

Introduction Signal Detection on Networks Topology-Based Pathway Enrichment Analysis De-Novo Identification of Enriched Modules

Pathway & Network Analysis of Omics Data: Analysis of Network-Structured Data

Ali Shojaie Department of Biostatistics University of Washington faculty.washington.edu/ashojaie

Summer Institute for Statistical Genetics – 2022

CAli Shojaie

SISG: Pathway & Networks

1

Introduction Signal Detection on Networks Topology-Based Pathway Enrichment Analysis De-Novo Identification of Enriched Modules

Introduction

Suppose we observe activities of individual nodes (genes, proteins, brain regions, etc) on a network (gene regulatory network, structural connectivity network, etc)

CAli Shojaie

2

Introduction Signal Detection on Networks Topology-Based Pathway Enrichment Analysis De-Novo Identification of Enriched Modules Identifying "Central" Nodes Calculating centrality measures using igraph: ► Hub nodes: hub score(graph)			
 Closeness: closeness(graph, vids) 			
<pre>use estimate_closeness() for larger networks)</pre>			
Betweenness: betweenness(graph, vids)			
use estimate_betweenness() for larger networks			
©Ali Shojaie SISG: Pathway & Networks	9		
Introduction Signal Detection on Networks Topology-Based Pathway Enrichment Analysis De-Novo Identification of Enriched Modules De-Novo Identification of Enriched Modules			
Topology-Based Pathway Enrichment Analysis			
©Ali Shojaie SISG: Pathway & Networks	10		

	Introduction Signal Detection on Networks Topology-Based Pathway Enrichment Analysis De-Novo Identification of Enriched Modules	PathNet topologyGSA SPIA NetGSA A Systematic Comparison	
Yeast	ESR Data		
Gasch et	al (2000)		
	()		
	Gene Expression Data		
	Experiment	Obs. Time (after 33C)	
	Mild heat shock (29C to 33C), r	o sorbitol 5, 15, 30 min	
	Mild Heat Shock, 1M sorbitor at Mild Heat Shock, 1M sorbitor at	29C 5, 15, 30 min 29C 5, 15, 30 min	
	• Network Data		
	Use YeastNet (Lee et al., 20)	07) for gene-gene interactions (102,000	
	interactions among 5,900 yea	ast genes)	
	 Use independent experiments Dethursus are defined using (s of <i>Gasch et al.</i> to estimate weights	
	Pathways are defined using C		
CAli Shojaie	SISG: Pathway	& Networks	39
	Introduction Signal Detection on Networks Topology-Based Pathway Enrichment Analysis De-Novo Identification of Enriched Modules	PathNet topologyGSA SPIA NetGSA A Systematic Comparison	
Mode	I and Results		
	 Model: Let j and k be indice 	s for time and levels of sorbitol	
	$\mathbb{E}Y_{11} = \Lambda \mu, \qquad \mathbb{E}Y_{jk} =$	= $\Lambda(\mu + lpha_j + \delta_k)$ $j, k = 2, 3$	
	Temporal correlation is modeled d	irectly via R (as $AR(1)$ process)	
	Results:		
	\blacktriangleright ~ 3000 genes,		
	47 pathways showed signification	int changes of expression	
	24 pathways showed changes	over time	
	 29 pathways showed changes 12 pathways showed both type 	; in response to different sorbitol levels	
	 I2 pathways showed both ty Significant bathways overlap 	with gene functions from Gasch et al.	
	- O harmand harmand a country		l
CAli Shojaie	SISG: Pathway	& Networks	40

Introduction Signal Detection on Networks Topology-Based Pathway Enrichment Analysis De-Novo Identification of Enriched Modules

WGCNA Walktrap

Identifying Enriched Modules in Networks

CAli Shojaie

SISG: Pathway & Networks

61

Introduction Signal Detection on Networks Topology-Based Pathway Enrichment Analysis De-Novo Identification of Enriched Modules

WGCNA Walktrap

Identifying Enriched Modules in Networks

Two general strategies:

- Assess the significance of data-driven modules (WGCNA):
 - 1. Identify modules (network clustering, etc)
 - 2. Assess the significance of modules
- Search for enriched (connected) subnetworks (often using greedy search methods)
- Advantage: No need to rely on known pathways especially useful when known pathways are not complete, etc
- Disadvantage: Interpretation may become challenging...

CAli Shojaie

SISG: Pathway & Networks

62

Introduction Marginal Association Networks Conditional Independence Graphs	
Graphical Models	
Duchahilistia Cuanhiash Madala 1	
Joint multivariate probability distribution where dependencies can	
be represented as a network.	
Advantages:	
 Graphical models offer efficient factorized forms for joint distributions with easily interpretable dependencies. Conditional dependencies denoted via an edge in network. 	
 Convenient visual representation. 	
¹ For a detailed introduction see <i>Graphical Models, Exponential Families, and</i> <i>Variational Inference</i> ; Wainwright & Jordan (2008)	5
Introduction Marginal Association Networks	
Conditional Independence Graphs	
Marginal Association Networks	
©Ali Shojaie SISG: Pathway & Networks	6

	Introduction Marginal Association Networks Conditional Independence Graphs	
Limita	tions of Correlation Networks	
Corr relat ►	 relations capture linear associations, but many real-world tionships are nonlinear. We can use other measures of association, for instance, Spearman correlation or Kendal's τ. These methods define the correlation between two variables, based on the ranking of observations, and not their exact values. They can better capture non-linear associations. We can instead use mutual information; this has been used in many algorithms, e.g. ARACNE. 	
CAli Shojaie	SISG: Pathway & Networks	11
	Introduction Marginal Association Networks Conditional Independence Graphs	
1. 2.	NE: Algorithm for the Reconstruction of Accurate Cellular NEtworks ² Identifies statistically significant gene-gene co-regulation based on mutual information It then eliminates indirect relationships in which two genes are co-regulated through one or more intermediates	
²	Margolin et al (2006)	10
C)Ali Shojaie	SISG: Pathway & Networks	12

Introduction **Gaussian Graphical Models** Marginal Association Networks Graphical Models for Other Distributions **Conditional Independence Graphs** Gaussian Graphical Models (GGMs) 31 CAli Shojaie SISG: Pathway & Networks Introduction Gaussian Graphical Models Marginal Association Networks Graphical Models for Other Distributions Conditional Independence Graphs Partial Correlation for Gaussian Random Variables ► For Gaussian (multivariate normal) random variables, partial correlation between X_i and X_j given all other variables is given by the inverse of the (standardized) covariance matrix Σ . • The (i, j) entry in Σ^{-1} gives the partial correlation between X_i and X_i given all other variables $X_{\setminus i,i}$. • Multivariate normal: $X \sim N(0, \Sigma)$ • $\Theta \equiv \Sigma^{-1} = \text{inverse covariance}/\text{precision}/\text{concentration matrix}.$ • Zeros in $\Theta \Longrightarrow$ conditional independence! Edges correspond to non-zeros in Θ. CAli Shojaie SISG: Pathway & Networks 32

Introduction **Gaussian Graphical Models** Marginal Association Networks Graphical Models for Other Distributions **Conditional Independence Graphs** Other Types of Graphical Models 45 CAli Shojaie SISG: Pathway & Networks Introduction **Gaussian Graphical Models** Marginal Association Networks Graphical Models for Other Distributions Conditional Independence Graphs Nonparanormal (Gaussian Copula) Models • Suppose $X \sim N(0, \Sigma)$, but there exist monotone functions $f_i, j = 1, \dots p$ such that $[f_1(X_1), \dots f_p(X_p)] \sim N(0, \Sigma)$ • X has a nonparanormal distribution $X \sim NPN_p(f, \Sigma)$. • f and Σ are parameters of the distribution, and estimated from data. For continuous distributions, the nonparanormal family is the same as the Gaussian copula family To estimate the nonparanomal network: i) transform the data: $[f_1(X_1), \ldots, f_p(X_p)]$ ii) estimate the network of the transformed data (e.g. calculate the empirical covariance matrix of the transformed data, and apply glasso or neighborhood selection) CAli Shojaie SISG: Pathway & Networks 46

	Introduction Marginal Association Networks Conditional Independence Graphs	Gaussian Graphical Models Graphical Models for Other Distributions		
Other	Extensions of GGMs			
►	Multiple Graphical Models			
	 For groups of observations, shared structure across gro groups. 	, estimate graphical models with ups and individual structure within		
 Time Varying Graphical Models 				
	 Smoothly varying graph ov smoothers. 	er time estimated via local kernel		
	 Change points in graph str fusion penalties. 	ucture over time estimated via		
►	Latent Variable Graphical Mc	odels		
	 Assume observed features which exhibit a low-rank ef structure) plus low-rank in 	are dependent on latent variables fect. Estimate a sparse (graph verse covariance matrix.		
©Ali Shojaie	SISG: Pathway	& Networks	63	

Introduction Estimating DAGs P DAGs for Time Series Data	C Algorithm Other Estimation Methods				
Analysis of Protein Flow Cytometry using bnlearn					
	, 3				
> dag1					
Bayesian network learned via Constrai	nt-based methods				
model·					
[partially directed graph]					
nodes:	11				
arcs:	26				
undirected arcs:	3				
alrectea arcs:	23				
average neighbourhood size:	4 73				
average branching factor:	2.09				
6 6					
learning algorithm:	Grow-Shrink				
conditional independence test:	Pearson's Linear Correlation				
alpha threshold:	0.01				
tests used in the learning procedure:	2029 TRUE				
optimized:	INUE				
Ali Shaisia SISC: Dathway & N	21				
CAll Slibjale Si5G. Fathway & N	11 J1				
Introduction P Estimating DAGs C DAGs for Time Series Data	C Algorithm Other Estimation Methods				
Analysis of Protein Flow Cytom	etry using bnlearn				
S dag					
Bavesian network learned via Score-ba	sed methods				
model:					
[PKC][pjnk PKC][P44 pjnk][pakts P44:PKC:pjnk][praf P44:pakts:PKC][PIP3 pakts					
[plcg praf:PIP3:P44:pakts:pjnk][pmek praf:plcg:PIP3:P44:pakts:pjnk]					
[PIP2]plcg:PIP3:PKC][PKA]praf:pmek:p	lcg:P44:pakts:pjnk]				
[P38]pmek:picg:pakts:PKA:PKC:pjnk] nodes:	11				
arcs:	35				
undirected arcs:	0				
directed arcs:					
arrange members blanket size.	35				
average markov blanket size:	35 8.00				
average neighbourhood size:	35 8.00 6.36				
average markov blanket size: average neighbourhood size: average branching factor:	35 8.00 6.36 3.18				
average markov blanket size: average neighbourhood size: average branching factor:	35 8.00 6.36 3.18				
average markov blanket size: average neighbourhood size: average branching factor: learning algorithm: score:	35 8.00 6.36 3.18 Hill-Climbing				
average markov blanket size: average neighbourhood size: average branching factor: learning algorithm: score:	35 8.00 6.36 3.18 Hill-Climbing Bayesian Information Criterion (Gaussia				
average markov blanket size: average neighbourhood size: average branching factor: learning algorithm: score: penalization coefficient:	35 8.00 6.36 3.18 Hill-Climbing Bayesian Information Criterion (Gaussia 4.459057				
average markov blanket size: average neighbourhood size: average branching factor: learning algorithm: score: penalization coefficient: tests used in the learning procedure:	35 8.00 6.36 3.18 Hill-Climbing Bayesian Information Criterion (Gaussia 4.459057 505				
average markov blanket size: average neighbourhood size: average branching factor: learning algorithm: score: penalization coefficient: tests used in the learning procedure: optimized:	35 8.00 6.36 3.18 Hill-Climbing Bayesian Information Criterion (Gaussia 4.459057 505 TRUE				

DAGs	Introduction Estimating DAGs for Time Series Data		
Summary			
 Estimation of E and computation 	DAGs from observational data is both conceptually onally difficult		
 Constraint-base 	d & search-based algorithms — slow in high dim		
 May not be abl (Markov equiva 	e to distinguish DAGs from observational data lence)		
 Efficient penaliz ordering is know 	zed likelihood methods can estimate DAGs <mark>if the</mark> vn		
 Important case causality!⁶ 	 Important case is time series data, but Granger causality ≠ causality!⁶ 		
 Efficient implen 	nentations in R available for most methods		
⁶ S & Fox (2021)			
©Ali Shojaie	SISG: Pathway & Networks	53	