
doi: 10.1098/rsif.2009.0067
, 35-477 2010 J. R. Soc. Interface

 
Andreas Handel, Ira M. Longini, Jr and Rustom Antia
 
dynamics of influenza A infections
Towards a quantitative understanding of the within-host
 
 

References
http://rsif.royalsocietypublishing.org/content/7/42/35.full.html#ref-list-1

 This article cites 68 articles, 29 of which can be accessed free

Rapid response
http://rsif.royalsocietypublishing.org/letters/submit/royinterface;7/42/35

 Respond to this article

Subject collections
 (79 articles)computational biology   �

 
Articles on similar topics can be found in the following collections

Email alerting service  hereright-hand corner of the article or click 
Receive free email alerts when new articles cite this article - sign up in the box at the top

 http://rsif.royalsocietypublishing.org/subscriptions go to: J. R. Soc. InterfaceTo subscribe to 

This journal is © 2010 The Royal Society

 on 20 November 2009rsif.royalsocietypublishing.orgDownloaded from 

http://rsif.royalsocietypublishing.org/content/7/42/35.full.html#ref-list-1
http://rsif.royalsocietypublishing.org/letters/submit/royinterface;7/42/35
http://rsif.royalsocietypublishing.org/cgi/collection/computational_biology
http://rsif.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royinterface;7/42/35&return_type=article&return_url=http://rsif.royalsocietypublishing.org/content/7/42/35.full.pdf?ijkey=Ajt6zAcpPssVCQv&keytype=finite
http://rsif.royalsocietypublishing.org/subscriptions
http://rsif.royalsocietypublishing.org/


J. R. Soc. Interface (2010) 7, 35–47

 on 20 November 2009rsif.royalsocietypublishing.orgDownloaded from 
*Author for c

doi:10.1098/rsif.2009.0067
Published online 27 May 2009

Received 19 F
Accepted 14 A
Towards a quantitative understanding
of the within-host dynamics of

influenza A infections
Andreas Handel1,*, Ira M. Longini Jr2 and Rustom Antia3

1Department of Epidemiology and Biostatistics, College of Public Health, University of
Georgia, Athens, GA 30602, USA

2Program of Biostatistics and Biomathematics, Fred Hutchinson Cancer Research Center,
Department of Biostatistics and School of Public Health, University of Washington, Seattle,

WA 98109, USA
3Department of Biology, Emory University, Atlanta, GA 30322, USA

Although the influenza A virus has been extensively studied, a quantitative understanding of
the infection dynamics is still lacking. To make progress in this direction, we designed several
mathematical models and compared them with data from influenza A infections of mice. We
find that the immune response (IR) plays an important part in the infection dynamics. Both
an innate and an adaptive IR are required to provide adequate explanation of the data. In
contrast, regrowth of epithelial cells did not seem to be an important mechanism on the
time scale of the infection. We also find that different model variants for both innate and
adaptive responses fit the data well, indicating the need for additional data to allow further
model discrimination.
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1. INTRODUCTION

A quantitative understanding of infection dynamics is
important for improved control of infectious diseases.
To that end, mathematical models, combined with
experimental data, can provide valuable insights. While
some pathogens have been studied quantitatively
(Nowak & May 2001; Perelson 2002; Dixit et al. 2004;
Kirschner & Marino 2005; Asquith & Bangham 2007;
Davenport et al. 2007), influenza has received little
attention.

Seasonal influenza usually causes uncomplicated and
transient infections in humans, with virus replication
localized to the upper respiratory tract (URT). Two
recent studies used viral load data from human volun-
teers infected with influenza and combined them with
mathematical models to quantify the infection
dynamics (Baccam et al. 2006; Handel et al. 2007).
These studies showed that it was possible to describe
the infection dynamics without the need to consider
the immune response (IR). Instead, the decline of
viral load after a few days could be attributed solely
to the depletion of target cells, which are primarily epi-
thelial cells lining the URT. It is quite possible that the
virus dynamics in the URT is driven mainly by
depletion of target cells. For instance, Francis &
Stuart-Harris (1938) found that ferrets infected intra-
nasally with a sublethal dose of influenza virus
orrespondence (ahandel@uga.edu).
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developed desquamation of the tracheal area by day 2
with complete destruction of the epithelium. The
animals survived and fully regenerated the epithelial
tissue within a few weeks.

On the other hand, reports from immunocompro-
mised humans who shed influenza virus for prolonged
periods suggest that the IR plays an important role in
clearing the infection, or at least in preventing it from
becoming chronic and potentially lethal (Rocha et al.
1991; Klimov et al. 1995; Boivin et al. 2002;
Weinstock et al. 2003). The IR is likely to be especially
important in more severe influenza infections of the
lower respiratory tract (LRT). Such infections can
lead to viral pneumonia and in the worst cases to
death. Humans infected with the H5N1 avian strain
often show such LRT infections (Tran et al. 2004; de
Jong et al. 2006). Similarly, some of the hosts that
died during the devastating 1918 pandemic seem to
have succumbed to a viral pneumonia (the majority
likely died due to secondary bacterial pneumonia;
Morens & Fauci 2007; Morens et al. 2008). Autopsies
show that severe influenza infections often involve signifi-
cant damage of the LRT,which presumably contributes to
the host’s death (Giles & Shuttleworth 1957; Hers et al.
1958). Therefore, in LRT influenza infections, an IR
that can quickly suppress the virus, without causing too
much immunopathology, seems crucial.

Unfortunately, there is little kinetic data beyond virus
load available from infected humans, and often the data
are reported in a form that make them unsuitable for
This journal is q 2009 The Royal Society
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detailed quantitative studies. In fact, the mathematical
studies for human URT influenza infections mentioned
above (Baccam et al. 2006; Handel et al. 2007) showed
that models that included either an innate (Baccam
et al. 2006) or adaptive (Handel et al. 2007) IR com-
ponent could also explain the observed virus dynamics;
the available data were not sufficient to properly dis-
criminate between models with and without an IR. In
contrast, animal studies can usually provide more data.
For instance, mice infected with influenza provide a
good model for the more severe form of influenza pneu-
monia and have been extensively studied. Most of these
studies point towards the importance of a functioning
IR. However, the relative roles and contributions of the
different components of the IR are less clear (Swain
et al. 2004; Tamura & Kurata 2004; Doherty et al.
2006; Thomas et al. 2006). To make further progress
towards a quantitative understanding of influenza A
infection dynamics, we decided to fit mathematical
models to some of the data from influenza A infections
in mice. We used data from two experimental studies
(Iwasaki & Nozima 1977; Kris et al. 1988) and fitted
them to several mathematical models that describe the
within-host dynamics of the virus, target cells and differ-
ent aspects of the IR. We find that the IR plays an
important part in the infection dynamics. Both an
innate and an adaptive IR are required to provide
adequate explanation of the data.
2. MATERIAL AND METHODS

2.1. Experimental data

We use data obtained from two experimental studies.
The first experimental study by Kris et al. (1988) con-
tains viral load data for primary infections with the
H3N2 influenza strain A/Port Chalmers/1/73. In this
study, both wild-type BALB/c mice with a functioning
IR, as well as nude, athymic (nu/nu) mice were
infected. The lack of a thymus in the nude mice leads
to missing T-cells, which also leads to a largely non-
functioning B-cell/antibody response. Kris et al.
(1988) reported levels of virus load, given in 50 per cent
egg infectious doses (in the following abbreviated as
EID) for both the wild-type and nude mice.

The second study by Iwasaki & Nozima (1977; in the
following abbreviated as IN) contains data from naive
C3H/He mice infected with the H1N1 influenza strain
A/PR8. The investigators reported viral titre, measured
in 50 per cent plaque forming units (in the following
abbreviated as PFU). In addtion, IN report cell
damage as measured by lung lesions, levels of IgA, IgM
and IgG antibody titres and interferon (IFN) levels
(type I and II) for both serum and tracheobronchial
washings. We make use of the tracheobronchial data
from the experiments with immune-competent mice and
mice depleted of IgM antibodies (figures 1, 2, 7 and 8
in Iwasaki & Nozima (1977)). For additional details on
the experimental procedures and data, we refer to the
original studies (Iwasaki & Nozima 1977; Kris et al.
1988). Data were extracted from the published papers
using Engauge Digitizer (digitizer.sourceforge.net).
J. R. Soc. Interface (2010)
2.2. Mathematical model

We employ mathematical models based on ordinary
differential equations. The simplest such model is the
one that describes the dynamics of uninfected and
infected target (epithelial) cells and virus. Such
models have been used extensively to study HIV
(Perelson 2002) and more recently for influenza A
(Baccam et al. 2006; Handel et al. 2007; Beauchemin
et al. 2008). More detailed descriptions of these types
of models can be found in these references. Briefly,
uninfected epithelial cells, U, can become infected by
virus at a rate b. This leads to latently infected cells,
E, which after a mean time of 1/g hours start to
produce virions, V, at rate p. Virus producing, infected
cells, I, die after some time, 1/d. We ignore turnover of
uninfected epithelial cells. However, we include the
replacement of dead cells, D, by new susceptible
epithelial cells at a rate l. Free virus is cleared by
non-specific mechanisms (e.g. mucosal transport) at
rate c.

In addition, we add equations for the IR. After
infection, the innate IR is the first to respond. The
innate response consists of both inflammatory cyto-
kines and populations of cells such as neutrophils
and macrophages (Tamura & Kurata 2004; Maines
et al. 2008). We assume that such an innate response,
F, is triggered upon infection and increases proportion-
ally to free virus at rate w, with a first-order clearance
rate, d. The impact of the innate IR on the virus is
likely multi-factorial. For instance, it is known that
inflammatory cytokines render cells less susceptible
to infection or reduce the production of virus in
already infected cells. Alternatively, innate cellular
components can increase the death of infected cells
or clearance of infectious virions. In the main text,
we assume that the innate IR reduces the production
of infectious virions; some alternatives are discussed
in appendix A.

While the innate IR is triggered rapidly, the adaptive
response takes longer to reach high levels. Both the
humoral component (B-cells, antibodies) and the cellu-
lar component (T-cells) of the adaptive IR have been
found to play a role during influenza infections. Here,
we focus on the humoral component; we briefly discuss
T-cell-based responses in appendix A. The exact
dynamics of B-cells/antibodies following infection is
not well known. Activation of B-cells likely depends
on viral load (antigen), while some of the expansion
dynamics is probably independent of virus load, as
has been found for T-cells (McHeyzer-Williams et al.
2006; Harty & Badovinac 2008; Batista & Harwood
2009). We model this by assuming that the adaptive
response, X, is activated proportional to free virus
load at rate f. Activation is followed by antigen-
independent clonal expansion at an effective growth
rate r. We only consider the expansion phase of the
IR. This is justified for acute viral infections, since the
peak and following contraction of the adaptive IR
usually occurs days or weeks after the virus has been
cleared, and we are only interested in the infection
dynamics up to the point where the virus is cleared.
When fitting to data, we consider X to represent

http://rsif.royalsocietypublishing.org/


Table 1. Model parameters. (Most parameters are determined by fitting to data, as described in §3. For constraints imposed on
some of the parameters, see §2.3.)

symbol meaning values comments

1/g duration of latent eclipse phase 6 h (g ¼ 4 per day) fixed, see text
1/d lifespan of infected, virus-producing cell 12 h (d ¼ 2 per day) fixed, see text
1/c lifespan of free virions 2.4 h (c ¼ 10 per day) fixed, see text
b infection rate variable fit to data
p virus production rate variable fit to data
l rate of regeneration of epithelial cells variable fit to data
g conversion between infectious virions and EID/PFU variable fit to data
w expansion rate of innate IR variable fit to data
d decay rate of innate response variable fit to data
k strength of innate response variable fit to data
r expansion rate of adaptive IR variable fit to data
f recruitment rate of adaptive IR variable fit to data
k kill rate of adaptive IR variable fit to data
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antibodies, which we assume are proportional to the
number of responding B-cells. The main mode of
action for anti-influenza antibodies is to neutralize
the virus, thereby removing free infectious virions
(Outlaw & Dimmock 1991). (Note that the experimen-
tal protocols only measure such infectious virions,
consistent with our model.) We model neutralization
as a mass-action clearance term of free virions at
rate k. We discuss several different model variants in
appendix A.

With these assumptions, the model equations are
given by

uninfected cells _U ¼ lD � bUV
latently infected cells _E ¼ bUV � gE
productively infected cells _I ¼ gE � dI
dead cells _D ¼ dI � lD

free virus _V ¼ pI
1þ kF

� cV

�gbUV � kVX
innate IR _F ¼ wV � dF
adaptive IR _X ¼ fV þ rX :

Table 1 summarizes the model parameters. The factor g
in the equation for virions is needed for the conversion
from infectious virions, the units of V in our model, to
EID or PFU as measured by the experimental data. A
value of g ¼ 1 assumes that one virion corresponds to
one EID or PFU, g , 1 allows for the possibility that
more than one virion is required to produce one EID
or PFU.

An important quantity for models such as this one is
the basic reproductive number. This number, given by

R0 ¼
bpU0

dðc þ gbU0Þ
; ð2:1Þ

describes the average number of infectious progeny vir-
ions produced by one virion at the start of the infection.
A value of R0 . 1 leads to virus growth while a value
lower than 1 will not.
J. R. Soc. Interface (2010)
2.3. Parameter bounds

Since initial fitting of the models to the available data
indicated that the number of free parameters leads to
degeneracies, we decided to fix several model par-
ameters. We mention briefly at the appropriate places
how results change if we fit these parameters instead
of fixing them. Further, to ensure that our models are
in agreement with known biology of the infection pro-
cess, we imposed bounds on some of the fitted model
parameters, based on estimates from the literature.

Experimental data suggest that production of virions
starts as early as around 3 h after a cell becomes
infected (Cairns & Destgroth 1957; White et al. 1965)
and seems to be well under way at around 8 h
post-infection (Henle et al. 1947; Cairns et al. 1952;
Rimmelzwaan et al. 1998; Sidorenko & Reichl 2004).
We therefore decided to fix the duration of the latent
phase at 6 h (g ¼ 4 per day), which also agrees with
the best fit value from Baccam et al. (2006). Similarly,
several studies indicate that cells die around 12–24 h
after infection (Price et al. 1997; Brydon et al. 2003;
Beauchemin et al. 2008). We therefore fixed the lifespan
of productively infected cells at 12 h (d ¼ 2 per day),
which gives a total lifespan for infected cells (latent þ
productively infected phase) of 18 h.

Previous in vitro studies have reported the lifespan of
virions to be several hours (Horsfall 1954; Choppin
1963), with a recent study suggesting a half-life of
about 6 h (Beauchemin et al. 2008). It is not clear
how that translates to the in vivo situation. On the
one hand, virions could be optimized for the in vivo
environment and survive longer. On the other hand,
non-specific clearance mechanisms, such as mucosal
transport, likely reduce the effective half-life of virions
significantly. We decided to use a value for the virion
clearance rate of c ¼ 10 per day, in line with previous
estimates.

Several studies have shown that regeneration of
the epithelium of the URT starts a few days after the
onset of infection (Ramphal et al. 1979). It is not
clear if the same is true for LRT epithelial cells, and if
the newly generated epithelial cells are susceptible to
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virus infection right away (Francis & Stuart-Harris
1938; Stuart-Harris & Francis 1938). For those
models where we include regeneration of epithelium,
we bound the rate for l between 0.5 and 0 per day.

We set no bounds on b and p since these are hard to
estimate, especially given that the virus load is
expressed in units of PFU (Iwasaki & Nozima 1977)
or EID (Kris et al. 1988), which leads to b and p also
having those units. We also do not enforce bounds on
any of the parameters describing the IRs, since those
are not well known.

Additionally, we need to specify or fit the initial
number of target cells, U0, and viral load, V0 (all
other variables are initially zero). We estimate the
number of target cells to be U0 ¼ 7 � 109. This
number is based on an estimated surface area of
the LRT of mice of about 2175 cm2 (Ito et al. 2003)
and an estimated epithelial cell surface area of about
3 � 1027 cm2 (Farmer & Hay 1991). It is worth men-
tioning that a recent study based on an alternative
approach (estimation of cell numbers based on mea-
sured protein levels) led to an estimate for the target
cell population that is about 1000-fold lower than
our estimate (P. Thomas, P. Dash and C. Sanders
2009, personal communication). While a more precise
measurement of the target cell population would be
valuable, it fortunately does not matter much for our
study. All results shown below are also valid for differ-
ent number of target cells, the only difference would
be a rescaling of the parameters p and g.

For the viral load, only the study by IN (1977)
reports the amount of virus in the inoculum. Further,
it has been shown that the ‘take’ can be lower and
depends on the details of the inoculation procedure
(Yetter et al. 1980). We therefore treat the inoculum,
V0, as a free parameter and fit it to the data.
However, we impose a lower bound of hundred infec-
tious virions and upper bounds as described in the
sections below.
2.4. Fitting procedure

We fitted the data using nonlinear least square fit rou-
tines, i.e. we minimized

P
i(yi

d 2 yi
m)2, where d and m

stand for data and model. Data for viral load, IFN
and antibody titre are expressed in units of log10, lung
lesions/dead cells are expressed as a fraction between
0 and 1. Errors are assumed to be normally/log-
normally distributed, with equal variance for a given
dataset. Since for some of the fits, several different
quantities are fitted simultaneously, it was necessary
to give similar weights to the different datasets. We
did so by re-scaling the data for each different variable
(log virus load, log antibody titre, fraction dead cells,
log IFN) by its maximum value, to ensure that datasets
for each variable have values between zero and one.

Data were fitted to the mathematical models using
several different least square fit routines (lsqnonlin, nlinfit,
fmincon) provided by Matlab R2007a (The Mathworks).
More details on the solver routines can be found in
the Matlab documentation, available at www.mathworks.
com. The scripts used to produce the results are available
from the authors upon request. We used more than one
J. R. Soc. Interface (2010)
least square solver since we noticed that occasionally
a certain fitting routine would return a local minimum;
however, when this minimum was used as a starting
value, a different solver routine was able to improve on
it. We therefore switched between the different solvers
until none of them was able to further improve
the solution. We also varied the initial conditions for the
parameters over a wide range to ensure that we obtained
the globally best fit. In addition, we tried a few different
global optimization algorithms, namely simulated
annealing, genetic algorithms and direct search methods,
all part of the Matlab GENETIC ALGORITHM AND DIRECT

SEARCH TOOLBOX. None of these algorithms led to different
(better) results. In general, the optimization landscape
was found to be rather rugged, which required occasional
‘manual intervention’ through switching solvers, tweak-
ing initial guesses and restarting the fit several times.
Because of this, we decided not to perform bootstrapping
to obtain confidence intervals, since such a procedure does
not allow manual interventions and we did not trust an
‘automated’ routine to properly converge to the right
minimum every time, which would have led to false
estimates for the confidence intervals.

While we assess the quality of model fits mainly
based on biological relevance and not statistical criteria,
we also computed the Akaike Information Criterion
(AIC) as an additional way to assess the goodness-of-
fit for the different models. A lower AIC value means
that the model describes the data better. We employ
the corrected AIC, which accounts for low numbers of
data points, given by

AICc ¼ 2m þ n log
SSR
n

� �
þ 2mðm þ 1Þ

n �m � 1
; ð2:2Þ

where m is the number of parameters plus one, n is
the number of data points and SSR is the sum of
square residuals obtained from the fitting routine,
with the assumption that the variance is equal to
SSR/n (Burnham and Anderson 2002).
3. RESULTS

3.1. Fitting the first dataset

We begin by fitting the data from Kris et al. (1988). The
data consist of viral load for influenza infection in wild-
type BALBc mice with a functioning immune system,
as well as nude mice, which do not have a thymus
and therefore no T-cells, which also leads to a severely
impaired B-cell response (symbols in figure 1). As can
be seen, in the absence of well functioning B- and
T-cell responses, the virus persists at a high level; even-
tually the mice succumb to the infection. In contrast, if
a functioning adaptive IR is present, the infection is
cleared relatively rapidly. This shows that the adaptive
IR is important and will have to account for the different
virus dynamics between the two datasets.

Both B-cells/antibodies and T-cells have been
suggested as the main drivers of virus clearance
(Palladino et al. 1995; Mozdzanowska et al. 2000;
Hasegawa et al. 2002; Lee et al. 2005). Here, we focus
on an antibody-mediated adaptive IR. Since no anti-
body data are available, the antibody response is
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Figure 1. Data and model fit for the model with no epithelial cell regrowth (l ¼ 0) and no innate IR (v ¼ 0). (a) No limit on the
virus inoculum. (b) Virus inoculum bound from above by V0 ¼ 104. Open circles, nude mice; filled circles, wild-type mice.
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essentially on an arbitrary scale and, without loss of
generality, we can reduce the number of parameters
by setting the antibody-mediated virion clearance rate
to k ¼ 1. We fit the data for wild-type and nude mice
simultaneously, with an antibody response present in
the wild-type mice and absent for the nude mice. We
further start with the assumption that regrowth of
epithelium can be neglected (l ¼ 0). We also initially
ignore a possible role of the innate IR (w ¼ 0).

Figure 1a shows that a decent fit can be obtained.
However, crucial features of the virus dynamics, such
as the initial growth phase, are not well reproduced.
This is captured by the unrealistically low basic repro-
ductive number of R0 ¼ 1.05. Along with this, the
best-fit inoculum dose is V0 ¼ 3.2 � 106, which is
higher than the virus load data for day 1 in the
BALBc mice. Unfortunately, Kris et al. do not report
the virus inoculum used for their experiments. An
earlier study from the same laboratory used a similar
protocol (Kris et al. 1985), and in that study the inocu-
lum is 106 EID. However, their laboratory also showed
in yet another study that the ‘take’ of virus (measured
as the fraction of inoculum that could be recovered
10 min post-infection) can be very variable and much
lower than the inoculum dose (Yetter et al. 1980).
Given this uncertainty, we decided to set upper
bounds on V0 and investigate how the results change.
For V0 ¼ 105, the fit is still reasonable; however, once
V0 is bound by V0 ¼ 104, which is just below the viral
load for day one in the wild-type mice, the fit becomes
very poor (figure 1b). (Allowing the fixed parameters c,
d and g to vary leads to a somewhat lower SSR but
cannot remedy the overall poor fit.) With the infor-
mation we have available, we cannot categorically rule
out that the initial effective inoculum is indeed at
levels around 106. However, the increase in influenza
virus titre is usually rapid, suggesting an R0 that is
well above 1 (Baccam et al. 2006). A high R0 leads to
significant cell destruction, which in turn leads to the
virus running out of target cells and therefore a decline
in viral load. This is the reason why the model cannot
properly reproduce both a strong initial virus growth
phase and a prolonged almost constant level of virus
load, as seen in the nude mice.

One way a steady state could be maintained is if
destroyed epithelial cells are replaced by new susceptible
J. R. Soc. Interface (2010)
cells (similar to the steady-state dynamics observed in
HIV, where the CD4þ T-cells, which are the virus’s
main target, are constantly replenished). To test this
idea, we next fitted the model with l= 0. It is now
possible to obtain a decent fit even with the bound
V0 � 104 (figure 2). A higher value of R0 is obtained
for this fit (table 2), which is more in line with the
rapid increase in influenza viral titre usually observed.
This model predicts a relatively high level of destruction
of lung epithelial cells in both wild-type and nude mice.
To maintain an almost constant level of virus in the
immunocompromised mice, the effective reproductive
number needs to be R � 1. Since R0 is much larger,
the only way to achieve R � 1 is by depletion of most
epithelial cells and then, through regrowth of epithelium
at rate l, a steady state of virus, infected cells, and a low
level of uninfected target cells can be maintained. It is
not clear if such a high level of lung epithelium destruc-
tion is reasonable. Presumably, this would lead to rapid
death of the mice.

Instead of assuming that the reduction of R to a
value of about 1 is mainly because of the depletion
of target cells, it could also be possible that it is to a
large extent owing to innate IR mechanisms. Despite
the lack of a functioning adaptive IR, the nude mice
still have a largely well-functioning innate response.
Components of the innate IR, such as various cyto-
kines, macrophages and neutrophils, have all been
shown to play a role in influenza virus control
(Tumpey et al. 2005; Koerner et al. 2007; Kim et al.
2008; Tate et al. 2008). We tested a model that
includes an innate response, as described in §2. Since
we again do not have data for the innate response,
we can reduce the parameters by setting w ¼ 1 without
loss of generality. As figure 3 shows, we find a good fit,
even in the absence of epithelial regrowth (l ¼ 0).
Allowing for epithelial regrowth does not further
improve the results (not shown). We assumed the
innate IR to be the same for the wild-type and nude
mice. However, because of the many feedback loops
that exist between different components of the IR, it
is possible that the nude mice also have an altered
innate response. Allowing the parameters for the
innate response to vary between the wild-type and
nude mice better captures the differences in virus
load between wild-type and nude mice during the
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Figure 2. Data and model fit for the model including regrowth of epithelium (l ¼ 0.25 per day). Dashed curve, nude mice;
solid curve, wild-type mice.

Table 2. Values for the parameters common to all models shown in the figures. (The different parameters are given in the
following units: V0 and g in EID or PFU, b and f in 1/(EID or PFU � day), p in EID or PFU per day and r in 1/day. SSR,
sum of square residuals; AICc, Akaike Information Criterion, corrected for small sample size (Burnham & Anderson 2002).
Parameter values specific for individual models are given in the text and figures.)

model V0 b p r f g R0 SSR AICc

figure 1a 3.2 � 106 8.6 �1029 1.4 2.2 1.4 �10210 0.5 1.05 0.056 253
figure 1b 1 � 104 2.6 �1029 1.5 2.5 6.6 � 10211 7.8 � 1028 1.38 0.53 222
figure 2 4 � 103 1.1 �1025 2.8 �1023 2.2 2.7 � 10210 1 �1025 10 0.053 245
figure 3 1 � 102 6.3 �1028 5.5 �101 2.5 2.8 � 1029 1 26.6 0.052 233
figure 4 6 � 103 4.3 �1027 6.1 �1022 0.14 7.1 � 1026 5.8 � 1023 3.4 0.6 2121
figure 5 3.8 � 104 2.1 �1027 5 �1022 0.3 2.7 � 1026 7.5 � 1024 3.4 0.37 2134
figure 6 4 � 104 1.9 �1027 1 0.27 2.8 � 1026 1.3 � 1021 3.6 0.1 2176

40 Modelling influenza A infections A. Handel et al.

 on 20 November 2009rsif.royalsocietypublishing.orgDownloaded from 
first few days, but the added parameters are not justified
on statistical grounds (not shown).

We can conclude from this section that both
regrowth of epithelial cells and a combination of
innate and adaptive IR can explain the data. The
latter model has an additional parameter compared
with the former model and is not justified on statistical
grounds (table 2). However, we believe it to be biologi-
cally more plausible. First, a study in ferrets found that
newly grown epithelial cells were initially resistant to
infections (Stuart-Harris & Francis 1938), which could
indicate that even though epithelial cell regrowth a
few days post-infection is observed in mice (Ramphal
et al. 1979), these might not be available for reinfection.
A more recent modeling study for URT influenza
infections in humans also concluded that the regrowth
of epithelial cells could be neglected (Baccam et al.
2006). Second, in the presence of an innate response,
the level of epithelial cell destruction is lower, which
seems more plausible (see the next section). Lastly,
many studies have shown that the innate response
plays an important role during influenza infection
(Tumpey et al. 2005; Koerner et al. 2007; Kim et al.
2008; Maines et al. 2008; Tate et al. 2008).
Nevertheless, based solely on the data analysed in this
section, we cannot draw a definite conclusion.
3.2. Fitting the second dataset

The previous dataset only provided virus load, albeit for
wild-type and nude mice. This allowed us to draw some
J. R. Soc. Interface (2010)
conclusions, but we could not completely resolve the
importance of the innate IR. To make further progress,
we turn to the study by IN (1977), which reports data
not only on viral load, but also on percent lung lesions,
IFN levels and antibody titres. In addition to infection
of fully immunocompetent mice, IN performed studies
in which they depleted IgM, IgG or IgA antibodies.
They found that while IgG depletion did not change
the infection dynamics and the mice survived (as did
the wild-type mice), depletion of either IgM or IgA
led to a change in virus dynamics and death of the
mice. This again indicates the importance of the adap-
tive IR, and more specifically, the presence of certain
types of antibodies. We focus here on the data for the
IgM-depletion experiment, since these lead to almost
complete abrogation of all three types of antibodies.
Therefore, as in the previous dataset, we can assume
that the difference between the immunocompetent
and the anti-IgM-treated mice is the presence or
absence of the B-cell/antibody IR. (A possible T-cell
response is discussed in appendix A.) The data for the
wild-type and anti-IgM experiments are reported in
figures 1, 2, 7 and 8 in Iwasaki & Nozima (1977) (see
symbols in figure 5).

First, we consider a model that allows for regrowth of
epithelial cells and includes an adaptive IR, but we
ignore the potential role of the innate response. The IN
study reports the amount of virus inoculum the mice
were exposed to (V0 ¼ 4 � 104 PFU), which we use as
upper bound for the viral load in our fits. Figure 4 shows
the best fit for the model, which is clearly rather poor.
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Next, we tried to see if including an innate response
can lead to a better fit. The IN study reports data on
one important component of the innate IR, the IFN
system (Garcia-Sastre 2001, 2002), on which we focus
in the following. The IN study reports IFN levels for
both the situation with an intact IR and the anti-IgM
scenario. While the increase and decrease in the IFN
response in the immunocompetent mice can be well
described with our innate IR model used in the previous
section, this is not possible for the anti-IgM scenario.
Specifically, in this situation, after the initial virus
increase and decline, the virus increases again around
day 6 and reaches very high levels by day 12; this
coincides with increases in lung pathology and is
followed by death of the animals (figure 5a,b).
Curiously, there is no concurrent secondary increase
of IFN levels, at least not before day 8, which is the
last day at which IN report IFN levels (figure 5d). We
could accommodate the fact that IFN does not increase
again, despite increase in virus load, by for instance
‘turning off’ growth (setting w ¼ 0) at day 5 in our
innate IR equation. However, this seems rather ad hoc
and we are not aware of any biological mechanism that
would justify such a model. We therefore decided that
instead of modelling IFN, we fit it with a simple
non-mechanistic equation (Regoes et al. 2004), namely
exponential IFN increase until the peak at day 5, followed
by exponential decay. This essentially reproduces an
equation that would have an arbitrary turn-off for
growth at day 5, but does not try to cast the IFN
dynamics in the form of a (contrived) mechanistic
J. R. Soc. Interface (2010)
model. This approach has the added benefit that we
can include a time lag (see below) without having to
deal with delay differential equations.

With the IFN levels determined (figure 5d), we next
fit the available data for viral load, lung lesions and
antibody titre to the model. We assume that the anti-
body response is present for the wild-type and absent
for the anti-IgM mice. Note that we fit the model to
antibody data, in effect assuming that B-cell numbers
and antibody levels follow an equivalent dynamics.
Figure 5 shows the best fit for the model.

While the agreement for the antibody level and frac-
tion of dead cells is decent, the fit to the viral load data
is not. One problem could be our assumption that the
reported data on lung lesions correspond directly to
dead cells in our model. It is unclear what the exact
correspondence between lung lesions and dead cells in
our model should be. We therefore introduced a scaling
factor between the lung lesion data and the dead cells
in our model. However, allowing for such a scaling
factor did not improve the results significantly (not
shown) and the best fit was obtained for a value of
this scaling factor of about 1. Another possibility is
that the cytotoxic T lymphocytes (CTL)-based IR is
present and plays a role for both the immunocompetent
and antibody depleted mice. However, extending the
model to include such a CTL-based IR (with dynamics
described by the same model as that for the antibody
response) also did not improve the fit (not shown).
Another possibly important feature could be that
there is a delay between a given level of IFN and its
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action of reducing virus production. We therefore
included a delay, such that F(t2 t) was acting on the
reduction of virus production. This produced a better
fit (figure 6), with a delay time of about t ¼ 1.3 days.
To check the role of target-cell replenishment, we
forced l ¼ 0 and found that it leads to an almost
identical fit (not shown).

Interestingly, the model still predicts a decline in
virus load at days 11 and 12 for the anti-IgM mice.
A somewhat better fit with a less steep virus decline
on these days can be achieved for lower values of c,
e.g. for c ¼ 1 we find a fit with an SSR ¼ 0.08.
However, a half-life of virions of 24 h seems somewhat
too long. Alternatively, increasing the lifespan of
infected cells does also lead to a less steep virus decline
on days 11 and 12 but the overall fit becomes worse.

We can conclude from this section that the data are
best described by a model that includes an adaptive IR
and an innate IR. Using IFN levels as the proxy for the
innate response, we found that a time lag between levels
of IFN and its action on the reduction in virus pro-
duction improved the fit. Target-cell replenishment
was not found to be important. Even the best-fitting
model is not completely satisfactory; specifically the
virus dynamics on days 11 and 12 for the anti-IgM
mice is not well captured.
4. DISCUSSION

Two previous studies showed that viral load data of URT
influenza infections from humans could be fitted with a
simple resource limitation model, without the need to
invoke an IR (Baccam et al. 2006; Handel et al. 2007).
However, both studies also indicated that models that
included either an innate response (Baccam et al. 2006)
or an adaptive response (Handel et al. 2007) were consist-
ent with the data. Unfortunately, not enough data are
available to quantify the role of the IR in human infec-
tions. However, for influenza infections in mice, more
data are available. Here, we studied influenza infections
of the LRT of mice, which is a model for human influenza
pneumonia—and might also partly apply to uncompli-
cated URT infections, though this needs to be
investigated further. The availability of additional data
for immunocompromised animals, as well as data for
dead cells and IR components allowed us to make further
progress in discriminating between different possible
models for the infection dynamics. We find that for the
experimental data investigated, both an innate and an
adaptive IR are required to properly describe the infec-
tion dynamics. Our results additionally suggest that
regrowth of epithelium is not an important driver of
the infection dynamics.

When fitting the second dataset, we took IFN as a
proxy for the whole innate response. Some previous
studies in mice suggested that IFN did not significantly
affect the infection dynamics (Graham et al. 1993; Price
et al. 2000). One reason for this could be the fact that
many laboratory mice strains do not have a functioning
Mx1 gene. The Mx1 gene has been shown to be impor-
tant for the induction of the IFN-mediated anti-viral
state (Staeheli & Haller 1987; Staeheli et al. 1988;
J. R. Soc. Interface (2010)
Grimm et al. 2007). Both mice strains used in the two
experimental studies are Mx1 deficient. While IFN
can also act through other pathways (Garcia-Sastre
2001, 2002), the relative importance of each of these
pathways is not well understood. Additionally, it has
been shown that components of the innate response
other than IFN play an important role (Kim et al.
2008; Tate et al. 2008). Therefore, IFN might be a
good proxy for the dynamics of the innate response,
but is probably not the only important component
that influences the infection dynamics. The role of
IFN as a proxy for the innate response dynamics
deserves further study. For the reasons mentioned
above, we did not use a mechanistic model to fit the
IFN response. It seems curious that the IFN levels con-
tinue to decline, despite a rebound of the virus. It would
be interesting to see if this is a general feature.
Unfortunately, we are only aware of data for IFN
levels in immunocompetent hosts, where virus levels
increase up to day 2 or 3, followed by virus decline
and clearance. Not surprisingly, IFN follows that
dynamics. It would be interesting to see additional
data for the IFN dynamics for a situation such as the
nude mice from the first dataset. Unfortunately, to
our knowledge apart from the IN study, no other such
studies/data exist in the literature.

Our results improved by including a lag between IFN
levels and action of a given level of IFN. The impor-
tance of a lag was previously found for influenza
infections in humans (Baccam et al. 2006). An earlier
study of hepatitis C virus infections also reported a
similar lag (Neumann et al. 1998). Since IFN acts in
many different ways (Stark et al. 1998; Garcia-Sastre
2001, 2002), it is hard to suggest a specific mechanism
for such a delay. But in general terms, IFN is upstream
of a signalling cascade that eventually can lead to the
activation of effectors that induce an anti-viral state
in cells (Stark et al. 1998; Garcia-Sastre 2001). It is
therefore likely that a certain delay between a given
IFN level and action on the virus/cells occurs.

We used data from two specific experimental studies
to fit our models. It is well known that there can be
large variability between different experiments, owing
to experimental procedures that differ between labora-
tories, the use of different influenza strains, and the use
of different mice strains. Indeed, the importance of
certain types of antibodies, such as IgA, IgM and IgG,
continues to be studied, with results that do not always
agree with each other (Kris et al. 1985). We therefore
do not believe that the ability of a model with only an
antibody-based adaptive IR and no T-cell-based com-
ponent means the latter plays no role. Indeed, as
briefly described in appendix A, models that replace
the antibody response with a CTL response can fit the
data equally well. This implies that of course models
with both an antibody and T-cell response will also be
able to fit the data. However, the available data do not
seem to justify building more such complicated models,
since model discrimination would not be possible.

In summary, we have shown that both the innate and
adaptive IRs are important to describe the dynamics of
influenza A virus in LRT infections. Our findings also
suggest that regrowth of epithelial cells is unimportant
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on the time scale of the infections considered here.
However, the first dataset led to inconclusive results in
this regard and this deserves further study.
APPENDIX A

In the main text, we modelled an antibody-based
adaptive IR and the IFN response in a way that is
biologically reasonable but by no means the only
possible model formulation. We considered a number
of alternative models, which we briefly describe here.
A.1. Additional innate IR models

Since the innate response consists of both inflammatory
cytokines as well as populations of cells such as neutro-
phils and macrophages (Maines et al. 2008), it can
impact the virus dynamics in multiple ways. In the
main text, we assumed that the action of the innate
response is to reduce the production of infectious virions.
Alternatively, inflammatory cytokines might render cells
less susceptible to infection, while innate cellular com-
ponents (e.g. neutrophils, macrophages) can increase
death of infected cells or clearance of infectious virions.
We therefore considered several alternative mechanisms
for the action of the innate response.

(i) F1: reduction of susceptibility to infection, b!
b/(1 þ kF).

(ii) F2: killing of infected cells, 2kIF term added to
the equation for infected cells.

(iii) F3: removal of infectious virions, 2kVF term
added to the equation for virions.

A.2. Additional adaptive IR models

We investigated several other models for the adaptive
IR dynamics.

(i) X1: virus-independent clonal expansion at a
fixed rate, given by Ẋ ¼ rX.

(ii) X2: increase in IR proportional to viral load
(mass action), Ẋ ¼ rXV.

(iii) X3: increase in IR according to mass action at
low virus densities and virus-independent
clonal expansion at high virus densities, Ẋ ¼
rXV/(V þ s).

As an alternative to a humoral, B-cell/antibody response,
we investigated a CD8þ, CTL response, which has also
been found to play a role during influenza infections
(Mackenzie et al. 1989; Eichelberger et al. 1991; Bender
et al. 1992). We modelled a CTL response by adding a
mass-action killing term, 2kXI, to the equation for
infected cells (and a term þkXI to the equation for dead
cells), while removing the antibody-based mass-action
clearance term (2kXV) from the equation for the free
virions. The CTL dynamics was assumed to follow the
same equations as the humoral response.

In addition to altering the dynamics of the adaptive IR,
we also investigated an alternative to the mass-action kill-
ing term (2kXV), namely we considered killing that
J. R. Soc. Interface (2010)
saturates at high virus load (Pilyugin & Antia 2000;
Handel et al. 2009),modelledwith a term (2kXV/(Vþ s)).

Finally, for both the adaptive and innate responses,
we considered models in which the expansion/acti-
vation was proportional to the number of infected
cells instead of the virus load (e.g. Ẋ ¼ fI þ rX instead
of Ẋ ¼ fV þ rX for the IR dynamics discussed in the
main text).
A.3. Additional results for the first dataset

We found results to be similar for almost all of the
different innate and adaptive model variants described
in the previous two sections. (In the following, when
we say ‘similar’ we mean a few percent difference in
the SSR.) For all combinations tested, models without
innate IR and no epithelial regeneration could not fit
the data well if we bounded V0 as described in the
main text. Including epithelial regeneration led to fits
very similar to those shown in the main text, i.e.
almost complete epithelial destruction. Once an innate
IR was included, results were similar to those shown
in figure 3, independent of the presence or absence of
epithelial regrowth. The different mechanisms for the
innate response produced equally good fits, while for
the different adaptive IR models the pure mass-action
model (X2) performed worse compared with the other
model variants.

Replacing the antibody-based response with a CTL-
based response (i.e. switching from killing free virions to
killing infected cells) led to very similar fits. Again, the
choice for the innate mechanism did not matter and the
mass-action model for the adaptive IR (X2) did not
fare as well as the other three models.

Further, allowing for saturation in the adaptive IR
killing did not led to significant improvements for any
of the models. Equivalently, models in which we
assumed that the innate or adaptive IR expansion
depended on the number of infected cells led to results
similar to the ones where we assumed dependence on
viral load.

The IN (1977) study provided data for the antibody
response, with a best-fit value for the expansion rate, r,
which was lower compared with the result from the first
dataset (table 2). We decided to check how the fits for
the first dataset would change if we set an upper bound
at r ¼ 0.5, in line with the r-value obtained for the IN
data. This leads to a qualitatively equally good fit,
but with an SSR that is about twice as large as for
the model shown in the main text.
A.4. Additional results for the second dataset

For the second dataset, we again considered various
combinations for the dynamics and mode of action of
the innate and adaptive responses as described in the
previous sections.

For all considered model combinations, models that
did not include both the innate response and a time
delay for the innate response produced poor fits similar
to those shown in figures 4 and 5. Including the time
delay leads to fits for the different model combinations
that were of similar quality as the one shown in figure 6,
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no matter how we chose the adaptive response (all
different expansion dynamics models, antibody or
CTL response, with saturation in killing or without).
We also found that innate IRs F1 and F2 led to worse
fits, whereas F3 gave results similar to the one shown
in the main text.

We also considered an alternative to the exponential
growth and decline function we used to fit the IFN
response for dataset 2. It turns out that a simple
Gaussian function can provide a good fit to the log-
transformed IFN data. The difference between a
Gaussian function and the triangular function used in
the main text is that IFN starts at a base level, then
increases following the data, and declines back to a
base level. While we do not know if such a shape is bio-
logically more reasonable, we tried this alternative for
the IFN response. We did not find much different
results. Most of the time, the fits were slightly worse
compared with the IFN function used in the main text.
A.5. Additional discussion

Every model needs to strike a balance between simpli-
city and realism. The right balance should be guided
by the questions one wants to address. Equally impor-
tant, mathematical models that are used to fit data
need to be tailored to the available data. Obviously,
the models we use to describe the IR dynamics are
very simple. The many different combinations for
specific aspects of the dynamics that we considered
lead to a rather large number of models, most of
which we only discussed very briefly and in a summary
fashion in this appendix. Many more biologically realis-
tic and complex models could be considered. However,
given the fact that many of the arguably simplest
models we used here were able to fit the data well
suggests that more complicated models would be able
to fit the data as well. Model discrimination (i.e. rejec-
tion of models that do not fit) would not be possible,
which would prevent any further insights. While it
will certainly be important to advance our models
from the very simple ones we used here towards more
realistic and detailed ones, this endeavour can only be
successful if it is closely tied to data—data that are
powerful enough to allow discrimination between
alternative models. Currently, such data for influenza
do not seem to be available, suggesting that future mod-
elling efforts need to be combined with the production
of new data. Additional experimental studies along
the lines of those analysed here, namely the measure-
ment of kinetic data for both the virus and IR for
both wild-type infections and infections for which
specific aspects of the IR have been knocked out,
should be able to produce the data necessary for
future model discrimination. A collaborative effort
between experimentalists and modellers will hopefully
move us further towards a quantitative understanding
of the dynamics of this important pathogen.
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