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Networks in Biology
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Why Study Networks?

▶ Components of biological systems (genes, proteins etc)
interact with each other to carry out cell functions.

▶ Examples of such interactions include signaling, regulation
and interactions between proteins.

▶ We cannot understand the function and behavior of biological
systems by studying individual components (2 + 2 ̸= 4!).

▶ Networks provide an efficient representation of complex
interactions in cells, and a basis for mathematical/statistical
models to study these systems.
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Central Dogma of Molecular Biology (Extended)Omics – An Overview
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Beecher C., "The Human Metabolome" in "Metabolic Profiling: Its Role in 
Biomarker Discovery and Gene Function Analysis" eds. Harrigan G & 
Goodacre R, /Kluwer Academic Publishers (Boston), pps 311 -- 319 (2003).
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Networks in Biology: Gene Regulatory Interactions
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Networks in Biology: Gene Regulatory Networks
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Networks in Biology: Protein-Protein Interaction
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Networks in Biology: Protein-Protein Interactions (PPI)
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Networks in Biology: Metabolic Reactions
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But Do Networks Matter?

▶ They Do!

▶ Recent studies have linked changes in gene/protein networks
with many human diseases.

Systems Biology and Emerging Technologies

Gene Networks and microRNAs Implicated in
Aggressive Prostate Cancer

Liang Wang,1 Hui Tang,2 Venugopal Thayanithy,3 Subbaya Subramanian,3 Ann L. Oberg,2

Julie M. Cunningham,1 James R. Cerhan,2 Clifford J. Steer,4 and Stephen N. Thibodeau1

1Departments of Laboratory Medicine and Pathology and 2Health Sciences Research, Mayo Clinic, Rochester, Minnesota; and
Departments of 3Laboratory Medicine and Pathology, 4Medicine, and Genetics, Cell Biology, and Development, University of
Minnesota, Minneapolis, Minnesota

Abstract
Prostate cancer, a complex disease, can be relatively harmless
or extremely aggressive. To identify candidate genes involved
in causal pathways of aggressive prostate cancer, we imple-
mented a systems biology approach by combining differential
expression analysis and coexpression network analysis to
evaluate transcriptional profiles using lymphoblastoid cell
lines from 62 prostate cancer patients with aggressive pheno-
type (Gleason grade ≥ 8) and 63 prostate cancer patients with
nonaggressive phenotype (Gleason grade ≤ 5). From 13,935
mRNA genes and 273 microRNAs (miRNA) tested, we identi-
fied significant differences in 1,100 mRNAs and 7 miRNAs with
a false discovery rate (FDR) of <0.01. We also identified a co-
expression module demonstrating significant association with
the aggressive phenotype of prostate cancer (P = 3.67 × 10−11).
The module of interest was characterized by overrepresenta-
tion of cell cycle–related genes (FDR = 3.50 × 10−50). From this
module, we further defined 20 hub genes that were highly
connected to other genes. Interestingly, 5 of the 7 differential-
ly expressed miRNAs have been implicated in cell cycle regu-
lation and 2 (miR-145 and miR-331-3p) are predicted to
target 3 of the 20 hub genes. Ectopic expression of these
two miRNAs reduced expression of target hub genes and sub-
sequently resulted in cell growth inhibition and apoptosis.
These results suggest that cell cycle is likely to be a molecular
pathway causing aggressive phenotype of prostate cancer.
Further characterization of cell cycle–related genes (particu-
larly, the hub genes) and miRNAs that regulate these hub
genes could facilitate identification of candidate genes re-
sponsible for the aggressive phenotype and lead to a better
understanding of prostate cancer etiology and progression.
[Cancer Res 2009;69(24):9490–7]

Introduction
Prostate cancer remains the most commonly diagnosed non–

skin cancer in men in the United States. Approximately one in
three men over the age of 50 years shows histologic evidence of
prostate cancer. However, only ∼10% will be diagnosed with clin-
ically significant prostate cancer, implying that most prostate can-

cers never progress to become life threatening. Thus far, little is
known about what makes some prostate cancers biologically ag-
gressive and more likely to progress to metastastic and potentially
lethal disease. Prostate cancer is a complex disease, believed to be
caused by variations in a large number of genes and their complex
interactions. Conventional approaches used to elucidate genetic
risk factors and genetic mechanisms include family-based linkage
analysis, pathway-based association study, and genome-wide asso-
ciation study. Among these approaches, genome-wide association
study has been very successful with over a dozen single nucleotide
polymorphisms identified with elevated risk to prostate cancer (1).
However, the observed associations have yet to be translated into a
full understanding of the genes or genetic elements mediating dis-
ease susceptibility. Furthermore, few prostate cancer risk variants
identified from genome-wide association study have any associa-
tion with clinical characteristics. This is not surprising because
these risk single nucleotide polymorphisms are identified by com-
paring prostate cancer cases with controls. Studies using case-case
design are clearly needed to identify associations of genetic var-
iants with aggressive prostate cancer.
Traditionally, microarray-based transcriptional profiling analysis

produces massive gene lists (usually based on P value) without
consideration of potential relationships among these genes. The
gene-by-gene approach often lacks a coherent picture of disease-
related pathologic interactions. To facilitate candidate gene discov-
ery, there is now an increasing interest in using a systems biology
approach. This approach allows for a higher order interpretation of
gene expression relationships and identifies modules of coex-
pressed genes that are functionally related, and eventually charac-
terizes causal pathways and genetic variants. Thus far, studies
using the approach have successfully identified disease-related
transcriptional networks and genetic variants that contribute to
the disease phenotypes (2–7). For example, an early study analyzed
the gene expression profiles in large population-based adipose tis-
sue cohorts and found a marked correlation between gene expres-
sion in adipose tissue and obesity-related traits. The systems
biology approach identified a core network module that was caus-
ally associated with obesity (2). This study has recently been vali-
dated through characterization of transgenic and knockout mouse
models of genes predicted to be causal for obesity phenotype (7).
Expression levels of many genes show abundant natural varia-

tion in species from yeast to human (8). Studies have shown
significant association of genetic polymorphisms with gene expres-
sion in a variety of human cell lines and tissues (9). In addition to
genetic factors, however, microRNAs (miRNA) are emerging as key
players in the regulation of gene expression. miRNAs are small
noncoding RNAs that control the expression of protein-coding
transcripts. Each miRNA has multiple target genes that are

Note: Supplementary data for this article are available at Cancer Research Online
(http://cancerres.aacrjournals.org/).

Requests for reprints: Liang Wang, Department of Laboratory Medicine and
Pathology, Mayo Clinic College of Medicine, 200 First Street Southwest, Rochester,
MN 55905. Phone: 507-284-9136; Fax: 507-266-5193; E-mail: wang.liang@mayo.edu.

©2009 American Association for Cancer Research.
doi:10.1158/0008-5472.CAN-09-2183

9490Cancer Res 2009; 69: (24). December 15, 2009 www.aacrjournals.org
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But Do Networks Matter?

Estrogen-Regulated Gene Networks in Human
Breast Cancer Cells: Involvement of E2F1 in the
Regulation of Cell Proliferation

Joshua D. Stender, Jonna Frasor, Barry Komm, Ken C. N. Chang, W. Lee Kraus, and
Benita S. Katzenellenbogen

Departments of Biochemistry (J.D.S.) and Molecular and Integrative Physiology (J.F., B.S.K.),
University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3704; Women’s Health and
Musculoskeletal Biology (B.K., K.C.N.C.), Wyeth Research, Collegeville, Pennsylvania 19426; and
Department of Molecular Biology and Genetics (W.L.K.), Cornell University, Ithaca, New York
14853-4203

Estrogens generally stimulate the proliferation of
estrogen receptor (ER)-containing breast cancer
cells, but they also suppress proliferation of some
ER-positive breast tumors. Using a genome-wide
analysis of gene expression in two ER-positive hu-
man breast cancer cell lines that differ in their
proliferative response to estrogen, we sought to
identify genes involved in estrogen-regulated cell
proliferation. To this end, we compared the tran-
scriptional profiles of MCF-7 and MDA-MB-
231ER� cells, which have directionally opposite
17�-estradiol (E2)-dependent proliferation pat-
terns, MCF-7 cells being stimulated and 231ER�
cells suppressed by E2. We identified a set of ap-
proximately 70 genes regulated by E2 in both cells,
with most being regulated by hormone in an oppo-
site fashion. Using a variety of bioinformatics ap-
proaches, we found the E2F binding site to be
overrepresented in the potential regulatory regions
of many cell cycle-related genes stimulated by es-

trogen in MCF-7 but inhibited by estrogen in
231ER� cells. Biochemical analyses confirmed
that E2F1 and E2F downstream target genes were
increased in MCF-7 and decreased in 231ER� cells
upon estrogen treatment. Furthermore, RNA inter-
ference-mediated knockdown of E2F1 blocked es-
trogen regulation of E2F1 target genes and re-
sulted in loss of estrogen regulation of
proliferation. These results demonstrate that reg-
ulation by estrogen of E2F1, and subsequently its
downstream target genes, is critical for hormone
regulation of the proliferative program of these
breast cancer cells, and that gene expression pro-
filing combined with bioinformatic analyses of
transcription factor binding site enrichment in reg-
ulated genes can identify key components associ-
ated with nuclear receptor hormonal regulation of
important cellular functions. (Molecular Endocrin-
ology 21: 2112–2123, 2007)

ESTROGENS STIMULATE THE growth of many
breast cancers via the estrogen receptor (ER) and,

therefore, the ER, a member of the nuclear hormone
receptor transcription factor family, has proven to be a
valuable target for endocrine-based therapies (1–5).
Upon hormone binding, ER exerts many of its effects
by interacting with DNA elements in target gene pro-
moters either directly or through tethering to other
transcription factors (6–10), and orchestrating the as-
sembly of coregulator and mediator proteins (11, 12),
chromatin remodeling complexes (13, 14), and the
basal transcription machinery to regulate transcription
(3, 13–19). In some manner, these transcriptional re-
sponses drive estrogen’s regulation of cell prolifera-

tion (20) and other functional changes in target cells
(21, 22). Understanding the manner in which estrogen
regulates the proliferation of breast cancer cells is key
to the development of novel targeted therapies for
cancer prevention and treatment.

Through the use of gene expression profiling with
DNA microarrays, 17�-estradiol (E2) has been found to
regulate diverse gene targets and functional pathways
in ER-containing cancer cells (23, 24). Although estro-
gen usually stimulates the proliferation of ER-contain-
ing human breast cancer cells, such as MCF-7 and
ZR75 (23, 25, 26) and of ER-positive breast tumors in
women, some breast cancer cells and tumors show
reduced proliferation and tumor regression when
treated with estrogen (27–32). The sequencing of the
human genome, in addition to allowing examination of
the effects of hormonal agents on a wide range of
genes, provides an opportunity to extract the potential
regulatory regions for all genes within a gene expres-
sion dataset. Bioinformatic analysis of these regula-
tory regions for transcription factor binding sites has
provided information about potential coordinated reg-

First Published Online June 5, 2007
Abbreviations: E2, 17�-Estradiol; ER, estrogen receptor;

ICI, the antiestrogen ICI 182,780; siRNA, small interfering
RNA.

Molecular Endocrinology is published monthly by The
Endocrine Society (http://www.endo-society.org), the
foremost professional society serving the endocrine
community.
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Cancer Cell

Article

A Transcriptional Signature and Common
Gene Networks Link Cancer with Lipid
Metabolism and Diverse Human Diseases
Heather A. Hirsch,1,7 Dimitrios Iliopoulos,1,7 Amita Joshi,1,7 Yong Zhang,2 Savina A. Jaeger,3 Martha Bulyk,3,4,5

Philip N. Tsichlis,6 X. Shirley Liu,2 and Kevin Struhl1,*
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4Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
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6Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
7These authors contributed equally to this work

*Correspondence: kevin@hms.harvard.edu
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SUMMARY

Transcriptional profiling of two isogenic models of transformation identifies a gene signature linking cancer
with inflammatory and metabolic diseases. In accord with this common transcriptional program, many drugs
used for treatment of diabetes and cardiovascular diseases inhibit transformation and tumor growth.
Unexpectedly, lipid metabolism genes are important for transformation and are upregulated in cancer
tissues. As in atherosclerosis, oxidized LDL and its receptor OLR1 activate the inflammatory pathway
through NF-kB, leading to transformation. OLR1 is important for maintaining the transformed state in devel-
opmentally diverse cancer cell lines and for tumor growth, suggesting a molecular connection between
cancer and atherosclerosis. We suggest that the interplay between this common transcriptional program
and cell-type-specific factors gives rise to phenotypically disparate human diseases.

INTRODUCTION

Clinical and epidemiological studies have linked cancer and other

chronic medical conditions. For example, patients diagnosed

with metabolic syndrome, inflammatory diseases, and autoim-

mune conditions show increased incidence and aggressiveness

of tumor formation (Giovannucci, 2007; Mantovani et al., 2008;

Pischon et al., 2008). Conversely, diabetics treated with metfor-

min to lower insulin levels have reduced levels of cancer in

comparison to untreated individuals (Hsu et al., 2007; Larsson

et al., 2007). Smoking is linked not only to lung cancer, but also

to cardiovascular and other diseases. In general, the molecular

bases of these links among diseases are poorly understood.

Inflammation is commonly associated with cancer formation

and progression, and it is estimated that 15%–20% of all cancer

related deaths can be attributed to inflammation and underlying

infections (Mantovani et al., 2008). Inflammatory molecules are

elevated in many forms of cancer, and they provide growth

signals that promote the proliferation of malignant cells (Balkwill

and Mantovani, 2001; Karin, 2006; De Marzo et al., 2007; Naugler

and Karin, 2008; Pierce et al., 2009). Constitutively active NF-kB,

the key transcription factor that mediates the inflammatory

response, occurs in many types of cancer, and mouse models

provide evidence for a causative role of NF-kB in malignant

conversion and progression (Luedde et al., 2007; Naugler and

Karin, 2008; Sakurai et al., 2008).

Significance

Although there are epidemiological and clinical connections between cancer and other diseases, the molecular bases of
these connections are not well understood. mRNA expression profiling in two isogenic models of cellular transformation
identifies a transcriptional signature and underlying gene regulatory networks that underlie diverse human diseases. In
addition, it reveals the heretofore unappreciated importance of lipid metabolism to cellular transformation as well as the
connection of cancer to atherosclerosis. These observations lead to the view that a variety of phenotypically diverse disease
states are nevertheless linked through a common transcriptional program involving inflammatory and metabolic pathways.

348 Cancer Cell 17, 348–361, April 13, 2010 ª2010 Elsevier Inc.
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But Do Networks Matter?

And, incorporating the knowledge of networks improves our ability
to find causes of complex diseases.

REPORT

Network-based classification of breast cancer
metastasis

Han-Yu Chuang1,5, Eunjung Lee2,3,5, Yu-Tsueng Liu4, Doheon Lee3 and Trey Ideker1,2,4,*

1 Bioinformatics Program, University of California San Diego, La Jolla, CA, USA, 2 Department of Bioengineering, University of California San Diego, La Jolla, CA, USA,
3 Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea and 4 Cancer Genetics Program, Moores Cancer
Center, University of California San Diego, La Jolla, CA, USA
5 These authors contributed equally to this work
* Corresponding author. Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA. Tel.: þ 1 858 822 4558; Fax: þ 1 858 534 5722;
E-mail: trey@bioeng.ucsd.edu

Received 11.6.07; accepted 20.8.07

Mapping the pathways that give rise to metastasis is one of the key challenges of breast cancer
research. Recently, several large-scale studies have shed light on this problem through analysis of
gene expression profiles to identify markers correlated with metastasis. Here, we apply a protein-
network-based approach that identifies markers not as individual genes but as subnetworks
extracted from protein interaction databases. The resulting subnetworks provide novel hypotheses
for pathways involved in tumor progression. Although genes with known breast cancer mutations
are typically not detected through analysis of differential expression, they play a central role in the
protein network by interconnecting many differentially expressed genes. We find that the
subnetwork markers are more reproducible than individual marker genes selected without
network information, and that they achieve higher accuracy in the classification of metastatic
versus non-metastatic tumors.
Molecular Systems Biology 16 October 2007; doi:10.1038/msb4100180
Subject Categories: molecular biology of disease; metabolic and regulatory networks
Keywords: breast cancer metastasis; classification; protein networks; pathways; microarrays

This is an open-access article distributed under the terms of the Creative Commons Attribution License,
which permits distribution, and reproduction in any medium, provided the original author and source are
credited. This license does not permit commercial exploitation or the creation of derivative works without
specific permission.

Introduction

Distant metastases are the main cause of death among breast
cancer patients (Weigelt et al, 2005). Clinical and pathological
risk factors, such as patient age, tumor size, and steroid
receptor status, are commonly used to assess the likelihood of
metastasis development. When metastasis is likely, aggressive
adjuvant therapy can be prescribed which has led to significant
decreases in breast cancer mortality rates (Weigelt et al, 2005).
However, for the majority of patients with intermediate-risk
breast cancer, the traditional factors are not strongly predictive
(Wang et al, 2005). Accordingly, approximately 70–80%
of lymph node-negative patients may undergo adjuvant
chemotherapy when it is in fact unnecessary (van ‘t Veer
et al, 2002). Moreover, it is believed that many of the current
risk factors are likely to be secondary manifestations rather
than primary mechanisms of disease. An ongoing challenge is
to identify new prognostic markers that are more directly
related to disease and that can more accurately predict the risk
of metastasis in individual patients.

In the recent years, an increasing number of disease markers
have been identified through analysis of genome-wide
expression profiles (Golub et al, 1999; Alizadeh et al, 2000;
Ben-Dor et al, 2000; Ramaswamy et al, 2003). Marker sets are
selected by scoring each individual gene for how well its
expression pattern can discriminate between different classes
of disease. In breast cancer, two large-scale expression studies
by van ‘t Veer et al (2002) and Wang et al (2005) each identified
a set of B70 gene markers that were 60–70% accurate for
prediction of metastasis, rivaling the performance of clinical
criteria. Strangely, however, these marker sets shared only
three genes in common, with the first set of markers predicting
metastasis less successfully when scoring patients from the
second study, and vice versa (Ein-Dor et al, 2006). One
possible explanation for the different marker sets is that
changes in expression of the relatively few genes governing
metastatic potential may be subtle compared to those of the
downstream effectors, which may vary considerably from
patient to patient (Symmans et al, 1995; Ein-Dor et al, 2005;
Tomlins et al, 2005).

& 2007 EMBO and Nature Publishing Group Molecular Systems Biology 2007 1

Molecular Systems Biology 3; Article number 140; doi:10.1038/msb4100180
Citation: Molecular Systems Biology 3:140
& 2007 EMBO and Nature Publishing Group All rights reserved 1744-4292/07
www.molecularsystemsbiology.com
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Networks: A Short Primer
▶ A network is a collection of nodes V and edges E .

▶ We assume the network has p nodes, corresponding to
random variables X1, . . . ,Xp ≡ biological measurements.

▶ Edges can be directed X → Y or undirected X − Y .

1 2

3

1 2

3

1 2

3

G1 G2 G3

▶ In all these example, the node set is V = {1, 2, 3}.
▶ The edges are:

E1 = {1− 2, 2− 3}
E2 = {1→ 3, 3→ 2}
E3 = {1− 2, 1→ 3}
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Networks: A Short Primer

▶ A convenient way to represent the edges of the network is to
use an adjacency matrix A

▶ A matrix is a rectangular array of data (similar to a table)

▶ Values in each entry are shown by indeces of row and column

A =



. x .
. . .
. . .


Here, x is in row 1 and column 2

▶ Adjacency matrix is a square matrix, which has a 1 if there is
an edge from a node in one row to a node in another column,
and 0 otherwise

▶ For undirected edges, we add a 1 in both directions

©Ali Shojaie SISG: Pathway & Networks 15
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Networks: A Short Primer

1 2

3

1 2

3

1 2

3

G1 G2 G3

A =




0 1 0
1 0 1
0 1 0


A =




0 0 1
0 0 0
0 1 0


A =




0 1 1
1 0 0
0 0 0




©Ali Shojaie SISG: Pathway & Networks 16



Networks in Biology
Statistical Models for Network Analysis

What Do Edges in Biological Networks Mean?

▶ In gene regulatory networks, an edge from gene i to gene j
often means that i affects the expression of j ; i.e. as i ’s
expression changes, we expect that expression of j to
increase/decrease.

▶ In protein-protein interaction networks, an edge between
proteins i and j often means that the two proteins bind
together and form a protein complex. Therefore, we expect
that these proteins are generated at similar rates.

▶ In metabolic networks, an edge between compound i and j
often means that the two compounds are involved in the same
reaction, meaning that they are generated at relative rates.

▶ Thus, edges represent some type of association among genes,
proteins or metabolites, defined generally to include linear or
nonlinear associations; more later....

©Ali Shojaie SISG: Pathway & Networks 17
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Statistical Models for Biological Networks

▶ We use the framework of graphical models

▶ In this setting, nodes correspond to “random variables”
▶ In other words, each node of the network represents one of

the variables in the study
▶ In gene regulatory networks, nodes ≡ genes
▶ In PPI networks, nodes ≡ proteins
▶ In metabolic networks, nodes ≡ metabolites

▶ In practice, we observe n measurements of each of the
variables (genes/proteins/ metabolites) for say different
individuals, and want to determine which variables are
connected, or use their connection for statistical analysis

©Ali Shojaie SISG: Pathway & Networks 18
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Our Plan

We will cover the following topics
▶ Methods for detecting signal on known networks

▶ Network analysis based on centrality and clustering
▶ Topology-based pathway enrichment analysis

▶ Methods for learning undirected networks
▶ Co-expression networks
▶ ARACNE
▶ Conditional independence graphs

▶ Gaussian observations (glasso, etc)
▶ Non-Gaussian and non-linear data (nonparanormal, etc)

▶ Methods for learning directed networks
▶ Bayesian Networks (basic concepts, reconstruction algorithm)
▶ Learning directed networks from time-course data (dynamic

Bayesian networks)

©Ali Shojaie SISG: Pathway & Networks 19



Introduction
Signal Detection on Networks

Topology-Based Pathway Enrichment Analysis
De-Novo Identification of Enriched Modules

Pathway & Network Analysis of Omics Data:
Analysis of Network-Structured Data

Ali Shojaie
Department of Biostatistics
University of Washington

faculty.washington.edu/ashojaie

Summer Institute for Statistical Genetics – 2022

©Ali Shojaie SISG: Pathway & Networks 1

Introduction
Signal Detection on Networks

Topology-Based Pathway Enrichment Analysis
De-Novo Identification of Enriched Modules

Introduction
Suppose we observe activities of individual nodes (genes, proteins,
brain regions, etc) on a network (gene regulatory network,
structural connectivity network, etc)

How can we identify the important nodes?

and what does this even mean?

©Ali Shojaie SISG: Pathway & Networks 2
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Topology-Based Pathway Enrichment Analysis
De-Novo Identification of Enriched Modules

Identifying Important Nodes

How can we identify the important nodes?
▶ We can select the significant nodes based on p-values, after

adjusting for multiple comparisons (FDR, etc)
▶ But the signal is often weak for lots of tests
▶ If we believe the network is informative, it may make sense to

use the network to guide our selection
©Ali Shojaie SISG: Pathway & Networks 3

Introduction
Signal Detection on Networks

Topology-Based Pathway Enrichment Analysis
De-Novo Identification of Enriched Modules

Identifying Important Nodes

Possible strategies:

▶ Identify individual nodes associated with the outcome by
incorporating the network (signal detection on network)

▶ Test if (pre-specified) subnetworks are associated with the
outcome (topology-based pathway enrichment analysis)

▶ Identify collections of (connected) nodes that are associated
with the outcome (de-novo identification of enriched modules)

©Ali Shojaie SISG: Pathway & Networks 4
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Topology-Based Pathway Enrichment Analysis
De-Novo Identification of Enriched Modules

Signal Detection on Networks

©Ali Shojaie SISG: Pathway & Networks 5

Introduction
Signal Detection on Networks

Topology-Based Pathway Enrichment Analysis
De-Novo Identification of Enriched Modules

Signal Detection on Networks

How can we identify the important nodes in a network?

The simplest option is to limit our search/testing to the central
nodes in the network:

▶ Nodes connected to many other nodes, aka hub nodes

▶ Nodes that are close to many other nodes (closeness)

▶ Nodes that are on many network paths (betweenness)

©Ali Shojaie SISG: Pathway & Networks 6
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Topology-Based Pathway Enrichment Analysis
De-Novo Identification of Enriched Modules

Example: Functional Relevance of Hub Nodes

▶ Inferred genetic interaction network of cancer-related pathway
in prostate cancer (data from TCGA)

▶ Hubs defined as nodes whose degrees are at the 75th
percentile of the degree distribution

©Ali Shojaie SISG: Pathway & Networks 7
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Topology-Based Pathway Enrichment Analysis
De-Novo Identification of Enriched Modules

Other Measures of Centrality

▶ Closeness: Total distance of each node to other nodes:

clj =

(∑

k∈V
d(j , k)

)−1

where d(j , k) is the (shortest path) distance between j and k .

▶ Betweenness: The number of paths that go through a node:

bwj =
∑

i ̸=j ̸=k

πik(j)

πik

where πik(j) is the number of paths between i and k that go
through j , and πik is the total number of paths between them.

©Ali Shojaie SISG: Pathway & Networks 8
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Topology-Based Pathway Enrichment Analysis
De-Novo Identification of Enriched Modules

Identifying “Central” Nodes

Calculating centrality measures using igraph:

▶ Hub nodes: hub_score(graph)
▶ Closeness: closeness(graph, vids)

▶ use estimate_closeness() for larger networks)

▶ Betweenness: betweenness(graph, vids)
▶ use estimate_betweenness() for larger networks

©Ali Shojaie SISG: Pathway & Networks 9
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Topology-Based Pathway Enrichment Analysis
De-Novo Identification of Enriched Modules

PathNet
topologyGSA
SPIA
NetGSA
A Systematic Comparison

Topology-Based Pathway Enrichment
Analysis
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Topology-Based Pathway Enrichment Analysis
De-Novo Identification of Enriched Modules

PathNet
topologyGSA
SPIA
NetGSA
A Systematic Comparison

Yeast GAL Pathway
Ideker et al, 2001
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Topology-Based Pathway Enrichment Analysis

Test for changes in activities of node (genes, brain ROIs, etc) in
pre-specified subnetworks, while incorporating network information

Two possible null hypotheses:
▶ Competitive null hypothesis: activity of each pathway is

compared with other pathways, often using a permutation test
▶ Assume few genes are differentially connected, and may be

sensitive to the choice of gene sets

▶ Self-contained null hypothesis: activity of each pathway is
compared against the null distribution
▶ More rigorous, but may be sensitive to modeling assumptions

(Goemen & Buhlmann (07), Ackermann & Strimmer (09))

©Ali Shojaie SISG: Pathway & Networks 12



Introduction
Signal Detection on Networks

Topology-Based Pathway Enrichment Analysis
De-Novo Identification of Enriched Modules

PathNet
topologyGSA
SPIA
NetGSA
A Systematic Comparison

PathNet1

A simple topology-based pathway enrichment method:

1Dutta et al (2012)
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PathNet: Details

▶ Each gene’s p-value from differential expression is combined
with p-values of its neighbors using Fisher’s methods

SIj =
∑

k∈ne(j)

{
−log10

(
pDk

)}
.

▶ The indirect p-value, pI is calculated from SIj by permutation

▶ Direct (pDj ) and indirect (pIj ) p-values are then combined (pCj )

▶ The significance of pCj for genes in each pathway is assessed
using a hypergeometric test

▶ Implemented in Bioconductor package PathNet

©Ali Shojaie SISG: Pathway & Networks 14
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topologyGSA2

▶ topologyGSA (Gene Set Analysis Exploiting Pathway
Topology) assumes that data are normally distributed:

X 1 ∼ N(µ1,Σ1), X 2 ∼ N(µ2,Σ2)

▶ It obtains estimates of Σ1 and Σ2 based on the networks
(think graphical lasso, but with known nonzero entries)

▶ It then performs two tests:
▶ equality of covariance matrices: Hc

0 : Σ1 = Σ2

▶ equality of means Hm
0 : µ1 = µ2 — it uses different methods

depending on the result of Hc
0

▶ Implemented in R-package topologyGSA (also in graphite)

2Massa et al (2010)
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Signaling Pathway Impact Analysis (SPIA)3

▶ Combines overrepresentation analysis (ORA) with measure of
perturbation of a given pathway under a given condition

▶ A bootstrap procedure is used to assess the significance of the
observed pathway perturbation (difficult to extend to
comparison of > 2 conditions)

▶ Currently not applicable to all pathways (more later)

▶ Analyzes each pathway separately (ignores connections
between pathways)

▶ Implemented in the Bioconductor package SPIA

3Tarca et al (2009)
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The SPIA Methodology

SPIA combines two types of evidence

(i) the overrepresentation of DE genes in a given pathway

▶ measured by the p-value for the given number of DE genes
PNDE = P(X ≥ NDE | H0)

©Ali Shojaie SISG: Pathway & Networks 17
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The SPIA Methodology

SPIA combines two types of evidence

(ii) the abnormal perturbation of the pathway
▶ the perturbation for each gene in the pathway is defined as

PF (gi ) = ∆E (gi ) +
∑p

j=1 βij
PF (gj )
NDS (gj )

▶ PF (gi ) is the perturbation factor of gene i (not known)
▶ βij is the magnitude of effect of gene j on gene i ; currently,

betaij = 1 if j → i
▶ ∆E (gi ) is the fold change in expression of gene i
▶ NDS(gj) is the number of downstream genes from gene j

©Ali Shojaie SISG: Pathway & Networks 18
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The SPIA Methodology

▶ The accumulated activity of each gene can then be calculated
as ACC (gi ) = B · (I − B)−1∆E
▶ B is the normalized matrix of β’s: Bij = βij/NDS(gj)
▶ ∆E is the vector of fold changes
▶ Requires B to be invertible; would not work otherwise

▶ The total accumulated perturbation of the pathway is then
given by tA =

∑
i ACC (gi )

▶ The p-value for pathway perturbation is given by
PPERT = P(TA ≥ tA | H0), which is calculated using a
bootstrap approach

©Ali Shojaie SISG: Pathway & Networks 19
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The SPIA Methodology
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The SPIA Methodology

SPIA combines two types of evidence
▶ The final p-value for each pathway is calculated based on the

p-values from parts (i) and (ii):
▶ PG (i) = ci − ci ln(ci )
▶ ci = PNDE (i)PPERT (i)
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An Example in R: Data on Colorectal Cancer

data(colorectalcancer)

#pathway analysis using SPIA

#use nB=2000 or higher for more accurate results

#uses older version of KEGG signaling pathways graphs

res <- spia(de=DE_Colorectal, all=ALL_Colorectal, organism="hsa", beta=NULL,

nB=2000, plots=FALSE, verbose=TRUE, combine="fisher")

#now combine pNDE and pPERT using the normal inversion method without

#running spia function again

res$pG=combfunc(res$pNDE,res$pPERT,combine="norminv")

res$pGFdr=p.adjust(res$pG,"fdr")

res$pGFWER=p.adjust(res$pG,"bonferroni")

plotP(res,threshold=0.05)

#highlight the colorectal cancer pathway in green

points(I(-log(pPERT))~I(-log(pNDE)),data=res[res$ID=="05210",],col="green",

pch=19,cex=1.5)
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The SPIA Methodology
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Network-Based Gene Set Analysis (NetGSA)4

▶ Generalizes SPIA, to allow for more complex experiments &
incorporate interactions among pathways

▶ Assesses the overall behavior of arbitrary subnetworks
(pathways): changes in gene expression & network structure

▶ Uses latent variables to model the interaction between genes
defined by the network

▶ Uses mixed linear models for inference in complex data

▶ Computationally challenging for large networks, unless
pathways separately analyzed (similar to SPIA)

4S & Michailidis (2009, 2010); Ma, S & Michailidis (2016)
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Problem Setup

▶ Gene (protein/metabolite) expression data for K experimental
conditions and Jk time points

▶ Network information (partially) available in the form of a
directed weighted graph G = (V ,E ), with vertex set V
corresponding to the genes/proteins/metabolites and edge set
E capturing their associations

▶ Network edges can be directed j → k or undirected j ↔ k

▶ Edges defines the effect of nodes on their immediate
neighbors; the weight associated with each edge corresponds
to the value of partial correlation

▶ Represent the network by its adjacency matrix A: Ajk ̸= 0 iff
k → j & for undirected edges, Ajk = Akj

©Ali Shojaie SISG: Pathway & Networks 25
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The Latent Variable Model: Main Idea

X1 = γ1

X2 = ρ12X1 + γ2 = ρ12γ1 + γ2

X3 = ρ23X2 + γ3 = ρ23ρ12γ1 + ρ23γ2 + γ3

Thus X = Λγ where

Λ =




1 0 0
ρ12 1 0

ρ12ρ23 ρ23 1
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The Latent Variable Model

▶ Let Y be the ith sample in the expression data

▶ Let Y = X + ε, with signal X and noise ε ∼ Np(0, σ
2
ε Ip)

▶ The influence matrix Λ measures the propagated effect of
genes on each other through the network, and can be
calculated based on the adjacency matrix A

▶ Using X = Λγ, we get

Y = Λγ + ε, ⇒ Y ∼ Np(Λµ, σ
2
γΛΛ

′ + σ2ε Ip)

where γ ∼ Np(µ, σ
2
γ Ip) are latent variables

©Ali Shojaie SISG: Pathway & Networks 27
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Mixed Linear Model Representation

Rearranging the expression matrix into np-vector Y, we can write

Y = Ψβ +Πγ + ε

where β and γ are fixed and random effect parameters and

ε ∼ Nnp(0,R(θε)), γ ∼ Nnp(0, σ
2
γInp)

• Temporal Correlation incorporated through R

In general, the design matrices, Ψ and Π depend on the
experimental settings (similar to ANOVA), and are functions of Λ
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Estimation of MLM Parameters

MLE for β:

β̂ = (Ψ′Ŵ−1Ψ)
−1

Ψ′Ŵ−1Y

where W = σ2γΠΠ
′ + R.

β̂ depends on estimates of σ2γ and θ2ε (estimated using restricted
maximum likelihood (REML)).

©Ali Shojaie SISG: Pathway & Networks 29
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Inference using MLM

▶ Let ℓ be a contrast vector (a linear combination of fixed
effects), and consider the test:

H0 : ℓβ = 0 vs. H1 : ℓβ ̸= 0

▶ Use t-test to test the significance of each hypothesis
separately

T =
ℓβ̂√
ℓĈℓ′

where C = (Ψ′W−1Ψ)
−1

▶ Under the null hypothesis, T is approximately t-distributed
with degrees of freedom that needs to be estimated
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“Optimal” Choice of Contrast Vector

▶ An intuitive choice is the indicator (membership) vector for
the pathway, b, but this only captures changes in mean

▶ Need to de-couple the effect of subnetwork from other nodes

▶ Can be shown that (bΛ · b)γ is not affected by nodes outside
b, but includes the effects of nodes in b on each other

▶ In the case-control case, the optimal contrast vector is:

ℓ∗ =
(
−b · bΛC ,b · bΛT

)
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“Optimal” Choice of Contrast Vector

Λ =




1 0 0
ρ12 1 0

ρ12ρ23 ρ23 1




Consider the set, b = (0, 1, 1); then

(bΛ) = (ρ12 + ρ12ρ23, 1 + ρ23, 1)

On the other hand,

(bΛ · b) = (0, 1 + ρ23, 1)
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Comparison in Simulated Data
Subnetwork Mean Network Influence

1 µ1 = µ2 = 1 ρ1 = ρ2 = 0.2
2 µ1 = 1, µ2 = 2 ρ1 = ρ2 = 0.2
3 µ1 = µ2 = 1 ρ1 = 0.2, ρ2 = 0.7
4 µ1 = 1, µ2 = 2 ρ1 = 0.2, ρ2 = 0.7
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Yeast Galactose Utilization Pathway

Ideker et al (2001) data on yeast Galactose Utilization Pathway

▶ Gene expression data for 2 experimental conditions: (gal+)
and (gal–)

▶ Gene-gene and protein-gene interactions as well as association
weights found from previous studies

▶ Q: which pathways respond to the change in growth medium?
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Analysis of Yeast GAL Data

▶ Data:
▶ gene expression data for 343 genes
▶ 419 interactions found from previous studies and integration

with protein expression (association among genes also
available)

▶ Results:
▶ GSEA finds Galactose Utilization Pathway significant
▶ NetGSA finds several other pathways with biologically

meaningful functions related to survival of yeast cells in gal–
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Environmental Stress Response in Yeast

Gene expression data on Yeast Environmental Stress Response
(ESR) (Gasch et al., 2000)

▶ 3 combinations of experimental factor, heat shock and
osmotic changes (sorbitol), over 3 time points

▶ Temporal correlation

▶ Network correlation
▶ Q: Which pathways indicate response to environmental stress

▶ in different experimental conditions
▶ over time
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Yeast ESR Data
Gasch et al (2000)

▶ Gene Expression Data
Experiment Obs. Time (after 33C)
Mild heat shock (29C to 33C), no sorbitol 5, 15, 30 min
Mild Heat Shock, 1M sorbitol at 29C & 33C 5, 15, 30 min
Mild Heat Shock, 1M sorbitol at 29C 5, 15, 30 min

▶ Network Data
▶ Use YeastNet (Lee et al., 2007) for gene-gene interactions (102,000

interactions among 5,900 yeast genes)
▶ Use independent experiments of Gasch et al. to estimate weights
▶ Pathways are defined using GO functions
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Model and Results

▶ Model: Let j and k be indices for time and levels of sorbitol

EY11 = Λµ, EYjk = Λ(µ+ αj + δk) j , k = 2, 3

▶ Temporal correlation is modeled directly via R (as AR(1) process)

▶ Results:

▶ ∼ 3000 genes,
▶ 47 pathways showed significant changes of expression
▶ 24 pathways showed changes over time
▶ 29 pathways showed changes in response to different sorbitol levels
▶ 12 pathways showed both types of changes
▶ Significant pathways overlap with gene functions from Gasch et al.
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Yeast ESR Network

Non-DE 

DE 

Pos Effect 

Neg Effect 
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Significant subnetworks

a) Cell Cycle

b) Secretion

c) Signaling

d) Respiration
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Expression Profiles
Average Standardized Expression Levels of Pathways

▶ Induced and Suppressed Pathways

▶ Can observe the transient patterns of expressions as predicted by
Gasch et al.
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Effect of Noise In Network Information

▶ Let Ã be observed network information, and A be the truth.

▶ It can be shown that, if ∥Ã− A∥ is small then, NetGSA still
works (is asymptotically most powerful unbiased test)
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Metabolic Profiling in Bladder Cancer

Targeted metabolic profiling of bladder cancer (BCa)5

▶ 58 bladder cancer and adjacent benign samples

▶ Pathways information obtained from KEGG

▶ Varying number of identified metabolites per pathway (3-15)

▶ Q: Which pathways show differential activity in BCa?

5Putluri et al. (2012)
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Metabolic Profiling in BCa

▶ 63 metabolites identified, mapped to 70 pathways

▶ 27 pathways with at least 3 members

Fatty acid biosynthesis
Biosynthesis of unsaturated fatty acids
Sulfur metabolism
Lysine degradation
Alkaloid biosynthesis II
Methionine metabolism
Valine, leucine and isoleucine biosynthesis
Pyrimidine metabolism
Valine, leucine and isoleucine degradation
Pantothenate and CoA biosynthesis
Phenylalanine, tyrosine and tryptophan biosynthesis

−4 0
Row Z−Score

Color Key
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Metabolic Profiling in BCa
▶ Small pathway sizes & significant overlap among pathways

#metaboloites in pathway
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▶ Existing methods may not work well...
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Metabolic Interaction Network
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Significant Pathways

▶ GSEA does not identify any pathway as differential

▶ GSA identifies Fatty Acid Biosynthesis as differential

▶ NetGSA identifies another 7 pathways corresponding to role of
Amino Acid Metabolism in BCa, similar to Putluri et al (2012)
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R-Package netgsa

▶ Basic usage:

NetGSA(A, x, group, pathways)

▶ A: List of p×p weighted adjacency matrices for each condition
(e.g. normal vs cancer), to capture changes in the network

▶ pathways: a K × p 0-1 matrix of pathway membership:
pathwaysk,j = 1 if gene/.../metabolite j in pathway k

▶ Output: test statistics and p-values for each pathway

▶ The NetGSA function takes a weighted A as input. The
package includes functions to learn A for undirected networks
from a (partial) list of network edges
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R-Package netgsa
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Comparison Using Synthetic Data (Ma, S., Michailidis, 2019)

▶ Comparison of topology-based pathway enrichment methods
using two synthetic data sets
▶ Gene expression data p ≈ 3000
▶ Metabolomics data p ≈ 100

▶ In silico data sets with known signal:

1. Remove the original signal, but keep the correlation structure
2. Perturb means in one condition (differential expression) for

nodes in selected pathways
3. Also use sample permutation to create data with equal

correlation structure

©Ali Shojaie SISG: Pathway & Networks 52



Introduction
Signal Detection on Networks

Topology-Based Pathway Enrichment Analysis
De-Novo Identification of Enriched Modules

PathNet
topologyGSA
SPIA
NetGSA
A Systematic Comparison

Comparison Using Synthetic Data
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Results for Gene Expression Data — Equal Covariance

©Ali Shojaie SISG: Pathway & Networks 54



Introduction
Signal Detection on Networks

Topology-Based Pathway Enrichment Analysis
De-Novo Identification of Enriched Modules

PathNet
topologyGSA
SPIA
NetGSA
A Systematic Comparison

Results for Gene Expression Data — Diff Covariance
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Results for Gene Expression Data

Adipocytokine signaling

Adrenergic signaling in cardiomyocytes

AGE−RAGE signaling

Alanine, aspartate and glutamate metabolism

AMPK signaling

Arginine biosynthesis

B cell receptor signaling

Calcium signaling

cAMP signaling

cGMP−PKG signaling

Chemokine signaling

Choline metabolism in cancer

Epithelial cell signaling in Helicobacter pylori infection

ErbB signaling

Estrogen signaling

Fc epsilon RI signaling

FoxO signaling

Glucagon signaling

Glutathione metabolism

Glycosaminoglycan biosynthesis − chondroitin sulfate / dermatan sulfate

Glycosylphosphatidylinositol(GPI)−anchor biosynthesis

Glyoxylate and dicarboxylate metabolism

GnRH signaling

Hedgehog signaling

HIF−1 signaling

Hippo signaling

Inositol phosphate metabolism

Insulin signaling

Jak−STAT signaling

MAPK signaling

mTOR signaling

Neurotrophin signaling

NF−kappa B signaling

Nicotinate and nicotinamide metabolism

NOD−like receptor signaling

Oxytocin signaling

Phosphatidylinositol signaling system

Phospholipase D signaling
PI3K−Akt signaling

Prolactin signaling

Propanoate metabolism

Rap1 signaling

Ras signaling

Retrograde endocannabinoid signaling

RIG−I−like receptor signaling

Sphingolipid signaling

Taurine and hypotaurine metabolism

T cell receptor signaling

TGF−beta signaling

Thyroid hormone signaling

TNF signaling

Toll−like receptor signaling

VEGF signaling

Wnt signaling

NetGSA DEGraph PathNet
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Results for Metabolomics Data — Equal Covariance
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Results for Metabolomics Data

2−Oxocarboxylic acid metabolism

Alanine, aspartate and glutamate metabolism

Amino sugar and nucleotide sugar metabolism

Arginine and proline metabolism

Ascorbate and aldarate metabolism

beta−Alanine metabolism

Butanoate metabolism

Chemical carcinogenesis

Cysteine and methionine metabolism

Fat digestion and absorption

Fatty acid metabolism

Fructose and mannose metabolism

GABAergic synapse

Galactose metabolism

Glycerolipid metabolism

Glycolysis / Gluconeogenesis

HIF−1 signaling pathway

Histidine metabolism

Insulin signaling pathway

Lysine biosynthesis

Lysine degradation

Pantothenate and CoA biosynthesis

Pentose and glucuronate interconversions

Pentose phosphate pathway

Peroxisome

Phenylalanine metabolism

Phenylalanine, tyrosine and tryptophan biosynthesis

Porphyrin and chlorophyll metabolism

Propanoate metabolism

Purine metabolism

Pyruvate metabolism

Selenocompound metabolism

Starch and sucrose metabolism

Tryptophan metabolism

Tyrosine metabolism

Valine, leucine and isoleucine degradation

0

● ● ●NetGSA DEGraph Power < 0.8
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Multi-Omics NetGSA

Pan-cancer integration of expression, methylation and CNV in
BRAF (TCGA data)6

6Zhang et al (2018)
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Identifying Enriched Modules in Networks
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Identifying Enriched Modules in Networks

Two general strategies:
▶ Assess the significance of data-driven modules (WGCNA):

1. Identify modules (network clustering, etc)
2. Assess the significance of modules

▶ Search for enriched (connected) subnetworks (often using
greedy search methods)

▶ Advantage: No need to rely on known pathways — especially
useful when known pathways are not complete, etc

▶ Disadvantage: Interpretation may become challenging...
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WGCNA7

▶ WGCNA is a method for constructing weighted gene
co-expression networks (discussed in the next lecture), which
also facilitates topology-based enrichment analysis, in a
different way than many other topology-based methods

▶ Here’s how it works:

1. Estimate the co-expression network (more in the next lecture)
2. Find modules by clustering the nodes in the estimated network
3. Summarize the expressions of genes in each module using PCA

(eigen-genes)
4. Test if the eigen-genes are associated with the outcome

7Horvath & Zhang (2005); Langfelder et al (2008)
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WGCNA

▶ Here’s how it works:

Let’s look at an example in R...
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Walktrap8

▶ Searches for connected modules containing significant genes
▶ Weights each edges based on the significance of its

corresponding nodes

wij =
(
|FCi |+ |FCj |

)
/2

▶ Connected significant modules are found through community
detection using a random walk with transition probability

Pij =
wij∑
j wij

8Petrochilos et al (2013)
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Identifying Cancer-Related Modules
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Summary

▶ Network-based methods (centrality-based, pathway topology,
etc) rely on network information — helpful if correct network
information avail

▶ What if network information is not available?
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Summary

▶ Focus is shifting towards estimating changes in the structure
of networks: differential network biology9

9Ideker & Krogan (2012); S (2021)
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Learning Undirected Networks

Learn network from data (structure learning):

▶ Data matrix: Xn×p.

▶ Features correspond to the p nodes in the network.

▶ Goal: Learn edges between nodes ≡ learn the statistical
relationships between features.
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Why Do We Need Network Inference?

▶ Despite progress, our knowledge of interactions is limited.

▶ The entire genome is a vast landscape, and experiments for
discovering networks are very expensive.

▶ From a statistical point of view, network estimation is related
to estimation of covariance matrices, which has many
independent applications in statistical inference and prediction
(more about this later).

▶ Finally, and perhaps most importantly, gene and protein
networks are dynamic and changes in these networks have
been attributed to complex diseases.

©Ali Shojaie SISG: Pathway & Networks 3
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Network Inference — An Overview

Two general classes of network inference methods:
▶ Methods based on marginal measures of association:

▶ Co-expression Networks (based on linear measures of
association)

▶ Methods based on mutual information (can accommodate
non-linear associations)

▶ Methods based on conditional measures of association:
▶ Methods assuming (multivariate) normality (glasso, etc)
▶ Generalizations to allow for nonlinear dependencies

(nonparanormal, etc)
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Graphical Models

Probabilistic Graphical Models 1

Joint multivariate probability distribution where dependencies can
be represented as a network.

Advantages:
▶ Graphical models offer efficient factorized forms for joint

distributions with easily interpretable dependencies.
▶ Conditional dependencies denoted via an edge in network.

▶ Convenient visual representation.

1For a detailed introduction see Graphical Models, Exponential Families, and
Variational Inference; Wainwright & Jordan (2008)
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Correlation Networks (Association Networks)

▶ Simplest (and most-widely used!) method for estimating
networks — key assumption:
large correlation ≡ presence of an edge

▶ Let r(i , j) be correlation between Xi and Xj ; we claim an edge
between i and j if |r(i , j)| > τ .
▶ τ : a user-specified threshold (tuning parameter).

Correlation matrix Thresholded correlation matrix
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Limitations of Correlation Networks

1. The estimation is highly dependent on the choice of τ .

2. Correlations capture linear associations, but many real-world
relationships are nonlinear.

3. Large correlations can occur due to confounding.
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Limitations of Correlation Networks

The estimation is highly dependent on the choice of τ .

▶ We can work with weighted co-expression networks (WGCNA)
▶ We can instead test H0 : rxy = 0

▶ A commonly used test is based on the Fisher transformation

Z =
1

2
ln

(
1 + r

1− r

)
= artanh(r) ∼H0 N

(
0,

1√
n − 3

)
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Limitations of Correlation Networks

Correlations capture linear associations, but many real-world
relationships are nonlinear.
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Limitations of Correlation Networks

Correlations capture linear associations, but many real-world
relationships are nonlinear.
▶ We can use other measures of association, for instance,

Spearman correlation or Kendal’s τ .
▶ These methods define the correlation between two variables,

based on the ranking of observations, and not their exact
values.

▶ They can better capture non-linear associations.

▶ We can instead use mutual information; this has been used in
many algorithms, e.g. ARACNE.
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ARACNE: Algorithm for the Reconstruction of Accurate Cellular NEtworks
2

1. Identifies statistically significant gene-gene co-regulation
based on mutual information

2. It then eliminates indirect relationships in which two genes are
co-regulated through one or more intermediates

2Margolin et al (2006)
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Key Idea: Data Processing Inequality (DPI)

I (A,C ) ≤ min[I (A,B), I (B,C )]

where
I (gi , gj) = logP(gi , gj)/P(gi )P(gj)

▶ Look at every triplet and remove the weakest link

▶ Need to estimate marginal and joint (pairwise) probabilities
(using Gaussian Kernel)

©Ali Shojaie SISG: Pathway & Networks 13
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Algorithm Details

▶ The algorithm examines each gene triplet for which all
pairwise MIs are greater than a cut-off and removes the edge
with the smallest value based on DPI.

▶ Each triplet is analyzed even if its edges have been selected for
removal by prior DPI applications to other triplets.

▶ The least of the three MIs can come from indirect interactions
only, and checking against the DPI may identify gene pairs
that are not independent, but still do not interact.
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Rationale and Guarantees

▶ If MIs are estimated with no errors, then ARACNE
reconstructs the underlying interaction network exactly, if the
network is a tree and has only pairwise interactions.

▶ The maximum MI spanning tree is a subnetwork of the
network built by ARACNE.
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Rationale and Guarantees
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Performance on Synthetic Data
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Application: B-lymphocytes Expression Data
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Application: B-lymphocytes Expression Data

▶ MYC (proto-oncogene) subnetwork (2063 genes)

▶ 29 of the 56 (51.8%) predicted first neighbors biochemically
validated as targets of the MYC transcription factor.

▶ New candidate targets identified, 12 experimentally validated.
▶ 11 proved to be true targets.

▶ Candidate targets not validated can possibly be correct too.
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Software

▶ Implemented in the R-package minet:
source("http://bioconductor.org/biocLite.R")

biocLite("minet")

▶ Main estimation function aracne(mim, eps=0)

▶ mim: mutual information matrix
mim <- build.mim(syn.data, estimator="spearman")

▶ eps: threshold for setting an edge to zero, prior to searching
over triplets
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Limitations of Correlation Networks

Large correlations can occur due to confounding.

Age 

Shoe Size 
IQ 
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Gaussian Graphical Models
Graphical Models for Other Distributions

Markov Networks

Markov network
An undirected graphical model that characterizes conditional
dependence (≡ direct relationships).

▶ Edge: Two nodes are conditionally dependent.

▶ No edge: Two nodes are conditionally independent.

▶ Conditions on all other nodes.

A ⊥ B | C
©Ali Shojaie SISG: Pathway & Networks 22



Introduction
Marginal Association Networks

Conditional Independence Graphs

Gaussian Graphical Models
Graphical Models for Other Distributions

Markov Networks — Conditional Dependence

Regression Interpretation:

▶ Imagine trying to predict the observations in Node A
(response) by the observations of all other nodes (predictors).

▶ Node B predictive of Node A (with all other nodes in model).
▶ A is conditionally dependent on B.
▶ Edge.

▶ Because of other nodes in model, Node B does not add any
predictive value for Node A.
▶ A is conditionally independent of B.
▶ No Edge.
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Markov Networks — Conditional Dependence

Age 

Shoe Size 
IQ 

Correlation.
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Markov Networks — Conditional Dependence

Age 

Shoe Size 
IQ 

Conditional Dependence.
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Markov Networks — Conditional Dependence

How can we learn conditional dependencies?

▶ A and B are conditionally independent given C if

P(A,B | C ) = P(A | C )P(B | C )

▶ Generally difficult (need to estimate multivariate densities).

▶ Alternatively, can use nonparametric approaches, e.g.
conditional mutual information – not easy in high dimensions.

▶ Often resort to models, or simple measures, such as partial
correlations...
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Partial Correlation

▶ Partial correlation measures the correlation between A and B
after the effect of the other variables are removed.
▶ In our example, this means correlation between shoe size and

IQ, after adjusting for age.

▶ The partial correlation between A and B given C is given by:

ρAB·C ≡ ρ(A,B|C ) =
ρAB − ρACρBC√
1− ρ2AC

√
1− ρ2BC

.

▶ Alternatively, regress A on C and get the residual, rA; do the
same for B to get rB . The partial correlation between A and
B give C is Cor(rA, rB).
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Partial Correlation

▶ Partial correlation is symmetric ⇒ undirected network

▶ Partial correlation takes values between -1 and 1

▶ In partial correlation networks, we draw an edge between A
and B, if the partial correlation between them is large

▶ Calculation of partial correlation is more involved
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A Simple Example

Correlation =




1 .8 .7
.8 1 .8
.7 .8 1


PartialCorr =




1 .6 0
.6 1 .6
0 .6 1
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True Network
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2

3

Partial Correlation
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A Larger Example

▶ A network with 10 nodes and 20 edges

▶ n = 100 observations

▶ Estimation using correlation & partial correlation (20 edges)
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Gaussian Graphical Models (GGMs)
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Partial Correlation for Gaussian Random Variables

▶ For Gaussian (multivariate normal) random variables, partial
correlation between Xi and Xj given all other variables is given
by the inverse of the (standardized) covariance matrix Σ.

▶ The (i , j) entry in Σ−1 gives the partial correlation between Xi

and Xj given all other variables X\i,j .

▶ Multivariate normal: X ∼ N(0,Σ)
▶ Θ ≡ Σ−1 = inverse covariance/precision/concentration matrix.
▶ Zeros in Θ =⇒ conditional independence!
▶ Edges correspond to non-zeros in Θ.
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Partial Correlation for Gaussian Random Variables17.2 Markov Graphs and Their Properties 627

X

X

X X

Y

Y

Y
Y

Z

Z

Z

Z

W

W

W

(a) (b)

(c) (d)

FIGURE 17.2. Examples of undirected graphical models or Markov networks.
Each node or vertex represents a random variable, and the lack of an edge between
two nodes indicates conditional independence. For example, in graph (a), X and
Z are conditionally independent, given Y . In graph (b), Z is independent of each
of X, Y , and W .

A longer list of useful references is given in the Bibliographic Notes on
page 645.

17.2 Markov Graphs and Their Properties

In this section we discuss the basic properties of graphs as models for the
joint distribution of a set of random variables. We defer discussion of (a)
parametrization and estimation of the edge parameters from data, and (b)
estimation of the topology of a graph, to later sections.
Figure 17.2 shows four examples of undirected graphs. A graph G consists

of a pair (V,E), where V is a set of vertices and E the set of edges (defined
by pairs of vertices). Two vertices X and Y are called adjacent if there
is a edge joining them; this is denoted by X ∼ Y . A path X1,X2, . . . ,Xn

is a set of vertices that are joined, that is Xi−1 ∼ Xi for i = 2, . . . , n. A
complete graph is a graph with every pair of vertices joined by an edge.
A subgraph U ∈ V is a subset of vertices together with their edges. For
example, (X,Y,Z) in Figure 17.2(a) form a path but not a complete graph.
Suppose that we have a graph G whose vertex set V represents a set of

random variables having joint distribution P . In a Markov graph G, the
absence of an edge implies that the corresponding random variables are
conditionally independent given the variables at the other vertices. This is
expressed with the following notation:




− × 0
× − ×
0 × −







− × × 0
× − × 0
× × − 0
0 0 0 −







− × 0 ×
× − × 0
0 × − ×
× 0 × −







− 0 0 ×
0 − × 0
0 × − ×
× 0 × −
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Estimating GGMs

From the discussion so far, to estimate the network, we can

1. Calculate the empirical covariance matrix: for (centered)
n × p data matrix X , S = (n − 1)−1X TX .

2. Get the inverse of S . Non-zero values of S−1 give the edges.

While simple, this may not work well in practice, even with large
samples!
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Estimating GGMs in High Dimensions

Many problems arise in high-dimensional settings, when p ≫ n.

▶ First, S is not invertible if p > n!

▶ Even if p < n, but n is not very large, we may still get poor
estimates, and many false positives/negatives.
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Estimating GGMs in High Dimensions

▶ A number of methods have been recently proposed for
estimating GGMs in high dimensions.

▶ The main idea in most of these methods is to use a
regularization penalty, like the lasso.

▶ We discuss two approaches:
▶ neighborhood selection
▶ graphical lasso
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The Lasso
▶ The lasso involves finding β that minimizes

∥∥∥y −
p∑

k=1

Xkβk

∥∥∥
2
+ λ

∑

j

|βk |.

▶ Here λ is a tuning parameter
▶ When λ = 0, we get least squares!
▶ When λ is very large, we get β̂ = 0.

▶ Equivalently, find β that minimizes

∥∥∥y −
p∑

k=1

Xkβk

∥∥∥
2

subject to the constraint that
p∑

k=1

|βk | ≤ s.
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A Geometric Interpretation
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Lasso As λ Varies
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Estimating GGMs in High Dimensions – Method 1

The idea behind neighborhood selection, is to estimate the graph
by fitting a penalized regression of each variable on all other
variables.

▶ Find neighbors of each node Xj by l1-penalized regression or
lasso:

minimize
βj

∥Xj − X̸=jβ
j∥22 + λ

∑

k ̸=j

|βjk |

▶ The final estimate is found by combining all of the edges from
these individual regression problems.
▶ Symmetry — βj

k not always same as βk
j .

▶ Use min or max rule.
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Estimating GGMs in High Dimensions – Method 2

Estimate a sparse Θ via penalized maximum likelihood estimation
(MLE).

Graphical Lasso (glasso)

maximize
Θ

logdet(Θ)− tr(SΘ)− λ∥Θ∥1

▶ Blue: Log-likelihood; logdet denotes the logarithm of the
determinant of Θ and tr the trace (sum of diagonal elements)
SΘ.

▶ Red: Penalty term encourages zeros on the off-diagonal
elements of Θ.
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Comparing the Two Approaches

▶ Neighborhood selection is an approximation for graphical
lasso:
▶ Consider regression of Xj on Xk , j ̸= k
▶ Then, the regression coefficient for neighborhood selection is

related to the j , k element of Θ:

βj
k = −Θjk

Θjj

▶ Neighborhood selection is computationally more efficient, and
may gives better estimates, but doesn’t give an estimate of Θ!
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A Real Example

▶ Flow cytometry proteomics in single cells (Sachs et al, 2003).
▶ p = 11 proteins measured in n = 7466 cells

17.3 Undirected Graphical Models for Continuous Variables 637

λjk = ∞ will force θ̂jk to be zero, this algorithm subsumes Algorithm 17.1.
By casting the sparse inverse-covariance problem as a series of regressions,
one can also quickly compute and examine the solution paths as a function
of the penalty parameter λ. More details can be found in Friedman et al.
(2008b).
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λ = 27λ = 36

FIGURE 17.5. Four different graphical-lasso solutions for the flow-cytometry
data.

Figure 17.1 shows the result of applying the graphical lasso to the flow-
cytometry dataset. Here the lasso penalty parameter λ was set at 14. In
practice it is informative to examine the different sets of graphs that are
obtained as λ is varied. Figure 17.5 shows four different solutions. The
graph becomes more sparse as the penalty parameter is increased.

Finally note that the values at some of the nodes in a graphical model can
be unobserved; that is, missing or hidden. If only some values are missing
at a node, the EM algorithm can be used to impute the missing values
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How to Choose λ?
▶ λ modulates trade-off between model fit and network sparsity:

▶ λ = 0 gives a dense network (no sparsity).
▶ As λ increases, network becomes more sparse.

▶ A number of approaches proposed in the literature and used
in practice

1. Cross-Validation — tends to yield overly dense networks.

2. Extended BIC — adjusted BIC for high dimensions.

3. Controlling the probability of falsely connecting disconnected
components at level α (Banerjee et al, 2008):

λ(α) =
tn−2(α/2p

2)√
n − 2 + tn−2(α/2p2)

,

(tn−2(α) is the (100− α)% quantile of t-dist with n − 2 d.f.)

4. Stability selection — Choose λ that gives the most stable
network (R: huge package)
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Other Types of Graphical Models
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Nonparanormal (Gaussian Copula) Models

▶ Suppose X ≁ N(0,Σ), but there exist monotone functions
fj , j = 1, . . . p such that [f1(X1), . . . fp(Xp)] ∼ N(0,Σ)

▶ X has a nonparanormal distribution X ∼ NPNp(f ,Σ).
▶ f and Σ are parameters of the distribution, and estimated from

data.
▶ For continuous distributions, the nonparanormal family is the

same as the Gaussian copula family

▶ To estimate the nonparanomal network:

i) transform the data: [f1(X1), . . . fp(Xp)]
ii) estimate the network of the transformed data (e.g. calculate

the empirical covariance matrix of the transformed data, and
apply glasso or neighborhood selection)
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A Related Procedure

▶ Liu et al (2012) and Xue & Zou (2012) proposed a closely
related idea using rank-based correlation
▶ Let r ij be the rank of x ij among x1j , . . . , x

n
j and r̄j = (n + 1)/2

be the average rank
▶ Calculate Spearman’s ρ or Kendall’s τ

ρ̂jk =

∑n
i=1 (r

i
j − r̄j)(r

i
k − r̄k)√∑n

i=1 (r
i
j − r̄j)2

∑n
i=1 (r

i
k − r̄k)2

τ̂jk =
2

n(n − 1)

∑

1≤i<i ′≤n

sign
(
(x ij − x i

′
j )(x

i
k − x i

′
k )
)

▶ If X ∼ NPNp(f ,Σ), then Σjk = 2 sin(ρjkπ/6) = sin(τjkπ/2)

▶ Therefore, we can estimate Σ−1 by plugging in rank-based
correlations into graphical lasso (R-package huge)
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A Real Data Example

▶ Protein cytometry data for cell signaling (Sachs et al, 2005)

▶ Transform the data using a Gaussian copula (Liu et al, 2009),
giving marginal normality

▶ Pairwise relationships still seem non-linear

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●●

●

● ●●

●●
●

●

●

●●

● ●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●●
●

●●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

● ●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●●

●

●●

●

● ●

●●

●

●●

●
●●

●

●

●

●●

●

●

●

●

●

●

●
●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●
●
●

● ●

●

●

●

●

●
●

●

●

● ●●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−3
−1

0
1

2
3

PJNK

P3
8

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

● ●

●

●●●

●●
●

●

●

● ●

● ●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●●
●

● ●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

● ●

●

●●

●

● ●

●●

●

●●

●
●●

●

●

●

●●

●

●

●

●

●

●

●
● ●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●
● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

● ●

●

●
●

●
●

●

● ●

●

●

●

●

●
●

●

●

●●●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−3
−1

0
1

2
3

PKC

P3
8

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

●
● ●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

● ●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●●
●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●
● ●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●

● ●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●●

●

●
●

●

●

●

●

●●

●

●

●●

●

● ●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●
●

●●
●●

●
●●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

PKC

PJ
NK

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●● ●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●

●
●●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●
●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●● ●

●

●

●
●

●

● ●

●

●

●

●
●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●
● ●

●
●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
● ●

●

●

●●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●●

●
●

●
●

●

●

●

●●

●

●●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●

●
●

●

●

●

● ●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

● ●

●

●

●

● ●
● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●●

●
●

●

●

●

●
●

●

●

●
● ●

●●

●

●

●

●
●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−2
−1

0
1

2
3

PKC

Pa
rti

al
 re

s.

(a)	   (d)	  (b)	   (c)	  
▶ Shapiro-Wilk test rejects multivariate normality:

p < 2× 10−16
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Marginal Association Networks

Conditional Independence Graphs

Gaussian Graphical Models
Graphical Models for Other Distributions

Graphical Models for Discrete Random Variables

▶ In many cases, biological data are not Gaussian: SNPs,
RNAseq, etc

▶ Need to estimate CIG for other distributions: binomial,
poisson, etc

▶ In this case, the estimators do not have a closed-form!

▶ A special case, which is computationally more tractable, is the
class of pairwise MRFs

©Ali Shojaie SISG: Pathway & Networks 49
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Conditional Independence Graphs

Gaussian Graphical Models
Graphical Models for Other Distributions

Pairwise Markov Random Fields

▶ The idea of pairwise MRFs is to “assume” that only two-way
interactions among variables exist
▶ The pairwise MRF associated with graph G over the random

vector X is the family of probability distributions P(X ) that
can be written as

P(X ) ∝ exp
∑

(j,k)∈E

ϕjk(xj , xk)

▶ For each edge (j , k) ∈ E , ϕjk is called the edge potential
function

▶ For discrete random variables, any MRF can be transformed
to an MRF with pairwise interactions by introducing
additional variables3

3Wainwright & Jordan (2008)
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Gaussian Graphical Models
Graphical Models for Other Distributions

Graphical Models for Binary Random Variables

▶ Suppose X1, . . . ,Xp are binary random variables,
corresponding to, e.g. SNPs, or DNA methylation

▶ A special case of discrete graphical models is the Ising model
for binary random variables

Pθ(x) =
1

Z (θ)
exp




∑

(j ,k)∈E
θjkxjxk





▶ A pairwise MRF for binary data, with ϕjk(xj , xk) = θjkxjxk
▶ x i ∈ {−1,+1}p
▶ The partition function Z (θ) ensures that distribution sums to 1
▶ (j , k) ∈ E iff θjk ̸= 0!

©Ali Shojaie SISG: Pathway & Networks 51

Introduction
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Conditional Independence Graphs

Gaussian Graphical Models
Graphical Models for Other Distributions

Graphical Models for Binary Random Variables

▶ We can consider a neighborhood selection4 approach with an
ℓ1 (lasso) penalty to find the neighborhood of each node
N(j) = {k ∈ V : (j , k) ∈ E}

▶ For j = 1, . . . , p, need to solve (after some algebra)

minθ



n−1

n∑

i=1


f (θ; x i )−

∑

k ̸=j

θjkx
i
j x

i
k + λ∥θ−j∥1







▶ f (θ; x) = log
{
exp

(∑
k ̸=j θjkxk

)
+ exp

(
−∑k∈−j θjkxk

)}

▶ This is equivalent to solving p penalized logistic regression
problems, which is straightforward (R-package glmnet)

4Ravikumar et al (2010)
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Other Non-Gaussian Distributions

▶ Assume a pairwise graphical model

P(X ) ∝ exp




∑

j∈V
θjϕj(Xj) +

∑

(j ,k)∈E
θjkϕjk(Xj ,Xk)





▶ Then, similar to the Ising model, graphical models can be
learned for other members of the exponential family
▶ Poisson graphical models (for e.g. RNAseq), Multinomial

graphical models, etc
▶ All of these can be learned using a neighborhood selection

approach, using the glmnet package5

▶ We can even learn networks with multiple types of nodes (gene
expression, SNPs, and CNVs)6

5Yang et al (2012)
6Yang et al (2014), Chen et al (2015)
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Mixed Graphical Models
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A General Approach for Estimation of Graphical Models

▶ Consider n iid observations from a p-dimensional random
vector x = (X1, . . . ,Xp) ∼ P

▶ Consider the (undirected) graph G = (V ,E ) with vertices
V = {1, . . . , p}

▶ Want to estimate edges E ⊂ V × V that satisfy
∀j ∈ V , ∃N(j) such that:

pj(Xj |{Xk , k ̸= j}) = pj(Xj |{Xk : k ∈ N(j)}) = pj(Xj |{Xk : (k, j) ∈ E})

▶ N(j) is the minimal set of variables on which the conditional
densities depend
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Estimating Conditional Independencies

Question: how to condition?
▶ Approach 1: Estimate the joint density f (X1, . . . ,Xp); then

get the conditionals fj(Xj | X−j)
▶ Efficient, coherent
▶ Computationally challenging
▶ Restrictive: how many joint distributions do you know?
▶ Hard to check if assumptions hold!

▶ Approach 2: Estimate the conditionals directly fj(Xj | X−j)
▶ Computationally easy
▶ Leads to easy & flexible models (regression)!
▶ May not be efficient or coherent
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A Semi-parametric Approach

▶ Consider additive non-linear relationships (additive model):

Xj | X−j =
∑

k ̸=j

fjk(Xk) + ε

▶ Then if fjk(Xk) = fkj(Xj) = 0, we conclude that Xj and Xk are
conditionally independent, given the other variables

▶ In other words, we assume that conditional distributions and
conditional means depend on the same set of variables

▶ We then use a semi-parametric approach for estimating the
conditional dependencies
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SpaCE JAM7

▶ Sparse Conditional Estimation with Jointly Additive Models
(SpaCE JAM)

minimize
fjk∈F

1

2n

p∑

j=1

∥∥∥xj−
∑

k ̸=j

fjk(xk)
∥∥∥
2

2
+λ
∑

k>j

(
∥fjk(xk)∥22 + ∥fkj(xj)∥22

)1/2

▶ fjk(xk) = Ψjkβjk
▶ Ψjk is a n × r matrix of basis functions for fjk
▶ βjk is an r -vector of coefficients
▶ The standardized group lasso penalty for functions ∥fjk∥2

▶ This is a convex problem, and block coordinate descent
converges to the global minimum

7Voorman et al (2014), R-package spacejam
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Other Flexible Procedures

▶ Forest density estimation (Liu et al, 2011) assumes that
underlying graph is a forest, and estimates the bivariate
densities non-parametrically.

▶ Graphical random forests (Fellinghauer et al, 2013) uses
random forests to flexibly model conditional means
▶ They consider conditional dependencies through conditional

mean
▶ They allow for general random variables, discrete or continuous
▶ Use a random forest to estimate E [Xj | X\j ] non-parametrically
▶ Theoretical properties have not yet been justified
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Comparison on Simulated Data
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Comparison on Simulated Data
linear relationships (p = 100, n = 50)
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Estimation of Cell Signaling Network
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Other Extensions of GGMs

▶ Multiple Graphical Models
▶ For groups of observations, estimate graphical models with

shared structure across groups and individual structure within
groups.

▶ Time Varying Graphical Models
▶ Smoothly varying graph over time estimated via local kernel

smoothers.
▶ Change points in graph structure over time estimated via

fusion penalties.

▶ Latent Variable Graphical Models
▶ Assume observed features are dependent on latent variables

which exhibit a low-rank effect. Estimate a sparse (graph
structure) plus low-rank inverse covariance matrix.
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Bayesian Networks

▶ Bayesian networks are a special class of graphical models
defined on directed acyclic graphs.

▶ Directed acyclic graphs (DAGs) are defined as graphs that:

i) only have directed edges, i.e. if Aij ̸= 0, Aji = 0;
ii) there are no cycles in the network.

▶ Bayesian networks are widely used to model causal
relationships between variables.

▶ Note that correlation ̸= causation!

▶ Therefore, we (usually) cannot estimate Bayesian networks
from (partial) correlations
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Why Bayesian Networks?
Many biological networks include directed edges:
▶ In gene regulatory networks, protein products of transcription

factors can alter the expression of target genes, but the target
genes (usually) don’t have a direct effect on the expression of
transcription factors

©Ali Shojaie SISG: Pathway & Networks 3
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Why Bayesian Networks?
Many biological networks include directed edges:
▶ In cell signaling networks, the signal from the cell’s

environment is transducted into the cell, and results e.g. in
(global) changes in gene expression, but gene expression may
not affect the environmental factors

©Ali Shojaie SISG: Pathway & Networks 4



Introduction
Estimating DAGs

DAGs for Time Series Data

Why Bayesian Networks?
Many biological networks include directed edges:

▶ Biochemical reactions in metabolic networks, may not
reversible, and in that case, one metabolite may affect the
other, but the relationship is ont reciprocated
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Why Bayesian Networks?
However, biological networks may not be DAGs:

▶ Gene regulatory networks, signaling networks and metabolic
networks, may all contain feedback loops (positive/negative)

which make estimation even more difficult!
©Ali Shojaie SISG: Pathway & Networks 6
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What’s the Difference?

▶ Bayesian networks are widely used to model causal
relationships between variables.

▶ Undirected networks (e.g. GGM) provide information about
associations among variables; while this greatly helps in the
study of biological systems, in some cases, they are not
enough (e.g. drug development).

▶ The main difference is the direction of the edges; however, it
turns out that there are also some differences in terms of
structure/skeleton of the network (more on this later).

▶ We can estimate undirected networks from observational data,
i.e. steady-state gene expression data, but usually they are not
enough for estimation of directed networks

▶ Finally, estimating directed networks is (much) more difficult

©Ali Shojaie SISG: Pathway & Networks 7

Introduction
Estimating DAGs

DAGs for Time Series Data

Why is estimation more difficult?

▶ Estimation of Bayesian networks requires estimating both the
skeleton of the network (i.e. whether there is an edge between
i and j) and also the direction of the edges.

▶ While estimation of skeleton is possible, direction of edges
cannot be in general learned from observational data, no
matter how many samples we have (this is referred to as
observational equivalence). Consider this simple graph:

X1 X2

▶ Then, no matter what n is, we cannot distinguish between
X1 → X2 and X2 → X1, so basically what we see is:

X1 X2
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Directed Graphs: Some Terminology

▶ The parents of node j are {k : k → j}, we denote this by paj
or pa(j)

▶ The children of node j are {k : j → k}
▶ Two vertices connected by an edge are called adjacent
▶ A path between two nodes i and j is a sequence of distinct

adjacent nodes:
▶ e.g. i ← k1 → k2 → k3 ← j
▶ In a DAG with p nodes, there cannot be a path longer than

p − 1 (why?)
▶ There can be multiple paths between two nodes

▶ i is an ancestor of j if there is a directed path of length ≥ 1
from i to j : i → · · · → j (or if i = j)

▶ If i is an ancestor of j , then j is said to be a descendant of i

©Ali Shojaie SISG: Pathway & Networks 9
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Directed Graphs: Some Terminology

1 2

3

4

5 6

▶ What are parents/children of {1, . . . 5}?
▶ What are paths between 1&4, 3&4, 2&6?

▶ What are ancestors of {1, . . . 5}?
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Directed Graphs: Some Terminology

An important concept in DAGs is colliders (aka “inverted forks”):

▶ k is a collider on a path between i and j if it is a not an
end-point of the path, and the path is of the form

i . . .→ k ← . . . j

▶ k is an non-collider if it is not an end-point, and is not a
collider on a path:
▶ i . . .← k ← . . . j
▶ i . . .→ k → . . . j
▶ i . . .← k → . . . j

▶ Note: colliders and non-colliders are defined w.r.t. paths; a
collider in one path can be a non-collider in another!

©Ali Shojaie SISG: Pathway & Networks 11
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Directed Graphs: Some Terminology

1 2

3

4

5 6

▶ What are the colliders on paths between 1&4, 3&4, 2&6?

▶ What are the non-colliders on paths between 1&4, 3&4, 2&6?
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Estimating Directed Graphs

▶ The presence of colliders makes the estimation of directed
graphs very challenging...

M F

S D

▶ Genetic information for Mother, Father, Daughter and Son in
form of dominant/recessive genotype (A/a) for a single gene

▶ Then each individual can have one of three states: AA, aa, Aa
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Estimating Directed Graphs

▶ Conditioning on all other nodes, gives additional moral (!!)
edges (⇒ moral graph)

M F

S D

▶ Learning the skeleton of DAGs from observational data
requires finding right conditioning set
▶ Naively, this is done by searching over all possible subset of

other p − 2 nodes — NP-hard with complexity O(2p
2

)!!
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Estimation of DAGs from Observational Data

Two general classes of algorithms for estimating DAGs:
▶ constraint-based methods

▶ Often based on tests for CI; provide theoretical guarantees
▶ PC algorithm, Grow-Shrink

▶ score & search methods
▶ They assign a “score” to each estimated graph (e.g. based on

likelihood, Bayes factor, AIC etc)
▶ Greedy search to find the best scoring graph (Hill Climbing)

▶ “hybrid” methods
▶ Usually first find the Markov blanket (e.g. the moral graph)
▶ Then search in a restricted space (Max-Min Hill Climbing)

©Ali Shojaie SISG: Pathway & Networks 15
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Constraint-Based Methods

▶ Need a conditional independence test (to test if X⊥⊥Y | Z )
▶ For Gaussian data, we can use partial correlation (or the

Fisher’s Z-transformation of it)
▶ For Binary data, we can use logOR
▶ In general, we can use conditional mutual information

▶ The idea is to see if there exists a set S , for each pair of
nodes j , j ′, such that Xj⊥⊥Xj ′ | S
▶ S can have 0 to p-2 members! usually stop at some k ≪ p

▶ I.e., for each pair of variables (all

(
p
2

)
of them), we need to

look at all possible subsets of remaining variables!!

▶ These methods find the DAG skeleton (conditional
independence is symmetric) — will talk about direction later
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PC Algorithm (Spirtes et al, 1993)

▶ One of the first algorithms for learning structure of DAGs
▶ Efficient implementations that allow for learning DAG

structures with p up to ∼ 1000
▶ R-package pcalg (Kalisch & Buhlmann, 2007)

▶ The algorithm starts with a complete graph (i.e. fully
connected)

▶ Then for each pair of nodes j , j ′ it finds a separating set, S
such that Xj⊥⊥Xj ′ | S

▶ If a set is found, then remove the edge, otherwise, j − j ′

©Ali Shojaie SISG: Pathway & Networks 17
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PC Algorithm (Spirtes et al, 1993)

Start with a complete undirected graph, and set i = 0
Repeat

▶ For each j ∈ V

▶ For each j ′ ∈ ne(j)
▶ Determine if ∃S ⊂ ne(j)\{j ′} with |S | = i

▶ Test for CI: is Xj⊥⊥Xj′ | S?
▶ If such an S exists, then set Sjj′ = S , remove j − j ′ edge

▶ i = i + 1

Until |ne(j)| < i for all j

©Ali Shojaie SISG: Pathway & Networks 18
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Example
1

2

3

4

5
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Example
1

2

3

4

5

1

2

3

4

5

i = 0 S1,2 = ∅
S1,4 = ∅

i = 1 S3,4 = {2}
i = 2 S1,5 = {3, 4}

S2,5 = {3, 4}
i = 3 STOP (|nej | < 3 ∀ j)
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Analysis of Protein Flow Cytometry using pcalg

> dat <- read.table(’sachs.data’)

> p <- ncol(dat)

> n <- nrow(dat)

## define independence test (partial correlations)

> indepTest <- gaussCItest

## define sufficient statistics

> suffStat <- list(C=cor(dat), n=n)

## estimate CPDAG

> pc.fit <- pc(suffStat, indepTest, p, alpha=0.1, verbose=FALSE)

> plot(pc.fit, main=’PC Algorithm’)

▶ Need to determine the type of CI test (indepTest), and
sufficient statistics (suffStat)

▶ Also need to choose α (alpha), the probability of false
positive for selecting edges.
▶ Larger values of α allow more edges (not adjusted for multiple

comparisons)
▶ The algorithm works faster when α is small
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Analysis of Protein Flow Cytometry using pcalg
PC Algorithm

praf

pmek

plcg
PIP2

PIP3

P44

pakts

PKA

PKC
P38

pjnk

But wait, where did the directions come from? And why are only
some of the edges directed?
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Markov Equivalence

Consider the following 4 graphs

● ● ●1 2 3

● ● ●1 2 3

● ● ●1 2 3

● ● ●1 2 3

Which graphs satisfy X1⊥⊥X3 | X2?
Two graphs that imply the same CI relationships via d-separation
are called Markov equivalent
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Markov Equivalence

Consider the following 4 graphs

● ● ●1 2 3

● ● ●1 2 3

● ● ●1 2 3

● ● ●1 2 3

In the first 3 graphs, X1⊥⊥X3 | X2?
Two graphs that imply the same CI relationships via d-separation
are called Markov equivalent
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Representation of Markov Equivalence

▶ Markov equivalent graphs correspond to the same probability
distribution and cannot be distinguished from each other
based on observations!

▶ Therefore, the direction of edges that correspond to Markov
equivalent graphs cannot be determined

▶ We show these edges using undirected edges in the graph

▶ The resulting graph is a CPDAG (completed partially directed
acyclic graph), and is really the best we can do!
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CPDAGs
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Finding Partial Directions in DAGs

▶ Partial directions are determined from unmarried colliders:
▶ For each unmarried collider i − k − j
▶ If k /∈ Sij , orient i − k − j as i → k ← j

▶ In addition to the above rule,
▶ Orient each remaining unmarried collider i → k − j as

i → k → j
▶ If i → k → j and i − j then orient as i → j
▶ If i −m − j and i → k ← j are unmarried colliders and m − k,

then orient as m→ k
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Example

1

2

3

4

5

1

2

3

4

5

i = 0 S1,2 = ∅
S1,4 = ∅

i = 1 S3,4 = {2}
i = 2 S1,5 = {3, 4}

S2,5 = {3, 4}
©Ali Shojaie SISG: Pathway & Networks 28



Introduction
Estimating DAGs

DAGs for Time Series Data

PC Algorithm
Other Estimation Methods

The bnlearn package

▶ There are a couple of R-packages for learning (CP)DAGs,
including pclag, bnlearn, deal

▶ bnlearn implements a number of estimation methods, both
constraint-based and search-based:
▶ constraint-based algorithms:

▶ Grow-Shrink (GS)
▶ Incremental Association Markov Blanket (IAMB)
▶ Fast Incremental Association (Fast-IAMB)
▶ Interleaved Incremental Association (Inter-IAMB)

▶ score-based algorithms:
▶ Hill Climbing (HC)
▶ Tabu Search (Tabu)

▶ hybrid learning algorithms:
▶ Max-Min Hill Climbing (MMHC)
▶ General 2-Phase Restricted Maximization (RSMAX2)
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Analysis of Protein Flow Cytometry using bnlearn

> dag1 <- gs(dat, alpha=0.01) #GS method

> dag2 <- hc(dat2) #Hill-Climbing search

>

> par(mfrow= c(1,2))

> plot(dag1)

> plot(dag2)

>

> compare(dag1, dag2) #compare the two DAGs

▶ For GS need to choose α (alpha), the false positive
probability for selecting edges

▶ gs (and other structure-based methods) find a PCDAG
▶ hc gives a directed graph (with highest score)

▶ Multiple criteria for choosing the “best” graph
▶ To “search” the space either a new edge is added, or a current

edge is removed, or reversed (if no cycles)
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Analysis of Protein Flow Cytometry using bnlearn

> dag1

Bayesian network learned via Constraint-based methods

model:

[partially directed graph]

nodes: 11

arcs: 26

undirected arcs: 3

directed arcs: 23

average markov blanket size: 6.00

average neighbourhood size: 4.73

average branching factor: 2.09

learning algorithm: Grow-Shrink

conditional independence test: Pearson’s Linear Correlation

alpha threshold: 0.01

tests used in the learning procedure: 2029

optimized: TRUE
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Analysis of Protein Flow Cytometry using bnlearn
> dag2

Bayesian network learned via Score-based methods

model:

[PKC][pjnk|PKC][P44|pjnk][pakts|P44:PKC:pjnk][praf|P44:pakts:PKC][PIP3|pakts]

[plcg|praf:PIP3:P44:pakts:pjnk][pmek|praf:plcg:PIP3:P44:pakts:pjnk]

[PIP2|plcg:PIP3:PKC][PKA|praf:pmek:plcg:P44:pakts:pjnk]

[P38|pmek:plcg:pakts:PKA:PKC:pjnk]

nodes: 11

arcs: 35

undirected arcs: 0

directed arcs: 35

average markov blanket size: 8.00

average neighbourhood size: 6.36

average branching factor: 3.18

learning algorithm: Hill-Climbing

score:

Bayesian Information Criterion (Gaussian)

penalization coefficient: 4.459057

tests used in the learning procedure: 505

optimized: TRUE
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Analysis of Protein Flow Cytometry using bnlearn
Grow−Shrink

praf

pmek

plcg

PIP2

PIP3 P44

pakts

PKA

PKC

P38

pjnk

Hill Climbing

praf

pmek

plcg

PIP2

PIP3 P44

pakts

PKA

PKC

P38

pjnk

The two graphs are quite different

> compare(dag1,dag3)

$tp

[1] 9

$fp

[1] 26

$fn

[1] 17
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Comparison of Results for Protein Flow Cytometry Data
PC Algorithm

praf

pmek

plcg
PIP2

PIP3

P44

pakts

PKA

PKC
P38

pjnk

Grow−Shrink

praf

pmek

plcg
PIP2

PIP3

P44

pakts

PKA

PKC
P38

pjnk

Hill Climbing

praf

pmek

plcg
PIP2

PIP3

P44

pakts

PKA

PKC
P38

pjnk

▶ The estimated graphs are quite different

▶ The constrained-based methods seem to have more similarities
(at least in terms of structure)

▶ The estimate from HC has more edges; we can change e.g.
the score, but cannot directly control the sparsity
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Penalized Likelihood Estimation of DAGs

▶ Causal relationships (and probability distributions) on DAGs
can be represented using structural equation models

Xi = fi (pai , γi ), i = 1, . . . , p

▶ And, for Gaussian random variables, we can write

Xi =
∑

j∈pai
ρjiXj + γi , i = 1, . . . , p
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Penalized Likelihood Estimation of DAGs

X1 = γ1

X2 = ρ12X1 + γ2 = ρ12γ1 + γ2

X3 = ρ23X2 + γ3 = ρ23ρ12γ1 + ρ23γ2 + γ3

Thus X = Λγ where

Λ =




1 0 0
ρ12 1 0

ρ12ρ23 ρ23 1
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Penalized Likelihood Estimation of DAGs

▶ It turns out that Λ = (I − A)−1, where A is the weighted
adjacency matrix of the DAG1

▶ Thus, for Gaussian random variables, if we know the ordering
of the variables (which is a BIG assumption!)

after some math...

we can estimate the adjacency matrix of DAGs, by minimizing
the log-likelihood as a function of A:

Â = argmin
A∈A

{
tr
[
(I − A)T(I − A)S

]}

1S & Michailidis (2010)
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Penalized Likelihood Estimation of DAGs

▶ In high dimensions, we can solve a penalized version of this
problem, e.g. by adding a lasso penalty λ

∑
i<j |Aij |

▶ It turns out that, the problem can be reformulated as (p − 1)
lasso problems, where we regress each variable, on those
appearing earlier in the ordering:

Âk,1:k−1 = argmin
θ∈Rk−1



n−1∥X1:k−1θ − X,k∥22 + λ

k−1∑

j=1

|θj |wj





▶ As in glasso, λ controls the sparsity; λ = 2√
n
Zα/(2p2)

controls a false positive probability at level α
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Computational Complexity

▶ Compared to pcalg, this method runs much faster: ∼ np2

operations vs ∼ pq (q is the max degree)

▶ Can be easily implemented in R as p − 1 regressions using
glmnet. A more general version is available in the spacejam
package, which also includes estimation for non-Gaussian data
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Simulations

• Settings:
p = 50, 100, 200
n = 100
Total number of edges in the network = n
100 repetitions

• Performance Criteria

1. Matthew’s Correlation Coefficient (MCC): ranges between −1
(worst fit) and 1 (best fit), similar to F1

2. Structural Hamming Distance (SHD): sum of false positive
and false negatives

3. True positive and false positive rates

• Tuning parameter for both PC-Algorithm and penalized likelihood
method based on false positive error α
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Gaussian Observations
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Regulatory Network of E-Coli

▶ Regulatory network of E-coli with p = 49 genes (7 TFs)

▶ Want to identify regulatory interactions among TFs and
regulated genes
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Time Series Data: A setting where ordering is known

▶ p-dimensional, discrete time, stationary process
X t = {X t

1 , · · · ,X t
p}

X t = A1X
t−1 + · · ·+ AdX

t−d + ϵt , ϵt
i .i .d∼ N(0,Σϵ) (1)

▶ A1, . . . ,Ad : p × p transition matrices (solid, directed edges)

▶ Σ−1
ϵ : contemporaneous dependence (dotted, undirected

edges)
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Network Granger causality (NGC)
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Network Granger Causality with VARs

▶ X1, . . . ,Xp: time series for p variables
▶ Xt = (X t

1 , . . . ,X
t
p)

′: realizations at time t
▶ VAR model for NGC:

XT = A1XT−1 + · · ·+ AdXT−d + εT

▶ Xj Granger-causal for Xi if A
k
i ,j ̸= 0 for some k (k = 1, . . . , d)
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NGC Estimation

Let Y be the (stacked) vector of current time points; Z be the
design matrix based on previous time points; and β be

Assuming At are sparse, and d is known

▶ ℓ1-penalized least squares (ℓ1-LS)

argmin
β∈Rdp2

∥Y − Zβ∥2 + λ ∥β∥1

▶ ℓ1-penalized log-likelihood (ℓ1-LL) — assuming Σ−1
ϵ is sparse2

argmin
β∈Rdp2

(Y − Zβ)′
(
Σ−1
ϵ ⊗ I

)
(Y − Zβ) + λ ∥β∥1

2Lin & Michailidis (2017)
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Applications — Functional Genomics

▶ Identifying regulatory mechanisms using transition patterns in
time course expression data

▶ HeLa gene expression regulatory network (Fujita et al, 2007)
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Applications — Neuroscience

▶ Connectivity among brain regions from time-course fMRI data

▶ Connectivity of VAR generative model (Seth et al, 2013)
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Extensions

▶ Panel VAR Modeling (common in functional genomics and
neuroscience)3

▶ Incorporating external information using group lasso penalties,
etc4

▶ Dealing with non-statinarity (paucity of long stationary time
series — T small)5

▶ Accounting for non-linearity

▶ ...

3S & Michailidis (2010); S, Basu & Michailidis (2012)
4Basu, S & Michailidis (2014)
5Safikhani & S (2020)
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Example: T-cell Activation Data

▶ Data from Rangel et al (2004) on T-cell activation — less
insight and biological knowledge regarding pathways

▶ p = 58 genes, n = 44 samples, and T = 10 time points — the
first 5 time points (0, 2, 4, 6 and 8 hours) were used on a
subset of 38 genes for which pathway information avail

▶ Goal is to estimate regulatory interactions
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Estimated Network Structure

LASSO
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Summary

• Estimation of DAGs from observational data is both conceptually
and computationally difficult

• Constraint-based & search-based algorithms — slow in high dim

• May not be able to distinguish DAGs from observational data
(Markov equivalence)

• Efficient penalized likelihood methods can estimate DAGs if the
ordering is known

• Important case is time series data, but Granger causality ̸=
causality!6

• Efficient implementations in R available for most methods

6S & Fox (2021)
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