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SUMMARY

We use mathematical models to investigate the within-host dynamics of mycobacterial infections. In
particular, we investigate the mechanisms by which bacteria such as Mycobacterium tuberculosis and
Mycobacterium leprae persist at low densities for extended periods, and attain high densities much later. We
suggest that the persistence of bacteria in face of immune pressure may result from the bacteria having
a very slow growth rate, or having a dormant stage. We show that whereas these mechanisms may lead
to long-term persistence, this will be obtained at relatively low densities. We then suggest that the long-
term persistence of bacteria may result in the loss of immunity because of the deletion of specific T-cells
arriving from the thymus, and the exhaustion of the specific T-cells as these cells reach the Hayflick limit
and die. This loss of immunity will allow the bacteria to attain a high density. We propose experiments
capable of testing our models and discuss the implications of the models for the treatment of infected hosts.

1. INTRODUCTION

While recent advances have greatly enhanced to our
understanding of the molecular and cellular biology of
Mycobacterium tuberculosis and Mycobacterium leprae and
the immune responses they elicit (Gaylord & Brennan
1987; Ellner & Wallis 1989; Bloom 1990; Jacobs et al.
1991; Kaufmann 1993; Britton ¢t al. 1994), much less
attention has been directed towards understanding
how this biology leads to the observed dynamics of
these bacteria within their hosts.

The dynamics of M. tuberculosis and M. leprae are
different from those of bacteria and viruses causing
acute infections of short duration, as well as from those
of antigenically varying microparasites such as
Trypanosoma vivax which maintain a high parasitemia
for extended periods of time. Following infection with
M. tuberculosis and M. leprae, progression to disease is
relatively slow (Comstock & Cauthem 1993),
suggesting that during the early phases of infection the
immune response is able to control the bacterial
density at a low level, and it is only later that the
density of bacteria may increase to a high level. Several
aspects of the biology of M. tuberculosis and M. leprae
and the immune responses they elicit are worth noting.
These bacteria replicate at a lower rate than their free
living relatives and bacteria causing acute infections.
M. tuberculosis has a doubling time of approximately
one day, whereas that of M. leprae is an order of
magnitude slower. In comparison, the free living M.
smegmatis has a doubling time of two hours and E. coli
has a doubling time of 0.4 hour. Following infection,
M. tuberculosis and M. leprae enter mononuclear cells
such as macrophages. After entering a macrophage,
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the bacteria may either proliferate or remain dormant
(Small et al. 1994). During this ‘dormant stage’ the
bacteria are hidden from the immune response and
may be resistant to many drugs (Grange 1992; Britton
et al. 1994). Mycobacteria antigens elicit strong cell-
mediated Thl responses that are capable of controlling
these bacteria. It is thought that shortly after infection,
it is this response that maintains the bacterial density at
low levels, and if this response is absent, as is the case
in mice unable to produce interferon-y, the bacteria
can attain an extremely high density (Cooper e al.
1993; Flynn et al. 1993). The observation of elevated
Th2 associated cytokines in leprosy patients with high
bacterial densities (Salgame et al. 1991; Yamamura et
al. 1991; Bloom et al. 1992) suggests that Th1/Th2
cross-regulation may be responsible for disease'. How-
ever, a simple Th1/Th2 model does not explain the
relatively slow progression from infection to disease: if
the initial response is of a Thl type then it might be
expected that the infection is controlled (the Thl
response preventing a Th2-like response from
developing) ; and if the initial response is of a Th2 type
then a rapid progression to disease might be expected
(the Th2 response preventing a Thl response from
developing).

We first construct simple models for the within-host
dynamics of microparasites and use these models to
examine how the biology of mycobacteria and their

! In this paper we use Thl and Th2 responses to represent type 1
and type 2 T-cell responses on the basis of the cytokines which
these cells secrete. These cells may be of either the CD4+ or the
CD8+ phenotype (Seder ¢t al. 1994) and in leprosy it may be that
the type 1 responses are generated by CD4 + cells while the type 2
responses are generated by CD8+ cells (Bloom et al. 1992).
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interaction with the immune response gives rise to the
observed pattern of infection. In particular, we
examine the mechanisms which allow parasites to
avoid clearance by the immune response, and how the
long-term persistence can lead to the down-regulation
of the immune response. In what follows the term
parasite is used interchangeably with bacteria.

2. MODELS
(a) Short-term dynamics

Our basic model for the growth of microparasites
shortly after infection resembles in many ways previous
models (Reibnegger et al. 1989; Antia et al. 1994). We
let P and X represent the parasite density and the
intensity of the immune response to the parasite. In the
absence of immunity we assume that the parasite grows
exponentially at rate r. The intensity of the immune
response is assumed to be proportional to the density of
the T-cells specific to the parasite. These cells im-
migrate from the thymus at rate a, and die at rate 4.
The parasite stimulates the proliferation of T-cells at a
rate that is proportional to the density of parasites at
low parasite densities and that saturates at high
parasite densities. The rates of growth of parasite and
immunity are thus given by:

dr

— =rP—hPX, 1
= PP, (n
dXx P

”(‘i‘t——a"rSX(H—I))—dX, (2)

These equations are scaled so that in the absence of
parasite the density of immune cells equals unity (i.e.
a = d) and the initial density of parasite is set at unity.
The relative magnitudes of the various parameters for
biologically reasonable cases are (Antia et al. 1994):

h<a=d<r s~1<Fk (3)

Equations (1) and (2) have a trivial steady state, where
parasite density is equal to zero and immunity is equal
to a/d, and another steady state, where the parasite
density P* is balanced by immunity X*

kdr — ahk - kd

P* = ~
(s—d)r+ah s—d

and X* = % (4)

Using formal stability analysis it can be shown that this
steady state is stable when the input from the thymus,
a is greater than zero. As we expect the input from the
thymus to be small, we find that the parasite and
immune response oscillate and only gradually converge
on the steady-state. This can also be noted by observing
that the isoclines corresponding to dP/d¢t=0 and
dX/d¢ = 0 are almost perpendicular (see inset to figure
la). Figure la shows that rapidly growing parasites
stimulate a strong immune response, which results in
the parasite density (and immune response) exhibiting
lightly damped oscillations of large amplitude. During
these oscillations, the parasite density passes through
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Figure 1. (a) Dynamics of a slowly (r = 0.1) and rapidly (r =
1) growing parasite: slow growth can prevent extinction of
the parasite. The inset shows the isoclines for dX/d¢ = 0 and
dP/dt = 0. (b) Minimum parasite density as a function of the
growth rate of the parasite. At high growth rates the
minimum density is so low that the parasite will go extinct.
The density of parasite (P) within the host was calculated by
numerical solution of equations (1) and (2) with parameters
h=10% d=0.1, s=1, k=10% a=0.1, and initial con-
ditions P(0) and X(0) =1.0 .

several minima, where the density of parasites is so low,
that we would expect the parasite to be driven to
extinction by the immune response (because a fraction
of a parasite cannot exist). In contrast, the oscillations
in the density of a slowly growing parasites have a
smaller amplitude, and the parasite does not reach as
high a maximum or as low a minimum density before
attaining the steady state. The relation between the
growth rate and the minimum parasitemia is shown in
figure 1 5. These results suggest that by growing slowly,
parasites may avoid being driven to extinction by the
immune response and persist within the host.

To incorporate a dormant stage (or refuge) into the
model of the parasite dynamics, we assume that the
parasite exists in two forms: a growth stage P; and a
dormant stage @ which is sequestered from the immune
response. The rate constants f and g describe the
conversions between the growth and dormant stages.
The dormant stage neither stimulates immunity nor is
it susceptible to the immune response. The equations
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Figure 2. Dynamics of parasites having a dormant stage: the
dormant stage provides a refuge and prevents extinction. (a)
The density of the immune response (X) and both the growth
(P) and dormant stage (@) of the parasite as a function of
time. () The minimum density of the growth stage (Pmin)
as a function of f and g. The density of parasite within the
host was calculated by numerical solution of equations
(3)—(5) with parameters as in figure 1 and r = 1.0, the initial
density of the dormant stage @(0) =0, and in (a) f= 0.5,
g=0.1.

describing the dynamics of parasite and immunity are
now:

‘i—f = 1P—hPX—fP+4Q, (5)
d

) ©)
dX P

These equations have a trivial steady state where
parasite density is zero, immunity equals a¢/d, and a
steady state with the densities of the various popu-
lations given by:

Pt~ %; Q* =§P* and X* = % (8)

Note that the density of the growth stage and the level
of immunity reach the same values as in the previous
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model (i.e. as in the absence of a dormant stage).
However, the total parasite density, P+ @, is elevated
by a factor of (1+//g).

While the steady-state density of the growth stage
remains identical to its value in the absence of a
dormant stage, the stability of this equilibrium can be
altered dramatically. As shown in figure 24 a dormant
stage very effectively damps the oscillations in parasite
density, increasing the minimum parasite density, and
preventing extinction of the parasite. In figure 25 we
show that dormancy prevents parasite extinction for a
broad regime of parameters, including: (i) when the
lifespan of the dormant stage is sufficiently long to
allow the immune response to return from its peak level
to its steady state density (i.e. ¢ < d); and (ii) when the
parasite’s replication rate exceeds the rate at which it
is converted to the dormant stage (i.e. » > f), allowing
the parasite to proliferate during the initial stages of
infection.

(b) Long-term dynamics

The previous models consider the dynamics shortly
after infection with a parasite, and need to be modified
to consider the dynamics of persistent infections. In
the following discussion we modify the equations for
the dynamics of T-cells, keeping the equations for the
dynamics of parasite the same as in the previous model
(i.e. equations (5) and (6)). In the model described
below, we investigate whether the combination of two
known phenomenon (the antigen-dependent deletion
of T-cells in the thymus, and the presence of a Hayflick
limit to the proliferation of T-cells) can generate
immune suppression whose dynamics is similar to that
observed in mycobacterial infections. The relation of
this model with previous models is described in §3.

First, we note that if the parasite persists, the
presence of parasite antigens could lead to clonal
deletion of parasite-specific immune cells in the
thymus, resulting in a decrease in the immigration of
T-cells from the thymus (parameter ¢) in a manner
dependent on the density of parasite, as follows:

a, P™

a(P) a4 (az)m_,’_Pm' <9>
The parameter m regulates the shape of this function
(from gently sloping to step function) and a, is the
density of parasite (or antigen) at which the input from
the thymus is reduced to half its maximum value. In
accord with experiments by Miller (1992), we expect a,
to be small and we set it to be somewhat greater than
the initial parasite inoculum, but much less than the
parasite density (k) at which T-cells in the periphery
proliferate at half the maximum rate of proliferation.

Second, we note that—analogous to the limited
proliferative capacity of epithelial cells observed by
Hayflick (Hayflick & Moorhead 1961) — immune cells
are only capable of a limited number of cell divisions
(Perillo et al. 1988). The limited proliferation of
immune cells is incorporated by introducing a
‘Hayflick limit’ of n generations, after which the T-
cells die. In accord with the experimental literature we
set n = 20-25 (Perillo et al. 1988). If we let x; equal the
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number of T-cells of the /™ generation, and X = X,
represents the total number of T-cells, then the
equations for the proliferation of T-cells are given by:

dx, P

E = a(P) —s(m)xl—dxl

dx, P P

1 k= —dx, 1
T 2 S<k+P)x’“1 S(k+P)x’ dx, (10)
dx,

P P
de =2 s(k—_i_—ﬁ)xngl——{m))xn—dxn.

The dynamics shortly after infection is not affected by
the addition of the Hayflick limit. This is because if the
Hayflick limit is in a biologically reasonable range (i.e.
between 20 and 25 (Perillo et al. 1988)), very few
immune cells reach the Hayflick limit during this time,
and the densities of parasite and immunity reach
approximately those given in equation (8). In the long
term however, the outcome depends on whether the
parasite restricts input from the thymus sufficiently so
as to prevent the immune response (which as before is
assumed to be proportional to the total density of T-
cells) from controlling its density. The steady state
solution to these equations can be obtained by
collapsing the n+2 equations (corresponding to =
compartments for the T-cells and two for the parasite)
into two, one for the growth stage of the parasite and
one for the total density of T-cells. It can be shown that
the total parasite density P and immunity X at
equilibrium must satisfy the following conditions
(Pilyugin et al. 1996):

dP _

r
= — 1].
- 0=X=5 (11)

and
dx B a,P"
=== (0

<(s_/;;rpp_kd)(<(j+§;£+kd)"~ 1). (12)

In figure 3a we see that only if g, is sufficiently large
will the two lines intersect, allowing the parasite to be
controlled at steady-state. We use numerical simu-
lations of the complete (n+2) dimensional system to
examine the dynamics of parasite and immunity and
evaluate the stability of the steady-states inferred from
figure 3a. When a, is sufficiently small, (figure 35), in
the long term the immune response declines and the
parasite escapes control. When a, is sufficiently large
(figure 3¢) the immune system is able to control the
parasite, and we find that the densities of parasite and
immune response oscillating around the values
obtained from the solution of equations (11) and (12)
shown in figure 3a. As the parameter g, is increased yet
further the limit cycle collapses to a fixed point. A more
detailed description of this behaviour can be found in
Pilyugin ez al. (1996), however, the general form of the
behavior of the system as the parameter a, increases
follows the pattern described here, i.e. escape of the
parasite from immune control when g, is small and
control of the parasite when a, is sufficiently large.
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3. DISCUSSION

The models suggest two elements of a mechanism for
the pattern of infection shown by M. tuberculosis and M.
leprae. First, either slow growth or the production of a
dormant stage can prevent the bacteria from being
driven to extinction by the immune response. Second,
if the density of bacteria is sufficiently high, then the
reduction in input of naive cells from the thymus and
the loss of cells as they approach the Hayflick limit
may, in the long-term, result in the loss of the specific
immune response to the bacteria and their proliferation
will no longer be controlled. We now consider whether
the models are consistent with the experimental
observations of M. tuberculosis and M. leprae, and
suggest how the models can be experimentally tested.

Both M. tuberculosis and M. leprae have a much
slower growth rate than the free-living mycobacterium
M. smegmatis, suggesting that slow growth is not a
phylogenetic constraint on all mycobacteria but is
associated  with  persistent infection. Evidence
suggesting mycobacteria have a dormant stage includes
reports that these bacteria can be separated into
different populations (Khomenko 1987; Grange 1992).
This dormant stage has been suggested to be resistant
to many drugs and has sometimes been referred to as a
mycobacterial persistor (Grange 1992). The dormant
stage could be generated in several ways. Following
invasion of a macrophage, the bacteria could remain
dormant within the cell (Britton et al. 1994). The
antigens from the dormant bacteria would not appear
on the surface of the cell, thus rendering more difficult
the recognition and destruction of the infected cell.
Alternatively, the bacteria may persist in the tu-
berculous lesions characteristically observed following
infection with M. tuberculosis. The model presented here
formally demonstrates how the presence of a dormant
stage or refuge for the bacteria could lead to the long-
term coexistence of the parasite and the immune
response. In this respect, the model with the dormant
stage is the application of the principle of the ‘refuge’
in ecology to the within-host dynamics of an infections
disease.

The two mechanisms for persistence (i.e. slow growth
versus a dormant stage) may be experimentally
distinguished by adding a large parasite inoculum to a
host in the early stages of infection. If slow growth is
responsible for persistence then a large inoculum will
result in the development of a sufficiently large immune
response to clear the parasite. In contrast, if there is a
dormant stage then the infection need not be cleared
following the additional inoculation. These two out-
comes are illustrated in figure 4.

As there are multiple pathways by which the
immune response can be regulated, it is not surprising
that a variety of models are needed to describe the
different processes. The down-regulation of the im-
mune response may arise from: (i) an additional
population of suppressor cells (Kaufman et al. 1985);
(if) idiotypic networks between immune cells (De Boer
& Hogeweg 1989); (iii) the shape of the T-cell -
antigen dose response (McLean & Kirkwood 1990;
Schweitzer & Anderson 1992; Swinton et al. 1994);
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Figure 3. Dynamics when the immune system is regulated by
the Hayflick limit. (a) Isoclines of dP/d¢t=0 (---), and
dX/dt = 0 (——) for the reduced system of equations given
by equations (11) and (12) and different values of 4, the
parasite density that reduces input from the thymus by half.
If a, is low, the isoclines for dP/d¢ = 0 and dX/d¢ = 0 do not
intersect, and in the long-term the immune response is not
able to control the parasite. When the isoclines intersect the
immune response may be able to control the parasite. In (4)
and (¢) we examine the dynamics with the help of numerical
solutions of the complete model (equations (5), (6), (9) and
(10)). The dynamics for a small (a, = 100) and a large (a, =
300) value of a, is shown in () and (¢) respectively. For the
parameters and initial conditions of the simulation in (b)
these two isoclines in (a) do not intersect, and for the
simulations in (¢) the parasite exhibits limit cycles around the
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Figure 4. Treatment of infected hosts: a large inoculum of
parasite delivered shortly following the initial infection is able
to clear a slowly growing parasite (), but is not able to clear
a parasite with a dormant stage (4). Parameters as in figure
1 with r = 0.1 for (a), and as in figure 24 for (4). In both cases
a second inoculum of 10* parasites is given at ¢ = 10 days as
indicated by the arrow, and the dotted lines represent the
parasitemia in the absence of treatment.

(iv) cross-regulation between Thl and Th2 responses
(Fishman & Perelson 1994); and (v) the Hayflick
model presented here. The Hayflick model accounts
for both the initial control of the bacteria and their
later escape from immune control. While, at this stage,
we cannot definitively rule out the alternative models
we note that in many cases the outcome (control-
clearance or loss of control of the bacteria) is obtained
relatively rapidly, rather than the pattern of initial
control of the bacteria followed by subsequent loss of
control of the bacteria which may characterize disease.
Because Thl/Th2 cross regulation has been suggested
to be responsible for the down-regulation of the Thl
immune response (Bloom ez al. 1992), we now compare
the outcome of these models with the Hayflick model.
As mentioned in the introduction, it is not clear how
the shift from an initial Thl response to a Th2 type of
response would occur: the initial Thl response, which

intersection between the isoclines which is marked by the
box. The parameter values are as in figure 2a with n = 23,
a, =0.1, and m = 3.
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controls the parasite, should down-regulate the Th2
type response and thus prevent its emergence (however,
since the intensity of the Thl response (X =r/h)
required to control the bacteria is relatively low, it will
exert a relatively weak downregulatory force on the
Th2 response). In the Hayflick model the protective
Th1 response capable of clearing the parasite is lost as
the Hayflick limit for these cells is reached. While the
Hayflick model presented does not explicitly consider
the Th2 response, we note that the loss of the Thl
response might allow a competing Th2 response to take
over. In this (Hayflick limit) scenario the elevated Th2
response would arise a consequence of the loss of the
Thl response, and not cause of the loss of the Thl
response as is the case in the Thl/Th2 scenario. At
present we do not believe there is sufficient exper-
imental data to discriminate between Thl/Th2 cross
regulation model or the Hayflick model for myco-
bacterial infections. However it is, at least in principle,
possible to test and reject the Hayflick model which
predicts that the loss of Thl cell clones specific for these
mycobacteria during the course of infection.

What implications do our models have for the
treatment of patients? First, both the slow growth
model and the dormant stage model are consistent with
observations that prolonged treatment with many
antimicrobial agents is required to control the in-
fection. This could arise as a consequence of the
antimicrobial agents killing only dividing bacteria or
because the bacteria in the dormant stage are
physically inaccessible to the antimicrobial agent.
Second, as mentioned earlier, if the slow-growth model
is correct, inoculation shortly after infection with large
amounts of either live or dead bacilli will result in the
clearance of the infection. If however the initial
persistence of mycobacteria is the result of a dormant
stage, the inoculation of bacilli need not clear the
infection.

The models presented here form the basis for adding
further complexity and suggest directions for future
studies. First, in the models described here the parasite
is reduced to an equation describing a single replicating
antigen. We need to consider the effect of introducing
several antigens and competition between the immune
responses to these antigens (De Boer & Perelson 1994).
Second we need to consider the effect of incorporating
Thl and Th2 immune responses and cross-regulation
between these responses in our models. We expect that
further theoretical and experimental work will help to
address these questions.
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