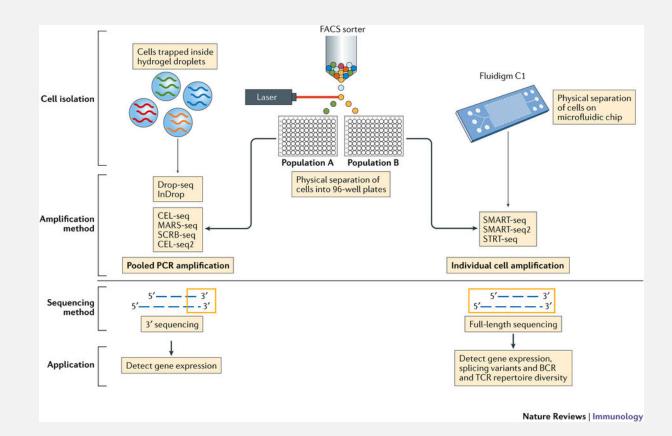
TECHNOLOGY HAS PROGRESSED RAPIDLY

- Experimental design
- Cell Prep
- Library Prep
- Sequencing
- Bioinformatics
- Analysis

- Experimental design
- Cell Prep
- Library Prep
- Sequencing
- Bioinformatics
- Analysis


What is the source of cells?

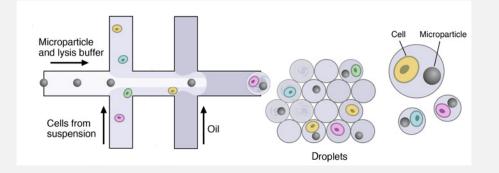
- Blood, primary tissue, cell lines, preserved tissue?
- How much starting material is there?
- Human/non-human
- The critical point is **getting single cells**
- and keeping them that way
- Complete dissociation is required
 - Cell Strainers
 - FACS

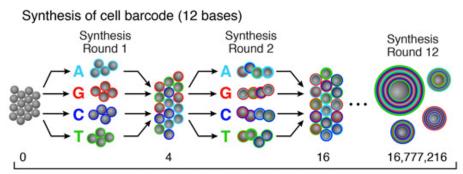


- Experimental design
- Cell Prep
- Library Prep
- Sequencing
- Bioinformatics
- Analysis

- How big are they?
 - How sensitive are they?
 - Handling (e.g. pipetting force)
 - Enzymatic dissociation (timing and harshness)
 - FACS pressure/nozzle gauge
 - Post-dissociation viability?
 - Will they lyse in the reaction buffer?
 - Are they sticky/liable to clump?

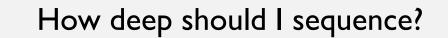
- Experimental design
- Cell Prep
- Library Prep
- Sequencing
- Bioinformatics
- Analysis

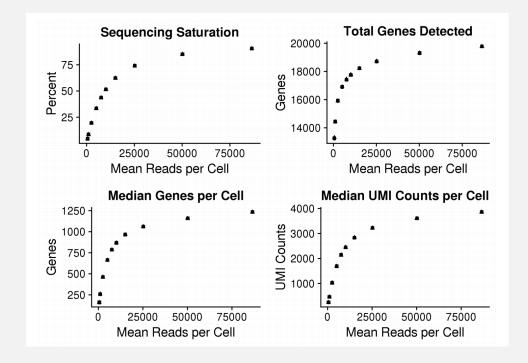



- Experimental design
- Cell Prep

Microfluidic systems

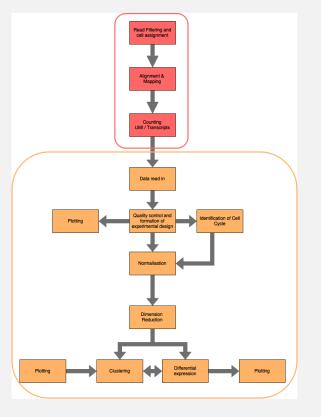
- Library Prep
- Sequencing
- Bioinformatics
- Analysis


Barcodes

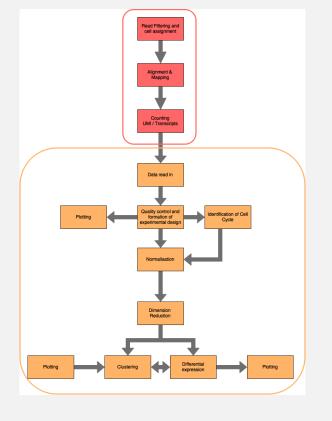


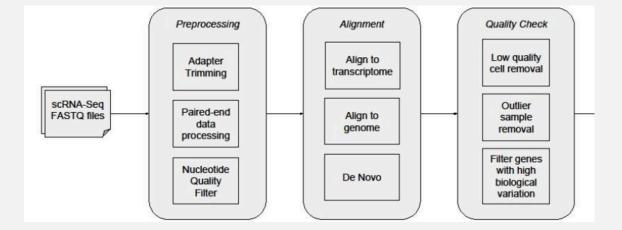
Number of unique barcodes in pool

- Experimental design
- Cell Prep
- Library Prep
- Sequencing
- Bioinformatics
- Analysis



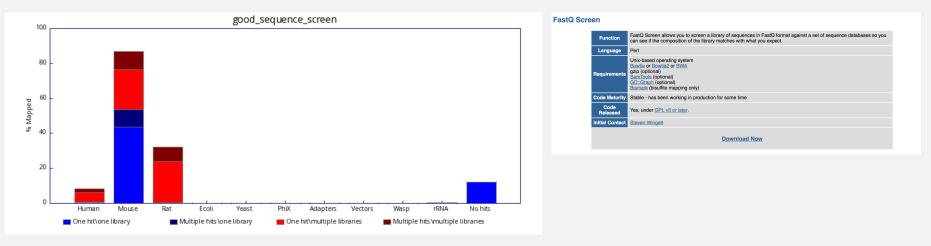
Costs Per 10,000 reads* per cell


NextSeq	5-10 cents
HighSeq2500	10-15 cents
NovaSeq S2	3-5 cents
NovaSeq S4	2-4 cents


*With 3' scRNA-seq

- Experimental design
- Cell Prep
- Library Prep
- Sequencing
- Bioinformatics
- Analysis

- Experimental design
- Cell Prep
- Library Prep
- Sequencing
- Bioinformatics
- Analysis



https://github.com/LuyiTian/scPipe

- Experimental design
- Cell Prep
- Library Prep
- Sequencing
- Bioinformatics
- Analysis

Contamination screen

Bulk

- Experimental design
- Cell Prep
- Library Prep
- Sequencing
- Bioinformatics
- Analysis

				←	Sar	nple	es -)		
	85	97	58	52	48	84	79	62	61	61
	116	45	74	95	57	91	66	57	57	68
•	50	76	61	64	65	70	78	95	52	89
Genes→	15	67	67	67	68	76	36	60	92	121
ene.	61	116	84	85	43	71	89	81	62	40
Ŭ	105	65	76	48	89	78	88	67	85	42
$\mathbf{\Lambda}$	61	84	70	97	49	66	77	40	61	92
¥	47	75	58	62	89	40	50	100	66	75
	62	87	61	85	86	56	49	65	78	95
	102	86	60	46	75	66	31	88	41	99

scRNA

8	0	0	0	0	0	7	6	0	0
0	0	0	5	0	0	0	0	0	0
0	7	0	0	11	0	0	0	0	0
5	0	0	0	8	11	0	7	8	0
4	9	5	0	0	0	0	0	0	0
10	3	0	0	0	5	0	0	0	8
0	0	0	0	0	0	0	10	9	8
6	6	0	7	0	0	3	0	0	0
0	0	0	0	0	1	0	5	5	0
0	0	0	0	7	6	0	0	0	0

- Experimental design
- Cell Prep
- Library Prep
- Sequencing
- Bioinformatics
- Analysis

Bulk

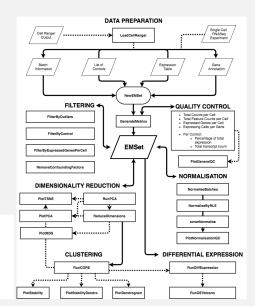
				←	Sar	nple	ès -	>			
	85	97	58	52	48	84	79	62	61	61	
	116	45	74	95	57	91	66	57	57	68	
•	50	76	61	64	65	70	78	95	52	89	
Genes→	15	67	67	67	68	76	36	60	92	121	
ene	61	116	84	85	43	71	89	81	62	40	
Ğ	105	65	76	48	89	78	88	67	85	42	
1	61	84	70	97	49	66	77	40	61	92	
v	47	75	58	62	89	40	50	100	66	75	
	62	87	61	85	86	56	49	65	78	95	
	102	86	60	46	75	66	31	88	41	99	

scRNA									
8	0	0	0	0	0	7	6	0	0
0	0	0	5	0	0	0	0	0	0
0	7	0	0	11	0	0	0	0	0
5	0	0	0	8	11	0	7	8	0
4	9	5	0	0	0	0	0	0	0
10	3	0	0	0	5	0	0	0	8
0	0	0	0	0	0	0	10	9	8
6	6	0	7	0	0	3	0	0	0
0	0	0	0	0	1	0	5	5	0
0	0	0	0	7	6	0	0	0	0

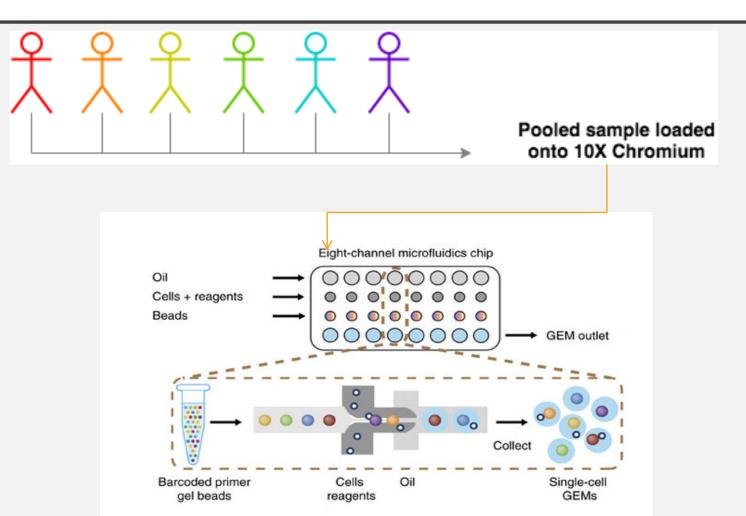
ascend::a flexible integrated software package for single cell analysis

https://github.com/IMB-Computational-Genomics-Lab/ascend

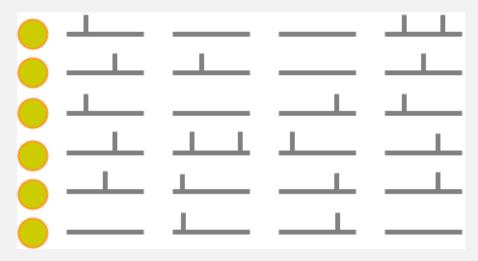
New Results

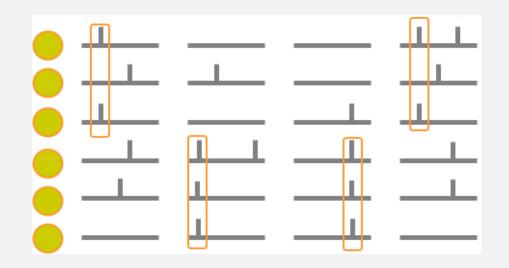

ascend: R package for analysis of single cell RNA-seq data

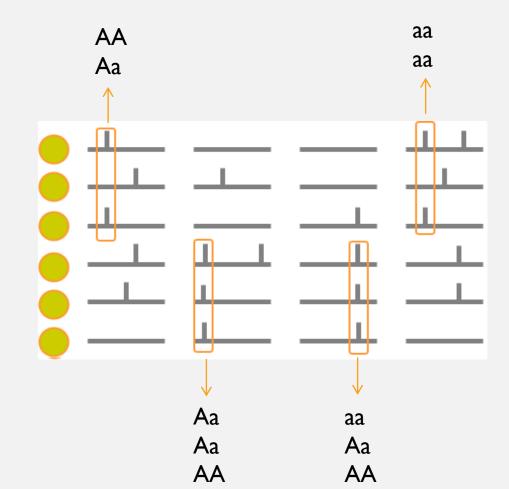
Anne Senabouth, Samuel Lukowski, Jose Alquicira, Stacey Andersen, Xin Mei, Quan Nguyen, Joseph Powell doi: https://doi.org/10.1101/207704

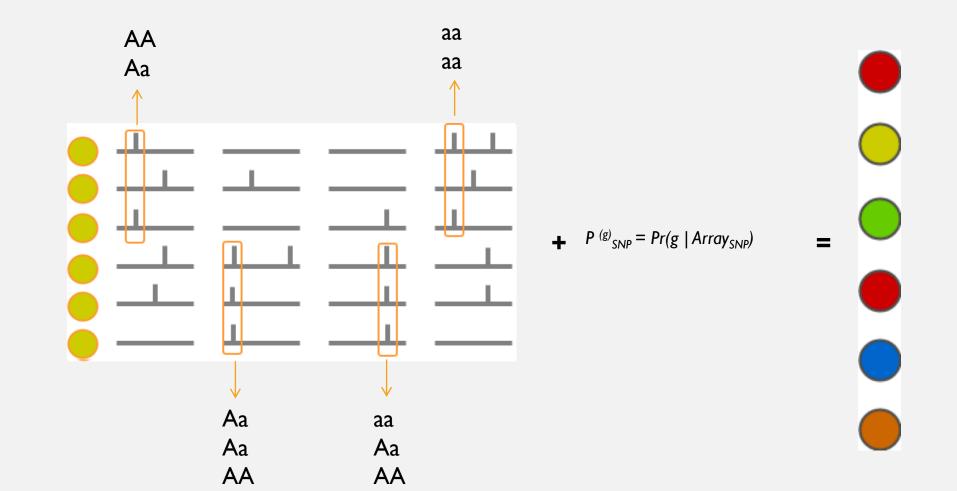

Single Cell RNA Sequencing of stem cell-derived retinal ganglion cells.

Maciej Daniszewski, Anne Senabouth, Quan Nguyen, Duncan E Crombie, ⁽¹⁾ Samuel W Lukowski, Tejal Kulkarni, Donald J Zack, ⁽²⁾ Alice Pebay, ⁽³⁾ Joseph E Powell, ⁽³⁾ Alex Hewitt doi: https://doi.org/10.1101/191395 This article is a preprint and has not been peer-reviewed [what does this meanf].




Plus you will get lots of it!


SINGLE CELL MEETS POPULATION GENETICS



Call SNPs from the 3' reads

THANK YOU

- Email me: j.powell@garvan.org.au
- Twitter: @JP_Garvan