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Why Study Networks?

» Components of biological systems (genes, proteins etc)
interact with each other to carry out cell functions.

» Examples of such interactions include signaling, regulation
and interactions between proteins.

» We cannot understand the function and behavior of biological
systems by studying individual components (2 + 2 # 41).

» Networks provide an efficient representation of complex
interactions in cells, and a basis for mathematical/statistical
models to study these systems.
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Central Dogma of Molecular Biology (Extended)
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Networks in Biology: Gene Regulatory Interactions

A GENE REGULATORY NETWORK
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Networks in Biology: Gene Regulatory Networks
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Networks in Biology: Protein-Protein Interaction
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Networks in Biology: Protein-Protein Interactions
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Networks in Biology: Metabolic Reactions
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But Do Networks Matter?

» They Dol!

» Recent studies have linked changes in gene/protein networks
with many human diseases.

Systems Biology and Emerging Te _

Gene Networks and microRNAs Implicated in
Aggressive Prostate Cancer

Liang Wang,' Hui Tang,” Venugopal Thayanithy,® Subbaya Subramanian,® Ann L. Oberg,”
Julie M. Cunningham,1 James R. Cerhan,” Clifford J. Steer,” and Stephen N. Thibodeau"

"Departments of Laboratory Medicine and Pathology and *Health Sciences Research, Mayo Clinic, Rochester, Minnesota; and
Departments of “Laboratory Medicine and Pathology, “Medicine, and Genetics, Cell Biology, and Development, University of
Minnesota, Minneapolis, Minnesota
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But Do Networks Matter?

0888-8809/07/$15.00/0 Molecular Endocrinology 21(9):2112-2123
Printed in U.S.A. Copyright © 2007 by The Endocrine Society
doi: 10.1210/me.2006-0474

Estrogen-Regulated Gene Networks in Human
Breast Cancer Cells: Involvement of E2F1 in the
Regulation of Cell Proliferation

Joshua D. Stender, Jonna Frasor, Barry Komm, Ken C. N. Chang, W. Lee Kraus, and
Benita S. Katzenellenbogen

Departments of Biochemistry (J.D.S.) and Molecular and Integrative Physiology (J.F., B.S.K.),
University of lllinois at Urbana-Champaign, Urbana, lllinois 61801-3704;, Women’s Health and
Musculoskeletal Biology (B.K., K.C.N.C.), Wyeth Research, Collegeville, Pennsylvania 19426; and
Department of Molecular Biology and Genetics (W.L.K.), Cornell University, Ithaca, New York
14853-4203
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But Do Networks Matter?

Ce“ Cancer Cell
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A Transcriptional Signature and Common
Gene Networks Link Cancer with Lipid
Metabolism and Diverse Human Diseases
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But Do Networks Matter?

And, incorporating the knowledge of networks improves our ability
to find causes of complex diseases.

Molecular Systems Biology 3; Article number 140; doi:10.1038/msb4100180 mulecular
Citation: Molecular Systems Biology 3:140 system_s

© 2007 EMBO and Nature Publishing Group Al rights reserved 1744-4292/07 b|u|ogy
www.molecularsystemsbiology.com

REPORT

Network-based classification of breast cancer
metastasis

Han-Yu Chuang"®, Eunjung Lee?*®, Yu-Tsueng Liu®, Doheon Lee® and Trey Ideker'2*+

" Bioinformatics Program, University of California San Diego, La Jolla, CA, USA, 2 Department of Bioengineering, University of California San Diego, La Jolla, CA, USA,
3 Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea and * Cancer Genetics Program, Moores Cancer
Center, University of California San Diego, La Jolla, CA, USA

5 These authors contributed equally to this work

* Corresponding author. Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA. Tel.: + 1858 822 4558; Fax: + 1858 534 5722;
E-mail: trey@bioeng.ucsd.edu
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Networks: A Short Primer
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Networks: A Short Primer

» A network is a collection of nodes V' and edges E.
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Networks: A Short Primer
» A network is a collection of nodes V' and edges E.
» We assume the network has p nodes, corresponding to
random variables Xi, ..., X, = biological measurements.
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Networks: A Short Primer

» A network is a collection of nodes V' and edges E.

» We assume the network has p nodes, corresponding to
random variables Xi, ..., X, = biological measurements.

» Edges can be directed X — Y or undirected X — Y.

G, G, G;
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Networks: A Short Primer

» A network is a collection of nodes V' and edges E.

» We assume the network has p nodes, corresponding to
random variables Xi, ..., X, = biological measurements.

» Edges can be directed X — Y or undirected X — Y.

G, G, G;

» In all these example, the node set is V = {1,2,3}.
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Networks: A Short Primer

» A network is a collection of nodes V' and edges E.

» We assume the network has p nodes, corresponding to
random variables Xi, ..., X, = biological measurements.

» Edges can be directed X — Y or undirected X — Y.

G, G, G;

» In all these example, the node set is V = {1,2,3}.
» The edges are:

Ey = {1-2,2-3}

E, = {1—-3,3—>2}

E5 = {1-2,1—-3}
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Networks: A Short Primer
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Networks: A Short Primer

» A convenient way to represent the edges of the network is to
use an adjacency matrix A
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Networks: A Short Primer

» A convenient way to represent the edges of the network is to
use an adjacency matrix A

» A matrix is a rectangular array of data (similar to a table)
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Networks: A Short Primer

» A convenient way to represent the edges of the network is to
use an adjacency matrix A

» A matrix is a rectangular array of data (similar to a table)

» Values in each entry are shown by indeces of row and column

X
A= 1| . . . | Here, xisinrow 1 and column 2
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Networks: A Short Primer

» A convenient way to represent the edges of the network is to
use an adjacency matrix A

» A matrix is a rectangular array of data (similar to a table)

» Values in each entry are shown by indeces of row and column

X
A= 1| . . . | Here, xisinrow 1 and column 2

» Adjacency matrix is a square matrix, which has a 1 if there is
an edge from a node in one row to a node in another column,
and 0 otherwise
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Networks: A Short Primer

» A convenient way to represent the edges of the network is to
use an adjacency matrix A

v

A matrix is a rectangular array of data (similar to a table)

» Values in each entry are shown by indeces of row and column

X
A= 1| . . . | Here, xisinrow 1 and column 2

» Adjacency matrix is a square matrix, which has a 1 if there is
an edge from a node in one row to a node in another column,
and 0 otherwise

» For undirected edges, we add a 1 in both directions
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Networks: A Short Primer
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What Do Edges in Biological Networks Mean?

» In gene regulatory networks, an edge from gene i to gene j
often means that / affects the expression of j; i.e. as i's
expression changes, we expect that expression of j to
increase/decrease.

17
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What Do Edges in Biological Networks Mean?

» In gene regulatory networks, an edge from gene i to gene j
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often means that / affects the expression of J; i.e. as i's
expression changes, we expect that expression of j to
increase/decrease.

In protein-protein interaction networks, an edge between
proteins / and j often means that the two proteins bind
together and form a protein complex. Therefore, we expect
that these proteins are generated at similar rates.

SISG: Pathway & Networks
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What Do Edges in Biological Networks Mean?

» In gene regulatory networks, an edge from gene i to gene j
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often means that / affects the expression of j; i.e. as i's
expression changes, we expect that expression of j to
increase/decrease.

In protein-protein interaction networks, an edge between
proteins / and j often means that the two proteins bind
together and form a protein complex. Therefore, we expect
that these proteins are generated at similar rates.

In metabolic networks, an edge between compound / and j
often means that the two compounds are involved in the same
reaction, meaning that they are generated at relative rates.
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What Do Edges in Biological Networks Mean?

» In gene regulatory networks, an edge from gene i to gene j
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often means that / affects the expression of J; i.e. as i's
expression changes, we expect that expression of j to
increase/decrease.

In protein-protein interaction networks, an edge between
proteins / and j often means that the two proteins bind
together and form a protein complex. Therefore, we expect
that these proteins are generated at similar rates.

In metabolic networks, an edge between compound / and j
often means that the two compounds are involved in the same
reaction, meaning that they are generated at relative rates.

Thus, edges represent some type of association among genes,
proteins or metabolites, defined generally to include linear or
nonlinear associations; more later....

SISG: Pathway & Networks
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Statistical Models for Biological Networks
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Statistical Models for Biological Networks

» We use the framework of graphical models
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Statistical Models for Biological Networks
» We use the framework of graphical models
P In this setting, nodes correspond to “random variables”
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Statistical Models for Biological Networks
» We use the framework of graphical models
P In this setting, nodes correspond to “random variables”
» In other words, each node of the network represents one of
the variables in the study
» In gene regulatory networks, nodes = genes
» In PPI networks, nodes = proteins
» In metabolic networks, nodes = metabolites
(©Ali Shojaie SISG: Pathway & Networks
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Statistical Models for Biological Networks

We use the framework of graphical models

P In this setting, nodes correspond to “random variables”
» |n other words, each node of the network represents one of

the variables in the study

» In gene regulatory networks, nodes = genes
» In PPI networks, nodes = proteins
» In metabolic networks, nodes = metabolites

» In practice, we observe n measurements of each of the

variables (genes/proteins/ metabolites) for say different
individuals, and want to determine which variables are
connected, or use their connection for statistical analysis

SISG: Pathway & Networks
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Our Plan

We will cover the following topics
» Methods for detecting signal on known networks
» Network analysis based on centrality and clustering
» Topology-based pathway enrichment analysis
» Methods for learning undirected networks

» Co-expression networks
> ARACNE
» Conditional independence graphs

» Gaussian observations (glasso, etc)
» Non-Gaussian and non-linear data (nonparanormal, etc)

» Methods for learning directed networks

» Bayesian Networks (basic concepts, reconstruction algorithm)
» Learning directed networks from time-course data (dynamic
Bayesian networks)
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Signal Detection on Networks
Topology-Based Pathway Enrichment Analysis
De-Novo Identification of Enriched Modules

Introduction

Suppose we observe activities of individual nodes (genes, proteins,
brain regions, etc) on a network (gene regulatory network,
structural connectivity network, etc)
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Introduction

Suppose we observe activities of individual nodes (genes, proteins,
brain regions, etc) on a network (gene regulatory network,
structural connectivity network, etc)
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Introduction

Suppose we observe activities of individual nodes (genes, proteins,
brain regions, etc) on a network (gene regulatory network,
structural connectivity network, etc)
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How can we identify the important nodes?
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Introduction

Suppose we observe activities of individual nodes (genes, proteins,
brain regions, etc) on a network (gene regulatory network,
structural connectivity network, etc)

~ 0.25
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How can we identify the important nodes?
and what does this even mean?
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|dentifying Important Nodes

~ 0.20
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How can we identify the important nodes?
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|dentifying Important Nodes
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How can we identify the important nodes?

» We can select the significant nodes based on p-values, after
adjusting for multiple comparisons (FDR, etc)
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|dentifying Important Nodes

~ 0.20

@ 015
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— 0.05

How can we identify the important nodes?
» We can select the significant nodes based on p-values, after
adjusting for multiple comparisons (FDR, etc)
» But the signal is often weak for lots of tests

(©Ali Shojaie SISG: Pathway & Networks




Introduction

Signal Detection on Networks
Topology-Based Pathway Enrichment Analysis
De-Novo ldentification of Enriched Modules

|dentifying Important Nodes

~ 0.20

@ 015

i
)
@ B — 0.10
@ >

— 0.05

How can we identify the important nodes?
» We can select the significant nodes based on p-values, after
adjusting for multiple comparisons (FDR, etc)
» But the signal is often weak for lots of tests
» If we believe the network is informative, it may make sense to
use the network to guide our selection
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|dentifying Important Nodes

Possible strategies:

» Identify individual nodes associated with the outcome by
incorporating the network (signal detection on network)

» Test if (pre-specified) subnetworks are associated with the
outcome (topology-based pathway enrichment analysis)

» Identify collections of (connected) nodes that are associated
with the outcome (de-novo identification of enriched modules)

(©Ali Shojaie SISG: Pathway & Networks




Introduction

Signal Detection on Networks
Topology-Based Pathway Enrichment Analysis
De-Novo ldentification of Enriched Modules

Signal Detection on Networks
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De-Novo ldentification of Enriched Modules

Signal Detection on Networks

How can we identify the important nodes in a network?

(©Ali Shojaie SISG: Pathway & Networks




Introduction

Signal Detection on Networks
Topology-Based Pathway Enrichment Analysis
De-Novo ldentification of Enriched Modules

Signal Detection on Networks

How can we identify the important nodes in a network?

The simplest option is to limit our search/testing to the central
nodes in the network:
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Signal Detection on Networks

How can we identify the important nodes in a network?
The simplest option is to limit our search/testing to the central
nodes in the network:

» Nodes connected to many other nodes, aka hub nodes

» Nodes that are close to many other nodes (closeness)

» Nodes that are on many network paths (betweenness)

(©Ali Shojaie SISG: Pathway & Networks
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Example: Functional Relevance of Hub Nodes

» Inferred genetic interaction network of cancer-related pathway
in prostate cancer (data from TCGA)

» Hubs defined as nodes whose degrees are at the 75th
percentile of the degree distribution

(©Ali Shojaie SISG: Pathway & Networks
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Other Measures of Centrality

» Closeness: Total distance of each node to other nodes:
-1

ci= (Y d(j,k)

keVv

where d(j, k) is the (shortest path) distance between j and k.
» Betweenness: The number of paths that go through a node:

bWJ': Z ﬂ-ik(j)

.y
i#izk K

where 7, (j) is the number of paths between i and k that go
through j, and 7 is the total number of paths between them.
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|dentifying “Central” Nodes

Calculating centrality measures using igraph:

» Hub nodes: hub_score(graph)
» Closeness: closeness(graph, vids)

» use estimate_closeness() for larger networks)
> Betweenness: betweenness(graph, vids)

» use estimate_betweenness() for larger networks

(©Ali Shojaie SISG: Pathway & Networks 9
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Signal Detection on Networks SPPIA &y
Topology-Based Pathway Enrichment Analysis NetGSA

De-Novo ldentification of Enriched Modules A Systematic Comparison

Topology-Based Pathway Enrichment
Analysis
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topologyGSA

SPIA

NetGSA

A Systematic Comparison

Introduction

Signal Detection on Networks
Topology-Based Pathway Enrichment Analysis
De-Novo ldentification of Enriched Modules

Yeast GAL Pathway

Ideker et al, 2001
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Introduction f:tEI':etGSA
Signal Detection on Networks SPPIA &y
Topology-Based Pathway Enrichment Analysis NetGSA

De-Novo ldentification of Enriched Modules A Systematic Comparison

Topology-Based Pathway Enrichment Analysis

Test for changes in activities of node (genes, brain ROls, etc) in
pre-specified subnetworks, while incorporating network information

Two possible null hypotheses:

©AIi Shojaie SISG: Pathway & Networks 12
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topologyGSA

SPIA

NetGSA

A Systematic Comparison

Introduction
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Topology-Based Pathway Enrichment Analysis

Test for changes in activities of node (genes, brain ROls, etc) in
pre-specified subnetworks, while incorporating network information

Two possible null hypotheses:

» Competitive null hypothesis: activity of each pathway is
compared with other pathways, often using a permutation test

» Assume few genes are differentially connected, and may be
sensitive to the choice of gene sets

» Self-contained null hypothesis: activity of each pathway is
compared against the null distribution

» More rigorous, but may be sensitive to modeling assumptions
(Goemen & Buhlmann (07), Ackermann & Strimmer (09))

(©Ali Shojaie SISG: Pathway & Networks 12
Introduction :;):t:gthSA
Signal Detection on Networks SPPIA 8y
Topology-Based Pathway Enrichment Analysis
e . NetGSA
De-Novo ldentification of Enriched Modules . .
A Systematic Comparison
PathNet
A simple topology-based pathway enrichment method:
Data from high- Direct Indirect
throughput evidence evidence
experiments ) (")
] 1<)
3 Significance e 2
© S
analysis
— >
Samples Y
Pathway 1
Path\ivay Z Combined
. _Hypergeometric test evidence
Pathv‘vayn (pc)
Significant pathways
||]] Direct evidence
Significant genes based on:E Indirect evidence D Non-significant genes
Combined evidence
Dutta et al (2012)
(©Ali Shojaie SISG: Pathway & Networks 13
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PathNet

topologyGSA

SPIA

NetGSA

A Systematic Comparison

PathNet: Details

» Each gene's p-value from differential expression is combined
with p-values of its neighbors using Fisher’'s methods

> {loma (P) ]

kene())

SI; =

» The indirect p-value, p' is calculated from SI; by permutation

» Direct (ij) and indirect (pJ’) p-values are then combined (ij)

» The significance of ij for genes in each pathway is assessed
using a hypergeometric test

» Implemented in Bioconductor package PathNet

(©Ali Shojaie SISG: Pathway & Networks 14
Introduction f;tzllzetGSA
Signal Detection on Networks SPpIA 8y
Topology-Based Pathway Enrichment Analysis
e . NetGSA
De-Novo ldentification of Enriched Modules . .
A Systematic Comparison
2
topologyGSA

» topologyGSA (Gene Set Analysis Exploiting Pathway
Topology) assumes that data are normally distributed:

Xl NN(,ul,Zl), X2NN(/L2,22)
» It obtains estimates of X! and ¥? based on the networks
(think graphical lasso, but with known nonzero entries)
» It then performs two tests:
» equality of covariance matrices: HS : ¥1 = ¥?2
» equality of means HY" : u! = p?> — it uses different methods
depending on the result of Hj

» Implemented in R-package topologyGSA (also in graphite)

’Massa et al (2010)

(©Ali Shojaie SISG: Pathway & Networks 15
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Introduction
Signal Detection on Networks tS(:)ploAlogyGSA

Topology-Based Pathway Enrichment Analysis
e e . NetGSA
De-Novo ldentification of Enriched Modules . .
A Systematic Comparison

Signaling Pathway Impact Analysis (SPIA)3

» Combines overrepresentation analysis (ORA) with measure of
perturbation of a given pathway under a given condition

» A bootstrap procedure is used to assess the significance of the
observed pathway perturbation (difficult to extend to
comparison of > 2 conditions)

» Currently not applicable to all pathways (more later)

» Analyzes each pathway separately (ignores connections
between pathways)

» Implemented in the Bioconductor package SPIA

3Tarca et al (2009)
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Signal Detection on Networks SF"JIA &y

Topology-Based Pathway Enrichment Analysis NetGSA

De-Novo ldentification of Enriched Modules A Systematic Comparison

The SPIA Methodology
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The SPIA Methodology

PathNet

topologyGSA

SPIA

NetGSA

A Systematic Comparison

SPIA combines two types of evidence

©Ali Shojaie SISG: Pathway & Networks v
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Signal Detection on Networks SPpIA &y
Topology-Based Pathway Enrichment Analysis NetGSA

De-Novo ldentification of Enriched Modules

The SPIA Methodology

A Systematic Comparison

SPIA combines two types of evidence

(i) the overrepresentation of DE genes in a given pathway

(©Ali Shojaie
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The SPIA Methodology

PathNet

topologyGSA

SPIA

NetGSA

A Systematic Comparison

SPIA combines two types of evidence

(i) the overrepresentation of DE genes in a given pathway

» measured by the p-value for the given number of DE genes

Pnpe = P(X > Npe | Ho)
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A Systematic Comparison

SPIA combines two types of evidence
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The SPIA Methodology

SPIA combines two types of evidence

(ii) the abnormal perturbation of the pathway
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The SPIA Methodology
SPIA combines two types of evidence
(i) the abnormal perturbation of the pathway
» the perturbation for each gene in the pathway is defined as
PF(gj)
PF(g:) = AE(go; P .. J
(&) = DE(g) + Y0, By)
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SPIA combines two types of evidence

(ii) the abnormal perturbation of the pathway

» the perturbation for each gene in the pathway is defined as

PF(gi) = AE(gi) + 27—, Bij

PF(g;)

Nps(g;)

» PF(g;) is the perturbation factor of gene i (not known)
» i is the magnitude of effect of gene j on gene i; currently,

betaj =1if j — i

» AE(g;) is the fold change in expression of gene i
» Nps(gj) is the number of downstream genes from gene j
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The SPIA Methodology
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» The accumulated activity of each gene can then be calculated

as ACC(g;) = B- (I — B)"'AE
Ali Shojaie SISG: Pathway & Networks 19
© j y
PathNet
Introduction
Signal Detection on Networks ts?ll:l)gyGSA
Topology-Based Pathway Enrichment Analysis NetGSA

De-Novo ldentification of Enriched Modules

The SPIA Methodology

A Systematic Comparison

» The accumulated activity of each gene can then be calculated

as ACC(g;) =

B-(I—B)lAE

» B is the normalized matrix of 's: Bjj = B;;/Nps(gj)
» AE is the vector of fold changes
» Requires B to be invertible; would not work otherwise
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The SPIA Methodology

» The accumulated activity of each gene can then be calculated
as ACC(gj) =B - (I — B)"'AE
» B is the normalized matrix of 's: Bjj = B/ Nps(gj)
» AE is the vector of fold changes
P> Requires B to be invertible; would not work otherwise

» The total accumulated perturbation of the pathway is then
given by t4 = ), ACC(g))
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The SPIA Methodology

» The accumulated activity of each gene can then be calculated
as ACC(g;)) =B - (I — B)"'AE
» B is the normalized matrix of 's: Bjj = B;;/Nps(gj)
» AFE is the vector of fold changes
» Requires B to be invertible; would not work otherwise

» The total accumulated perturbation of the pathway is then
given by tq = >, ACC(gi)

» The p-value for pathway perturbation is given by
PperT = P(Ta > ta | Ho), which is calculated using a
bootstrap approach
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The SPIA Methodology
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The SPIA Methodology

SPIA combines two types of evidence
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The SPIA Methodology

A Systematic Comparison

SPIA combines two types of evidence
» The final p-value for each pathway is calculated based on the
p-values from parts (i) and (ii):
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The SPIA Methodology

SPIA combines two types of evidence
» The final p-value for each pathway is calculated based on the
p-values from parts (i) and (ii):
» Pe(i) =c —ciln(c)
» ¢ = Pnpe(i)PperT (i)
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The SPIA Methodology
SPIA combines two types of evidence
» The final p-value for each pathway is calculated based on the
p-values from parts (i) and (ii):
> PG(f) =C — C In(c,-)
» ¢ = Pnpe(i)PperT (1)
3| [\
00 0;2 04 06 08 10
P NDE
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An Example in R: Data on Colorectal Cancer

data(colorectalcancer)

#pathway analysis using SPIA

#use nB=2000 or higher for more accurate results

#uses older version of KEGG signaling pathways graphs

res <- spia(de=DE_Colorectal, all=ALL_Colorectal, organism="hsa", beta=NULL,
nB=2000, plots=FALSE, verbose=TRUE, combine="fisher")

#now combine pNDE and pPERT using the normal inversion method without
#running spia function again
res$pG=combfunc (res$pNDE, res$pPERT, combine="norminv")
res$pGFdr=p.adjust (res$pG, "fdr")
res$pGFWER=p.adjust (res$pG, "bonferroni")

plotP(res,threshold=0.05)

#highlight the colorectal cancer pathway in green
points(I(-log(pPERT)) "I(-log(pNDE)) ,data=res[res$ID=="05210",],col="green",
pch=19,cex=1.5)
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Introduction f:t:;l':itGSA
Signal Detection on Networks SF"JIA 8y
Topology-Based Pathway Enrichment Analysis NetGSA

De-Novo ldentification of Enriched Modules A Systematic Comparison

The SPIA Methodology

SPIA two-way evidence plot
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Network-Based Gene Set Analysis (NetGSA)*

v

Generalizes SPIA, to allow for more complex experiments &
incorporate interactions among pathways

Assesses the overall behavior of arbitrary subnetworks
(pathways): changes in gene expression & network structure

Uses latent variables to model the interaction between genes
defined by the network

Uses mixed linear models for inference in complex data

Computationally challenging for large networks, unless
pathways separately analyzed (similar to SPIA)

*S & Michailidis (2009, 2010); Ma, S & Michailidis (2016)
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Problem Setup

| 2

>

v

(©Ali Shojaie

Gene (protein/metabolite) expression data for K experimental
conditions and J, time points

Network information (partially) available in the form of a
directed weighted graph G = (V/, E), with vertex set V
corresponding to the genes/proteins/metabolites and edge set
E capturing their associations

Network edges can be directed j — k or undirected j <+ k

Edges defines the effect of nodes on their immediate
neighbors; the weight associated with each edge corresponds
to the value of partial correlation

Represent the network by its adjacency matrix A: Aj 7# 0 iff
k — j & for undirected edges, Ajx = Ay

SISG: Pathway & Networks

25




Introduction

Signal Detection on Networks
Topology-Based Pathway Enrichment Analysis
De-Novo ldentification of Enriched Modules

PathNet

topologyGSA

SPIA

NetGSA

A Systematic Comparison

The Latent Variable Model: Main ldea

OO

X1 = m

p12X1 + Y2 = p1271 + 72
p23Xo + 73 = p23p127y1 + p23Y2 + 3
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The Latent Variable Model: Main Idea

(P2

X1 = m

Thus X = Ay where

1
A= P12

p12X1 + 72 = p1271 + 2
p23 X2 + 73 = p23p12771 + p23Y2 + 3

0 O
1 0

p12p23 p23 1

(©Ali Shojaie
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Let Y be the ith sample in the expression data
Let Y = X + ¢, with signal X and noise € ~ N,(0, 521,)

» The influence matrix A measures the propagated effect of
genes on each other through the network, and can be
calculated based on the adjacency matrix A

» Using X = Ay, we get

Y=M+e, = Y~ Ny(Au, AN +02l)

where v ~ Np(, ngp) are latent variables

(©Ali Shojaie SISG: Pathway & Networks
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Mixed Linear Model Representation

Rearranging the expression matrix into np-vector Y, we can write

Y=WB+MNy+e

where 3 and ~ are fixed and random effect parameters and

e ~ Nnp(0, R(62)),

~ ~ Npp(0, a%lnp)

e Temporal Correlation incorporated through R

(©Ali Shojaie SISG: Pathway & Networks
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Mixed Linear Model Representation

Rearranging the expression matrix into np-vector Y, we can write
Y=V3+Tlv+e
where 3 and ~ are fixed and random effect parameters and
e ~ Npp(0,R(0:)), v~ an(O,a?ylnp)

e Temporal Correlation incorporated through R

In general, the design matrices, W and Il depend on the
experimental settings (similar to ANOVA), and are functions of A

(©Ali Shojaie SISG: Pathway & Networks 28
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Estimation of MLM Parameters
MLE for £:
~ ~ -1 A
B=Ww vy vwly
where W = O',2Y|_”_|/ +R.
B depends on estimates of 0% and 62 (estimated using restricted
maximum likelihood (REML)).
(©Ali Shojaie SISG: Pathway & Networks 29
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Inference using MLM

» Let / be a contrast vector (a linear combination of fixed
effects), and consider the test:

Hy: /=0 vs. Hy:(8#0
(©Ali Shojaie SISG: Pathway & Networks 30
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Inference using MLM

» Let / be a contrast vector (a linear combination of fixed
effects), and consider the test:

Ho:/6=0 vs. Hy:(B8#0

P> Use t-test to test the significance of each hypothesis
separately

~

14
r_ B
VLCH
where C = (\IJ’W_llll)_1
» Under the null hypothesis, T is approximately t-distributed
with degrees of freedom that needs to be estimated
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“Optimal” Choice of Contrast Vector

» An intuitive choice is the indicator (membership) vector for
the pathway, b, but this only captures changes in mean
» Need to de-couple the effect of subnetwork from other nodes
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“Optimal” Choice of Contrast Vector

» An intuitive choice is the indicator (membership) vector for
the pathway, b, but this only captures changes in mean
» Need to de-couple the effect of subnetwork from other nodes
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“Optimal” Choice of Contrast Vector

» An intuitive choice is the indicator (membership) vector for
the pathway, b, but this only captures changes in mean
» Need to de-couple the effect of subnetwork from other nodes

» Can be shown that (bA - b)y is not affected by nodes outside
b, but includes the effects of nodes in b on each other
» In the case-control case, the optimal contrast vector is:

o= (—b-b/\c,b-b/\T)
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“Optimal” Choice of Contrast Vector

— - o

-~ -

1 0O O
N = P12 1 0
p12p23 p23 1
Consider the set, b = (0,1, 1); then
(bA) = (p12 + p12p23, 1 + p23, 1)
On the other hand,
(bA-b) = (0,1 + po3, 1)

(©Ali Shojaie SISG: Pathway & Networks 32




Introduction

Signal Detection on Networks
Topology-Based Pathway Enrichment Analysis
De-Novo ldentification of Enriched Modules

Comparison in Simulated Data

PathNet

topologyGSA

SPIA

NetGSA

A Systematic Comparison

Subnetwork | Mean Network Influence
1 1 =p2 =1 p1=p2 =02
2 pr =100 =2 p1=p2 =02
3 n1=p2 =1 p1=0.2,p0 = 0.7
4 pn1 =1, 00 =2 p1 =0.2,p0 = 0.7
o 2
-— GSEA
o | [= = NetGSA o |
° — True Power! e
© | < |
I =}
3
3 Subnetwork 1 3 Subnetwork 2
N o~
o o
o l—mrm=m === | o T T T e
< T T T T T T T ° T T T T T T T
00 01 02 03 04 05 06 00 01 02 03 04 05 06
o o
o © |
o \~ o
\~
50 | ~ | o |
o Subnetwork 3 S e Subnetwork 4
o
hgu <
o _-|°
P — _ -
o ”
c 1.7 o 7]
o | o |
o o

00 01 02 03 04 05 06
Temporal Correlation

T T T T T T T
00 01 02 03 04 05 06
Temporal Correlation

(©Ali Shojaie SISG: Pathway & Networks 33
PathNet
Introduction
Signal Detection on Networks EO;IOAIOgyGSA
Topology-Based Pathway Enrichment Analysis NetGSA
De-Novo ldentification of Enriched Modules AeS . .
ystematic Comparison
Yeast Galactose Utilization Pathway
Ideker et al (2001) data on yeast Galactose Utilization Pathway
» Gene expression data for 2 experimental conditions: (gal+)
and (gal-)
» Gene-gene and protein-gene interactions as well as association
weights found from previous studies
» Q: which pathways respond to the change in growth medium?
(©Ali Shojaie SISG: Pathway & Networks 34
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Analysis of Yeast GAL Data

» Data:

P gene expression data for 343 genes

» 419 interactions found from previous studies and integration
with protein expression (association among genes also
available)

» Results:
» GSEA finds Galactose Utilization Pathway significant
» NetGSA finds several other pathways with biologically
meaningful functions related to survival of yeast cells in gal—-

(©Ali Shojaie SISG: Pathway & Networks
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Environmental Stress Response in Yeast

Gene expression data on Yeast Environmental Stress Response
(ESR) (Gasch et al., 2000)

» 3 combinations of experimental factor, heat shock and
osmotic changes (sorbitol), over 3 time points

» Temporal correlation

» Network correlation

» Q: Which pathways indicate response to environmental stress

in different experimental conditions
P over time
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Yeast ESR Data

Gasch et al (2000)

» Gene Expression Data

Experiment Obs. Time (after 33C)
Mild heat shock (29C to 33C), no sorbitol 5, 15, 30 min
Mild Heat Shock, 1M sorbitol at 29C & 33C 5, 15, 30 min
Mild Heat Shock, 1M sorbitol at 29C 5, 15, 30 min

» Network Data

P Use YeastNet (Lee et al., 2007) for gene-gene interactions (102,000
interactions among 5,900 yeast genes)

» Use independent experiments of Gasch et al. to estimate weights

» Pathways are defined using GO functions

(©Ali Shojaie
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» Model: Let j and k be indices for time and levels of sorbitol

EYH = /\,u,

]Eij = /\(M + o + (5;()

j k=23

P Temporal correlation is modeled directly via R (as AR(1) process)

» Results:
~ 3000 genes,

vyVVYVYYVYY

(©Ali Shojaie

47 pathways showed significant changes of expression

24 pathways showed changes over time

29 pathways showed changes in response to different sorbitol levels
12 pathways showed both types of changes

Significant pathways overlap with gene functions from Gasch et al.
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Yeast ESR Network
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Significant subnetworks
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Expression Profiles

Average Standardized Expression Levels of Pathways

standardized expression

» Induced and Suppressed Pathways
» Can observe the transient patterns of expressions as predicted by

Gasch et al.
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Effect of Noise In Network Information
» Let A be observed network information, and A be the truth.
» It can be shown that, if ||A — A|| is small then, NetGSA still
works (is asymptotically most powerful unbiased test)
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Effect of Noise In Network Information

» Let A be observed network information, and A be the truth.

» It can be shown that, if |A — Al| is small then, NetGSA still
works (is asymptotically most powerful unbiased test)
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Metabolic Profiling in Bladder Cancer

Targeted metabolic profiling of bladder cancer (BCa)®
» 58 bladder cancer and adjacent benign samples
» Pathways information obtained from KEGG

® _9
g @y

» Varying number of identified metabolites per pathway (3-15)
» Q: Which pathways show differential activity in BCa?

>Putluri et al. (2012)
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Metabolic Profiling in BCa

» 63 metabolites identified, mapped to 70 pathways
» 27 pathways with at least 3 members

Color Key

N

-4 0
Row Z-Score

@ Fatty acid biosynthesis
B Biosynthesis of unsaturated fatty acids
@ Sulfur metabolism
@ Lysine degradation
O Alkaloid biosynthesis Il
O Methionine metabolism
@ Valine, leucine and isoleucine biosynthesis
B Pyrimidine metabolism
O Valine, leucine and isoleucine degradation
@ Pantothenate and CoA biosynthesis
O Phenylalanine, tyrosine and tryptophan biosynthesis
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Metabolic Profiling in BCa
» Small pathway sizes & significant overlap among pathways
#metaboloites in pathway pathways overlap
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» Existing methods may not work well...
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Metabolic Interaction Network

PathNet

topologyGSA

SPIA

NetGSA

A Systematic Comparison
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Significant Pathways

PathNet

topologyGSA

SPIA

NetGSA

A Systematic Comparison

» GSEA does not identify any pathway as differential
» GSA identifies Fatty Acid Biosynthesis as differential

» NetGSA identifies another 7 pathways corresponding to role of
Amino Acid Metabolism in BCa, similar to Putluri et al (2012)
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R-Package netgsa

» Basic usage:

PathNet

topologyGSA

SPIA

NetGSA

A Systematic Comparison

NetGSA(A, x, group, pathways)

P> A: List of p x p weighted adjacency matrices for each condition
(e.g. normal vs cancer), to capture changes in the network

» pathways: a K x p 0-1 matrix of pathway membership:
pathways, ; = 1 if gene/.../metabolite j in pathway k

» Output: test statistics and p-values for each pathway

» The NetGSA function takes a weighted A as input. The
package includes functions to learn A for undirected networks
from a (partial) list of network edges
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De-Novo ldentification of Enriched Modules

R-Package netgsa
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A Systematic Comparison

R-Package netgsa
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Topology-Based Pathway Enrichment Analysis
e . NetGSA
De-Novo ldentification of Enriched Modules . .
A Systematic Comparison

Comparison Using Synthetic Data (Ma, S., Michailidis, 2019)

» Comparison of topology-based pathway enrichment methods
using two synthetic data sets
» Gene expression data p =~ 3000
» Metabolomics data p &~ 100
» In silico data sets with known signal:
1. Remove the original signal, but keep the correlation structure
2. Perturb means in one condition (differential expression) for
nodes in selected pathways
3. Also use sample permutation to create data with equal
correlation structure
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PathNet

topologyGSA

SPIA

NetGSA

A Systematic Comparison

Comparison Using Synthetic Data

Original Exp Data

d
oute
pet
—
unpermuted

- Remove sample
means

Centered Exp Data

Simulated Exp Data

Add signal for
select pathways

Genes in selected pathways (schematic)

Color Key
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A Systematic Comparison

Results for Gene Expression Data — Equal Covariance
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Results for Gene Expression Data — Diff Covariance
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Results for Gene Expression Data
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Results for Metabolomics Data — Equal Covariance
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Results for Metabolomics Data
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Multi-Omics NetGSA
Pan-cancer integration of expression, methylation and CNV in
BRAF (TCGA data)®
®Zhang et al (2018)
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Multi-Omics NetGSA

PathNet

topologyGSA

SPIA

NetGSA

A Systematic Comparison

Pan-cancer integration of expression, methylation and CNV in

BRAF (TCGA data)®

®Zhang et al (2018)
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Multi-Omics NetGSA

PathNet

topologyGSA

SPIA

NetGSA

A Systematic Comparison

Pan-cancer integration of expression, methylation and CNV in

BRAF (TCGA data)®
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|dentifying Enriched Modules in Networks

Two general strategies:

» Assess the significance of data-driven modules (WGCNA):

1. ldentify modules (network clustering, etc)
2. Assess the significance of modules

» Search for enriched (connected) subnetworks (often using
greedy search methods)
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|dentifying Enriched Modules in Networks

Two general strategies:

» Assess the significance of data-driven modules (WGCNA):

1. ldentify modules (network clustering, etc)
2. Assess the significance of modules

» Search for enriched (connected) subnetworks (often using
greedy search methods)

» Advantage: No need to rely on known pathways — especially
useful when known pathways are not complete, etc

» Disadvantage: Interpretation may become challenging...
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WGCNA

» WGCNA is a method for constructing weighted gene
co-expression networks (discussed in the next lecture), which
also facilitates topology-based enrichment analysis, in a
different way than many other topology-based methods

"Horvath & Zhang (2005); Langfelder et al (2008)
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WGCNA’

» WGCNA is a method for constructing weighted gene
co-expression networks (discussed in the next lecture), which
also facilitates topology-based enrichment analysis, in a
different way than many other topology-based methods

» Here's how it works:

1.
2.
3.

4.

Estimate the co-expression network (more in the next lecture)
Find modules by clustering the nodes in the estimated network
Summarize the expressions of genes in each module using PCA
(eigen-genes)

Test if the eigen-genes are associated with the outcome

"Horvath & Zhang (2005); Langfelder et al (2008)
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WGCNA

» Here's how it works:

Data input, clearing,
PIepIOCELIig

Metwork conztroction
Conzenzn: modole detection

T

Relate conzeninz modules Relate modules
o modnle: in individnal zetz to external traitz
Study relationzhipe

among traitz and modnles
vEing sigengene networks

Let's look at an example in R...
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WGCNA

» Here's how it works:
Data input, clearing,
PIEpIoCcessng

. Network heatmap plot

MNetwork conztruction
Congenan s modole detection

T

Relate conzenanz modulez Relate modules
o modnlez i individnal zetz to external traitz

Study relationzhipz
amnong traitz and modnlez
nang sipengens networks

Let's look at an example in R...
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Walktrap?®

corresponding nodes

8Petrochilos et al (2013)
(©Ali Shojaie SISG: Pathway & Networks

Signal Detection on Networks WGCNA
Topology-Based Pathway Enrichment Analysis Walktrap

wj = ([FCi| + [FCj]) /2

» Searches for connected modules containing significant genes
» Weights each edges based on the significance of its

» Connected significant modules are found through community
detection using a random walk with transition probability

65
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|dentifying Cancer-Related Modules
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Summary

information avail

(©Ali Shojaie

WGCNA
Walktrap

» Network-based methods (centrality-based, pathway topology,
etc) rely on network information — helpful if correct network

» What if network information is not available?
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» Focus is shifting towards estimating changes in the structure
of networks: differential network biology®
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Learning Undirected Networks

Learn network from data (structure learning):
» Data matrix: X,xp.
» Features correspond to the p nodes in the network.

» Goal: Learn edges between nodes = learn the statistical
relationships between features.
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Why Do We Need Network Inference?

» Despite progress, our knowledge of interactions is limited.

» The entire genome is a vast landscape, and experiments for
discovering networks are very expensive.

» From a statistical point of view, network estimation is related
to estimation of covariance matrices, which has many
independent applications in statistical inference and prediction
(more about this later).

» Finally, and perhaps most importantly, gene and protein
networks are dynamic and changes in these networks have
been attributed to complex diseases.

(©Ali Shojaie SISG: Pathway & Networks
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Network Inference — An Overview
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Network Inference — An Overview

Two general classes of network inference methods:
» Methods based on marginal measures of association:

» Co-expression Networks (based on linear measures of

association)
» Methods based on mutual information (can accommodate

non-linear associations)
» Methods based on conditional measures of association:

» Methods assuming (multivariate) normality (glasso, etc)
» Generalizations to allow for nonlinear dependencies
(nonparanormal, etc)

(©Ali Shojaie SISG: Pathway & Networks
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Graphical Models

Probabilistic Graphical Models *
Joint multivariate probability distribution where dependencies can
be represented as a network.

Advantages:

» Graphical models offer efficient factorized forms for joint
distributions with easily interpretable dependencies.

» Conditional dependencies denoted via an edge in network.

» Convenient visual representation.

For a detailed introduction see Graphical Models, Exponential Families, and
Variational Inference; Wainwright & Jordan (2008)
(©Ali Shojaie SISG: Pathway & Networks
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Marginal Association Networks
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Correlation Networks (Association Networks)

» Simplest (and most-widely used!) method for estimating
networks — key assumption:

large correlation = presence of an edge
» Let r(i,/) be correlation between X; and Xj; we claim an edge
between i and j if |r(i,j)| > T.
» 7: a user-specified threshold (tuning parameter).

(©AIli Shojaie SISG: Pathway & Networks




Introduction
Marginal Association Networks
Conditional Independence Graphs

Correlation Networks (Association Networks)

» Simplest (and most-widely used!) method for estimating
networks — key assumption:

large correlation = presence of an edge
» Let r(i,j) be correlation between X; and Xj; we claim an edge
between i and j if |r(i,j)| > 7.
» 7 a user-specified threshold (tuning parameter).

I T - 1 _ma ) BN s

Correlation matrix Thresholded correlation matrix
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Limitations of Correlation Networks

1. The estimation is highly dependent on the choice of 7.

2. Correlations capture linear associations, but many real-world
relationships are nonlinear.

3. Large correlations can occur due to confounding.
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Limitations of Correlation Networks

The estimation is highly dependent on the choice of 7.
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Limitations of Correlation Networks

The estimation is highly dependent on the choice of 7.

» We can work with weighted co-expression networks (WGCNA)

» We can instead test Hp : r,, = 0
» A commonly used test is based on the Fisher transformation

1 1+r 1
Z = 5 In <:) = artanh(r) ~p, N (0, ﬁ)
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Limitations of Correlation Networks

Correlations capture linear associations, but many real-world
relationships are nonlinear.

(©Ali Shojaie SISG: Pathway & Networks 10
Introduction
Marginal Association Networks
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Limitations of Correlation Networks
Correlations capture linear associations, but many real-world
relationships are nonlinear.
1 0.8 0.4 -0.8 -1
1 1 1 -1 -1 -1
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Limitations of Correlation Networks

Correlations capture linear associations, but many real-world
relationships are nonlinear.
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Limitations of Correlation Networks

Correlations capture linear associations, but many real-world
relationships are nonlinear.
» \We can use other measures of association, for instance,
Spearman correlation or Kendal’s 7.

» These methods define the correlation between two variables,
based on the ranking of observations, and not their exact
values.

» They can better capture non-linear associations.

» We can instead use mutual information; this has been used in
many algorithms, e.g. ARACNE.

(©Ali Shojaie SISG: Pathway & Networks
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ARACNE: Algorithm for the Reconstruction of Accurate Cellular NEtworks2

*Margolin et al (2006)

(©Ali Shojaie SISG: Pathway & Networks 12
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. , . 2
ARACNE: Algorithm for the Reconstruction of Accurate Cellular NEtworks
1. Identifies statistically significant gene-gene co-regulation
based on mutual information
*Margolin et al (2006)
(©Ali Shojaie SISG: Pathway & Networks 12
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ARACNE: Algorithm for the Reconstruction of Accurate Cellular NEtworks2

1. ldentifies statistically significant gene-gene co-regulation
based on mutual information

2. It then eliminates indirect relationships in which two genes are
co-regulated through one or more intermediates

*Margolin et al (2006)
(©Ali Shojaie SISG: Pathway & Networks
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Key Idea: Data Processing Inequality (DPI)
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Key Idea: Data Processing Inequality (DPI)

I(A, C) < min[I(A, B), (B, C)]

where
I(gi, &) = logP(gi,g;)/P(e&i)P(gj)
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Conditional Independence Graphs

Key ldea: Data Processing Inequality (DPI)

I(A, C) < min[I(A, B), (B, C)]

where
I(gi, gj) = logP(gi, &)/ P(gi)P(g))

» Look at every triplet and remove the weakest link

» Need to estimate marginal and joint (pairwise) probabilities
(using Gaussian Kernel)

(©Ali Shojaie SISG: Pathway & Networks 13
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Algorithm Details
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Conditional Independence Graphs
Algorithm Details
» The algorithm examines each gene triplet for which all
pairwise Mls are greater than a cut-off and removes the edge
with the smallest value based on DPI.
(©Ali Shojaie SISG: Pathway & Networks 14
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Algorithm Details

» The algorithm examines each gene triplet for which all
pairwise Mls are greater than a cut-off and removes the edge
with the smallest value based on DPI.

» Each triplet is analyzed even if its edges have been selected for
removal by prior DPI applications to other triplets.

» The least of the three Mls can come from indirect interactions
only, and checking against the DPI may identify gene pairs
that are not independent, but still do not interact.

(©Ali Shojaie SISG: Pathway & Networks 14

Introduction
Marginal Association Networks
Conditional Independence Graphs

Rationale and Guarantees

» |f Mls are estimated with no errors, then ARACNE
reconstructs the underlying interaction network exactly, if the
network is a tree and has only pairwise interactions.

» The maximum MI spanning tree is a subnetwork of the
network built by ARACNE.

(©Ali Shojaie SISG: Pathway & Networks 15
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Rationale and Guarantees

reconstructs an interaction network without false positives edges, provided: (a)
thenetworkconsislsonlyofpaimiseinteractions. (b)fﬂ'eﬂdle‘lu, Iij > Lik.
Further, ARACNE does not produce any false negatives, and the network
reconstruction is exact iff (c) for each directly connected pair i; and for any other
node k, we have I;; > min[l, Ijx].

(©AIi Shojaie SISG: Pathway & Networks 16
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Performance on Synthetic Data
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Application: B-lymphocytes Expression Data
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Application: B-lymphocytes Expression Data

» MYC (proto-oncogene) subnetwork (2063 genes)

» 29 of the 56 (51.8%) predicted first neighbors biochemically
validated as targets of the MYC transcription factor.

» New candidate targets identified, 12 experimentally validated.
» 11 proved to be true targets.

» Candidate targets not validated can possibly be correct too.

(©Ali Shojaie SISG: Pathway & Networks 19
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Software

» |Implemented in the R-package minet:
source("http://bioconductor.org/biocLite.R")
biocLite("minet")

» Main estimation function aracne (mim, eps=0)

» mim: mutual information matrix
mim <- build.mim(syn.data, estimator

» eps: threshold for setting an edge to zero, prior to searching

over triplets

="spearman")

(©Ali Shojaie SISG: Pathway & Networks

(©Ali Shojaie SISG: Pathway & Networks 20
Introduction
Marginal Association Networks
Conditional Independence Graphs
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Large correlations can occur due to confounding.
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Limitations of Correlation Networks

Large correlations can occur due to confounding.
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Gaussian Graphical Models
Graphical Models for Other Distributions

Markov Networks

Markov network
An undirected graphical model that characterizes conditional
dependence (= direct relationships).

» Edge: Two nodes are conditionally dependent.
» No edge: Two nodes are conditionally independent.

» Conditions on all other nodes.
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Markov Networks — Conditional Dependence

Regression Interpretation:

» Imagine trying to predict the observations in Node A
(response) by the observations of all other nodes (predictors).

» Node B predictive of Node A (with all other nodes in model).

» A is conditionally dependent on B.
> Edge.

» Because of other nodes in model, Node B does not add any
predictive value for Node A.

» A is conditionally independent of B.
> No Edge.

(©Ali Shojaie SISG: Pathway & Networks 23
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Markov Networks — Conditional Dependence

it
/

Shoe Size

e
[ ]

<A

Correlation.

(©Ali Shojaie SISG: Pathway & Networks 24




Introduction
Marginal Association Networks
Conditional Independence Graphs

Gaussian Graphical Models
Graphical Models for Other Distributions

Markov Networks — Conditional Dependence
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Markov Networks — Conditional Dependence
How can we learn conditional dependencies?
» A and B are conditionally independent given C if
P(A,B| C)=P(A| C)P(B | ()
» Generally difficult (need to estimate multivariate densities).
P> Alternatively, can use nonparametric approaches, e.g.
conditional mutual information — not easy in high dimensions.
» Often resort to models, or simple measures, such as partial
correlations...
(©Ali Shojaie SISG: Pathway & Networks 26
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Partial Correlation

» Partial correlation measures the correlation between A and B
after the effect of the other variables are removed.
» In our example, this means correlation between shoe size and
IQ, after adjusting for age.

(©Ali Shojaie SISG: Pathway & Networks 27
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Partial Correlation
» Partial correlation measures the correlation between A and B
after the effect of the other variables are removed.
» In our example, this means correlation between shoe size and
IQ, after adjusting for age.
» The partial correlation between A and B given C is given by:
_ PAB — PACPBC
pas.c = p(A, B|C) = - —
\/1_PAC\/1_PBC
(©Ali Shojaie SISG: Pathway & Networks 27
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Partial Correlation

» Partial correlation measures the correlation between A and B
after the effect of the other variables are removed.

» In our example, this means correlation between shoe size and
IQ, after adjusting for age.

» The partial correlation between A and B given C is given by:

PAB.C = p(A B|C PAB — PACPBC

\/1_pAC\/1 PBC

» Alternatively, regress A on C and get the residual, ra; do the
same for B to get rg. The partial correlation between A and
B give C is Cor(ra, rg).

(©Ali Shojaie SISG: Pathway & Networks
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Partial Correlation

» Partial correlation is symmetric = undirected network
» Partial correlation takes values between -1 and 1

In partial correlation networks, we draw an edge between A
and B, if the partial correlation between them is large

» Calculation of partial correlation is more involved

(©Ali Shojaie SISG: Pathway & Networks
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1 8 .7 1 6 0
Correlation= | .8 1 .8 | PartialCorr=| 6 1 .6
7 8 1 0 6 1
(©Ali Shojaie SISG: Pathway & Networks 29
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1 8 .7 1 6 0

Correlation = 8 1 .8 | PartialCorr = 6 1 .6

7 8 1 0 6 1

True Network Correlation Partial Correlation
@ @ @
@ @
® ®
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A Larger Example

(©Ali Shojaie SISG: Pathway & Networks 30
Introduction . .
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Conditional Independence Graphs P
A Larger Example
» A network with 10 nodes and 20 edges
(©AIi Shojaie SISG: Pathway & Networks 30
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A Larger Example

» A network with 10 nodes and 20 edges

» n = 100 observations

(©Ali Shojaie SISG: Pathway & Networks 30
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A Larger Example

» A network with 10 nodes and 20 edges
» n = 100 observations

» Estimation using correlation & partial correlation (20 edges)

(©Ali Shojaie SISG: Pathway & Networks 30
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A Larger Example

» A network with 10 nodes and 20 edges
» n = 100 observations

» Estimation using correlation & partial correlation (20 edges)

True Network Correlation Partial Correlation

OR©) OR©)
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Gaussian Graphical Models (GGMs)

(©Ali Shojaie SISG: Pathway & Networks 31
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Partial Correlation for Gaussian Random Variables

(©Ali Shojaie SISG: Pathway & Networks 32
Introduction . .
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Partial Correlation for Gaussian Random Variables
» For Gaussian (multivariate normal) random variables, partial
correlation between X; and X; given all other variables is given
by the inverse of the (standardized) covariance matrix .
(©Ali Shojaie SISG: Pathway & Networks 32
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Partial Correlation for Gaussian Random Variables

» For Gaussian (multivariate normal) random variables, partial
correlation between X; and X; given all other variables is given
by the inverse of the (standardized) covariance matrix .

» The (i, /) entry in X1 gives the partial correlation between X;
and X; given all other variables X, ;.

(©Ali Shojaie SISG: Pathway & Networks 32
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Partial Correlation for Gaussian Random Variables

» For Gaussian (multivariate normal) random variables, partial
correlation between X; and X; given all other variables is given
by the inverse of the (standardized) covariance matrix .

» The (i,j) entry in ¥ =1 gives the partial correlation between X;
and X; given all other variables X, ;.

Multivariate normal: X ~ N(0, X)

© = ¥ ! = inverse covariance/precision/concentration matrix.
Zeros in © = conditional independence!

Edges correspond to non-zeros in ©.

vvyyvyy
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Partial Correlation for Gaussian Random Variables
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Partial Correlation for Gaussian Random Variables
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Estimating GGMs

From the discussion so far, to estimate the network, we can
1. Calculate the empirical covariance matrix: for (centered)
n x p data matrix X, S = (n—1)"1X7X.
2. Get the inverse of S. Non-zero values of S™! give the edges.

(©Ali Shojaie SISG: Pathway & Networks 34

Introduction
Marginal Association Networks
Conditional Independence Graphs

Gaussian Graphical Models
Graphical Models for Other Distributions

Estimating GGMs

From the discussion so far, to estimate the network, we can
1. Calculate the empirical covariance matrix: for (centered)
n x p data matrix X, S = (n —1)"1X7X.
2. Get the inverse of S. Non-zero values of S~! give the edges.

While simple, this may not work well in practice, even with large

samples!
True Graph Est Graph
Q@ Q@
S S
] a
a@ a@
€] €]
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Estimating GGMs in High Dimensions

Many problems arise in high-dimensional settings, when p > n.

(©Ali Shojaie SISG: Pathway & Networks 35
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Conditional Independence Graphs Graphical Models for Other Distributions
Estimating GGMs in High Dimensions
Many problems arise in high-dimensional settings, when p > n.
» First, S is not invertible if p > n!
» Even if p < n, but nis not very large, we may still get poor
estimates, and many false positives/negatives.
(©Ali Shojaie SISG: Pathway & Networks 35
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Estimating GGMs in High Dimensions

Many problems arise in high-dimensional settings, when p > n.
» First, S is not invertible if p > n!

» Even if p < n, but n is not very large, we may still get poor
estimates, and many false positives/negatives.

True Graph Est Graph
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(©Ali Shojaie SISG: Pathway & Networks 35

Introduction
Marginal Association Networks
Conditional Independence Graphs

Gaussian Graphical Models
Graphical Models for Other Distributions

Estimating GGMs in High Dimensions

» A number of methods have been recently proposed for
estimating GGMs in high dimensions.

» The main idea in most of these methods is to use a
regularization penalty, like the lasso.

» \We discuss two approaches:

» neighborhood selection
» graphical lasso

(©Ali Shojaie SISG: Pathway & Networks 36
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The Lasso

» The lasso involves finding 3 that minimizes

Iy- x| + A3 50
k=1 j
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The Lasso

» The lasso involves finding 3 that minimizes

[ S TN Y SiTH]
k=1 j

» Here A\ is a tuning parameter
» When A =0, we get least squanres!
» When )\ is very large, we get 5 = 0.

(©Ali Shojaie SISG: Pathway & Networks 37
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The Lasso

» The lasso involves finding 3 that minimizes

P 2
[y =%+ A 18-
k=1 J
» Here ) is a tuning parameter

» When A = 0, we get least squares!
» When A\ is very large, we get § = 0.

» Equivalently, find 8 that minimizes

bS]
k=1

subject to the constraint that

p
D 1Bl <.
k=1
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A Geometric Interpretation

L4
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Lasso As \ Varies
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The idea behind neighborhood selection, is to estimate the graph
by fitting a penalized regression of each variable on all other
variables.

» Find neighbors of each node X; by /i-penalized regression or
lasso:

minimize ||X; — X3/ ||3 + )\Z |ﬂf<|

? Py

(©Ali Shojaie SISG: Pathway & Networks 40
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Estimating GGMs in High Dimensions — Method 1

The idea behind neighborhood selection, is to estimate the graph
by fitting a penalized regression of each variable on all other
variables.

» Find neighbors of each node X; by /i-penalized regression or
lasso:

min[igrjnize 1X; = X85+ 2> I
=y

» The final estimate is found by combining all of the edges from
these individual regression problems.

> Symmetry — ﬁ{( not always same as ﬁj‘.
» Use min or max rule.

(©Ali Shojaie SISG: Pathway & Networks
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Estimating GGMs in High Dimensions — Method 2

Estimate a sparse © via penalized maximum likelihood estimation
(MLE).

Graphical Lasso (glasso)
maxé)mize logdet(©) — tr(S©) — A||©O]|1

» Blue: Log-likelihood; logdet denotes the logarithm of the
determinant of © and tr the trace (sum of diagonal elements)
50.

» Red: Penalty term encourages zeros on the off-diagonal
elements of O.

(©Ali Shojaie SISG: Pathway & Networks
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Comparing the Two Approaches

» Neighborhood selection is an approximation for graphical
lasso:
» Consider regression of X; on Xy, j # k
» Then, the regression coefficient for neighborhood selection is
related to the j, k element of ©:

Bl _%
k
ejj
(©Ali Shojaie SISG: Pathway & Networks 42
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Comparing the Two Approaches
» Neighborhood selection is an approximation for graphical
lasso:
» Consider regression of X; on Xy, j # k
» Then, the regression coefficient for neighborhood selection is
related to the j, k element of O:
j _ O
) =
©j
» Neighborhood selection is computationally more efficient, and
may gives better estimates, but doesn't give an estimate of O!
(©Ali Shojaie SISG: Pathway & Networks 42
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A Real Example

» Flow cytometry proteomics in single cells (Sachs et al, 2003).
» p =11 proteins measured in n = 7466 cells

A =36 A =27

Raf Raf
)
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How to Choose \7?7

» )\ modulates trade-off between model fit and network sparsity:
» )\ =0 gives a dense network (no sparsity).
» As ) increases, network becomes more sparse.
» A number of approaches proposed in the literature and used
in practice
Cross-Validation — tends to yield overly dense networks.
2. Extended BIC — adjusted BIC for high dimensions.

Controlling the probability of falsely connecting disconnected
components at level « (Banerjee et al, 2008):

oy = _tealof28)
=2+t 2(a)20%)
(ta—2() is the (100 — )% quantile of t-dist with n — 2 d.f.)

4. Stability selection — Choose A that gives the most stable
network (R-package huge)

(©Ali Shojaie SISG: Pathway & Networks 44
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Other Types of Graphical Models
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Nonparanormal (Gaussian Copula) Models

» Suppose X » N(0,X), but there exist monotone functions
fi,j =1,...psuch that [fi(X1),...f(X,)] ~ N(0,X)

(©Ali Shojaie SISG: Pathway & Networks 46
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Nonparanormal (Gaussian Copula) Models

» Suppose X ~ N(0,X), but there exist monotone functions
fi,j =1,...psuch that [fi(X1),...f(Xp)] ~ N(0,X)

» X has a nonparanormal distribution X ~ NPN,(f,X).
» f and X are parameters of the distribution, and estimated from
data.

» For continuous distributions, the nonparanormal family is the
same as the Gaussian copula family

(©Ali Shojaie SISG: Pathway & Networks
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Nonparanormal (Gaussian Copula) Models

» Suppose X » N(0,X), but there exist monotone functions
fi,j =1,...psuch that [fi(X1),...f(X,)] ~ N(0,X)

» X has a nonparanormal distribution X ~ NPN,(f,X).

» f and X are parameters of the distribution, and estimated from
data.

» For continuous distributions, the nonparanormal family is the
same as the Gaussian copula family

» To estimate the nonparanomal network:

i) transform the data: [1(X1),...f(Xp)]

ii) estimate the network of the transformed data (e.g. calculate
the empirical covariance matrix of the transformed data, and
apply glasso or neighborhood selection)

(©Ali Shojaie SISG: Pathway & Networks
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A Related Procedure

» Liu et al (2012) and Xue & Zou (2012) proposed a closely
related idea using rank-based correlation

> Let rJ’ be the rank of x/ among le, ..,xand 1; = (n+1)/2

be the average rank
» Calculate Spearman’s p or Kendall's 7

b — > i (7 =)k — )

Jk — - — . —
Vi (= 5 X0 (= A

A 2 : i (o

P = on D) Z sign ((Xj —x; ) (X — X ))

1<i<i’<n
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A Related Procedure

» Liu et al (2012) and Xue & Zou (2012) proposed a closely
related idea using rank-based correlation

i i 1 =
> Let r; be the rank of x; among x;,...,x/ and 1; = (n+1)/2
be the average rank
» Calculate Spearman’s p or Kendall's 7

Pjk = 27:1 (fj - Fj)(r//; — 7
J \/27:1 (rjl — FJ)2 27:1 (r/( B Fk)2

A 2 N A
= D) 1<;<n51bn ((Xj Xi ) (Xie — X ))
» If X ~ NPN,(f,X), then X = 2sin(pjm/6) = sin(7jxm/2)
» Therefore, we can estimate ¥ ! by plugging in rank-based
correlations into graphical lasso (R-package huge)

(©Ali Shojaie SISG: Pathway & Networks a7
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A Real Data Example
» Protein cytometry data for cell signaling (Sachs et al, 2005)

» Transform the data using a Gaussian copula (Liu et al, 2009),
giving marginal normality

(©Ali Shojaie SISG: Pathway & Networks 48
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A Real Data Example

» Protein cytometry data for cell signaling (Sachs et al, 2005)

» Transform the data using a Gaussian copula (Liu et al, 2009),
giving marginal normality

» Pairwise relationships still seem non-linear

P38
P38
0
PJINK

’

-2 -1 0

-3

» Shapiro-Wilk test rejects multivariate normality:
p<2x10710

(©Ali Shojaie SISG: Pathway & Networks 48
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Graphical Models for Discrete Random Variables

» In many cases, biological data are not Gaussian: SNPs,

RNAseq, etc
(©Ali Shojaie SISG: Pathway & Networks 49
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Graphical Models for Discrete Random Variables
» In many cases, biological data are not Gaussian: SNPs,
RNAseq, etc
» Need to estimate CIG for other distributions: binomial,
poisson, etc
(©Ali Shojaie SISG: Pathway & Networks 49
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Graphical Models for Discrete Random Variables

» In many cases, biological data are not Gaussian: SNPs,
RNAseq, etc

» Need to estimate CIG for other distributions: binomial,
poisson, etc

» In this case, the estimators do not have a closed-form!

» A special case, which is computationally more tractable, is the
class of pairwise MRFs

(©Ali Shojaie SISG: Pathway & Networks 49
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Conditional Independence Graphs raphical Models tor er Distributions
Pairwise Markov Random Fields
3Wainwright & Jordan (2008)
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Pairwise Markov Random Fields

» The idea of pairwise MRFs is to “assume” that only two-way
interactions among variables exist

» The pairwise MRF associated with graph G over the random
vector X is the family of probability distributions P(X) that
can be written as

P(X) ccexp Y il x)

U,k)eE

» For each edge (j, k) € E, ¢j is called the edge potential
function
» For discrete random variables, any MRF can be transformed
to an MRF with pairwise interactions by introducing
additional variables3

3Wainwright & Jordan (2008)

(©Ali Shojaie SISG: Pathway & Networks 50
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Graphical Models for Binary Random Variables

» Suppose Xi,..., X, are binary random variables,
corresponding to, e.g. SNPs, or DNA methylation

(©Ali Shojaie SISG: Pathway & Networks 51
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Graphical Models for Binary Random Variables

» Suppose Xi, ..., Xp are binary random variables,
corresponding to, e.g. SNPs, or DNA methylation

» A special case of discrete graphical models is the Ising model
for binary random variables

1
Po(x) = 5vexpd > O
2(9) (.k)€E
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Graphical Models for Binary Random Variables

» Suppose Xi,..., X, are binary random variables,
corresponding to, e.g. SNPs, or DNA methylation

» A special case of discrete graphical models is the Ising model
for binary random variables

1
Py(x) = Z(e)exp (j%;b_eijij

» A pairwise MRF for binary data, with ¢ (x;, xc) = jxjxi

> x' e {-1,+1}°

» The partition function Z(6) ensures that distribution sums to 1
> (j, k) € E iff 0 # 0!

(©Ali Shojaie SISG: Pathway & Networks 51
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Ravikumar et al (2010)
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Graphical Models for Binary Random Variables

» We can consider a neighborhood selection* approach with an
/1 (lasso) penalty to find the neighborhood of each node
N(G) ={keV:(,k) € E}

*Ravikumar et al (2010)
(©Ali Shojaie SISG: Pathway & Networks
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Graphical Models for Binary Random Variables

» We can consider a neighborhood selection* approach with an
/1 (lasso) penalty to find the neighborhood of each node
NG) = {k € V: (j.k) € E}

» Forj=1,...,p, need to solve (after some algebra)

ming n! Z f(@; Xi) — Zejkxjx,i + )\Ha—j“l
i—1 k]

» f(0;x) =log {(éxp (Zk#j ijxk) + exp (— Zkeﬁ- ﬁjkxk)}

*Ravikumar et al (2010)
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Graphical Models for Binary Random Variables

» We can consider a neighborhood selection* approach with an
/1 (lasso) penalty to find the neighborhood of each node

N()={keV:(,k) € E}
» For j=1,...,p, need to solve (after some algebra)

ming n_lz f(@;xi)—Zﬁjkﬁx,’;ik)\”&_j”l
i—1 Py

» f(0;x) =log {exp (Zk#j F)jkxk> + exp <— Zkefj ijxk)}
» This is equivalent to solving p penalized logistic regression
problems, which is straightforward (R-package glmnet)

*Ravikumar et al (2010)
(©Ali Shojaie SISG: Pathway & Networks
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Other Non-Gaussian Distributions

» Assume a pairwise graphical model

P(X) ocexp Y 0;0;(X) + D Ot X5, Xe)

Jjev (,k)EE

» Then, similar to the Ising model, graphical models can be
learned for other members of the exponential family
» Poisson graphical models (for e.g. RNAseq), Multinomial

graphical models, etc
» All of these can be learned using a neighborhood selection

approach, using the glmnet package®

» We can even learn networks with multiple types of nodes (gene

expression, SNPs, and CNVs)°

>Yang et al (2012)
®Yang et al (2014), Chen et al (2015)
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A General Approach for Estimation of Graphical Models

» Consider n iid observations from a p-dimensional random

vector x = (Xq,...,X,) ~P

» Consider the (undirected) graph G = (V/, E) with vertices

V={1,...,p}

» Want to estimate edges E C V x V that satisfy

Vj e V, dN(j) such that:

pi(XiH{ X, k # j}) = pi(X[{X - k € N(G)}) = p(XG1{Xk = (k.J) € E})

» N(j) is the minimal set of variables on which the conditional

densities depend

©AIi Shojaie
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Estimating Conditional Independencies

Question: how to condition?
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Estimating Conditional Independencies

Question: how to condition?

» Approach 1: Estimate the joint density f(Xi,...,Xp); then
get the conditionals £;(X; | X_;)
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Estimating Conditional Independencies

Question: how to condition?
» Approach 1: Estimate the joint density f(Xi,...,Xp); then
get the conditionals f;(X; | X_;)
» Efficient, coherent
» Computationally challenging
» Restrictive: how many joint distributions do you know?
» Hard to check if assumptions hold!
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Estimating Conditional Independencies

Question: how to condition?
» Approach 1: Estimate the joint density f(Xi,...,Xp); then
get the conditionals £;(X; | X_;)
» Efficient, coherent
» Computationally challenging

» Restrictive: how many joint distributions do you know?
» Hard to check if assumptions hold!

» Approach 2: Estimate the conditionals directly f;(X; | X_;)
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Estimating Conditional Independencies

Question: how to condition?
» Approach 1: Estimate the joint density f(Xi,...,Xp); then
get the conditionals f;(X; | X_;)

» Efficient, coherent
» Computationally challenging
» Restrictive: how many joint distributions do you know?
» Hard to check if assumptions hold!

» Approach 2: Estimate the conditionals directly f;(X; | X_;)

» Computationally easy
» Leads to easy & flexible models (regression)!
» May not be efficient or coherent
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A Semi-parametric Approach
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A Semi-parametric Approach

» Consider additive non-linear relationships (additive model):

Xi | Xj=> ful(Xe) +¢

ki
(©Ali Shojaie SISG: Pathway & Networks 57
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A Semi-parametric Approach
» Consider additive non-linear relationships (additive model):
Xi | Xoj = fu(Xe) +e
k#j
» Then if £ (Xx) = fij(Xj) = 0, we conclude that X; and Xj are
conditionally independent, given the other variables
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A Semi-parametric Approach

» Consider additive non-linear relationships (additive model):
Xi | Xj=> ful(Xe) +¢
ki

» Then if £ (Xk) = fij(Xj) = 0, we conclude that X; and X are
conditionally independent, given the other variables

» In other words, we assume that conditional distributions and
conditional means depend on the same set of variables

(©Ali Shojaie SISG: Pathway & Networks
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A Semi-parametric Approach

» Consider additive non-linear relationships (additive model):

Xi | Xoj =D fu(Xi) + e
k#j
» Then if £ (Xx) = fij(Xj) = 0, we conclude that X; and Xj are
conditionally independent, given the other variables

» In other words, we assume that conditional distributions and
conditional means depend on the same set of variables

» We then use a semi-parametric approach for estimating the
conditional dependencies

(©Ali Shojaie SISG: Pathway & Networks
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» Sparse Conditional Estimation with Jointly Additive Models
(SpaCE JAM)

1/2
m.?k.gze_ Z |- > fubs |, A3 (1)l + 1G5

> fiu(xk) = Vi Bik
» W, is a n x r matrix of basis functions for fj
» Bk is an r-vector of coefficients
» The standardized group lasso penalty for functions || /|2
» This is a convex problem, and block coordinate descent
converges to the global minimum

"Voorman et al (2014), R-package spacejam
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Other Flexible Procedures

» Forest density estimation (Liu et al, 2011) assumes that
underlying graph is a forest, and estimates the bivariate
densities non-parametrically.

» Graphical random forests (Fellinghauer et al, 2013) uses
random forests to flexibly model conditional means

» They consider conditional dependencies through conditional
mean

» They allow for general random variables, discrete or continuous

» Use a random forest to estimate E[X; | X\;] non-parametrically

» Theoretical properties have not yet been justified
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Comparison on Simulated Data

non-linear relationships (p = 100, n = 50)

. Nonlinear
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Comparison on Simulated Data

linear relationships (p = 100, n = 50)

Gaussian
& oot
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f”/fﬂ ===
td -

SpaCE JAM: x, X°
SpaCE JAM: x, X°
SpaCE JAM: x, X, x°
nonparanormal

Basso et al (2005)

forest density estimation
graphical random forests
graphical lasso
neighborhood selection

Number of correctly estimated edges

----- sparse partial correlation
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Number of incorrectly estimated edges
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Estimation of Cell Signaling Network
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» Multiple Graphical Models
» For groups of observations, estimate graphical models with
shared structure across groups and individual structure within
groups.

» Time Varying Graphical Models
» Smoothly varying graph over time estimated via local kernel
smoothers.
» Change points in graph structure over time estimated via
fusion penalties.

» Latent Variable Graphical Models

» Assume observed features are dependent on latent variables
which exhibit a low-rank effect. Estimate a sparse (graph
structure) plus low-rank inverse covariance matrix.
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Bayesian Networks

» Bayesian networks are a special class of graphical models
defined on directed acyclic graphs.
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Bayesian Networks

» Bayesian networks are a special class of graphical models
defined on directed acyclic graphs.
» Directed acyclic graphs (DAGs) are defined as graphs that:

i) only have directed edges, i.e. if Aj #0, A;j =0;
ii) there are no cycles in the network.
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Bayesian Networks

» Bayesian networks are a special class of graphical models

defined on directed acyclic graphs.

» Directed acyclic graphs (DAGs) are defined as graphs that:

i) only have directed edges, i.e. if Aj #0, A;j =0;
ii) there are no cycles in the network.

» Bayesian networks are widely used to model causal

(©Ali Shojaie

relationships between variables.
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Bayesian Networks

(©Ali Shojaie

Bayesian networks are a special class of graphical models
defined on directed acyclic graphs.
Directed acyclic graphs (DAGs) are defined as graphs that:
i) only have directed edges, i.e. if Aj #0, A;j =0;
ii) there are no cycles in the network.

Bayesian networks are widely used to model causal
relationships between variables.

Note that correlation # causation!
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Bayesian Networks

» Bayesian networks are a special class of graphical models
defined on directed acyclic graphs.
» Directed acyclic graphs (DAGs) are defined as graphs that:
i) only have directed edges, i.e. if A #0, A =0;
ii) there are no cycles in the network.
» Bayesian networks are widely used to model causal
relationships between variables.

v

Note that correlation # causation!

» Therefore, we (usually) cannot estimate Bayesian networks
from (partial) correlations

(©Ali Shojaie SISG: Pathway & Networks
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Why Bayesian Networks?

Many biological networks include directed edges:
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Why Bayesian Networks?
Many biological networks include directed edges:
» In gene regulatory networks, protein products of transcription
factors can alter the expression of target genes, but the target

genes (usually) don’t have a direct effect on the expression of
transcription factors

A GENE REGULATORY NETWORK
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Why Bayesian Networks?
Many biological networks include directed edges:
In cell signaling networks, the signal from the cell's

environment is transducted into the cell, and results e.g.

in

(global) changes in gene expression, but gene expression may

not affect the environmental factors
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Why Bayesian Networks?
Many biological networks include directed edges:
» Biochemical reactions in metabolic networks, may not

reversible, and in that case, one metabolite may affect the

other, but the relationship is ont reciprocated

@ 9
o ®
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Why Bayesian Networks?

However, biological networks may not be DAGs:
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Why Bayesian Networks?
However, biological networks may not be DAGs:

» Gene regulatory networks, signaling networks and metabolic
networks, may all contain feedback loops (positive/negative)

PDE3A | - PDE3
. / 0 Inhibitors
ISO —tcAMP

l positive

feedback

$ PKA loop

-
Ang II —»1cPKC ~» CREB--» ICER

Bcl-2 |

T Apoptosis

which make estimation even more difficult!
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What's the Difference?

» Bayesian networks are widely used to model causal
relationships between variables.
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What's the Difference?

» Bayesian networks are widely used to model causal
relationships between variables.

» Undirected networks (e.g. GGM) provide information about
associations among variables; while this greatly helps in the
study of biological systems, in some cases, they are not
enough (e.g. drug development).
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What's the Difference?

» Bayesian networks are widely used to model causal
relationships between variables.

» Undirected networks (e.g. GGM) provide information about
associations among variables; while this greatly helps in the
study of biological systems, in some cases, they are not
enough (e.g. drug development).

» The main difference is the direction of the edges; however, it
turns out that there are also some differences in terms of
structure/skeleton of the network (more on this later).
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What's the Difference?

» Bayesian networks are widely used to model causal
relationships between variables.

» Undirected networks (e.g. GGM) provide information about
associations among variables; while this greatly helps in the
study of biological systems, in some cases, they are not
enough (e.g. drug development).

» The main difference is the direction of the edges; however, it
turns out that there are also some differences in terms of
structure/skeleton of the network (more on this later).

» We can estimate undirected networks from observational data,
i.e. steady-state gene expression data, but usually they are not
enough for estimation of directed networks

» Finally, estimating directed networks is (much) more difficult
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Why is estimation more difficult?

» Estimation of Bayesian networks requires estimating both the
skeleton of the network (i.e. whether there is an edge between
i and j) and also the direction of the edges.

(©Ali Shojaie SISG: Pathway & Networks




Introduction
Estimating DAGs
DAGs for Time Series Data

Why is estimation more difficult?

» Estimation of Bayesian networks requires estimating both the
skeleton of the network (i.e. whether there is an edge between
i and j) and also the direction of the edges.

» While estimation of skeleton is possible, direction of edges
cannot be in general learned from observational data, no
matter how many samples we have (this is referred to as
observational equivalence). Consider this simple graph:
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Why is estimation more difficult?

» Estimation of Bayesian networks requires estimating both the
skeleton of the network (i.e. whether there is an edge between
i and j) and also the direction of the edges.

» While estimation of skeleton is possible, direction of edges
cannot be in general learned from observational data, no
matter how many samples we have (this is referred to as
observational equivalence). Consider this simple graph:

» Then, no matter what n is, we cannot distinguish between
X1 — X and X, — X, so basically what we see is:
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Directed Graphs: Some Terminology

» The parents of node j are {k : k — j}, we denote this by pa;
or pa(/)
» The children of node j are {k : j — k}

» Two vertices connected by an edge are called adjacent
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Directed Graphs: Some Terminology

» The parents of node j are {k : k — j}, we denote this by pa;
or pa(/)

» The children of node j are {k :j — k}

» Two vertices connected by an edge are called adjacent

» A path between two nodes i/ and j is a sequence of distinct
adjacent nodes:
> eg i<k~ k= ks
» In a DAG with p nodes, there cannot be a path longer than

p—1 (why?)
» There can be multiple paths between two nodes
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Directed Graphs: Some Terminology

» The parents of node j are {k : k — j}, we denote this by pa;
or pa(J)

» The children of node j are {k : j — k}

» Two vertices connected by an edge are called adjacent

» A path between two nodes i and j is a sequence of distinct
adjacent nodes:
> e.g. i(—k1—>k2—>k3<—j
» In a DAG with p nodes, there cannot be a path longer than

p—1 (why?)
» There can be multiple paths between two nodes

» jis an ancestor of j if there is a directed path of length > 1
fromitoj: i— -+ —j(orif i =j)

» If /i is an ancestor of j, then j is said to be a descendant of /

(©Ali Shojaie SISG: Pathway & Networks
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Directed Graphs: Some Terminology

O—E 5—®
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Directed Graphs: Some Terminology

O—Z 5—®

» What are parents/children of {1,...5}7
» What are paths between 1&4, 3&4, 2&67
» What are ancestors of {1,...5}7

(©Ali Shojaie SISG: Pathway & Networks 10
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Directed Graphs: Some Terminology
An important concept in DAGs is colliders (aka “inverted forks"):
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Directed Graphs: Some Terminology

An important concept in DAGs is colliders (aka “inverted forks”):

» k is a collider on a path between / and j if it is a not an
end-point of the path, and the path is of the form

Io.. >k ...j
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Directed Graphs: Some Terminology

An important concept in DAGs is colliders (aka “inverted forks"):

» k is a collider on a path between i and j if it is a not an
end-point of the path, and the path is of the form

[oo.— k< ...J

» k is an non-collider if it is not an end-point, and is not a
collider on a path:
> i k..
> ... k— ..
> i —k—> ..
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Directed Graphs: Some Terminology

An important concept in DAGs is colliders (aka “inverted forks”):

» k is a collider on a path between / and j if it is a not an
end-point of the path, and the path is of the form

Io.. >k ...j

» k is an non-collider if it is not an end-point, and is not a
collider on a path:

> k..

> ... k—...]
> i —k—> ...

» Note: colliders and non-colliders are defined w.r.t. paths; a
collider in one path can be a non-collider in another!

(©Ali Shojaie SISG: Pathway & Networks
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Directed Graphs: Some Terminology

(3)
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Directed Graphs: Some Terminology

O—Z 5—®

» What are the colliders on paths between 1&4, 3&4, 2467
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Directed Graphs: Some Terminology

O—E (5—®

» What are the colliders on paths between 1&4, 3&4, 2&67

» What are the non-colliders on paths between 1&4, 3&4, 2&67?
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Estimating Directed Graphs

» The presence of colliders makes the estimation of directed
graphs very challenging...

» Genetic information for Mother, Father, Daughter and Son in
form of dominant/recessive genotype (A/a) for a single gene
» Then each individual can have one of three states: AA, aa, Aa

(©Ali Shojaie SISG: Pathway & Networks
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Estimating Directed Graphs

» Conditioning on all other nodes, gives additional moral (!!)
edges (= moral graph)

(©Ali Shojaie SISG: Pathway & Networks
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Estimating Directed Graphs

» Conditioning on all other nodes, gives additional moral (!!)
edges (= moral graph)

» Learning the skeleton of DAGs from observational data
requires finding right conditioning set
» Naively, this is done by searching over all possible subset of
other p — 2 nodes — NP-hard with complexity O(2p2)!!

(©Ali Shojaie SISG: Pathway & Networks 14
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Estimation of DAGs from Observational Data

Two general classes of algorithms for estimating DAGs:
» constraint-based methods

» Often based on tests for Cl; provide theoretical guarantees
» PC algorithm, Grow-Shrink

» score & search methods
» They assign a “score” to each estimated graph (e.g. based on
likelihood, Bayes factor, AIC etc)
» Greedy search to find the best scoring graph (Hill Climbing)
» “hybrid” methods

» Usually first find the Markov blanket (e.g. the moral graph)
» Then search in a restricted space (Max-Min Hill Climbing)

(©Ali Shojaie SISG: Pathway & Networks 15
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Constraint-Based Methods

» Need a conditional independence test (to test if X 1LY | Z)

» For Gaussian data, we can use partial correlation (or the
Fisher's Z-transformation of it)

» For Binary data, we can use logOR

» In general, we can use conditional mutual information

» The idea is to see if there exists a set S, for each pair of
nodes j, ', such that X; Xy | S
» S can have 0 to p-2 members! usually stop at some k < p

p
2

look at all possible subsets of remaining variables!!

» These methods find the DAG skeleton (conditional
independence is symmetric) — will talk about direction later

» |.e., for each pair of variables (all of them), we need to

(©Ali Shojaie SISG: Pathway & Networks
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PC A|g0r|thm (Spirtes et al, 1993)

» One of the first algorithms for learning structure of DAGs

» Efficient implementations that allow for learning DAG
structures with p up to ~ 1000

» R-package pcalg (Kalisch & Buhlmann, 2007)

» The algorithm starts with a complete graph (i.e. fully
connected)

» Then for each pair of nodes j, /it finds a separating set, S
such that X; 1L Xy | S

» If a set is found, then remove the edge, otherwise, j — j/

(©Ali Shojaie SISG: Pathway & Networks
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PC Algorlthm (Spirtes et al, 1993)

Start with a complete undirected graph, and set i =0
Repeat

» ForeachjeV
» For each j' € ne())
» Determine if 35 C ne(j)\{J'} with |[S| =i

» Test for Cl:is X;ILXj | S7
» If such an S exists, then set S;y = S, remove j — ' edge

> i=i+1
Until |ne(j)| < i for all j

(©Ali Shojaie SISG: Pathway & Networks 18
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Example

i=0 S12=10
S14=10
i=1 S34=1{2)
i=2 Si5=134)
S5 ={3,4}
i =3 STOP (|nej| < 3 Vj)

(©Ali Shojaie SISG: Pathway & Networks 20

Introduction
Estimating DAGs
DAGs for Time Series Data

PC Algorithm
Other Estimation Methods

Analysis of Protein Flow Cytometry using pcalg

> dat <- read.table(’sachs.data’)

> p <- ncol(dat)

> n <- nrow(dat)

## define independence test (partial correlations)

> indepTest <- gaussCItest

## define sufficient statistics

> suffStat <- list(C=cor(dat), n=n)

## estimate CPDAG

> pc.fit <- pc(suffStat, indepTest, p, alpha=0.1, verbose=FALSE)
> plot(pc.fit, main=’PC Algorithm’)

» Need to determine the type of Cl test (indepTest), and
sufficient statistics (suffStat)

» Also need to choose « (alpha), the probability of false
positive for selecting edges.
» Larger values of « allow more edges (not adjusted for multiple
comparisons)
» The algorithm works faster when « is small

(©Ali Shojaie SISG: Pathway & Networks 21
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Analysis of Protein Flow Cytometry using pcalg

PC Algorithm

But wait, where did the directions come from? And why are only
some of the edges directed?

(©Ali Shojaie SISG: Pathway & Networks 22
Markov Equivalence
Consider the following 4 graphs

Q———»c@——>G
0~ @ B
Q- - €
Q—— > <+————3G3
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Markov Equivalence

Consider the following 4 graphs

Q— Q@ ———»C

Q< e >3

Q < G €

@— > C<4+——@

Which graphs satisfy X 1L X5 | X57

(©Ali Shojaie SISG: Pathway & Networks 23
Markov Equivalence
Consider the following 4 graphs

Q———>3 —»3
Q — @ G
Q - €
QD (g e (3
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Markov Equivalence

Consider the following 4 graphs

Q— @ ———»C

o< G ™G3

Q < G €

Q— > Q@ <+——a3

In the first 3 graphs, X1 1L.X3 | X»7
Two graphs that imply the same Cl relationships via d-separation
are called Markov equivalent

(©Ali Shojaie SISG: Pathway & Networks 24

Introduction
Estimating DAGs
DAGs for Time Series Data

PC Algorithm
Other Estimation Methods

Representation of Markov Equivalence

» Markov equivalent graphs correspond to the same probability
distribution and cannot be distinguished from each other
based on observations!

» Therefore, the direction of edges that correspond to Markov
equivalent graphs cannot be determined

v

We show these edges using undirected edges in the graph

» The resulting graph is a CPDAG (completed partially directed
acyclic graph), and is really the best we can do!

(©Ali Shojaie SISG: Pathway & Networks 25
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CPDAGs

S SN
SN NS

(©Ali Shojaie SISG: Pathway & Networks 26
Introduction PC Algorithm
Estimating DAGs Oth gE timation Method
DAGs for Time Series Data er Estimation Viethods
CPDAGs
o / —G a / —G a / —G
€] €] (€]
@
(€]
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Finding Partial Directions in DAGs

» Partial directions are determined from unmarried colliders:
» For each unmarried collider i — k —
> If k¢ Sjj, orient i —k—jasi— k< j

» In addition to the above rule,

» Orient each remaining unmarried collider i — k — j as
I — k—j

» Ifi— k—jand /i —j then orient as | — j

» If i—m—j and i — k < j are unmarried colliders and m — k,
then orient as m — k

(©Ali Shojaie SISG: Pathway & Networks 27
Introduction PC Algorithm
Estimating DAGs . .
DAGs for Time Series Data Other Estimation Methods
Example
(©Ali Shojaie SISG: Pathway & Networks 28
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The bnlearn package

» There are a couple of R-packages for learning (CP)DAGs,
including pclag, bnlearn, deal
» bnlearn implements a number of estimation methods, both
constraint-based and search-based:
» constraint-based algorithms:
» Grow-Shrink (GS)
» Incremental Association Markov Blanket (IAMB)
» Fast Incremental Association (Fast-IAMB)
» Interleaved Incremental Association (Inter-IAMB)
» score-based algorithms:
> Hill Climbing (HC)
» Tabu Search (Tabu)
» hybrid learning algorithms:
» Max-Min Hill Climbing (MMHC)
» General 2-Phase Restricted Maximization (RSMAX2)

(©Ali Shojaie SISG: Pathway & Networks 29
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Analysis of Protein Flow Cytometry using bnlearn

> dagl <- gs(dat, alpha=0.01)  #GS method

> dag2 <- hc(dat2) #Hill-Climbing search
>

> par(mfrow= c(1,2))

> plot(dagl)

> plot(dag2)

>

> compare(dagl, dag2) #compare the two DAGs

» For GS need to choose a (alpha), the false positive
probability for selecting edges

» gs (and other structure-based methods) find a PCDAG

» hc gives a directed graph (with highest score)

» Multiple criteria for choosing the “best” graph
» To “search” the space either a new edge is added, or a current
edge is removed, or reversed (if no cycles)

(©AIi Shojaie SISG: Pathway & Networks 30
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Analysis of Protein Flow Cytometry using bnlearn

> dagl
Bayesian network learned via Constraint-based methods

model:
[partially directed graphl
nodes: 11
arcs: 26
undirected arcs: 3
directed arcs: 23
average markov blanket size: 6.00
average neighbourhood size: 4.73
average branching factor: 2.09
learning algorithm: Grow-Shrink
conditional independence test: Pearson’s Linear Correlation
alpha threshold: 0.01
tests used in the learning procedure: 2029
optimized: TRUE
(©Ali Shojaie SISG: Pathway & Networks 31
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Analysis of Protein Flow Cytometry using bnlearn

> dag?2
Bayesian network learned via Score-based methods

model:
[PKC] [pjnk|PKC] [P44 |pjnk] [pakts|P44:PKC:pjnk] [praf |P44:pakts:PKC] [PIP3|pakts
[plcglpraf :PIP3:P44:pakts:pjnk] [pmek|praf:plcg:PIP3:P44:pakts:pjnk]
[PIP2|plcg:PIP3:PKC] [PKA|praf :pmek:plcg:P44:pakts:pjnk]
[P38|pmek:plcg:pakts:PKA:PKC:pjnk]

nodes: 11
arcs: 35

undirected arcs: 0

directed arcs: 35
average markov blanket size: 8.00
average neighbourhood size: 6.36
average branching factor: 3.18
learning algorithm: Hill-Climbing
score:

Bayesian Information Criterion (Gaussial

penalization coefficient: 4.459057
tests used in the learning procedure: 505
optimized: TRUE

(©Ali Shojaie SISG: Pathway & Networks 32
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Analysis of Protein Flow Cytometry using bnlearn

Grow-Shrink Hill Climbing

The two graphs are quite different

> compare(dagl,dag3)
$tp

(11 9

$£fp

[1] 26

$fn

[1] 17

(©Ali Shojaie SISG: Pathway & Networks 33
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Comparison of Results for Protein Flow Cytometry Data

PC Algorithm Grow-Shrink Hill Climbing

(©Ali Shojaie SISG: Pathway & Networks 34
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Comparison of Results for Protein Flow Cytometry Data

PC Algorithm Grow-Shrink Hill Climbing

» The estimated graphs are quite different

» The constrained-based methods seem to have more similarities
(at least in terms of structure)

» The estimate from HC has more edges; we can change e.g.
the score, but cannot directly control the sparsity

(©Ali Shojaie SISG: Pathway & Networks 34
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» Causal relationships (and probability distributions) on DAGs
can be represented using structural equation models

X,':f",'(pa,-,’)/,'), i:].,...,p
» And, for Gaussian random variables, we can write

Xi = ijin+%‘, i=1...,p

JEDPa;

(©Ali Shojaie SISG: Pathway & Networks 35
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» Causal relationships (and probability distributions) on DAGs
can be represented using structural equation models

Xi = fi(pa;,vi), i=1,...,p

» And, for Gaussian random variables, we can write

Xi = ijinﬂL’Vi, r=1....p
JEPa;

O Oan®

(©Ali Shojaie SISG: Pathway & Networks
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Penalized Likelihood Estimation of DAGs

O On®

PC Algorithm
Other Estimation Methods

(©Ali Shojaie SISG: Pathway & Networks
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Penalized Likelihood Estimation of DAGs

O Oan©

X1 = m
Xo = p1aX1+ 72 = pravi+ 2
X3 = p23Xo+ 73 = p23p12y1 + p23y2 + 3

PC Algorithm
Other Estimation Methods

(©Ali Shojaie SISG: Pathway & Networks 36
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O On®

PC Algorithm
Other Estimation Methods

X1 = m
Xo = p12Xi+ 72 = prav1+ 72
X3 = p23Xo+ 3= p23p1271 + p23y2 + 3

Thus X = Ay where

1 0 0
N = P12 1 0
p12p23 p23 1

(©Ali Shojaie SISG: Pathway & Networks 36
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Penalized Likelihood Estimation of DAGs

'S & Michailidis (2010)

(©Ali Shojaie SISG: Pathway & Networks
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» It turns out that A = (/ — A)~1, where A is the weighted
adjacency matrix of the DAG!

» Thus, for Gaussian random variables, if we know the ordering
of the variables (which is a BIG assumption!)

after some math...

we can estimate the adjacency matrix of DAGs, by minimizing
the log-likelihood as a function of A:

A = arg min {tr[(1 = A)'(I — A)S]}
AcA

'S & Michailidis (2010)

(©Ali Shojaie SISG: Pathway & Networks
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» In high dimensions, we can solve a penalized version of this
problem, e.g. by adding a lasso penalty A _;_; [Aj]

» It turns out that, the problem can be reformulated as (p — 1)
lasso problems, where we regress each variable, on those
appearing earlier in the ordering:

k-1
Ak 1:k—1 = argmin ¢ n~ 1| Xp—10 — X3 + )\Z 10;|w;
feRk—1 j=1

» As in glasso, A controls the sparsity; A = %Za/(sz)
controls a false positive probability at level a

(©Ali Shojaie SISG: Pathway & Networks
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Computational Complexity

» Compared to pcalg, this method runs much faster: ~ np?
operations vs ~ p? (q is the max degree)

» Can be easily implemented in R as p — 1 regressions using
glmnet. A more general version is available in the spacejam
package, which also includes estimation for non-Gaussian data

(©Ali Shojaie SISG: Pathway & Networks
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Computational Complexity

» Compared to pcalg, this method runs much faster: ~ np?
operations vs ~ p9 (g is the max degree)

» Can be easily implemented in R as p — 1 regressions using
glmnet. A more general version is available in the spacejam
package, which also includes estimation for non-Gaussian data

o | pcalg
8 —-4- lasso
o +- Alasso

£ 8.

= O

=) (3]

o

o —
o
o _|
IS}
- o
o - Am&_ﬁ&,_ remnzeeea i

I I I I
p=100, n=100 p=100, n=1000 p=1000, n=100 p=1000, n=1000
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Simulations
e Settings:
p = 50,100,200
n = 100

Total number of edges in the network = n
100 repetitions

e Performance Criteria
1. Matthew's Correlation Coefficient (MCC): ranges between —1
(worst fit) and 1 (best fit), similar to F;
2. Structural Hamming Distance (SHD): sum of false positive
and false negatives
3. True positive and false positive rates

e Tuning parameter for both PC-Algorithm and penalized likelihood
method based on false positive error «

(©AIi Shojaie SISG: Pathway & Networks 40
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Other Estimation Methods
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Gaussian Observations
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Regulatory Network of E-Coli

» Regulatory network of E-coli with p = 49 genes (7 TFs)

» Want to identify regulatory interactions among TFs and
regulated genes

(©Ali Shojaie SISG: Pathway & Networks 42
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Regulatory Network of E-Coli
» Regulatory network of E-coli with p = 49 genes (7 TFs)
» Want to identify regulatory interactions among TFs and
regulated genes
Known Pcalg Lasso Alasso
Regulatory Network FP=0.004, FN=0.977 FP=0.042, FN=0.698 FP=0.068, FN=0.628
MCC=0.08, SHD=43 MCC=0.34, SHD=40 MCC=0.35, SHD=43
©_. e ©
® ® @
- @ © @ e ®
©e o
e @
@@ @
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®
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DAGs for Time Series Data
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Time Series Data: A setting where ordering is known
» p-dimensional, discrete time, stationary process
Xt — {Xlta"' ’Xlg}
Xt = A Xt b AgXT e ety ¢ AT N0, ) (1)
» Ai,...,Aq : p X p transition matrices (solid, directed edges)
» > !: contemporaneous dependence (dotted, undirected
edges)
(©AIi Shojaie SISG: Pathway & Networks 44
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DAGs for Time Series Data

Network Granger causality (NGC)

(©Ali Shojaie SISG: Pathway & Networks 45
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Network Granger Causality with VARs
» Xi,...,Xp: time series for p variables
> Xt =(X{,... ,X;)/: realizations at time t
(©Ali Shojaie SISG: Pathway & Networks 46
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Network Granger Causality with VARs

> Xi,...,Xp: time series for p variables
> Xt =(X{,...,X!)" realizations at time ¢
» VAR model for NGC:

XT — Ale—l N -|-AdXT_d +€T

(©Ali Shojaie SISG: Pathway & Networks 46
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Network Granger Causality with VARs
» Xi,...,Xp: time series for p variables
> Xt =(X{,... ,X,S)/: realizations at time t
» VAR model for NGC:
XT=AXT 4o AIXT g7
(©AIi Shojaie SISG: Pathway & Networks 46




Introduction
Estimating DAGs
DAGs for Time Series Data

Network Granger Causality with VARs

» Xi,...,Xp: time series for p variables
> X' = (X{,...,XE)": realizations at time ¢
» VAR model for NGC:

XT :Ale_1+"‘+AdXT_d+ET

r A;,: Autoregressive effect of X, on itself

(©Ali Shojaie SISG: Pathway & Networks 46
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Network Granger Causality with VARs
» Xi,...,Xp: time series for p variables
> X = (X{,...,Xt)" realizations at time ¢
» VAR model for NGC:
XT Ale 1+---+Ade_d—|—€T
r A,,: Autoregressive effect of X, on X
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Network Granger Causality with VARs

» Xi,...,Xp: time series for p variables
> Xt =(X{,... 7X,f)/: realizations at time t
» VAR model for NGC:
XT — Ale—l 4. —|—AdXT_d +€T

r A,,: Autoregressive effect of X, on X

» X; Granger-causal for X; if Af-‘_J- # 0 for some k (k=1,...,d)

(©Ali Shojaie SISG: Pathway & Networks
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NGC Estimation

Let Y be the (stacked) vector of current time points; Z be the
design matrix based on previous time points; and 5 be

Assuming A; are sparse, and d is known

» /;-penalized least squares (/1-LS)

argmin ||Y — ZB|1> + 18],
BERP?

» /1-penalized log-likelihood (¢1-LL) — assuming X! is sparse?

argmin (Y — ZB) (Z. 1@ 1) (Y — Z8) + X8|,
pER?

’Lin & Michailidis (2017)

(©Ali Shojaie SISG: Pathway & Networks
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Applications — Functional Genomics

» Identifying regulatory mechanisms using transition patterns in
time course expression data

» Hela gene expression regulatory network (Fujita et al, 2007)
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Applications — Neuroscience

» Connectivity among brain regions from time-course fMRI data
» Connectivity of VAR generative model (Seth et al, 2013)
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2 _ 0.001
38
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Extensions

» Panel VAR Modeling (common in functional genomics and
neuroscience)?
» Incorporating external information using group lasso penalties,
4
etc
» Dealing with non-statinarity (paucity of long stationary time
series — T small)®

» Accounting for non-linearity

3S & Michailidis (2010); S, Basu & Michailidis (2012)
*Basu, S & Michailidis (2014)
>Safikhani & S (2020)
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Example: T-cell Activation Data

» Data from Rangel et al (2004) on T-cell activation — less
insight and biological knowledge regarding pathways

» p =58 genes, n = 44 samples, and T = 10 time points — the
first 5 time points (0, 2, 4, 6 and 8 hours) were used on a
subset of 38 genes for which pathway information avail

» Goal is to estimate regulatory interactions
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Estimated Network Structure
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Summary

Series Data

Estimation of DAGs from observational data is both conceptually

and computationally difficult

e Constraint-based & search-based algorithms — slow in high dim

e May not be able to d
(Markov equivalence)

istinguish DAGs from observational data

e Efficient penalized likelihood methods can estimate DAGs if the

ordering is known

e Important case is tim
causality!®

e series data, but Granger causality #

e Efficient implementations in R available for most methods
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