Pathway \& Network Analysis of Omics Data: Introduction

Ali Shojaie
Department of Biostatistics
University of Washington faculty.washington.edu/ashojaie

Summer Institute for Statistical Genetics - 2023

Networks in Biology
 Statistical Models for Network Analysis

Why Study Networks?

- Components of biological systems (genes, proteins etc) interact with each other to carry out cell functions.
- Examples of such interactions include signaling, regulation and interactions between proteins.
- We cannot understand the function and behavior of biological systems by studying individual components ($2+2 \neq 4$!).
- Networks provide an efficient representation of complex interactions in cells, and a basis for mathematical/statistical models to study these systems.

Networks in Biology: Gene Regulatory Interactions
A GENE REGULATORY NETWORK

Networks in Biology: Gene Regulatory Networks

(C)Ali Shojaie

[^0]Networks in Biology: Protein-Protein Interaction

Networks in Biology: Protein-Protein Interactions (PPI)

(C)Ali Shojaie

Networks in Biology: Metabolic Reactions

Squalene

Networks in Biology
Statistical Models for Network Analysis

But Do Networks Matter?

- They Do!
- Recent studies have linked changes in gene/protein networks with many human diseases.

Systems Biology and Emerging Technologies

Gene Networks and microRNAs Implicated in Aggressive Prostate Cancer

Liang Wang, ${ }^{1}$ Hui Tang, ${ }^{2}$ Venugopal Thayanithy, ${ }^{3}$ Subbaya Subramanian, ${ }^{3}$ Ann L. Oberg, ${ }^{2}$ Julie M. Cunningham, ${ }^{1}$ James R. Cerhan, ${ }^{2}$ Clifford J. Steer, ${ }^{4}$ and Stephen N. Thibodeau ${ }^{1}$
${ }^{1}$ Departments of Laboratory Medicine and Pathology and ${ }^{2}$ Health Sciences Research, Mayo Clinic, Rochester, Minnesota; and
Departments of ${ }^{3}$ Laboratory Medicine and Pathology, ${ }^{4}$ Medicine, and Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota

But Do Networks Matter?

Estrogen-Regulated Gene Networks in Human Breast Cancer Cells: Involvement of E2F1 in the Regulation of Cell Proliferation

Joshua D. Stender, Jonna Frasor, Barry Komm, Ken C. N. Chang, W. Lee Kraus, and Benita S. Katzenellenbogen
Departments of Biochemistry (J.D.S.) and Molecular and Integrative Physiology (J.F., B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3704; Women's Health and Musculoskeletal Biology (B.K., K.C.N.C.), Wyeth Research, Collegeville, Pennsylvania 19426; and Department of Molecular Biology and Genetics (W.L.K.), Cornell University, Ithaca, New York 14853-4203

But Do Networks Matter?

A Transcriptional Signature and Common Gene Networks Link Cancer with Lipid Metabolism and Diverse Human Diseases

Heather A. Hirsch, ${ }^{1,7}$ Dimitrios Iliopoulos, ${ }^{1,7}$ Amita Joshi, ${ }^{1,7}$ Yong Zhang, ${ }^{2}$ Savina A. Jaeger, ${ }^{3}$ Martha Bulyk, ${ }^{3,4,5}$
Philip N. Tsichlis, ${ }^{6}$ X. Shirley Liu, ${ }^{2}$ and Kevin Struhl ${ }^{1, *}$
${ }^{1}$ Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
${ }^{2}$ Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115, USA
${ }^{3}$ Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
${ }^{4}$ Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
${ }^{5}$ Harvard/MIT Division of Health Sciences and Technology (HST), Harvard Medical School, Boston, MA 02115, USA
${ }^{6}$ Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
${ }^{7}$ These authors contributed equally to this work
*Correspondence: kevin@hms.harvard.edu
DOI 10.1016/j.ccr.2010.01.022

But Do Networks Matter?

And, incorporating the knowledge of networks improves our ability to find causes of complex diseases.

REPORT
Network-based classification of breast cancer metastasis

Han-Yu Chuang ${ }^{1,5}$, Eunjung Lee ${ }^{2,3,5}$, Yu-Tsueng Liu ${ }^{4}$, Doheon Lee ${ }^{3}$ and Trey Ideker ${ }^{1,2,4, *}$
${ }_{3}^{1}$ Bioinformatics Program, University of California San Diego, La Jolla, CA, USA, ${ }^{2}$ Department of Bioengineering, University of California San Diego, La Jolla, CA, USA,
${ }^{3}$ Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea and ${ }^{4}$ Cancer Genetics Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
${ }^{5}$ These authors contributed equally to this work
* Corresponding author. Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA. Tel.: + 1858822 4558; Fax: + 18585345722 ; E-mail: trey@bioeng.ucsd.edu

Networks in Biology

Statistical Models for Network Analysis

Networks: A Short Primer

- A network is a collection of nodes V and edges E.

Statistical Models for Network Analysis

Networks: A Short Primer

- A network is a collection of nodes V and edges E.
- We assume the network has p nodes, corresponding to random variables $X_{1}, \ldots, X_{p} \equiv$ biological measurements.

Networks in Biology
 Statistical Models for Network Analysis

Networks: A Short Primer

- A network is a collection of nodes V and edges E.
- We assume the network has p nodes, corresponding to random variables $X_{1}, \ldots, X_{p} \equiv$ biological measurements.
- Edges can be directed $X \rightarrow Y$ or undirected $X-Y$.

Networks: A Short Primer

- A network is a collection of nodes V and edges E.
- We assume the network has p nodes, corresponding to random variables $X_{1}, \ldots, X_{p} \equiv$ biological measurements.
- Edges can be directed $X \rightarrow Y$ or undirected $X-Y$.

- In all these example, the node set is $V=\{1,2,3\}$.

Networks in Biology
 Statistical Models for Network Analysis

Networks: A Short Primer

- A network is a collection of nodes V and edges E.
- We assume the network has p nodes, corresponding to random variables $X_{1}, \ldots, X_{p} \equiv$ biological measurements.
- Edges can be directed $X \rightarrow Y$ or undirected $X-Y$.

- In all these example, the node set is $V=\{1,2,3\}$.
- The edges are:

$$
\begin{aligned}
& E_{1}=\{1-2,2-3\} \\
& E_{2}=\{1 \rightarrow 3,3 \rightarrow 2\} \\
& E_{3}=\{1-2,1 \rightarrow 3\}
\end{aligned}
$$

Networks: A Short Primer

Networks in Biology
 Statistical Models for Network Analysis

Networks: A Short Primer

- A convenient way to represent the edges of the network is to use an adjacency matrix A

Statistical Models for Network Analysis

Networks: A Short Primer

- A convenient way to represent the edges of the network is to use an adjacency matrix A
- A matrix is a rectangular array of data (similar to a table)

Networks in Biology
 Statistical Models for Network Analysis

Networks: A Short Primer

- A convenient way to represent the edges of the network is to use an adjacency matrix A
- A matrix is a rectangular array of data (similar to a table)
- Values in each entry are shown by indeces of row and column

$$
A=\left[\begin{array}{lll}
\cdot & \mathbf{x} & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right] \text { Here, } \mathbf{x} \text { is in row } 1 \text { and column } 2
$$

Networks: A Short Primer

- A convenient way to represent the edges of the network is to use an adjacency matrix A
- A matrix is a rectangular array of data (similar to a table)
- Values in each entry are shown by indeces of row and column

$$
A=\left[\begin{array}{ccc}
. & \mathbf{x} & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right] \text { Here, } \mathbf{x} \text { is in row } 1 \text { and column } 2
$$

- Adjacency matrix is a square matrix, which has a 1 if there is an edge from a node in one row to a node in another column, and 0 otherwise

Networks in Biology
 Statistical Models for Network Analysis

Networks: A Short Primer

- A convenient way to represent the edges of the network is to use an adjacency matrix A
- A matrix is a rectangular array of data (similar to a table)
- Values in each entry are shown by indeces of row and column

$$
A=\left[\begin{array}{ccc}
. & \mathbf{x} & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right] \text { Here, } \mathbf{x} \text { is in row } 1 \text { and column } 2
$$

- Adjacency matrix is a square matrix, which has a 1 if there is an edge from a node in one row to a node in another column, and 0 otherwise
- For undirected edges, we add a 1 in both directions

Networks: A Short Primer

Statistical Models for Network Analysis

Networks: A Short Primer

$A=\left[\begin{array}{lll}0 & \mathbf{1} & 0 \\ \mathbf{1} & 0 & \mathbf{1} \\ 0 & \mathbf{1} & 0\end{array}\right] A=\left[\begin{array}{lll}0 & 0 & \mathbf{1} \\ 0 & 0 & 0 \\ 0 & \mathbf{1} & 0\end{array}\right] A=\left[\begin{array}{lll}0 & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$

What Do Edges in Biological Networks Mean?

- In gene regulatory networks, an edge from gene i to gene j often means that i affects the expression of j; i.e. as i 's expression changes, we expect that expression of j to increase/decrease.

What Do Edges in Biological Networks Mean?

- In gene regulatory networks, an edge from gene i to gene j often means that i affects the expression of j; i.e. as i 's expression changes, we expect that expression of j to increase/decrease.
- In protein-protein interaction networks, an edge between proteins i and j often means that the two proteins bind together and form a protein complex. Therefore, we expect that these proteins are generated at similar rates.

What Do Edges in Biological Networks Mean?

- In gene regulatory networks, an edge from gene i to gene j often means that i affects the expression of j; i.e. as i 's expression changes, we expect that expression of j to increase/decrease.
- In protein-protein interaction networks, an edge between proteins i and j often means that the two proteins bind together and form a protein complex. Therefore, we expect that these proteins are generated at similar rates.
- In metabolic networks, an edge between compound i and j often means that the two compounds are involved in the same reaction, meaning that they are generated at relative rates.

What Do Edges in Biological Networks Mean?

- In gene regulatory networks, an edge from gene i to gene j often means that i affects the expression of j; i.e. as i 's expression changes, we expect that expression of j to increase/decrease.
- In protein-protein interaction networks, an edge between proteins i and j often means that the two proteins bind together and form a protein complex. Therefore, we expect that these proteins are generated at similar rates.
- In metabolic networks, an edge between compound i and j often means that the two compounds are involved in the same reaction, meaning that they are generated at relative rates.
- Thus, edges represent some type of association among genes, proteins or metabolites, defined generally to include linear or nonlinear associations; more later....

Statistical Models for Biological Networks

\square

Statistical Models for Biological Networks

- We use the framework of graphical models
- In this setting, nodes correspond to "random variables"

Statistical Models for Biological Networks

- We use the framework of graphical models
- In this setting, nodes correspond to "random variables"
- In other words, each node of the network represents one of the variables in the study
- In gene regulatory networks, nodes \equiv genes
- In PPI networks, nodes \equiv proteins
- In metabolic networks, nodes \equiv metabolites

Statistical Models for Biological Networks

- We use the framework of graphical models
- In this setting, nodes correspond to "random variables"
- In other words, each node of the network represents one of the variables in the study
- In gene regulatory networks, nodes \equiv genes
- In PPI networks, nodes \equiv proteins
- In metabolic networks, nodes \equiv metabolites
- In practice, we observe n measurements of each of the variables (genes/proteins/ metabolites) for say different individuals, and want to determine which variables are connected, or use their connection for statistical analysis

Our Plan

We will cover the following topics

- Methods for detecting signal on known networks
- Network analysis based on centrality and clustering
- Topology-based pathway enrichment analysis
- Methods for learning undirected networks
- Co-expression networks
- ARACNE
- Conditional independence graphs
- Gaussian observations (glasso, etc)
- Non-Gaussian and non-linear data (nonparanormal, etc)
- Methods for learning directed networks
- Bayesian Networks (basic concepts, reconstruction algorithm)
- Learning directed networks from time-course data (dynamic Bayesian networks)

Pathway \& Network Analysis of Omics Data: Analysis of Network-Structured Data

Ali Shojaie
Department of Biostatistics
University of Washington
faculty.washington.edu/ashojaie

Summer Institute for Statistical Genetics - 2023
(C)Ali Shojaie

SISG: Pathway \& Networks

Signal Detection on Networks
Topology-Based Pathway Enrichment Analysis
De-Novo Identification of Enriched Modules

Introduction

Suppose we observe activities of individual nodes (genes, proteins, brain regions, etc) on a network (gene regulatory network, structural connectivity network, etc)

Introduction

Introduction

Suppose we observe activities of individual nodes (genes, proteins, brain regions, etc) on a network (gene regulatory network, structural connectivity network, etc)

Introduction

Signal Detection on Networks
Topology-Based Pathway Enrichment Analysis
De-Novo Identification of Enriched Modules

Introduction

Suppose we observe activities of individual nodes (genes, proteins, brain regions, etc) on a network (gene regulatory network, structural connectivity network, etc)

How can we identify the important nodes?

Introduction

Suppose we observe activities of individual nodes (genes, proteins, brain regions, etc) on a network (gene regulatory network, structural connectivity network, etc)

How can we identify the important nodes?
and what does this even mean?
(C)Ali Shojaie

SISG: Pathway \& Networks

Identifying Important Nodes

How can we identify the important nodes?

- We can select the significant nodes based on p-values, after adjusting for multiple comparisons (FDR, etc)

Introduction

Identifying Important Nodes

How can we identify the important nodes?

- We can select the significant nodes based on p-values, after adjusting for multiple comparisons (FDR, etc)
- But the signal is often weak for lots of tests
- If we believe the network is informative, it may make sense to use the network to guide our selection

Identifying Important Nodes

Possible strategies:

- Identify individual nodes associated with the outcome by incorporating the network (signal detection on network)
- Test if (pre-specified) subnetworks are associated with the outcome (topology-based pathway enrichment analysis)
- Identify collections of (connected) nodes that are associated with the outcome (de-novo identification of enriched modules)

Signal Detection on Networks

Signal Detection on Networks

How can we identify the important nodes in a network?

Signal Detection on Networks

How can we identify the important nodes in a network?
The simplest option is to limit our search/testing to the central nodes in the network:

Signal Detection on Networks

How can we identify the important nodes in a network?
The simplest option is to limit our search/testing to the central nodes in the network:

- Nodes connected to many other nodes, aka hub nodes
- Nodes that are close to many other nodes (closeness)
- Nodes that are on many network paths (betweenness)

Example: Functional Relevance of Hub Nodes

- Inferred genetic interaction network of cancer-related pathway in prostate cancer (data from TCGA)
- Hubs defined as nodes whose degrees are at the 75th percentile of the degree distribution

Other Measures of Centrality

- Closeness: Total distance of each node to other nodes:

$$
\mathrm{cl}_{j}=\left(\sum_{k \in V} d(j, k)\right)^{-1}
$$

where $d(j, k)$ is the (shortest path) distance between j and k.

- Betweenness: The number of paths that go through a node:

$$
\mathrm{bw}_{j}=\sum_{i \neq j \neq k} \frac{\pi_{i k}(j)}{\pi_{i k}}
$$

where $\pi_{i k}(j)$ is the number of paths between i and k that go through j, and $\pi_{i k}$ is the total number of paths between them.

Calculating centrality measures using igraph:

- Hub nodes: hub_score(graph)
- Closeness: closeness(graph, vids)
- use estimate_closeness() for larger networks)
- Betweenness: betweenness (graph, vids)
- use estimate_betweenness() for larger networks

Topology-Based Pathway Enrichment Analysis

Introduction
Signal Detection on Networks Topology-Based Pathway Enrichment Analysis De-Novo Identification of Enriched Modules

PathNet topologyGSA SPIA
NetGSA
A Systematic Comparison

Yeast GAL Pathway

Ideker et al, 2001

Introduction
Signal Detection on Networks Topology-Based Pathway Enrichment Analysis De-Novo Identification of Enriched Modules

PathNet topologyGSA
SPIA
NetGSA
A Systematic Comparison

Topology-Based Pathway Enrichment Analysis

Test for changes in activities of node (genes, brain ROIs, etc) in pre-specified subnetworks, while incorporating network information Two possible null hypotheses:

PathNet

Topology-Based Pathway Enrichment Analysis

Test for changes in activities of node (genes, brain ROIs, etc) in pre-specified subnetworks, while incorporating network information

Two possible null hypotheses:

- Competitive null hypothesis: activity of each pathway is compared with other pathways, often using a permutation test
- Assume few genes are differentially connected, and may be sensitive to the choice of gene sets
- Self-contained null hypothesis: activity of each pathway is compared against the null distribution
- More rigorous, but may be sensitive to modeling assumptions (Goemen \& Buhlmann (07), Ackermann \& Strimmer (09))

Introduction	PathNet
Signal Detection on Networks	topologyGSA
Topology-Based Pathway Enrichment Analysis	SPIA
De-Novo Identification of Enriched Modules	NetGSA
	A Systematic Comparison

PathNet: Details

- Each gene's p-value from differential expression is combined with p-values of its neighbors using Fisher's methods

$$
\mathrm{SI}_{j}=\sum_{k \in \operatorname{ne}(j)}\left\{-\log _{10}\left(p_{k}^{D}\right)\right\}
$$

- The indirect p-value, p^{\prime} is calculated from SI_{j} by permutation
- Direct (p_{j}^{D}) and indirect (p_{j}^{\prime}) p -values are then combined (p_{j}^{C})
- The significance of p_{j}^{C} for genes in each pathway is assessed using a hypergeometric test
- Implemented in Bioconductor package PathNet

$$
X^{1} \sim N\left(\mu^{1}, \Sigma^{1}\right), \quad X^{2} \sim N\left(\mu^{2}, \Sigma^{2}\right)
$$

- It obtains estimates of Σ^{1} and Σ^{2} based on the networks (think graphical lasso, but with known nonzero entries)
- It then performs two tests:
- equality of covariance matrices: $H_{0}^{c}: \Sigma^{1}=\Sigma^{2}$
- equality of means $H_{0}^{m}: \mu^{1}=\mu^{2}$ — it uses different methods depending on the result of H_{0}^{c}
- Implemented in R-package topologyGSA (also in graphite)

[^1]PathNet

Signaling Pathway Impact Analysis (SPIA) ${ }^{3}$

- Combines overrepresentation analysis (ORA) with measure of perturbation of a given pathway under a given condition
- A bootstrap procedure is used to assess the significance of the observed pathway perturbation (difficult to extend to comparison of >2 conditions)
- Currently not applicable to all pathways (more later)
- Analyzes each pathway separately (ignores connections between pathways)
- Implemented in the Bioconductor package SPIA

[^2]Introduction
Signal Detection on Networks Topology-Based Pathway Enrichment Analysis De-Novo Identification of Enriched Modules

SPIA
NetGSA
A Systematic Comparison

The SPIA Methodology

Introduction
Signal Detection on Networks Topology-Based Pathway Enrichment Analysis De-Novo Identification of Enriched Modules

PathNet
topologyGSA
SPIA
NetGSA
A Systematic Comparison

The SPIA Methodology

SPIA combines two types of evidence

Introduction
Signal Detection on Networks
Topology-Based Pathway Enrichment Analysis
De-Novo Identification of Enriched Modules

PathNet

topologyGSA
SPIA
NetGSA
A Systematic Comparison

The SPIA Methodology

SPIA combines two types of evidence
(i) the overrepresentation of DE genes in a given pathway

Introduction
Signal Detection on Networks Topology-Based Pathway Enrichment Analysis De-Novo Identification of Enriched Modules

PathNet
topologyGSA
SPIA
NetGSA
A Systematic Comparison

The SPIA Methodology

SPIA combines two types of evidence

(i) the overrepresentation of DE genes in a given pathway

- measured by the p -value for the given number of DE genes $P_{N D E}=P\left(X \geq N_{D E} \mid H_{0}\right)$

Introduction
Signal Detection on Networks Topology-Based Pathway Enrichment Analysis De-Novo Identification of Enriched Modules

The SPIA Methodology

SPIA combines two types of evidence

Introduction
Signal Detection on Networks Topology-Based Pathway Enrichment Analysis De-Novo Identification of Enriched Modules

PathNet topologyGSA SPIA NetGSA
A Systematic Comparison

The SPIA Methodology

SPIA combines two types of evidence
(ii) the abnormal perturbation of the pathway

The SPIA Methodology

SPIA combines two types of evidence
(ii) the abnormal perturbation of the pathway

- the perturbation for each gene in the pathway is defined as $P F\left(g_{i}\right)=\Delta E\left(g_{i}\right)+\sum_{j=1}^{p} \beta_{i j} \frac{P F\left(g_{j}\right)}{N_{D S}\left(g_{j}\right)}$

Introduction
Signal Detection on Networks Topology-Based Pathway Enrichment Analysis De-Novo Identification of Enriched Modules

PathNet
topologyGSA SPIA NetGSA
A Systematic Comparison

The SPIA Methodology

SPIA combines two types of evidence

(ii) the abnormal perturbation of the pathway

- the perturbation for each gene in the pathway is defined as $P F\left(g_{i}\right)=\Delta E\left(g_{i}\right)+\sum_{j=1}^{p} \beta_{i j} \frac{P F\left(g_{j}\right)}{N_{D S}\left(g_{j}\right)}$
- $P F\left(g_{i}\right)$ is the perturbation factor of gene i (not known)
- $\beta_{i j}$ is the magnitude of effect of gene j on gene i; currently, beta $_{i j}=1$ if $j \rightarrow i$
- $\Delta E\left(g_{i}\right)$ is the fold change in expression of gene i
- $N_{D S}\left(g_{j}\right)$ is the number of downstream genes from gene j

The SPIA Methodology

Introduction
Signal Detection on Networks Topology-Based Pathway Enrichment Analysis De-Novo Identification of Enriched Modules

PathNet
topologyGSA
SPIA
NetGSA
A Systematic Comparison

The SPIA Methodology

- The accumulated activity of each gene can then be calculated as $A C C\left(g_{i}\right)=B \cdot(I-B)^{-1} \Delta E$

The SPIA Methodology

- The accumulated activity of each gene can then be calculated as $A C C\left(g_{i}\right)=B \cdot(I-B)^{-1} \Delta E$
- B is the normalized matrix of $\beta^{\prime} \mathrm{s}: B_{i j}=\beta_{i j} / N_{D S}\left(g_{j}\right)$
- ΔE is the vector of fold changes
- Requires B to be invertible; would not work otherwise

PathNet

The SPIA Methodology

- The accumulated activity of each gene can then be calculated as $A C C\left(g_{i}\right)=B \cdot(I-B)^{-1} \Delta E$
- B is the normalized matrix of $\beta^{\prime} s: B_{i j}=\beta_{i j} / N_{D S}\left(g_{j}\right)$
- ΔE is the vector of fold changes
- Requires B to be invertible; would not work otherwise
- The total accumulated perturbation of the pathway is then given by $t_{A}=\sum_{i} A C C\left(g_{i}\right)$

Introduction	PathNet
Signal Detection on Networks	topologyGSA
Topology-Based Pathway Enrichment Analysis	SPIA
De-Novo Identification of Enriched Modules	NetGSA
	A Systematic Comparison

The SPIA Methodology

- The accumulated activity of each gene can then be calculated as $A C C\left(g_{i}\right)=B \cdot(I-B)^{-1} \Delta E$
- B is the normalized matrix of β^{\prime} s: $B_{i j}=\beta_{i j} / N_{D S}\left(g_{j}\right)$
- ΔE is the vector of fold changes
- Requires B to be invertible; would not work otherwise
- The total accumulated perturbation of the pathway is then given by $t_{A}=\sum_{i} A C C\left(g_{i}\right)$
- The p -value for pathway perturbation is given by $P_{\text {PERT }}=P\left(T_{A} \geq t_{A} \mid H_{0}\right)$, which is calculated using a bootstrap approach

Introduction
Signal Detection on Networks Topology-Based Pathway Enrichment Analysis De-Novo Identification of Enriched Modules

PathNet
topologyGSA
SPIA
NetGSA
A Systematic Comparison

The SPIA Methodology

PathNet
topologyGSA
SPIA
NetGSA
A Systematic Comparison

The SPIA Methodology

Introduction
Signal Detection on Networks Topology-Based Pathway Enrichment Analysis De-Novo Identification of Enriched Modules

PathNet
topologyGSA
SPIA
NetGSA
A Systematic Comparison

The SPIA Methodology

SPIA combines two types of evidence

The SPIA Methodology

SPIA combines two types of evidence

- The final p-value for each pathway is calculated based on the p-values from parts (i) and (ii):

PathNet

The SPIA Methodology

SPIA combines two types of evidence

- The final p-value for each pathway is calculated based on the p-values from parts (i) and (ii):
- $P_{G}(i)=c_{i}-c_{i} \ln \left(c_{i}\right)$
- $c_{i}=P_{\text {NDE }}(i) P_{\text {PERT }}(i)$

Introduction
Signal Detection on Networks
Topology-Based Pathway Enrichment Analysis De-Novo Identification of Enriched Modules

The SPIA Methodology

SPIA combines two types of evidence

- The final p-value for each pathway is calculated based on the p-values from parts (i) and (ii):
- $P_{G}(i)=c_{i}-c_{i} \ln \left(c_{i}\right)$
- $c_{i}=P_{\text {NDE }}(i) P_{\text {PERT }}(i)$

\[

\]

Network-Based Gene Set Analysis (NetGSA)4

- Generalizes SPIA, to allow for more complex experiments \& incorporate interactions among pathways
- Assesses the overall behavior of arbitrary subnetworks (pathways): changes in gene expression \& network structure
- Uses latent variables to model the interaction between genes defined by the network
- Uses mixed linear models for inference in complex data
- Computationally challenging for large networks, unless pathways separately analyzed (similar to SPIA)

[^3]
Problem Setup

- Gene (protein/metabolite) expression data for K experimental conditions and J_{k} time points
- Network information (partially) available in the form of a directed weighted graph $G=(V, E)$, with vertex set V corresponding to the genes/proteins/metabolites and edge set E capturing their associations
- Network edges can be directed $j \rightarrow k$ or undirected $j \leftrightarrow k$
- Edges defines the effect of nodes on their immediate neighbors; the weight associated with each edge corresponds to the value of partial correlation
- Represent the network by its adjacency matrix $A: A_{j k} \neq 0$ iff $k \rightarrow j \&$ for undirected edges, $A_{j k}=A_{k j}$

Introduction Signal Detection on Networks Topology-Based Pathway Enrichment Analysis De-Novo Identification of Enriched Modules

PathNet

The Latent Variable Model: Main Idea

$$
\begin{aligned}
& X_{1}=\gamma_{1} \\
& X_{2}=\rho_{12} X_{1}+\gamma_{2}=\rho_{12} \gamma_{1}+\gamma_{2} \\
& X_{3}=\rho_{23} X_{2}+\gamma_{3}=\rho_{23} \rho_{12} \gamma_{1}+\rho_{23} \gamma_{2}+\gamma_{3}
\end{aligned}
$$

The Latent Variable Model: Main Idea

$$
\begin{aligned}
& X_{1}=\gamma_{1} \\
& X_{2}=\rho_{12} X_{1}+\gamma_{2}=\rho_{12} \gamma_{1}+\gamma_{2} \\
& X_{3}=\rho_{23} X_{2}+\gamma_{3}=\rho_{23} \rho_{12} \gamma_{1}+\rho_{23} \gamma_{2}+\gamma_{3}
\end{aligned}
$$

Thus $X=\Lambda \gamma$ where

$$
\Lambda=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\rho_{12} & 1 & 0 \\
\rho_{12} \rho_{23} & \rho_{23} & 1
\end{array}\right)
$$

```
                                    Introduction

PathNet

\section*{The Latent Variable Model}
- Let \(Y\) be the \(i\) th sample in the expression data
- Let \(Y=X+\varepsilon\), with signal \(X\) and noise \(\varepsilon \sim N_{p}\left(0, \sigma_{\varepsilon}^{2} l_{p}\right)\)
- The influence matrix \(\wedge\) measures the propagated effect of genes on each other through the network, and can be calculated based on the adjacency matrix \(A\)
- Using \(X=\Lambda \gamma\), we get
\[
Y=\Lambda \gamma+\varepsilon, \quad \Rightarrow \quad Y \sim N_{p}\left(\Lambda \mu, \sigma_{\gamma}^{2} \Lambda \Lambda^{\prime}+\sigma_{\varepsilon}^{2} I_{p}\right)
\]
where \(\gamma \sim N_{p}\left(\mu, \sigma_{\gamma}^{2} I_{p}\right)\) are latent variables
(C)Ali Shojaie

SISG: Pathway \& Networks

Rearranging the expression matrix into \(n p\)-vector \(\mathbf{Y}\), we can write
\[
\mathbf{Y}=\boldsymbol{\Psi} \boldsymbol{\beta}+\boldsymbol{\Pi} \gamma+\boldsymbol{\varepsilon}
\]
where \(\boldsymbol{\beta}\) and \(\boldsymbol{\gamma}\) are fixed and random effect parameters and
\[
\varepsilon \sim N_{n p}\left(\mathbf{0}, R\left(\theta_{\varepsilon}\right)\right), \quad \gamma \sim N_{n p}\left(\mathbf{0}, \sigma_{\gamma}^{2} \mathbf{I}_{\mathbf{n p}}\right)
\]
- Temporal Correlation incorporated through \(R\)
PathNet

\section*{Mixed Linear Model Representation}

Rearranging the expression matrix into \(n p\)-vector \(\mathbf{Y}\), we can write
\[
\mathbf{Y}=\boldsymbol{\Psi} \boldsymbol{\beta}+\boldsymbol{\Pi} \boldsymbol{\gamma}+\boldsymbol{\varepsilon}
\]
where \(\boldsymbol{\beta}\) and \(\boldsymbol{\gamma}\) are fixed and random effect parameters and
\[
\varepsilon \sim N_{n p}\left(\mathbf{0}, R\left(\theta_{\varepsilon}\right)\right), \quad \gamma \sim N_{n p}\left(\mathbf{0}, \sigma_{\gamma}^{2} \mathbf{I}_{\mathbf{n p}}\right)
\]
- Temporal Correlation incorporated through \(R\)

In general, the design matrices, \(\Psi\) and \(\Pi\) depend on the experimental settings (similar to ANOVA), and are functions of \(\wedge\)

MLE for \(\beta\) :
\[
\hat{\beta}=\left(\Psi^{\prime} \hat{W}^{-1} \Psi\right)^{-1} \Psi^{\prime} \hat{W}^{-1} \mathbf{Y}
\]
where \(W=\sigma_{\gamma}^{2} \Pi \Pi^{\prime}+R\).
\(\hat{\beta}\) depends on estimates of \(\sigma_{\gamma}^{2}\) and \(\theta_{\varepsilon}^{2}\) (estimated using restricted maximum likelihood (REML)).

Introduction
Signal Detection on Networks Topology-Based Pathway Enrichment Analysis De-Novo Identification of Enriched Modules

PathNet
topologyGSA
SPIA
NetGSA
A Systematic Comparison

\section*{Inference using MLM}
- Let \(\ell\) be a contrast vector (a linear combination of fixed effects), and consider the test:
\[
H_{0}: \ell \beta=0 \quad \text { vs. } \quad H_{1}: \ell \beta \neq 0
\]


PathNet

A Systematic Comparison

\section*{"Optimal" Choice of Contrast Vector}

An intuitive choice is the indicator (membership) vector for the pathway, \(\mathbf{b}\), but this only captures changes in mean
- Need to de-couple the effect of subnetwork from other nodes
\begin{tabular}{rl} 
Introduction & PathNet \\
Signal Detection on Networks & topologyGSA \\
Topology-Based Pathway Enrichment Analysis & SPIA \\
De-Novo Identification of Enriched Modules & NetGSA \\
& A Systematic Comparison
\end{tabular}

\section*{"Optimal" Choice of Contrast Vector}
- An intuitive choice is the indicator (membership) vector for the pathway, \(\mathbf{b}\), but this only captures changes in mean
- Need to de-couple the effect of subnetwork from other nodes

\begin{tabular}{rll}
\hline & Introduction & PathNet \\
Signal Detection on Networks & topologyGSA \\
SPIA \\
Topology-Based Pathway Enrichment Analysis & NetGSA \\
De-Novo Identification of Enriched Modules & A Systematic Comparison
\end{tabular}

\section*{"Optimal" Choice of Contrast Vector}
- An intuitive choice is the indicator (membership) vector for the pathway, \(\mathbf{b}\), but this only captures changes in mean
- Need to de-couple the effect of subnetwork from other nodes

- Can be shown that ( \(\mathbf{b} \wedge \cdot \mathbf{b}\) ) \(\gamma\) is not affected by nodes outside b, but includes the effects of nodes in \(\mathbf{b}\) on each other
- In the case-control case, the optimal contrast vector is:
\[
\ell^{*}=\left(-\mathbf{b} \cdot \mathbf{b} \wedge^{C}, \mathbf{b} \cdot \mathbf{b} \wedge^{T}\right)
\]

Consider the set, \(\mathbf{b}=(0,1,1)\); then
\[
(\mathbf{b} \Lambda)=\left(\rho_{12}+\rho_{12} \rho_{23}, 1+\rho_{23}, 1\right)
\]

On the other hand,
\[
(\mathbf{b} \wedge \cdot \mathbf{b})=\left(0,1+\rho_{23}, 1\right)
\]

PathNet
topologyGSA
SPIA
NetGSA
A Systematic Comparison

\section*{Comparison in Simulated Data}
\begin{tabular}{c|cc} 
Subnetwork & Mean & Network Influence \\
\cline { 2 - 4 } & 1 & \(\mu_{1}=\mu_{2}=1\) \\
2 & \(\rho_{1}=\rho_{2}=0.2\) \\
3 & \(\mu_{1}=1, \mu_{2}=2\) & \(\rho_{1}=\rho_{2}=0.2\) \\
4 & \(\mu_{1}=\mu_{2}=1\) & \(\rho_{1}=0.2, \rho_{2}=0.7\) \\
& \(\mu_{1}=1, \mu_{2}=2\) & \(\rho_{1}=0.2, \rho_{2}=0.7\)
\end{tabular}




\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Introduction \\
Signal Detection on Networks \\
Topology-Based Pathway Enrichment Analysis \\
De-Novo Identification of Enriched Modules
\end{tabular} & \begin{tabular}{l}
PathNet \\
topologyGSA \\
SPIA \\
NetGSA \\
A Systematic Comparison
\end{tabular} \\
\hline
\end{tabular}

\section*{Analysis of Yeast GAL Data}

\section*{Data:}
- gene expression data for 343 genes
- 419 interactions found from previous studies and integration with protein expression (association among genes also available)
Results:
- GSEA finds Galactose Utilization Pathway significant
- NetGSA finds several other pathways with biologically meaningful functions related to survival of yeast cells in gal-



\section*{Environmental Stress Response in Yeast}

Gene expression data on Yeast Environmental Stress Response (ESR) (Gasch et al., 2000)
- 3 combinations of experimental factor, heat shock and osmotic changes (sorbitol), over 3 time points
- Temporal correlation
- Network correlation
- Q: Which pathways indicate response to environmental stress
- in different experimental conditions
- over time

PathNet
topologyGSA
SPIA
NetGSA
A Systematic Comparison

\section*{Yeast ESR Data}

Gasch et al (2000)
- Gene Expression Data
\begin{tabular}{lc}
\hline Experiment & Obs. Time (after 33C) \\
\hline Mild heat shock (29C to 33C), no sorbitol & \(5,15,30 \mathrm{~min}\) \\
Mild Heat Shock, 1M sorbitol at 29C \& 33C & \(5,15,30 \mathrm{~min}\) \\
Mild Heat Shock, 1M sorbitol at 29C & \(5,15,30 \mathrm{~min}\)
\end{tabular}

\section*{- Network Data}
- Use YeastNet (Lee et al., 2007) for gene-gene interactions (102,000 interactions among 5,900 yeast genes)
- Use independent experiments of Gasch et al. to estimate weights
- Pathways are defined using GO functions


\section*{Model and Results}
- Model: Let \(j\) and \(k\) be indices for time and levels of sorbitol
\[
\mathbb{E} Y_{11}=\Lambda \mu, \quad \mathbb{E} Y_{j k}=\Lambda\left(\mu+\alpha_{j}+\delta_{k}\right) \quad j, k=2,3
\]
- Temporal correlation is modeled directly via \(R\) (as \(A R(1)\) process)
- Results:
- ~ 3000 genes,
- 47 pathways showed significant changes of expression
- 24 pathways showed changes over time
- 29 pathways showed changes in response to different sorbitol levels
- 12 pathways showed both types of changes
- Significant pathways overlap with gene functions from Gasch et al.


Introduction Signal Detection on Networks Topology-Based Pathway Enrichment Analysis De-Novo Identification of Enriched Modules

PathNet

A Systematic Comparison

\section*{Expression Profiles}

Average Standardized Expression Levels of Pathways

- Induced and Suppressed Pathways
- Can observe the transient patterns of expressions as predicted by Gasch et al.

PathNet

\section*{Effect of Noise In Network Information}

Let \(\tilde{A}\) be observed network information, and \(A\) be the truth.
- It can be shown that, if \(\|\tilde{A}-A\|\) is small then, NetGSA still works (is asymptotically most powerful unbiased test)


(C)Ali Shojaie

SISG: Pathway \& Networks
\begin{tabular}{rl}
\(\quad\) Introduction & PathNet \\
Signal Detection on Networks & topologyGSA \\
Topology-Based Pathway Enrichment Analysis & SPIA \\
De-Novo Identification of Enriched Modules & NetGSA \\
& A Systematic Comparison
\end{tabular}

\section*{Metabolic Profiling in Bladder Cancer}

Targeted metabolic profiling of bladder cancer (BCa) \({ }^{5}\)
- 58 bladder cancer and adjacent benign samples
- Pathways information obtained from KEGG

- Varying number of identified metabolites per pathway (3-15)
- Q: Which pathways show differential activity in BCa ?

\footnotetext{
\({ }^{5}\) Putluri et al. (2012)
}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{} \\
\hline \multicolumn{8}{|l|}{©Ali Shojaie SISG: Pathway \& Networks} \\
\hline \multicolumn{8}{|l|}{\begin{tabular}{l}
Metabolic Profiling in BCa \\
Small pathway sizes \& significant overlap among pathways \\
pathways overlap
\end{tabular}} \\
\hline \multicolumn{8}{|l|}{©Ali Shojaie Existing methods may not work well...} \\
\hline
\end{tabular}


\section*{Significant Pathways}
- GSEA does not identify any pathway as differential
- GSA identifies Fatty Acid Biosynthesis as differential
- NetGSA identifies another 7 pathways corresponding to role of Amino Acid Metabolism in BCa, similar to Putluri et al (2012)

- Basic usage:
NetGSA(A, x, group, pathways)
- A: List of \(p \times p\) weighted adjacency matrices for each condition (e.g. normal vs cancer), to capture changes in the network
- pathways: a \(K \times p\) 0-1 matrix of pathway membership: pathways \(_{k, j}=1\) if gene/ \(\ldots /\) metabolite \(j\) in pathway \(k\)
- Output: test statistics and p-values for each pathway
- The NetGSA function takes a weighted A as input. The package includes functions to learn A for undirected networks from a (partial) list of network edges


\begin{tabular}{rl} 
& \begin{tabular}{l} 
Introduction \\
Signal Detection on Networks
\end{tabular} \\
PathNet \\
topologyGSA \\
Topology-Based Pathway Enrichment Analysis & SPIA \\
De-Novo Identification of Enriched Modules & NetGSA \\
& A Systematic Comparison
\end{tabular}

Comparison Using Synthetic Data (Ma, S., Michailidis, 2019)
- Comparison of topology-based pathway enrichment methods using two synthetic data sets
- Gene expression data \(p \approx 3000\)
- Metabolomics data \(p \approx 100\)
- In silico data sets with known signal:
1. Remove the original signal, but keep the correlation structure
2. Perturb means in one condition (differential expression) for nodes in selected pathways
3. Also use sample permutation to create data with equal correlation structure






Introduction
Signal Detection on Networks
Topology-Based Pathway Enrichment Analysis
De-Novo Identification of Enriched Modules

PathNet
topologyGSA
SPIA
NetGSA
A Systematic Comparison

\section*{Multi-Omics NetGSA}

Pan-cancer integration of expression, methylation and CNV in BRAF (TCGA data) \({ }^{6}\)
\({ }^{6}\) Zhang et al (2018)

Introduction
Signal Detection on Networks Topology-Based Pathway Enrichment Analysis De-Novo Identification of Enriched Modules

PathNet topologyGSA SPIA
NetGSA
A Systematic Comparison

\section*{Multi-Omics NetGSA}

Pan-cancer integration of expression, methylation and CNV in BRAF (TCGA data) \({ }^{6}\)

\({ }^{6}\) Zhang et al (2018)

Introduction

\section*{PathNet topologyGSA} SPIA NetGSA A Systematic Comparison

\section*{Multi-Omics NetGSA}

Pan-cancer integration of expression, methylation and CNV in BRAF (TCGA data) \({ }^{6}\)


\footnotetext{
\({ }^{6}\) Zhang et al (2018)
}

PathNet

A Systematic Comparison

\section*{Multi-Omics NetGSA}

Pan-cancer integration of expression, methylation and CNV in BRAF (TCGA data) \({ }^{6}\)


\footnotetext{
\({ }^{6}\) Zhang et al (2018)
}

\title{
Identifying Enriched Modules in Networks
}

\section*{Identifying Enriched Modules in Networks}

Two general strategies:
Assess the significance of data-driven modules (WGCNA):
1. Identify modules (network clustering, etc)
2. Assess the significance of modules
- Search for enriched (connected) subnetworks (often using greedy search methods)

\section*{Identifying Enriched Modules in Networks}

Two general strategies:
- Assess the significance of data-driven modules (WGCNA):
1. Identify modules (network clustering, etc)
2. Assess the significance of modules
- Search for enriched (connected) subnetworks (often using greedy search methods)
- Advantage: No need to rely on known pathways - especially useful when known pathways are not complete, etc
- Disadvantage: Interpretation may become challenging...

\section*{WGCNA \({ }^{7}\)}
- WGCNA is a method for constructing weighted gene co-expression networks (discussed in the next lecture), which also facilitates topology-based enrichment analysis, in a different way than many other topology-based methods

\footnotetext{
\({ }^{7}\) Horvath \& Zhang (2005); Langfelder et al (2008)
(C)Ali Shojaie

SISG: Pathway \& Networks
}
- WGCNA is a method for constructing weighted gene co-expression networks (discussed in the next lecture), which also facilitates topology-based enrichment analysis, in a different way than many other topology-based methods
- Here's how it works:
1. Estimate the co-expression network (more in the next lecture)
2. Find modules by clustering the nodes in the estimated network
3. Summarize the expressions of genes in each module using PCA (eigen-genes)
4. Test if the eigen-genes are associated with the outcome

\footnotetext{
\({ }^{7}\) Horvath \& Zhang (2005); Langfelder et al (2008)
(C)Ali Shojaie
}

Introduction Signal Detection on Networks
Topology-Based Pathway Enrichment Analysis De-Novo Identification of Enriched Modules

WGCNA
Walktrap

\section*{WGCNA}

Here's how it works:


Let's look at an example in R...

\section*{WGCNA}

Walktrap

\section*{WGCNA}

Here's how it works:


Let's look at an example in R...

\section*{Walktrap \({ }^{8}\)}
- Searches for connected modules containing significant genes
- Weights each edges based on the significance of its corresponding nodes
\[
w_{i j}=\left(\left|\mathrm{FC}_{i}\right|+\left|\mathrm{FC}_{j}\right|\right) / 2
\]
- Connected significant modules are found through community detection using a random walk with transition probability
\[
P_{i j}=\frac{w_{i j}}{\sum_{j} w_{i j}}
\]

\footnotetext{
\({ }^{8}\) Petrochilos et al (2013)
(C)Ali Shojaie SISG: Pathway \& Networks
}


\section*{Summary}
- Network-based methods (centrality-based, pathway topology, etc) rely on network information - helpful if correct network information avail
- What if network information is not available?


\title{
Pathway \& Network Analysis of Omics Data: Learning Undirected Networks
}

\author{
Ali Shojaie \\ Department of Biostatistics \\ University of Washington \\ faculty.washington.edu/ashojaie
}

Summer Institute for Statistical Genetics - 2023
(C)Ali Shojaie


\section*{Why Do We Need Network Inference?}
- Despite progress, our knowledge of interactions is limited.
- The entire genome is a vast landscape, and experiments for discovering networks are very expensive.
- From a statistical point of view, network estimation is related to estimation of covariance matrices, which has many independent applications in statistical inference and prediction (more about this later).
- Finally, and perhaps most importantly, gene and protein networks are dynamic and changes in these networks have been attributed to complex diseases.

\section*{Network Inference - An Overview}

\section*{Network Inference - An Overview}

Two general classes of network inference methods:
- Methods based on marginal measures of association:
- Co-expression Networks (based on linear measures of association)
- Methods based on mutual information (can accommodate non-linear associations)
- Methods based on conditional measures of association:
- Methods assuming (multivariate) normality (glasso, etc)
- Generalizations to allow for nonlinear dependencies (nonparanormal, etc)

\section*{Graphical Models}

\section*{Probabilistic Graphical Models \({ }^{1}\)}

Joint multivariate probability distribution where dependencies can be represented as a network.

\section*{Advantages:}
- Graphical models offer efficient factorized forms for joint distributions with easily interpretable dependencies.
- Conditional dependencies denoted via an edge in network.
- Convenient visual representation.

\footnotetext{
\({ }^{1}\) For a detailed introduction see Graphical Models, Exponential Families, and Variational Inference; Wainwright \& Jordan (2008)
}

\title{
Marginal Association Networks
}

Marginal Introduction
ciation Networks
Conditional Independence Graphs

\section*{Correlation Networks (Association Networks)}
- Simplest (and most-widely used!) method for estimating networks - key assumption: large correlation \(\equiv\) presence of an edge
- Let \(r(i, j)\) be correlation between \(X_{i}\) and \(X_{j}\); we claim an edge between \(i\) and \(j\) if \(|r(i, j)|>\tau\).
- \(\tau\) : a user-specified threshold (tuning parameter).

\section*{Correlation Networks (Association Networks)}
- Simplest (and most-widely used!) method for estimating networks - key assumption:
large correlation \(\equiv\) presence of an edge
- Let \(r(i, j)\) be correlation between \(X_{i}\) and \(X_{j}\); we claim an edge between \(i\) and \(j\) if \(|r(i, j)|>\tau\).
- \(\tau\) : a user-specified threshold (tuning parameter).


Correlation matrix


Thresholded correlation matrix

\section*{Limitations of Correlation Networks}
1. The estimation is highly dependent on the choice of \(\tau\).
2. Correlations capture linear associations, but many real-world relationships are nonlinear.
3. Large correlations can occur due to confounding.

\section*{Limitations of Correlation Networks}

The estimation is highly dependent on the choice of \(\tau\).

\section*{Limitations of Correlation Networks}

The estimation is highly dependent on the choice of \(\tau\).
- We can work with weighted co-expression networks (WGCNA)
- We can instead test \(H_{0}: r_{x y}=0\)
- A commonly used test is based on the Fisher transformation
\[
Z=\frac{1}{2} \ln \left(\frac{1+r}{1-r}\right)=\operatorname{artanh}(r) \sim_{H_{0}} N\left(0, \frac{1}{\sqrt{n-3}}\right)
\]

\section*{Limitations of Correlation Networks}

Correlations capture linear associations, but many real-world relationships are nonlinear.

\section*{Limitations of Correlation Networks}

Correlations capture linear associations, but many real-world relationships are nonlinear.


\section*{Limitations of Correlation Networks}

Correlations capture linear associations, but many real-world relationships are nonlinear.

\section*{Limitations of Correlation Networks}

Correlations capture linear associations, but many real-world relationships are nonlinear.
- We can use other measures of association, for instance, Spearman correlation or Kendal's \(\tau\).
- These methods define the correlation between two variables, based on the ranking of observations, and not their exact values.
- They can better capture non-linear associations.
- We can instead use mutual information; this has been used in many algorithms, e.g. ARACNE.

ARACNE: Algorithm for the Reconstruction of Accurate Cellular NEtworks \({ }^{2}\)
\({ }^{2}\) Margolin et al (2006)

ARACNE: Algorithm for the Reconstruction of Accurate Cellular NEtworks \({ }^{2}\)
1. Identifies statistically significant gene-gene co-regulation based on mutual information

\footnotetext{
\({ }^{2}\) Margolin et al (2006)
}

ARACNE: Algorithm for the Reconstruction of Accurate Cellular NEtworks \({ }^{2}\)
1. Identifies statistically significant gene-gene co-regulation based on mutual information
2. It then eliminates indirect relationships in which two genes are co-regulated through one or more intermediates

\footnotetext{
\({ }^{2}\) Margolin et al (2006)
(C)Ali Shojaie

SISG: Pathway \& Networks
}

Key Idea: Data Processing Inequality (DPI)


\section*{Key Idea: Data Processing Inequality (DPI)}

\[
I(A, C) \leq \min [I(A, B), I(B, C)]
\]
where
\[
I\left(g_{i}, g_{j}\right)=\log P\left(g_{i}, g_{j}\right) / P\left(g_{i}\right) P\left(g_{j}\right)
\]

Key Idea: Data Processing Inequality (DPI)

\[
I(A, C) \leq \min [I(A, B), I(B, C)]
\]
where
\[
I\left(g_{i}, g_{j}\right)=\log P\left(g_{i}, g_{j}\right) / P\left(g_{i}\right) P\left(g_{j}\right)
\]
- Look at every triplet and remove the weakest link
- Need to estimate marginal and joint (pairwise) probabilities (using Gaussian Kernel)

\section*{Algorithm Details}

\section*{Algorithm Details}
- The algorithm examines each gene triplet for which all pairwise MIs are greater than a cut-off and removes the edge with the smallest value based on DPI.

Algorithm Details
- The algorithm examines each gene triplet for which all pairwise MIs are greater than a cut-off and removes the edge with the smallest value based on DPI.
- Each triplet is analyzed even if its edges have been selected for removal by prior DPI applications to other triplets.
- The least of the three MIs can come from indirect interactions only, and checking against the DPI may identify gene pairs that are not independent, but still do not interact.

\section*{Rationale and Guarantees}
- If MIs are estimated with no errors, then ARACNE reconstructs the underlying interaction network exactly, if the network is a tree and has only pairwise interactions.
- The maximum MI spanning tree is a subnetwork of the network built by ARACNE.

\section*{Rationale and Guarantees}


Theorem. Let \(\pi_{i k}\) be the set of nodes forming the shortest path in the network between nodes \(i\) and \(k\). Then, if MIs can be estimated without errors, ARACNE reconstructs an interaction network without false positives edges, provided: (a) the network consists only of pairwise interactions, (b) for each \(j \in \pi_{i k}, I_{i j} \geq I_{i k}\).

Further, ARACNE does not produce any false negatives, and the network reconstruction is exact iff (c) for each directly connected pair \(i j\) and for any other node \(k\), we have \(I_{i j}>\min \left[I_{i k}, I_{j k}\right]\).

\section*{Performance on Synthetic Data}


\section*{Application: B-lymphocytes Expression Data}


\section*{Application: B-lymphocytes Expression Data}
- MYC (proto-oncogene) subnetwork (2063 genes)
- 29 of the 56 (51.8\%) predicted first neighbors biochemically validated as targets of the MYC transcription factor.
- New candidate targets identified, 12 experimentally validated.
- 11 proved to be true targets.
- Candidate targets not validated can possibly be correct too.

\section*{Introduction}

Marginal Association Networks Conditional Independence Graphs

\section*{Software}
- Implemented in the R-package minet:
source("http://bioconductor.org/biocLite.R")
biocLite("minet")
- Main estimation function aracne (mim, eps=0)
- mim: mutual information matrix
mim <- build.mim(syn.data, estimator="spearman")
- eps: threshold for setting an edge to zero, prior to searching over triplets

\section*{Limitations of Correlation Networks}

Large correlations can occur due to confounding.

\section*{Limitations of Correlation Networks}

Large correlations can occur due to confounding.
 Conditional Independence Graphs

Gaussian Graphical Models Graphical Models for Other Distributions

\section*{Markov Networks}

Markov network
An undirected graphical model that characterizes conditional dependence ( \(\equiv\) direct relationships).
- Edge: Two nodes are conditionally dependent.
- No edge: Two nodes are conditionally independent.
- Conditions on all other nodes.
\[
A \perp B \mid C
\]


Gaussian Graphical Models
Graphical Models for Other Distributions

\section*{Markov Networks - Conditional Dependence}

\section*{Regression Interpretation:}
- Imagine trying to predict the observations in Node A (response) by the observations of all other nodes (predictors).
- Node B predictive of Node A (with all other nodes in model).
- A is conditionally dependent on \(B\).
- Edge.
- Because of other nodes in model, Node B does not add any predictive value for Node A.
- \(A\) is conditionally independent of \(B\).
- No Edge.

 Conditional Independence Graphs

Gaussian Graphical Models Graphical Models for Other Distributions

\section*{Markov Networks - Conditional Dependence}

How can we learn conditional dependencies?
- \(A\) and \(B\) are conditionally independent given \(C\) if
\[
P(A, B \mid C)=P(A \mid C) P(B \mid C)
\]
- Generally difficult (need to estimate multivariate densities).
- Alternatively, can use nonparametric approaches, e.g. conditional mutual information - not easy in high dimensions.
- Often resort to models, or simple measures, such as partial correlations...

\section*{Partial Correlation}
- Partial correlation measures the correlation between \(A\) and \(B\) after the effect of the other variables are removed.
- In our example, this means correlation between shoe size and IQ, after adjusting for age.

\section*{Partial Correlation}
- Partial correlation measures the correlation between \(A\) and \(B\) after the effect of the other variables are removed.
- In our example, this means correlation between shoe size and IQ, after adjusting for age.
- The partial correlation between \(A\) and \(B\) given \(C\) is given by:
\[
\rho_{A B \cdot C} \equiv \rho(A, B \mid C)=\frac{\rho_{A B}-\rho_{A C} \rho_{B C}}{\sqrt{1-\rho_{A C}^{2}} \sqrt{1-\rho_{B C}^{2}}}
\]

\section*{Partial Correlation}
- Partial correlation measures the correlation between \(A\) and \(B\) after the effect of the other variables are removed.
- In our example, this means correlation between shoe size and IQ, after adjusting for age.
- The partial correlation between \(A\) and \(B\) given \(C\) is given by:
\[
\rho_{A B \cdot C} \equiv \rho(A, B \mid C)=\frac{\rho_{A B}-\rho_{A C} \rho_{B C}}{\sqrt{1-\rho_{A C}^{2}} \sqrt{1-\rho_{B C}^{2}}} .
\]
- Alternatively, regress \(A\) on \(C\) and get the residual, \(r_{A}\); do the same for \(B\) to get \(r_{B}\). The partial correlation between \(A\) and \(B\) give \(C\) is \(\operatorname{Cor}\left(r_{A}, r_{B}\right)\).

\section*{A Simple Example}
\[
\text { Correlation }=\left[\begin{array}{ccc}
1 & .8 & .7 \\
.8 & 1 & .8 \\
.7 & .8 & 1
\end{array}\right] \text { PartialCorr }=\left[\begin{array}{ccc}
1 & .6 & 0 \\
.6 & 1 & .6 \\
0 & .6 & 1
\end{array}\right]
\]

Introduction
Marginal Association Networks Conditional Independence Graphs

Gaussian Graphical Models Graphical Models for Other Distributions

\section*{A Simple Example}
Correlation \(=\left[\begin{array}{ccc}1 & .8 & .7 \\ .8 & 1 & .8 \\ .7 & .8 & 1\end{array}\right]\) PartialCorr \(=\left[\begin{array}{ccc}1 & .6 & 0 \\ .6 & 1 & .6 \\ 0 & .6 & 1\end{array}\right]\)
True Network


Introduction
Marginal Association Networks Conditional Independence Graphs

A Larger Example

\section*{A Larger Example}
- A network with 10 nodes and 20 edges

\section*{A Larger Example}
- A network with 10 nodes and 20 edges
- \(n=100\) observations

\section*{A Larger Example}
- A network with 10 nodes and 20 edges
- \(n=100\) observations
- Estimation using correlation \& partial correlation (20 edges)

Gaussian Graphical Models Graphical Models for Other Distributions

\section*{A Larger Example}
- A network with 10 nodes and 20 edges
- \(n=100\) observations
- Estimation using correlation \& partial correlation (20 edges)


\title{
Gaussian Graphical Models (GGMs)
}

Gaussian Graphical Models
Graphical Models for Other Distributions

\section*{Partial Correlation for Gaussian Random Variables}

Gaussian Graphical Models

\section*{Partial Correlation for Gaussian Random Variables}
- For Gaussian (multivariate normal) random variables, partial correlation between \(X_{i}\) and \(X_{j}\) given all other variables is given by the inverse of the (standardized) covariance matrix \(\Sigma\).

\section*{Partial Correlation for Gaussian Random Variables}
- For Gaussian (multivariate normal) random variables, partial correlation between \(X_{i}\) and \(X_{j}\) given all other variables is given by the inverse of the (standardized) covariance matrix \(\Sigma\).
- The \((i, j)\) entry in \(\Sigma^{-1}\) gives the partial correlation between \(X_{i}\) and \(X_{j}\) given all other variables \(X_{\backslash i, j}\).

\section*{Partial Correlation for Gaussian Random Variables}
- For Gaussian (multivariate normal) random variables, partial correlation between \(X_{i}\) and \(X_{j}\) given all other variables is given by the inverse of the (standardized) covariance matrix \(\Sigma\).
- The \((i, j)\) entry in \(\Sigma^{-1}\) gives the partial correlation between \(X_{i}\) and \(X_{j}\) given all other variables \(X_{\backslash i, j}\).
- Multivariate normal: \(X \sim N(0, \Sigma)\)
- \(\Theta \equiv \Sigma^{-1}=\) inverse covariance/precision/concentration matrix.
- Zeros in \(\Theta \Longrightarrow\) conditional independence!
- Edges correspond to non-zeros in \(\Theta\).

Gaussian Graphical Models Graphical Models for Other Distributions

\section*{Partial Correlation for Gaussian Random Variables}

(a)

(c)

(b)

(d)


Introduction
Marginal Association Networks Conditional Independence Graphs

Gaussian Graphical Models
Graphical Models for Other Distributions

\section*{Estimating GGMs}

From the discussion so far, to estimate the network, we can
1. Calculate the empirical covariance matrix: for (centered) \(n \times p\) data matrix \(X, S=(n-1)^{-1} X^{\top} X\).
2. Get the inverse of \(S\). Non-zero values of \(S^{-1}\) give the edges.

\section*{Estimating GGMs}

From the discussion so far, to estimate the network, we can
1. Calculate the empirical covariance matrix: for (centered) \(n \times p\) data matrix \(X, S=(n-1)^{-1} X^{\top} X\).
2. Get the inverse of \(S\). Non-zero values of \(S^{-1}\) give the edges.

While simple, this may not work well in practice, even with large samples!


Gaussian Graphical Models
Graphical Models for Other Distributions

\section*{Estimating GGMs in High Dimensions}

Many problems arise in high-dimensional settings, when \(p \gg n\).

Gaussian Graphical Models Graphical Models for Other Distributions

\section*{Estimating GGMs in High Dimensions}

Many problems arise in high-dimensional settings, when \(p \gg n\).
- First, \(S\) is not invertible if \(p>n\) !
- Even if \(p<n\), but \(n\) is not very large, we may still get poor estimates, and many false positives/negatives.

\section*{Gaussian Graphical Models}

Graphical Models for Other Distributions

\section*{Estimating GGMs in High Dimensions}

Many problems arise in high-dimensional settings, when \(p \gg n\).
- First, \(S\) is not invertible if \(p>n\) !
- Even if \(p<n\), but \(n\) is not very large, we may still get poor estimates, and many false positives/negatives.

True Graph


Est Graph
(2)
(1)


Gaussian Graphical Models
Conditional Independence Graphs

\section*{Estimating GGMs in High Dimensions}
- A number of methods have been recently proposed for estimating GGMs in high dimensions.
- The main idea in most of these methods is to use a regularization penalty, like the lasso.
- We discuss two approaches:
- neighborhood selection
- graphical lasso

Gaussian Graphical Models
Graphical Models for Other Distributions

\section*{The Lasso}
- The lasso involves finding \(\boldsymbol{\beta}\) that minimizes
\[
\left\|\mathbf{y}-\sum_{k=1}^{p} \mathbf{X}_{k} \boldsymbol{\beta}_{k}\right\|^{2}+\lambda \sum_{j}\left|\beta_{k}\right| .
\]

Gaussian Graphical Models
Graphical Models for Other Distributions

\section*{The Lasso}
- The lasso involves finding \(\boldsymbol{\beta}\) that minimizes
\[
\left\|\mathbf{y}-\sum_{k=1}^{p} \mathbf{X}_{k} \boldsymbol{\beta}_{k}\right\|^{2}+\lambda \sum_{j}\left|\beta_{k}\right|
\]
- Here \(\lambda\) is a tuning parameter
- When \(\lambda=0\), we get least squares!
- When \(\lambda\) is very large, we get \(\hat{\beta}=0\).

Gaussian Graphical Models
Graphical Models for Other Distributions

\section*{The Lasso}
- The lasso involves finding \(\boldsymbol{\beta}\) that minimizes
\[
\left\|\mathbf{y}-\sum_{k=1}^{p} \mathbf{X}_{k} \boldsymbol{\beta}_{k}\right\|^{2}+\lambda \sum_{j}\left|\beta_{k}\right| .
\]
- Here \(\lambda\) is a tuning parameter
- When \(\lambda=0\), we get least squares!
- When \(\lambda\) is very large, we get \(\hat{\beta}=0\).
- Equivalently, find \(\boldsymbol{\beta}\) that minimizes
\[
\left\|\mathbf{y}-\sum_{k=1}^{p} \mathbf{X}_{k} \boldsymbol{\beta}_{k}\right\|^{2}
\]
subject to the constraint that
\[
\sum_{k=1}^{p}\left|\beta_{k}\right| \leq s
\]

SISG: Pathway \& Networks

\section*{A Geometric Interpretation}


\begin{tabular}{|cc|}
\hline \begin{tabular}{r} 
Introduction \\
Marginal Association Networks \\
Conditional Independence Graphs
\end{tabular} & \begin{tabular}{c} 
Gaussian Graphical Models \\
Graphical Models for Other Distributions
\end{tabular} \\
Estimating GGMs in High Dimensions - Method 1
\end{tabular}

The idea behind neighborhood selection, is to estimate the graph by fitting a penalized regression of each variable on all other variables.
- Find neighbors of each node \(X_{j}\) by \(\Lambda_{1}\)-penalized regression or lasso:
\[
\underset{\beta^{j}}{\operatorname{minimize}}\left\|X_{j}-X_{\neq j} \beta^{j}\right\|_{2}^{2}+\lambda \sum_{k \neq j}\left|\beta_{k}^{j}\right|
\]

\section*{Estimating GGMs in High Dimensions - Method 1}

The idea behind neighborhood selection, is to estimate the graph by fitting a penalized regression of each variable on all other variables.
- Find neighbors of each node \(X_{j}\) by \(I_{1}\)-penalized regression or lasso:
\[
\underset{\beta^{j}}{\operatorname{minimize}}\left\|X_{j}-X_{\neq j} \beta^{j}\right\|_{2}^{2}+\lambda \sum_{k \neq j}\left|\beta_{k}^{j}\right|
\]
- The final estimate is found by combining all of the edges from these individual regression problems.
- Symmetry - \(\beta_{k}^{j}\) not always same as \(\beta_{j}^{k}\).
- Use min or max rule.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\[
\begin{array}{r}
\text { Introduction } \\
\text { Marginal Association Networks } \\
\text { Conditional Independence Graphs }
\end{array} \quad \begin{aligned}
& \text { Gaussian Gre } \\
& \text { Graphical M }
\end{aligned}
\]} \\
\hline \multicolumn{4}{|l|}{Estimating GGMs in High Dimensions - Method 2} \\
\hline \multicolumn{4}{|r|}{Estimate a sparse \(\Theta\) via penalized maximum likelihood estimation (MLE).} \\
\hline \multicolumn{4}{|c|}{Graphical Lasso (glasso)} \\
\hline \multicolumn{4}{|c|}{\(\underset{\Theta}{\operatorname{maximize}} \operatorname{logdet}(\Theta)-\operatorname{tr}(S \Theta)-\lambda\|\Theta\|_{1}\)} \\
\hline \multicolumn{4}{|r|}{\begin{tabular}{l}
Blue: Log-likelihood; logdet denotes the logarithm of the determinant of \(\Theta\) and \(\operatorname{tr}\) the trace (sum of diagonal elements) \(S \Theta\). \\
Red: Penalty term encourages zeros on the off-diagonal elements of \(\Theta\).
\end{tabular}} \\
\hline ©Ali Shojaie & e SISG: Pathw & \& Networks & \\
\hline
\end{tabular}

\section*{Comparing the Two Approaches}
- Neighborhood selection is an approximation for graphical lasso:
- Consider regression of \(X_{j}\) on \(X_{k}, j \neq k\)
- Then, the regression coefficient for neighborhood selection is related to the \(j, k\) element of \(\Theta\) :
\[
\beta_{k}^{j}=-\frac{\Theta_{j k}}{\Theta_{j j}}
\]

Neighborhood selection is an approximation for graphical lasso:
- Consider regression of \(X_{j}\) on \(X_{k}, j \neq k\)
- Then, the regression coefficient for neighborhood selection is related to the \(j, k\) element of \(\Theta\) :
\[
\beta_{k}^{j}=-\frac{\Theta_{j k}}{\Theta_{j j}}
\]
- Neighborhood selection is computationally more efficient, and may gives better estimates, but doesn't give an estimate of \(\Theta\) !

\section*{A Real Example}
- Flow cytometry proteomics in single cells (Sachs et al, 2003).
- \(p=11\) proteins measured in \(n=7466\) cells


Gaussian Graphical Models Graphical Models for Other Distributions Conditional Independence Graphs

\section*{How to Choose \(\lambda\) ?}
- \(\lambda\) modulates trade-off between model fit and network sparsity:
- \(\lambda=0\) gives a dense network (no sparsity).
- As \(\lambda\) increases, network becomes more sparse.
- A number of approaches proposed in the literature and used in practice
1. Cross-Validation - tends to yield overly dense networks.
2. Extended BIC — adjusted BIC for high dimensions.
3. Controlling the probability of falsely connecting disconnected components at level \(\alpha\) (Banerjee et al, 2008):
\[
\lambda(\alpha)=\frac{t_{n-2}\left(\alpha / 2 p^{2}\right)}{\sqrt{n-2+t_{n-2}\left(\alpha / 2 p^{2}\right)}},
\]
( \(t_{n-2}(\alpha)\) is the \((100-\alpha) \%\) quantile of \(t\)-dist with \(n-2\) d.f.)
4. Stability selection - Choose \(\lambda\) that gives the most stable network (R-package huge)

Gaussian Graphical Models
Graphical Models for Other Distributions

\title{
Other Types of Graphical Models
}

Gaussian Graphical Models
Graphical Models for Other Distributions

\section*{Nonparanormal (Gaussian Copula) Models}
- Suppose \(X \nsim N(0, \Sigma)\), but there exist monotone functions \(f_{j}, j=1, \ldots p\) such that \(\left[f_{1}\left(X_{1}\right), \ldots f_{p}\left(X_{p}\right)\right] \sim N(0, \Sigma)\)

\section*{Nonparanormal (Gaussian Copula) Models}
- Suppose \(X \nsim N(0, \Sigma)\), but there exist monotone functions \(f_{j}, j=1, \ldots p\) such that \(\left[f_{1}\left(X_{1}\right), \ldots f_{p}\left(X_{p}\right)\right] \sim N(0, \Sigma)\)
- \(X\) has a nonparanormal distribution \(X \sim \operatorname{NPN}_{p}(f, \Sigma)\).
- \(f\) and \(\Sigma\) are parameters of the distribution, and estimated from data.
- For continuous distributions, the nonparanormal family is the same as the Gaussian copula family

\section*{Nonparanormal (Gaussian Copula) Models}
- Suppose \(X \nsim N(0, \Sigma)\), but there exist monotone functions \(f_{j}, j=1, \ldots p\) such that \(\left[f_{1}\left(X_{1}\right), \ldots f_{p}\left(X_{p}\right)\right] \sim N(0, \Sigma)\)
- \(X\) has a nonparanormal distribution \(X \sim \operatorname{NPN}_{p}(f, \Sigma)\).
- \(f\) and \(\Sigma\) are parameters of the distribution, and estimated from data.
- For continuous distributions, the nonparanormal family is the same as the Gaussian copula family
- To estimate the nonparanomal network:
i) transform the data: \(\left[f_{1}\left(X_{1}\right), \ldots f_{p}\left(X_{p}\right)\right]\)
ii) estimate the network of the transformed data (e.g. calculate the empirical covariance matrix of the transformed data, and apply glasso or neighborhood selection)

\section*{A Related Procedure}
- Liu et al (2012) and Xue \& Zou (2012) proposed a closely related idea using rank-based correlation
- Let \(r_{j}^{i}\) be the rank of \(x_{j}^{i}\) among \(x_{j}^{1}, \ldots, x_{j}^{n}\) and \(\bar{r}_{j}=(n+1) / 2\) be the average rank
- Calculate Spearman's \(\rho\) or Kendall's \(\tau\)
\[
\begin{gathered}
\hat{\rho}_{j k}=\frac{\sum_{i=1}^{n}\left(r_{j}^{i}-\bar{r}_{j}\right)\left(r_{k}^{i}-\bar{r}_{k}\right)}{\sqrt{\sum_{i=1}^{n}\left(r_{j}^{i}-\bar{r}_{j}\right)^{2} \sum_{i=1}^{n}\left(r_{k}^{i}-\bar{r}_{k}\right)^{2}}} \\
\hat{\tau}_{j k}=\frac{2}{n(n-1)} \sum_{1 \leq i<i^{\prime} \leq n} \operatorname{sign}\left(\left(x_{j}^{i}-x_{j}^{i^{\prime}}\right)\left(x_{k}^{i}-x_{k}^{i^{\prime}}\right)\right)
\end{gathered}
\]

\section*{A Related Procedure}
- Liu et al (2012) and Xue \& Zou (2012) proposed a closely related idea using rank-based correlation
- Let \(r_{j}^{i}\) be the rank of \(x_{j}^{i}\) among \(x_{j}^{1}, \ldots, x_{j}^{n}\) and \(\bar{r}_{j}=(n+1) / 2\) be the average rank
- Calculate Spearman's \(\rho\) or Kendall's \(\tau\)
\[
\begin{gathered}
\hat{\rho}_{j k}=\frac{\sum_{i=1}^{n}\left(r_{j}^{i}-\bar{r}_{j}\right)\left(r_{k}^{i}-\bar{r}_{k}\right)}{\sqrt{\sum_{i=1}^{n}\left(r_{j}^{i}-\bar{r}_{j}\right)^{2} \sum_{i=1}^{n}\left(r_{k}^{i}-\bar{r}_{k}\right)^{2}}} \\
\hat{\tau}_{j k}=\frac{2}{n(n-1)} \sum_{1 \leq i<i^{\prime} \leq n} \operatorname{sign}\left(\left(x_{j}^{i}-x_{j}^{i^{\prime}}\right)\left(x_{k}^{i}-x_{k}^{i^{\prime}}\right)\right)
\end{gathered}
\]
- If \(X \sim \operatorname{NPN}_{p}(f, \Sigma)\), then \(\Sigma_{j k}=2 \sin \left(\rho_{j k} \pi / 6\right)=\sin \left(\tau_{j k} \pi / 2\right)\)
- Therefore, we can estimate \(\Sigma^{-1}\) by plugging in rank-based correlations into graphical lasso (R-package huge)

\section*{A Real Data Example}
- Protein cytometry data for cell signaling (Sachs et al, 2005)
- Transform the data using a Gaussian copula (Liu et al, 2009), giving marginal normality

\section*{Gaussian Graphical Models Graphical Models for Other Distributions}

\section*{A Real Data Example}
- Protein cytometry data for cell signaling (Sachs et al, 2005)
- Transform the data using a Gaussian copula (Liu et al, 2009), giving marginal normality
- Pairwise relationships still seem non-linear



- Shapiro-Wilk test rejects multivariate normality:
\[
p<2 \times 10^{-16}
\]

\section*{Graphical Models for Discrete Random Variables}
- In many cases, biological data are not Gaussian: SNPs, RNAseq, etc
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
 \\
Graphical Models for Discrete Random Variables \\
- In many cases, biological data are not Gaussian: SNPs, RNAseq, etc \\
- Need to estimate CIG for other distributions: binomial, poisson, etc
\end{tabular} & \\
\hline (C)Ali Shojaie SISG: Pathway \& Networks & 49 \\
\hline
\end{tabular}

\section*{Graphical Models for Discrete Random Variables}
- In many cases, biological data are not Gaussian: SNPs, RNAseq, etc
- Need to estimate CIG for other distributions: binomial, poisson, etc
- In this case, the estimators do not have a closed-form!
- A special case, which is computationally more tractable, is the class of pairwise MRFs

\section*{Pairwise Markov Random Fields}
- The idea of pairwise MRFs is to "assume" that only two-way interactions among variables exist
- The pairwise MRF associated with graph \(G\) over the random vector \(X\) is the family of probability distributions \(P(X)\) that can be written as
\[
P(X) \propto \exp \sum_{(j, k) \in E} \phi_{j k}\left(x_{j}, x_{k}\right)
\]
- For each edge \((j, k) \in E, \phi_{j k}\) is called the edge potential function
- For discrete random variables, any MRF can be transformed to an MRF with pairwise interactions by introducing additional variables \({ }^{3}\)
\({ }^{3}\) Wainwright \& Jordan (2008)

\section*{Graphical Models for Binary Random Variables}
- Suppose \(X_{1}, \ldots, X_{p}\) are binary random variables, corresponding to, e.g. SNPs, or DNA methylation


\section*{Graphical Models for Binary Random Variables}
- Suppose \(X_{1}, \ldots, X_{p}\) are binary random variables, corresponding to, e.g. SNPs, or DNA methylation
- A special case of discrete graphical models is the Ising model for binary random variables
\[
P_{\theta}(x)=\frac{1}{Z(\theta)} \exp \left\{\sum_{(j, k) \in E} \theta_{j k} x_{j} x_{k}\right\}
\]
- A pairwise MRF for binary data, with \(\phi_{j k}\left(x_{j}, x_{k}\right)=\theta_{j k} x_{j} x_{k}\)
- \(x^{i} \in\{-1,+1\}^{p}\)
- The partition function \(Z(\theta)\) ensures that distribution sums to 1
- \((j, k) \in E\) iff \(\theta_{j k} \neq 0\) !
\(\left.\begin{array}{|ll|}\hline \begin{array}{c}\text { Marginial Associaitithon Noutctionts } \\ \text { Conditional Independence Graphs }\end{array} & \begin{array}{l}\text { Gaussian Graphical Models } \\ \text { Graphical Models for Other Distributions }\end{array} \\ \text { Graphical Models for Binary Random Variables }\end{array}\right]\)

\section*{Graphical Models for Binary Random Variables}
- We can consider a neighborhood selection \({ }^{4}\) approach with an \(\ell_{1}\) (lasso) penalty to find the neighborhood of each node \(N(j)=\{k \in V:(j, k) \in E\}\)

\footnotetext{
\({ }^{4}\) Ravikumar et al (2010)
}

\section*{Graphical Models for Binary Random Variables}
- We can consider a neighborhood selection \({ }^{4}\) approach with an \(\ell_{1}\) (lasso) penalty to find the neighborhood of each node \(N(j)=\{k \in V:(j, k) \in E\}\)
For \(j=1, \ldots, p\), need to solve (after some algebra)
\(\min _{\theta}\left\{n^{-1} \sum_{i=1}^{n}\left[f\left(\theta ; x^{i}\right)-\sum_{k \neq j} \theta_{j k} x_{j}^{i} x_{k}^{i}+\lambda\left\|\theta_{-j}\right\|_{1}\right]\right\}\)
- \(f(\theta ; x)=\log \left\{\exp \left(\sum_{k \neq j} \theta_{j k} x_{k}\right)+\exp \left(-\sum_{k \in-j} \theta_{j k} x_{k}\right)\right\}\)

\footnotetext{
\({ }^{4}\) Ravikumar et al (2010)
(C)Ali Shojaie
}

\section*{Graphical Models for Binary Random Variables}
- We can consider a neighborhood selection \({ }^{4}\) approach with an \(\ell_{1}\) (lasso) penalty to find the neighborhood of each node \(N(j)=\{k \in V:(j, k) \in E\}\)
- For \(j=1, \ldots, p\), need to solve (after some algebra)
\[
\begin{aligned}
& \min _{\theta}\left\{n^{-1} \sum_{i=1}^{n}\left[f\left(\theta ; x^{i}\right)-\sum_{k \neq j} \theta_{j k} x_{j}^{i} x_{k}^{i}+\lambda\left\|\theta_{-j}\right\|_{1}\right]\right\} \\
& -f(\theta ; x)=\log \left\{\exp \left(\sum_{k \neq j} \theta_{j k} x_{k}\right)+\exp \left(-\sum_{k \in-j} \theta_{j k} x_{k}\right)\right\}
\end{aligned}
\]
- This is equivalent to solving \(p\) penalized logistic regression problems, which is straightforward (R-package glmnet)

\footnotetext{
\({ }^{4}\) Ravikumar et al (2010)
(C)Ali Shojaie

SISG: Pathway \& Networks
}

\section*{Other Non-Gaussian Distributions}
- Assume a pairwise graphical model
\[
P(X) \propto \exp \left\{\sum_{j \in V} \theta_{j} \phi_{j}\left(X_{j}\right)+\sum_{(j, k) \in E} \theta_{j k} \phi_{j k}\left(X_{j}, X_{k}\right)\right\}
\]
- Then, similar to the Ising model, graphical models can be learned for other members of the exponential family
- Poisson graphical models (for e.g. RNAseq), Multinomial graphical models, etc
- All of these can be learned using a neighborhood selection approach, using the glmnet package \({ }^{5}\)
- We can even learn networks with multiple types of nodes (gene expression, SNPs, and CNVs) \({ }^{6}\)

\footnotetext{
\({ }^{5}\) Yang et al (2012)
\({ }^{6}\) Yang et al (2014), Chen et al (2015)
}


\section*{Introduction \\ A General Approach for Estimation of Graphical Models}
- Consider \(n\) iid observations from a \(p\)-dimensional random vector \(x=\left(X_{1}, \ldots, X_{p}\right) \sim \mathcal{P}\)
- Consider the (undirected) graph \(G=(V, E)\) with vertices \(V=\{1, \ldots, p\}\)
- Want to estimate edges \(E \subset V \times V\) that satisfy \(\forall j \in V, \exists N(j)\) such that:
\(p_{j}\left(X_{j} \mid\left\{X_{k}, k \neq j\right\}\right)=p_{j}\left(X_{j} \mid\left\{X_{k}: k \in N(j)\right\}\right)=p_{j}\left(X_{j} \mid\left\{X_{k}:(k, j) \in E\right\}\right)\)
- \(N(j)\) is the minimal set of variables on which the conditional densities depend

Introduction
Marginal Association Networks Conditional Independence Graphs

Gaussian Graphical Models
Graphical Models for Other Distributions

\section*{Estimating Conditional Independencies}

Question: how to condition?

Question: how to condition?
- Approach 1: Estimate the joint density \(f\left(X_{1}, \ldots, X_{p}\right)\); then get the conditionals \(f_{j}\left(X_{j} \mid X_{-j}\right)\)

\section*{Estimating Conditional Independencies}

Question: how to condition?
- Approach 1: Estimate the joint density \(f\left(X_{1}, \ldots, X_{p}\right)\); then get the conditionals \(f_{j}\left(X_{j} \mid X_{-j}\right)\)
- Efficient, coherent
- Computationally challenging
- Restrictive: how many joint distributions do you know?
- Hard to check if assumptions hold! Conditional Independence Graphs

\section*{Estimating Conditional Independencies}

Question: how to condition?
- Approach 1: Estimate the joint density \(f\left(X_{1}, \ldots, X_{p}\right)\); then get the conditionals \(f_{j}\left(X_{j} \mid X_{-j}\right)\)
- Efficient, coherent
- Computationally challenging
- Restrictive: how many joint distributions do you know?
- Hard to check if assumptions hold!
- Approach 2: Estimate the conditionals directly \(f_{j}\left(X_{j} \mid X_{-j}\right)\)

\section*{Estimating Conditional Independencies}

Question: how to condition?
- Approach 1: Estimate the joint density \(f\left(X_{1}, \ldots, X_{p}\right)\); then get the conditionals \(f_{j}\left(X_{j} \mid X_{-j}\right)\)
- Efficient, coherent
- Computationally challenging
- Restrictive: how many joint distributions do you know?
- Hard to check if assumptions hold!
- Approach 2: Estimate the conditionals directly \(f_{j}\left(X_{j} \mid X_{-j}\right)\)
- Computationally easy
- Leads to easy \& flexible models (regression)!
- May not be efficient or coherent

\section*{A Semi-parametric Approach}

\section*{A Semi-parametric Approach}
- Consider additive non-linear relationships (additive model):
\[
X_{j} \mid X_{-j}=\sum_{k \neq j} f_{j k}\left(X_{k}\right)+\varepsilon
\]

\section*{A Semi-parametric Approach}
- Consider additive non-linear relationships (additive model):
\[
X_{j} \mid X_{-j}=\sum_{k \neq j} f_{j k}\left(X_{k}\right)+\varepsilon
\]
- Then if \(f_{j k}\left(X_{k}\right)=f_{k j}\left(X_{j}\right)=0\), we conclude that \(X_{j}\) and \(X_{k}\) are conditionally independent, given the other variables
\[
\begin{aligned}
\text { Introduction } & \text { Gaussian Graphical Models } \\
\text { Marginal Association Networks } & \text { Graphical Models for Other Distributions } \\
\text { Conditional Independence Graphs } &
\end{aligned}
\]

\section*{A Semi-parametric Approach}
- Consider additive non-linear relationships (additive model):
\[
X_{j} \mid X_{-j}=\sum_{k \neq j} f_{j k}\left(X_{k}\right)+\varepsilon
\]
- Then if \(f_{j k}\left(X_{k}\right)=f_{k j}\left(X_{j}\right)=0\), we conclude that \(X_{j}\) and \(X_{k}\) are conditionally independent, given the other variables
- In other words, we assume that conditional distributions and conditional means depend on the same set of variables

\section*{A Semi-parametric Approach}
- Consider additive non-linear relationships (additive model):
\[
X_{j} \mid X_{-j}=\sum_{k \neq j} f_{j k}\left(X_{k}\right)+\varepsilon
\]
- Then if \(f_{j k}\left(X_{k}\right)=f_{k j}\left(X_{j}\right)=0\), we conclude that \(X_{j}\) and \(X_{k}\) are conditionally independent, given the other variables
- In other words, we assume that conditional distributions and conditional means depend on the same set of variables
- We then use a semi-parametric approach for estimating the conditional dependencies

\section*{SpaCE JAM \({ }^{7}\)}
- Sparse Conditional Estimation with Jointly Additive Models (SpaCE JAM)
\[
\underset{f_{j} \in \mathcal{F}}{\operatorname{minimize}} \frac{1}{2 n} \sum_{j=1}^{p}\left\|x_{j}-\sum_{k \neq j} f_{j k}\left(x_{k}\right)\right\|_{2}^{2}+\lambda \sum_{k>j}\left(\left\|f_{j k}\left(x_{k}\right)\right\|_{2}^{2}+\left\|f_{k j}\left(x_{j}\right)\right\|_{2}^{2}\right)^{1 / 2}
\]
- \(f_{j k}\left(x_{k}\right)=\Psi_{j k} \beta_{j k}\)
- \(\Psi_{j k}\) is a \(n \times r\) matrix of basis functions for \(f_{j k}\)
- \(\beta_{j k}\) is an \(r\)-vector of coefficients
- The standardized group lasso penalty for functions \(\left\|f_{j k}\right\|_{2}\)
- This is a convex problem, and block coordinate descent converges to the global minimum

\footnotetext{
\({ }^{7}\) Voorman et al (2014), R-package spacejam
(C)Ali Shojaie

SISG: Pathway \& Networks
}

\section*{Other Flexible Procedures}
- Forest density estimation (Liu et al, 2011) assumes that underlying graph is a forest, and estimates the bivariate densities non-parametrically.
- Graphical random forests (Fellinghauer et al, 2013) uses random forests to flexibly model conditional means
- They consider conditional dependencies through conditional mean
- They allow for general random variables, discrete or continuous
- Use a random forest to estimate \(E\left[X_{j} \mid X_{\backslash j}\right]\) non-parametrically
- Theoretical properties have not yet been justified

\section*{Comparison on Simulated Data}
non-linear relationships ( \(p=100, n=50\) )


\section*{Estimation of Cell Signaling Network}

(C)Ali Shojaie

\section*{Other Extensions of GGMs}
- Multiple Graphical Models
- For groups of observations, estimate graphical models with shared structure across groups and individual structure within groups.
- Time Varying Graphical Models
- Smoothly varying graph over time estimated via local kernel smoothers.
- Change points in graph structure over time estimated via fusion penalties.
- Latent Variable Graphical Models
- Assume observed features are dependent on latent variables which exhibit a low-rank effect. Estimate a sparse (graph structure) plus low-rank inverse covariance matrix.


\section*{Bayesian Networks}
```

M}\begin{array}{r}{\mathrm{ Introduction}}
{\mathrm{ Estimating DAGs}}
DAGs for Time Series Data

```

\section*{Bayesian Networks}
- Bayesian networks are a special class of graphical models defined on directed acyclic graphs.

\section*{Bayesian Networks}
- Bayesian networks are a special class of graphical models defined on directed acyclic graphs.
- Directed acyclic graphs (DAGs) are defined as graphs that:
i) only have directed edges, i.e. if \(A_{i j} \neq 0, A_{j i}=0\);
ii) there are no cycles in the network.
Introduction
Estimating DAGs
DAGs for Time Series Data

\section*{Bayesian Networks}
- Bayesian networks are a special class of graphical models defined on directed acyclic graphs.
- Directed acyclic graphs (DAGs) are defined as graphs that:
i) only have directed edges, i.e. if \(A_{i j} \neq 0, A_{j i}=0\);
ii) there are no cycles in the network.
- Bayesian networks are widely used to model causal relationships between variables.

\section*{Introduction \\ Estimating DAGs \\ DAGs for Time Series Data}

\section*{Bayesian Networks}
- Bayesian networks are a special class of graphical models defined on directed acyclic graphs.
- Directed acyclic graphs (DAGs) are defined as graphs that:
i) only have directed edges, i.e. if \(A_{i j} \neq 0, A_{j i}=0\);
ii) there are no cycles in the network.
- Bayesian networks are widely used to model causal relationships between variables.
- Note that correlation \(\neq\) causation!
Introduction
Estimating DAGs
DAGs for Time Series Data

\section*{Bayesian Networks}
- Bayesian networks are a special class of graphical models defined on directed acyclic graphs.
- Directed acyclic graphs (DAGs) are defined as graphs that:
i) only have directed edges, i.e. if \(A_{i j} \neq 0, A_{j i}=0\);
ii) there are no cycles in the network.
- Bayesian networks are widely used to model causal relationships between variables.
- Note that correlation \(\neq\) causation!
- Therefore, we (usually) cannot estimate Bayesian networks from (partial) correlations

\section*{Why Bayesian Networks?}

\section*{Introduction}

Estimating DAGs
DAGs for Time Series Data

\section*{Why Bayesian Networks?}

Many biological networks include directed edges:

\section*{Why Bayesian Networks?}

Many biological networks include directed edges:
- In gene regulatory networks, protein products of transcription factors can alter the expression of target genes, but the target genes (usually) don't have a direct effect on the expression of transcription factors



\section*{Why Bayesian Networks?}

Many biological networks include directed edges:
- Biochemical reactions in metabolic networks, may not reversible, and in that case, one metabolite may affect the other, but the relationship is ont reciprocated

DAGs for Time Series Data \begin{tabular}{r} 
Introduction \\
Estimating DAGs
\end{tabular}

\section*{Why Bayesian Networks?}

However, biological networks may not be DAGs:

\section*{Introduction}

DAGs for Time Series Data

\section*{Why Bayesian Networks?}

However, biological networks may not be DAGs:
- Gene regulatory networks, signaling networks and metabolic networks, may all contain feedback loops (positive/negative)

which make estimation even more difficult!

\section*{Introduction}
``` Estimating DAGs
DAGs for Time Series Data
```


## What's the Difference?

## What's the Difference?

- Bayesian networks are widely used to model causal relationships between variables.


## What's the Difference?

- Bayesian networks are widely used to model causal relationships between variables.
- Undirected networks (e.g. GGM) provide information about associations among variables; while this greatly helps in the study of biological systems, in some cases, they are not enough (e.g. drug development).


## Introduction Estimating DAGs <br> DAGs for Time Series Data

## What's the Difference?

- Bayesian networks are widely used to model causal relationships between variables.
- Undirected networks (e.g. GGM) provide information about associations among variables; while this greatly helps in the study of biological systems, in some cases, they are not enough (e.g. drug development).
- The main difference is the direction of the edges; however, it turns out that there are also some differences in terms of structure/skeleton of the network (more on this later).


## What's the Difference?

- Bayesian networks are widely used to model causal relationships between variables.
- Undirected networks (e.g. GGM) provide information about associations among variables; while this greatly helps in the study of biological systems, in some cases, they are not enough (e.g. drug development).
- The main difference is the direction of the edges; however, it turns out that there are also some differences in terms of structure/skeleton of the network (more on this later).
- We can estimate undirected networks from observational data, i.e. steady-state gene expression data, but usually they are not enough for estimation of directed networks
- Finally, estimating directed networks is (much) more difficult


## Introduction <br> Estimating DAGs <br> DAGs for Time Series Data

## Why is estimation more difficult?

- Estimation of Bayesian networks requires estimating both the skeleton of the network (i.e. whether there is an edge between $i$ and $j$ ) and also the direction of the edges.

Introduction

## Why is estimation more difficult?

- Estimation of Bayesian networks requires estimating both the skeleton of the network (i.e. whether there is an edge between $i$ and $j$ ) and also the direction of the edges.
- While estimation of skeleton is possible, direction of edges cannot be in general learned from observational data, no matter how many samples we have (this is referred to as observational equivalence). Consider this simple graph:



## Introduction <br> Estimating DAGs <br> DAGs for Time Series Data

## Why is estimation more difficult?

- Estimation of Bayesian networks requires estimating both the skeleton of the network (i.e. whether there is an edge between $i$ and $j$ ) and also the direction of the edges.
- While estimation of skeleton is possible, direction of edges cannot be in general learned from observational data, no matter how many samples we have (this is referred to as observational equivalence). Consider this simple graph:

- Then, no matter what $n$ is, we cannot distinguish between $X_{1} \rightarrow X_{2}$ and $X_{2} \rightarrow X_{1}$, so basically what we see is:


```
Introduction
Estimating DAGs
DAGs for Time Series Data
```


## Directed Graphs: Some Terminology

- The parents of node $j$ are $\{k: k \rightarrow j\}$, we denote this by $\mathrm{pa}_{j}$ or pa(j)
- The children of node $j$ are $\{k: j \rightarrow k\}$
- Two vertices connected by an edge are called adjacent


## Introduction <br> Estimating DAGs <br> DAGs for Time Series Data

## Directed Graphs: Some Terminology

- The parents of node $j$ are $\{k: k \rightarrow j\}$, we denote this by $\mathrm{pa}_{j}$ or pa(j)
- The children of node $j$ are $\{k: j \rightarrow k\}$
- Two vertices connected by an edge are called adjacent
- A path between two nodes $i$ and $j$ is a sequence of distinct adjacent nodes:
- e.g. $i \leftarrow k_{1} \rightarrow k_{2} \rightarrow k_{3} \leftarrow j$
- In a DAG with $p$ nodes, there cannot be a path longer than $p-1$ (why?)
- There can be multiple paths between two nodes

```
Introduction
Estimating DAGs
DAGs for Time Series Data
```


## Directed Graphs: Some Terminology

- The parents of node $j$ are $\{k: k \rightarrow j\}$, we denote this by $\mathrm{pa}_{j}$ or pa(j)
- The children of node $j$ are $\{k: j \rightarrow k\}$
- Two vertices connected by an edge are called adjacent
- A path between two nodes $i$ and $j$ is a sequence of distinct adjacent nodes:
- e.g. $i \leftarrow k_{1} \rightarrow k_{2} \rightarrow k_{3} \leftarrow j$
- In a DAG with $p$ nodes, there cannot be a path longer than $p-1$ (why?)
- There can be multiple paths between two nodes
- $i$ is an ancestor of $j$ if there is a directed path of length $\geq 1$ from $i$ to $j: i \rightarrow \cdots \rightarrow j$ (or if $i=j$ )
- If $i$ is an ancestor of $j$, then $j$ is said to be a descendant of $i$


## Introduction <br> Estimating DAGs <br> DAGs for Time Series Data

Directed Graphs: Some Terminology



Directed Graphs: Somen for Time Series Data $\begin{gathered}\text { Estimating DAGs } \\ \text { DAGs terminolooy }\end{gathered}$
An important concept in DAGs is colliders (aka "inverted forks"):

```
Introduction
Estimating DAGs
DAGs for Time Series Data
```


## Directed Graphs: Some Terminology

An important concept in DAGs is colliders (aka "inverted forks"):

- $k$ is a collider on a path between $i$ and $j$ if it is a not an end-point of the path, and the path is of the form

$$
i \ldots \rightarrow k \leftarrow \ldots j
$$

## Introduction Estimating DAGs <br> DAGs for Time Series Data

## Directed Graphs: Some Terminology

An important concept in DAGs is colliders (aka "inverted forks"):

- $k$ is a collider on a path between $i$ and $j$ if it is a not an end-point of the path, and the path is of the form

$$
i \ldots \rightarrow k \leftarrow \ldots j
$$

- $k$ is an non-collider if it is not an end-point, and is not a collider on a path:
- $\quad \ldots \leftarrow k \leftarrow \ldots j$
- $\quad \ldots \rightarrow k \rightarrow \ldots j$
$\rightarrow i \ldots \leftarrow k \rightarrow \ldots j$

```
Introduction
Estimating DAGs
DAGs for Time Series Data
```


## Directed Graphs: Some Terminology

An important concept in DAGs is colliders (aka "inverted forks"):

- $k$ is a collider on a path between $i$ and $j$ if it is a not an end-point of the path, and the path is of the form

$$
i \ldots \rightarrow k \leftarrow \ldots j
$$

- $k$ is an non-collider if it is not an end-point, and is not a collider on a path:
$-i \ldots \leftarrow k \leftarrow \ldots j$
- $i \ldots \rightarrow k \rightarrow \ldots j$
- $i \ldots \leftarrow k \rightarrow \ldots j$
- Note: colliders and non-colliders are defined w.r.t. paths; a collider in one path can be a non-collider in another!


## Introduction Estimating DAGs <br> DAGs for Time Series Data

Directed Graphs: Some Terminology



- What are the colliders on paths between $1 \& 4,3 \& 4,2 \& 6$ ?


## Introduction <br> Estimating DAGs <br> DAGs for Time Series Data <br> Directed Graphs: Some Terminology



- What are the colliders on paths between $1 \& 4,3 \& 4,2 \& 6$ ?
- What are the non-colliders on paths between $1 \& 4,3 \& 4,2 \& 6$ ?
Introduction
Estimating DAGs
DAGs for Time Series Data


## Estimating Directed Graphs

- The presence of colliders makes the estimation of directed graphs very challenging...

- Genetic information for Mother, Father, Daughter and Son in form of dominant/recessive genotype (A/a) for a single gene
- Then each individual can have one of three states: $A A, a a, A a$

DAGs for Time Series Data Other Estimation Methods

## Estimating Directed Graphs

- Conditioning on all other nodes, gives additional moral (!!) edges ( $\Rightarrow$ moral graph)



## Estimating Directed Graphs

- Conditioning on all other nodes, gives additional moral (!!) edges ( $\Rightarrow$ moral graph)

- Learning the skeleton of DAGs from observational data requires finding right conditioning set
- Naively, this is done by searching over all possible subset of other $p-2$ nodes - NP-hard with complexity $O\left(2^{p^{2}}\right)$ !!


## Introduction Estimating DAGs <br> DAGs for Time Series Data <br> Estimation of DAGs from Observational Data

Two general classes of algorithms for estimating DAGs:

- constraint-based methods
- Often based on tests for Cl ; provide theoretical guarantees
- PC algorithm, Grow-Shrink
- score \& search methods
- They assign a "score" to each estimated graph (e.g. based on likelihood, Bayes factor, AIC etc)
- Greedy search to find the best scoring graph (Hill Climbing)
- "hybrid" methods
- Usually first find the Markov blanket (e.g. the moral graph)
- Then search in a restricted space (Max-Min Hill Climbing)


## Constraint-Based Methods

- Need a conditional independence test (to test if $X \Perp Y \mid Z$ )
- For Gaussian data, we can use partial correlation (or the Fisher's Z-transformation of it)
- For Binary data, we can use logOR
- In general, we can use conditional mutual information
- The idea is to see if there exists a set $S$, for each pair of nodes $j, j^{\prime}$, such that $X_{j} \Perp X_{j^{\prime}} \mid S$
- $S$ can have 0 to p -2 members! usually stop at some $k \ll p$
- I.e., for each pair of variables (all $\binom{p}{2}$ of them), we need to look at all possible subsets of remaining variables!!
- These methods find the DAG skeleton (conditional independence is symmetric) - will talk about direction later


## PC Algorithm (Spirtes et al, 1993)

- One of the first algorithms for learning structure of DAGs
- Efficient implementations that allow for learning DAG structures with $p$ up to $\sim 1000$
- R-package pcalg (Kalisch \& Buhlmann, 2007)
- The algorithm starts with a complete graph (i.e. fully connected)
- Then for each pair of nodes $j, j^{\prime}$ it finds a separating set, $S$ such that $X_{j} \Perp X_{j^{\prime}} \mid S$
- If a set is found, then remove the edge, otherwise, $j-j^{\prime}$

```
 Introduction
Estimating DAGs

\section*{PC Algorithm (Spirtes et al, 1993)}

Start with a complete undirected graph, and set \(i=0\)
Repeat
- For each \(j \in V\)
- For each \(j^{\prime} \in \operatorname{ne}(j)\)
- Determine if \(\exists S \subset \operatorname{ne}(j) \backslash\left\{j^{\prime}\right\}\) with \(|S|=i\)
- Test for Cl : is \(X_{j} \Perp X_{j^{\prime}} \mid S\) ?
- If such an \(S\) exists, then set \(S_{j j^{\prime}}=S\), remove \(j-j^{\prime}\) edge
- \(i=i+1\)

Until \(\mid\) ne \((j) \mid<i\) for all \(j\)


```

Introduction Estimating DAGs
DAGs for Time Series Data
PC Algorithm
Other Estimation Methods

```

\section*{Analysis of Protein Flow Cytometry using pcalg}
```

> dat <- read.table('sachs.data')
> p <- ncol(dat)
> n <- nrow(dat)

## define independence test (partial correlations)

> indepTest <- gaussCItest

## define sufficient statistics

> suffStat <- list(C=cor(dat), n=n)

## estimate CPDAG

> pc.fit <- pc(suffStat, indepTest, p, alpha=0.1, verbose=FALSE)
> plot(pc.fit, main='PC Algorithm')

```
- Need to determine the type of Cl test (indepTest), and sufficient statistics (suffStat)
- Also need to choose \(\alpha\) (alpha), the probability of false positive for selecting edges.
- Larger values of \(\alpha\) allow more edges (not adjusted for multiple comparisons)
- The algorithm works faster when \(\alpha\) is small

But wait, where did the directions come from? And why are only some of the edges directed?

\section*{Markov Equivalence}

Consider the following 4 graphs

```

                                    Introduction
    Estimating DAGs

## Markov Equivalence

Consider the following 4 graphs


Which graphs satisfy $X_{1} \Perp X_{3} \mid X_{2}$ ?

PC Algorithm
Other Estimation Methods

## Markov Equivalence

Consider the following 4 graphs
 <br> \title{
Markov Equivalence
} <br> \title{
Markov Equivalence
}

Consider the following 4 graphs


In the first 3 graphs, $X_{1} \Perp X_{3} \mid X_{2}$ ?
Two graphs that imply the same Cl relationships via d-separation are called Markov equivalent

## Representation of Markov Equivalence

- Markov equivalent graphs correspond to the same probability distribution and cannot be distinguished from each other based on observations!
- Therefore, the direction of edges that correspond to Markov equivalent graphs cannot be determined
- We show these edges using undirected edges in the graph
- The resulting graph is a CPDAG (completed partially directed acyclic graph), and is really the best we can do!

Introduction

Estimating DAGs $\quad$| PC Algorithm |
| :--- |
| Other Estimation Methods |

## Finding Partial Directions in DAGs

- Partial directions are determined from unmarried colliders:
- For each unmarried collider $i-k-j$
- If $k \notin S_{i j}$, orient $i-k-j$ as $i \rightarrow k \leftarrow j$
- In addition to the above rule,
- Orient each remaining unmarried collider $i \rightarrow k-j$ as $i \rightarrow k \rightarrow j$
- If $i \rightarrow k \rightarrow j$ and $i-j$ then orient as $i \rightarrow j$
- If $i-m-j$ and $i \rightarrow k \leftarrow j$ are unmarried colliders and $m-k$, then orient as $m \rightarrow k$


PC Algorithm Other Estimation Methods

## The bnlearn package

- There are a couple of R-packages for learning (CP)DAGs, including pclag, bnlearn, deal
- bnlearn implements a number of estimation methods, both constraint-based and search-based:
- constraint-based algorithms:
- Grow-Shrink (GS)
- Incremental Association Markov Blanket (IAMB)
- Fast Incremental Association (Fast-IAMB)
- Interleaved Incremental Association (Inter-IAMB)
- score-based algorithms:
- Hill Climbing (HC)
- Tabu Search (Tabu)
- hybrid learning algorithms:
- Max-Min Hill Climbing (MMHC)
- General 2-Phase Restricted Maximization (RSMAX2)


## Analysis of Protein Flow Cytometry using bnlearn

```
> dag1
 Bayesian network learned via Constraint-based methods
 model:
 [partially directed graph]
 nodes: 11
 arcs: 26
 undirected arcs: 3
 directed arcs: 23
 average markov blanket size: 6.00
 average neighbourhood size: 4.73
 average branching factor: 2.09
 learning algorithm: Grow-Shrink
 conditional independence test: Pearson's Linear Correlation
 alpha threshold:
 0.01
 tests used in the learning procedure: 2029
 optimized: TRUE
```

Analysis of Protein Flow Cytometry using bnlearn
> dag2
Bayesian network learned via Score-based methods
model:
[PKC] [pjnk|PKC] [P44|pjnk] [pakts|P44:PKC:pjnk] [praf|P44:pakts:PKC] [PIP3|pakts
[plcg|praf:PIP3:P44:pakts:pjnk] [pmek|praf:plcg:PIP3:P44:pakts:pjnk]
[PIP2|plcg:PIP3:PKC] [PKA|praf:pmek:plcg:P44:pakts:pjnk]
[P38|pmek:plcg:pakts:PKA:PKC:pjnk]
nodes: 11
arcs: 35
undirected arcs: 0
directed arcs: 35
average markov blanket size: 8.00
average neighbourhood size: 6.36
average branching factor: 3.18
learning algorithm: Hill-Climbing
score:
Bayesian Information Criterion (Gaussia
penalization coefficient: 4.459057
tests used in the learning procedure: 505
optimized: TRUE


The two graphs are quite different
> compare(dag1,dag3)
\$tp
[1] 9
\$fp
[1] 26
\$fn
[1] 17



- The estimated graphs are quite different
- The constrained-based methods seem to have more similarities (at least in terms of structure)
- The estimate from HC has more edges; we can change e.g. the score, but cannot directly control the sparsity


## Penalized Likelihood Estimation of DAGs

- Causal relationships (and probability distributions) on DAGs can be represented using structural equation models

$$
X_{i}=f_{i}\left(\mathrm{pa}_{i}, \gamma_{i}\right), \quad i=1, \ldots, p
$$

- And, for Gaussian random variables, we can write

$$
X_{i}=\sum_{j \in \mathrm{pa}_{i}} \rho_{j i} X_{j}+\gamma_{i}, \quad i=1, \ldots, p
$$

## Penalized Likelihood Estimation of DAGs

- Causal relationships (and probability distributions) on DAGs can be represented using structural equation models

$$
X_{i}=f_{i}\left(\mathrm{pa}_{i}, \gamma_{i}\right), \quad i=1, \ldots, p
$$

- And, for Gaussian random variables, we can write

$$
X_{i}=\sum_{j \in \mathrm{pa}_{i}} \rho_{j i} X_{j}+\gamma_{i}, \quad i=1, \ldots, p
$$



## Penalized Likelihood Estimation of DAGs




## Penalized Likelihood Estimation of DAGs

$$
\begin{aligned}
& \mathrm{x}_{1} \xrightarrow{\rho_{12}} \xrightarrow{\rho_{23}} \mathrm{x}_{3} \\
& x_{1}=\gamma_{1} \\
& x_{2}=\rho_{12} x_{1}+\gamma_{2}=\rho_{12} \gamma_{1}+\gamma_{2} \\
& x_{3}=\rho_{23} x_{2}+\gamma_{3}=\rho_{23} \rho_{12} \gamma_{1}+\rho_{23} \gamma_{2}+\gamma_{3}
\end{aligned}
$$

Thus $X=\Lambda \gamma$ where

$$
\Lambda=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\rho_{12} & 1 & 0 \\
\rho_{12} \rho_{23} & \rho_{23} & 1
\end{array}\right)
$$

## Penalized Likelihood Estimation of DAGs

## Penalized Likelihood Estimation of DAGs

- It turns out that $\Lambda=(I-A)^{-1}$, where $A$ is the weighted adjacency matrix of the DAG ${ }^{1}$
- Thus, for Gaussian random variables, if we know the ordering of the variables (which is a BIG assumption!)

```
after some math...
```

we can estimate the adjacency matrix of DAGs, by minimizing the log-likelihood as a function of $A$ :

$$
\hat{A}=\underset{A \in \mathcal{A}}{\arg \min }\left\{\operatorname{tr}\left[(I-A)^{\top}(I-A) S\right]\right\}
$$

[^4]
## Penalized Likelihood Estimation of DAGs

- In high dimensions, we can solve a penalized version of this problem, e.g. by adding a lasso penalty $\lambda \sum_{i<j}\left|A_{i j}\right|$
- It turns out that, the problem can be reformulated as $(p-1)$ lasso problems, where we regress each variable, on those appearing earlier in the ordering:

$$
\hat{A}_{k, 1: k-1}=\underset{\theta \in \mathbb{R}^{k-1}}{\arg \min }\left\{n^{-1}\left\|X_{1: k-1} \theta-X_{, k}\right\|_{2}^{2}+\lambda \sum_{j=1}^{k-1}\left|\theta_{j}\right| w_{j}\right\}
$$

- As in glasso, $\lambda$ controls the sparsity; $\lambda=\frac{2}{\sqrt{n}} Z_{\alpha /\left(2 p^{2}\right)}$ controls a false positive probability at level $\alpha$


## Computational Complexity

- Compared to pcalg, this method runs much faster: $\sim n p^{2}$ operations vs $\sim p^{q}$ ( $q$ is the max degree)
- Can be easily implemented in $R$ as $p-1$ regressions using glmnet. A more general version is available in the spacejam package, which also includes estimation for non-Gaussian data


## Introduction Estimating DAGs $\quad \begin{aligned} & \text { PC Algorithm } \\ & \text { Other Estimation Methods }\end{aligned}$ <br> Computational Complexity

- Compared to pcalg, this method runs much faster: $\sim n p^{2}$ operations vs $\sim p^{q}$ ( $q$ is the max degree)
- Can be easily implemented in R as $p-1$ regressions using glmnet. A more general version is available in the spacejam package, which also includes estimation for non-Gaussian data



## Simulations

- Settings:
$p=50,100,200$
$n=100$
Total number of edges in the network $=n$
100 repetitions
- Performance Criteria

1. Matthew's Correlation Coefficient (MCC): ranges between -1 (worst fit) and 1 (best fit), similar to $F_{1}$
2. Structural Hamming Distance (SHD): sum of false positive and false negatives
3. True positive and false positive rates

- Tuning parameter for both PC-Algorithm and penalized likelihood method based on false positive error $\alpha$



## Gaussian Observations


$\alpha$

$\alpha$

$\alpha$
__ pcalg



## Regulatory Network of E-Coli

- Regulatory network of E-coli with $p=49$ genes (7 TFs)
- Want to identify regulatory interactions among TFs and regulated genes


## Regulatory Network of E-Coli

- Regulatory network of E-coli with $p=49$ genes (7 TFs)
- Want to identify regulatory interactions among TFs and regulated genes




## Time Series Data: A setting where ordering is known

- p-dimensional, discrete time, stationary process $X^{t}=\left\{X_{1}^{t}, \cdots, X_{p}^{t}\right\}$

$$
\begin{equation*}
X^{t}=A_{1} X^{t-1}+\cdots+A_{d} X^{t-d}+\epsilon^{t}, \quad \epsilon^{t} \stackrel{i . i . d}{\sim} N\left(\mathbf{0}, \Sigma_{\epsilon}\right) \tag{1}
\end{equation*}
$$

- $A_{1}, \ldots, A_{d}: p \times p$ transition matrices (solid, directed edges)
- $\Sigma_{\epsilon}^{-1}$ : contemporaneous dependence (dotted, undirected edges)



## Network Granger Causality with VARs

- $X_{1}, \ldots, X_{p}$ : time series for $p$ variables
- $\mathbf{X}^{t}=\left(X_{1}^{t}, \ldots, X_{p}^{t}\right)^{\prime}$ : realizations at time $t$

DAGs for Time Series Data   Network Granger Causality with VARs   - $X_{1}, \ldots, X_{p}$ : time series for $p$ variables   - $\mathbf{X}^{t}=\left(X_{1}^{t}, \ldots, X_{p}^{t}\right)^{\prime}$ : realizations at time $t$   - VAR model for NGC: $\mathbf{X}^{T}=A^{1} \mathbf{X}^{T-1}+\cdots+A^{d} \mathbf{X}^{T-d}+\varepsilon^{T}$	
©Ai Shjaie SISG: Pathway \& Networks	46

## Network Granger Causality with VARs

- $X_{1}, \ldots, X_{p}$ : time series for $p$ variables
- $\mathbf{X}^{t}=\left(X_{1}^{t}, \ldots, X_{p}^{t}\right)^{\prime}$ : realizations at time $t$
- VAR model for NGC:

$$
\mathbf{X}^{T}=A^{1} \mathbf{X}^{T-1}+\cdots+A^{d} \mathbf{X}^{T-d}+\varepsilon^{T}
$$




## Network Granger Causality with VARs

- $X_{1}, \ldots, X_{p}$ : time series for $p$ variables
- $\mathbf{X}^{t}=\left(X_{1}^{t}, \ldots, X_{p}^{t}\right)^{\prime}$ : realizations at time $t$
- VAR model for NGC:

$$
\mathbf{X}^{T}=A^{1} \mathbf{X}^{T-1}+\cdots+A^{d} \mathbf{X}^{T-d}+\varepsilon^{T}
$$



# Introduction <br> Estimating DAGs <br> DAGs for Time Series Data 

## Network Granger Causality with VARs

- $X_{1}, \ldots, X_{p}$ : time series for $p$ variables
- $\mathbf{X}^{t}=\left(X_{1}^{t}, \ldots, X_{p}^{t}\right)^{\prime}:$ realizations at time $t$
- VAR model for NGC:

$$
\mathbf{X}^{T}=A^{1} \mathbf{X}^{T-1}+\cdots+A^{d} \mathbf{X}^{T-d}+\varepsilon^{T}
$$



- $X_{j}$ Granger-causal for $X_{i}$ if $A_{i, j}^{k} \neq 0$ for some $k(k=1, \ldots, d)$


## NGC Estimation

Let $Y$ be the (stacked) vector of current time points; $Z$ be the design matrix based on previous time points; and $\beta$ be Assuming $A_{t}$ are sparse, and $d$ is known

- $\ell_{1}$-penalized least squares ( $\ell_{1}$-LS)

$$
\underset{\beta \in \mathbb{R}^{d p^{2}}}{\arg \min }\|Y-Z \beta\|^{2}+\lambda\|\beta\|_{1}
$$

- $\ell_{1}$-penalized $\log$-likelihood $\left(\ell_{1}-\mathrm{LL}\right)$ - assuming $\Sigma_{\epsilon}^{-1}$ is sparse ${ }^{2}$

$$
\underset{\beta \in \mathbb{R}^{d p^{2}}}{\arg \min }(Y-Z \beta)^{\prime}\left(\Sigma_{\epsilon}^{-1} \otimes I\right)(Y-Z \beta)+\lambda\|\beta\|_{1}
$$

[^5]ntroduction Estimating DAGs
DAGs for Time Series Data

## Applications - Functional Genomics

- Identifying regulatory mechanisms using transition patterns in time course expression data
- HeLa gene expression regulatory network (Fujita et al, 2007)




## Extensions

- Panel VAR Modeling (common in functional genomics and neuroscience) ${ }^{3}$
- Incorporating external information using group lasso penalties, etc ${ }^{4}$
- Dealing with non-statinarity (paucity of long stationary time series $-T$ small $)^{5}$
- Accounting for non-linearity
- ...

[^6]- Data from Rangel et al (2004) on T-cell activation - less insight and biological knowledge regarding pathways
- $p=58$ genes, $n=44$ samples, and $T=10$ time points - the first 5 time points ( $0,2,4,6$ and 8 hours) were used on a subset of 38 genes for which pathway information avail
- Goal is to estimate regulatory interactions


Introduction
Estimating DAGs

## DAGs for Time Series Data

## Estimated Network Structure

THRESHOLDED GROUP LASSO

Introduction
Estimating DAGs
DAGs for Time Series Data

- Estimation of DAGs from observational data is both conceptually and computationally difficult
- Constraint-based \& search-based algorithms - slow in high dim
- May not be able to distinguish DAGs from observational data (Markov equivalence)
- Efficient penalized likelihood methods can estimate DAGs if the ordering is known
- Important case is time series data, but Granger causality $\neq$ causality! ${ }^{6}$
- Efficient implementations in R available for most methods

[^7]
[^0]:    Networks in Biology
    Statistical Models for Network Analysis

[^1]:    ${ }^{2}$ Massa et al (2010)

[^2]:    ${ }^{3}$ Tarca et al (2009)
    (C)Ali Shojaie

    SISG: Pathway \& Networks

[^3]:    ${ }^{4}$ S \& Michailidis (2009, 2010); Ma, S \& Michailidis (2016)
    (C)Ali Shojaie

    SISG: Pathway \& Networks

[^4]:    ${ }^{1}$ S \& Michailidis (2010)

[^5]:    ${ }^{2}$ Lin \& Michailidis (2017)

[^6]:    ${ }^{3}$ S \& Michailidis (2010); S, Basu \& Michailidis (2012)
    ${ }^{4}$ Basu, S \& Michailidis (2014)
    ${ }^{5}$ Safikhani \& S (2020)

[^7]:    ${ }^{6}$ S \& Fox (2022)

