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 Because infection processes describe changes in 
time, dynamical, mechanistic models are widely 
used.

 Such models can be formulated in many different 
ways. A few possible classifications are:
◦ Compartmental ↔ Agent-based
◦ Discrete time ↔ continuous time
◦ Deterministic ↔ Stochastic
◦ Space-less (homogeneous) ↔ Spatial
◦ Memory-less (Markov) ↔ with memory
◦ Small ↔ Big
◦ Data-free ↔ With data
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 The components of the model are treated as 
homogeneous groups (compartments), one only tracks 
population numbers/sizes

 The simplest type of model, sometimes mathematically 
tractable, easy to implement on a computer

 Good model for fitting data

 The assumption that populations are homogeneous and 
“well mixed” is always wrong (but sometimes it is a good 
enough approximation) 

 Often the best starting point
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 Every unit/host/individual is modeled/tracked. Called 
agent-based or individual-based models (ABM/IBM). 

 Mostly computational, (almost) no mathematical 
analysis is possible. 

 One can’t easily write down a set of equations, 
though one can specify a set of rules.

 ABM usually have many parameters.
 ABM take long to run 
 ABM are difficult to fit to data 
 ABM are potentially most detailed and realistic
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 The system is updated in discrete time-steps.
 Good for systems where there is a “natural” time step
◦ Example: Some pathogens have a more-or-less fixed replication 

cycle (e.g. ≈24h for Plasmodium falciparum).
◦ Example: For some animals, births occur during a small period in 

spring. Modeling the long-term dynamics of an ID in such a 
population might lend itself to a model that is updated annually.

 Complex models, such as Agent-based simulations are 
almost always discrete-time (for computational reasons).

 Discrete-time compartmental models are often 
formulated as difference equations.

 If the time-step becomes small, a discrete-time model 
approaches a continuous-time model.
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 The system is updated continuously.
 Best for systems where changes occur continuously and 

concurrently. 
◦ Example: To model births and deaths of bacteria in a large 

population, with new birth and recoveries occurring continuously 
and concurrently, a continuous-time model might be best.

◦ Example: To model an outbreak of flu (or some other ID) in a 
large population, with new infections and recoveries occurring 
continuously and concurrently, a continuous-time model might 
be best.

 Continuous-time models are usually described by 
differential equations.

 Ordinary differential equation (ODE) models are the 
most common and simplest one.
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 ODEs can be derived as the continuum limit of 
discrete models:

rewrite→( )t tB B gB dBτ τ+ = + − ( )t tB B gB dBτ

τ
+ −

= −

0( )   t tB B gB dBτ
ττ

+
→

−
= − →

or

( ) ( ) ( )dB t gB t dB t
dt

= −

B gB dB= −

13



 Often, ODEs are derived as the continuum limit of 
discrete models:

The computer uses this We often can/could do math with this

Same flow diagram for both models

B gB dB= −( )t tB B gB dBτ τ+ = + −

B
dB

gB
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 ODEs can be derived as the continuum limit of 
discrete models:
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 Often, ODEs are derived as the continuum limit of 
discrete models:

The computer uses this We often can/could do math with this

Same flow diagram for both models
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 For given parameters and initial conditions, the 
model always produces the same result

 Simple, easy to implement on a computer

 Sometimes one can do analytical calculations

 Real biological systems are never deterministic, 
but sometimes approximately so

 When large numbers are involved, deterministic 
models tend to be good. They break down 
when only few entities (e.g. few hosts) are 
involved

Time
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 Results differ between simulations, even for the 
same model conditions.

 More difficult to implement on a computer, 
takes longer to run.

 The math is more difficult.

 Closer to the “real” system.

 Stochastic effects are important at low numbers. 

 The same model implemented as deterministic or 
stochastic can lead to different results!

Time
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 There is no explicit notion of space. Entities (e.g. 
hosts) are assumed to exist in a homogenous space.

 Entities are assumed to be well-mixed and randomly 
bump into each other. 

 Most compartmental models make this assumption.
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 Some notion of space is explicitly included.

 Different types of models can be used:
◦ Partial Differential equations.

◦ Patch/Meta-population models. Usually coupling of 
multiple compartmental models.

◦ Agent-based models.

◦ Network models.
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 Many models (e.g. those based on ordinary 
differential equations, ODE) are memory-less 
(markovian). That means what happens next in the 
system only depends on the current state of the 
system, not on the past. 

 That means for instance that an infected individual 
has an equal chance to recover at any time, no 
matter how long ago the infection occurred.

 This approximation is sometimes, but not always 
acceptable. 
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Depends on how the ABM is 
implemented.
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 If we want to keep track of the past, e.g. if we want 
to let the chance of recovery depend on the time 
since infection, we can’t use ODE models.

 We need models that keep track of the past, i.e. that 
are non-markovian.

 Possible models:
◦ Partial differential equations
◦ Delay differential equations
◦ Agent-based models
◦ ODE models with “dummy compartments”
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Depends on how the ABM is 
implemented.
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 Start with a very simple model, try to capture the 
most important aspects of the known dynamics of 
the system.

 Analyze model to gain conceptual insights. It should 
be relatively easy to understand what is going on.

 It’s often possible to fit the model to data. Model 
rejection (e.g. poor agreement with data) is helpful, 
it taught us something.

 The model might not include crucial known biology 
and therefore the insights/results might be of limited 
use (or completely useless).
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 Build a comprehensive model, try to include a lot of detail.
 Run the model on the computer, investigate results. It’s often 

hard to understand how the different components of the 
model influence the result. Careful analysis is needed.

 Model results that are at odds with known biology can 
suggest needed model modifications.  But big models can 
reproduce a lot of observed phenomena, even if the model is 
wrong.

 Data fitting is usually not possible, seldom is enough data 
available. Without fitting, model can rarely be formally 
rejected. 

 Comprehensive and accurate models can be used to make 
detailed, quantitative predictions.
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 Model is formulated and model parameters are 
chosen based on known biology.

 Model should be “data-driven”, i.e. based on what is 
known about the system.

 Model is analyzed “by itself”, i.e. without trying to 
perform inference and rigorously fit it to data.

 Relatively easy to do. Can produce useful insights 
even if only limited data are available.
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 Models are being fitted to data (inference). 

 Rigorous comparison of models with data.

 Used to discriminate hypotheses, determine 
parameters.

 Less flexibility in model formulation, often 
constrained/determined by available data.
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Viboud et al, 2006 
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 Models have several of the different characteristics just 
described. Examples:
◦ Deterministic, compartmental, continuous time, no-memory, no-

space, small model – i.e. a set of ODEs (very common). 
◦ Deterministic, agent-based, no-space, no-memory (very rare) 

 Ideal approach: Choose the model that is most suitable 
for the question you try to answer. 

 In reality: Model selection is based on a mix of 
◦ Question one wants to answer
◦ Expertise
◦ Feasibility (CPU time, model complexity)
◦ “Environment” (what approaches do others use) 
◦ “Marketing” (what kind of models “sell”) 
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 Figure out what the question/hypothesis/problem is 
you want to address.

 Decide what kind of model will best help you to 
answer your question (and if a model is useful at all)!

 Design, implement and test the model.

 Use the model to answer your question.
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 With deterministic models, we can not address 
questions such as
◦ How likely/probable is an outbreak/infection to occur?
◦ How likely is it that a pathogen goes extinct? (applies to 

both the within-host or between-host levels)
◦ What variability should we expect when looking at real 

data?

 Any question that requires an answer in the form of 
a probabilistic statement needs stochastic methods.
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 To do any kind of stochastic/probabilistic simulation, we need to 
produce random numbers

 But computers are deterministic machines…
 Solution: pseudo-random numbers (reproducible!)
◦ One needs to set a seed, otherwise the computer produces RN depending 

on the current system time and results won’t be reproducible.
 Back when: Quite a few random number generators (RNG) were 

bad - the numbers they produced were not “random enough”. 
Many a published simulation study was wrong because of bad RNG.

 Today: Almost all RNG that come with programs such as R and 
Matlab are very good (the numbers are “really random”). Current 
“favorite” RNG of most folks is the Mersenne Twister.

 R can generate RN not only from uniform distributions but all kinds 
of other distributions (runif, rnorm, rpois, rbinom, …).

 We have already used RN without really discussing them. When?
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 Observational error
◦ The “true” dynamics of the virus is described by V, but you 

can only measure/observe O(V)
◦ For instance you could sample people/animals and count 

virus. This might lead to observed values that are 
(log)normally distributed around the true value of V: 
O=N(V,σ)
◦ Observational error does not affect the dynamics of the 

system  
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 We assumed that only this kind of noise was present 
(or at least was dominant) when we did fitting.

 Specifically, we assumed that the dynamics was 
properly described by our ODE model, with (log)-
normally distributed noise due to measurement 
error.

 Other assumptions about 
error lead to different 
objective functions 
(Maximum Likelihood).
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 Process noise (sometimes called process error)
◦ The dynamics of the system is affected by error/noise.
◦ External noise (e.g. fluctuations in weather/metabolism) 

can be added to the model equations.
◦ Internal noise (fluctuations in parameters) can be included 

by sampling a parameter (e.g. infection rate) from a 
distribution at every time step. 
◦ Process error/noise propagates through the system.
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 One type of stochastic models are stochastic differential 
equations (SDE).

 The math behind stochastic processes and properly 
implementing SDE on a computer is tricky.

 If you are interested:
◦ “An algorithmic introduction to numerical simulation of 

stochastic differential equations”,  D.J. Higham, SIAM Review, 
Education Section, 43, 2001 (available on his webpage at 
http://fox.maths.strath.ac.uk/~aas96106/) 

◦ Kloeden, P.E., Platen, E., 1992. Numerical Solution of Stochastic 
Differential Equations. Springer, Berlin

◦ Publications by Des Higham and Kevin Burrage
 Since SDE are tricky, we will use discrete-time models to 

play around with noise.
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 The program SISMID-U9-noise.r runs the equations 
shown below twice.

 Add noise to the 2nd set of equations in any way you 
want (see previous slides for options).

 Check:
◦ How does random number generation and (not) using a 

seed affect the output?
◦ How do different types of noise (additive, multiplicative, 

etc.) affect the result?
◦ How does the magnitude of noise affect the results?
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t t

t t

t t
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I I bUV I
V V pI cV

τ

τ

τ

τ
δ τ
τ

+
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= −
= + −
= + −
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 Can be added to equations, easy for difference 
equations, trickier for differential equations.

 Computationally relatively fast.

 Very flexible, noise can be added in many ways.

 Setting noise to zero brings us back to deterministic 
models -> easy comparison.

 Real systems have inherent demographic 
stochasticity, even if there is “no noise”.
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0.01 infected?!

73.2 susceptibles?!
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 Discrete events (e.g. birth/death) happen randomly 
at random times.

 This can be implemented using event-driven 
approaches.

 The most common used approach is called the 
Gillespie algorithm (sometimes also referred to as 
Stochastic Simulation Algorithm, SSA)
◦ Gillespie introduced his method(s) in 1977
◦ Not much used initially, since it requires fast computers
◦ Lots of development in recent years
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 Compute all propensities and the sum of all 
propensities, Ptot

 The random time at which the next event occurs is 
t=-Log(RND)/Ptot

 The event that occurs is randomly chosen, with 
probability proportional to its propensity

 Perform event, update time, return to step 1
Transition (reaction/event) Propensity

1, 1
1
1
1

U U I I bUV
I I I
V V pI
V V cV

δ
→ − → +

→ −
→ +
→ −
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State-change matrix
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 The original method is very slow. As soon as 
numbers get large, it’s not feasible anymore. 

 There are several ways of speeding up computation
◦ Fixed time steps. Easy/fast for computer, but 

approximation. We need to make sure that only few events 
occur during the time step. Done by pretty much all Agent-
based models.
◦ Smart approximations to Gillespie algorithm. Can 

potentially speed up code by a lot.
◦ Switch to Fortran or C (painful).
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 During evolution, new phenotypes/genotypes 
usually occur at low frequency initially.

 Often we are interested in probabilities of 
fixation/extinction.

 This requires a stochastic approach.

 We can apply the previously discussed approaches to 
some simple evolutionary dynamics questions.
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 Consider an acute virus infection (influenza).

 The host/patient receives drug treatment.

 There is a chance that during the infection a resistant 
mutant is generated.

 Resistance generation is an unlikely event, initially 
the resistant mutant starts with low numbers (1).

 Stochastic models are needed/appropriate.

 This is basically “within-host evolution”.

Handel et al. (2007) PLoS Computational Biology
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 Let’s try to answer a “real” question: “How does the 
probability that resistance emerges depend on a 
given level of treatment?”

 How would we go about answering this?
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 Let’s try to answer a “real” question: “How does the 
probability that resistance emerges depend on a given 
level of treatment?”

 How would we go about answering this?
◦ 1. Set e to some value.
◦ 2. Run the stochastic simulation N times.
◦ 3. Record for how many of those N 

simulations the resistant strain 
emerged (we need to define this).

◦ 4. Change e.
◦ 5. Go back to step 2 until we have done the simulation for a 

number of e values (e.g. between 0 and 1 in steps of 0.1).
◦ 6. Plot result: e on the x-axis, fraction of simulations for which we 

had resistance emergence on y-axis.
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 The “pure” Gillespie method is too slow for this 
project, even with unrealistically low numbers for 
cells/virus. 

 A smart approximate method exists in the 
adaptivetau package in R.

 Install adaptivetau if you haven’t already.
 Open SISMID-U9-evolution.r. Read & understand the 

code.
 Run the model, make sure you understand the 

results.
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 Noise/randomness enters in many ways: Observation 
error, internal/external fluctuations, demographic 
stochasticity.

 Stochasticity can be implemented in models in different 
ways. It always makes the model somewhat more 
difficult and slower to run.

 If you have a question for which you think ODEs are a 
good approximation, start with those.

 If you have a system or question where stochasticity is 
important, you need to use some kind of stochastic 
approach (SDE, discrete model with noise, purely 
stochastic (Gillespie), Agent-based model…)
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 One can fit data to stochastic models.
 Most work so far has been done on the population/between-

host/epidemiology level under the label of infectious disease 
inference. 

 It’s complicated, definitely beyond this module. If you want to 
learn more:
◦ “Design and Analysis of Vaccine Studies” by Halloran, Longini and 

Struchiner (2009), Springer – currently most comprehensive book on 
the topic

◦ “Analysis of Infectious Disease Data” by Niels Becker (1989)  – good 
theory, somewhat outdated with regard to computational aspects

◦ “Bayesian Analysis for Emerging Infectious Diseases” by Jewell et al. 
(2009) Bayesian Analysis

◦ “Inference in Epidemic Models without Likelihoods” by McKinley et al. 
(2009) International Journal of Biostatistics

◦ Some of the other SISMID modules
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 Bolker (2008) “Ecological Models and Data in R” (covers 
some fitting of stochastic models to data)

 Keeling and Rohani (2008) “Modeling Infectious 
Diseases”, chapter 6

 Gillespie algorithm: Gillespie (1977) Journal of Physical 
Chemistry

 GillespieSSA package: Pineda-Krch (2008) Journal of 
Statistical Software

 Some people/groups who work on state-of-the art 
stochastic/hybrid solvers: Linda Petzold, Daniel Gillespie, 
Yang Cao, Kevin Burrage, Yiannis Kaznessis,…
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 Simple ODE models are “memory-less”, the dynamics 
of the system only depends on the current state of 
the system.

 Example: For the simple within-host model we have 
looked at, infected cells die at a constant rate, δ. A 
cell that was infected 10 seconds has the same 
chance of dying as a cell that was infected 10 hours 
ago.

 I bUV Iδ= −
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 It is more likely that an infected cell dies after a 
certain time, with some variation. 

 To take this into account, we need to keep track of 
the time/age since infection, i.e. our model needs to 
include some form of memory.
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 One way to explicitly specify an age since infection in 
the model leads to a partial differential equation 
(PDE)

( , ) ( , ) ( ) ( , )I t I tI t
t
τ τδ τ τ

τ
∂ ∂

= − −
∂ ∂

Age since infection
“aging” of 
infectedsDeath rate depends 

on age since infection

( ) ( )dI t I t
dt

δ= −
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 Mathematically “elegant”, some analytics is often 
possible but more challenging than ODEs.

 More difficult to implement numerically. Only 
rudimentary support in R, e.g. solvers in deSolve
package. 

 There is another, simpler way to fix the problem with 
the infected cell life-span, based on introducing 
additional equations which represent dummy 
compartments.
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n dummy compartments. Infected cells spend 
1/nδ in each compartment, with a total mean 
duration of n/nδ=1/δ, as before. For n=1, we 
have the previous model. As n gets larger, the 
lifespan becomes more concentrated around 
the mean value.

Lloyd (2001a,b) Proc Soc B
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 Sometimes it is useful to consider time lags.
◦ Example: Production of new virions starts some time after a 

cell has become newly infected.

 Now the dynamics of the system depends on the 
current and past state of the system. Again, ODE’s 
can’t do that because they are “memory-less”. To 
keep track of past states, one needs delay differential 
equations (DDE).

Production of virus 
proportional to 
number of infected 
cells time τ ago.

( )

U dU bUV
I bUV I
V p cI t V

δ

τ

λ= − −

= −

= − −


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 The most tedious way is to write your own DDE 
solver.

 A better way is to use an existing solver, for instance 
dede() in deSolve or the package PBSddesolve. 

 Another option is to rewrite DDE using dummy 
compartments. This is the same trick as the one I 
mentioned for PDEs. It is sometimes called the 
“linear chain trick”.
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 Only the last compartment 
produces virus. 

 Since it takes a newly infected cell 
n/ng=1/g amount of time before 
it reaches the last compartment, 
we have implemented a delay 
between cells becoming infected 
and starting to produce virus.

 Similar to having a latent 
compartment with non-
exponential transitions (see 
dummy compartment example 
above). 
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 Open SISMID-U9-memory.r

 Try to understand the code. The situation/model is 
again the simple within-host virus model. The model 
is run twice, once with a DDE using the built-in DDE 
solver (dede) from the deSolve pacakge, once with 
dummy compartments.

 Run the model & see how different delays and 
dummy compartments affect the results.
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 The simple memory-less ODE model is unrealistic, 
however, sometimes it’s a decent approximation.

 The more realistic models don’t change steady 
states, but can change the dynamics. 

 If used for data fitting, the simple model and the 
more realistic model can produce different results, 
for instance lead to different estimates for R0.

 Further reading: Alun Lloyd (2001a,b) Proc Soc B, 
Helen Wearing et al. (2005) PLoS Medicine
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 Different entities, such as virus/cells or 
uninfected/infected hosts, were assumed to be well 
mixed and bump into each other randomly (mass-
action) and “live” in a homogenous space.

 As we saw, mass-action was not ideal (recall the HIV 
example) but fixing some problems with mass-action 
by using saturating functions still assumed 
essentially homogeneous mixing.

 If we want to consider spatial structure, we need to 
use spatially explicit models.
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 Metapopulation/patch models
◦ Use ODEs or discrete time/stochastic compartmental models to simulate 

dynamics of populations in different distinct sites. 
◦ Migration/interaction terms couple the equations/sites.
◦ Simple and straightforward extension of non-spatial compartmental 

models. 
◦ Still non-spatial within a given site.

 Partial differential equations
◦ Space is an explicit dimension of the model.
◦ One can sometimes do some analytics (but it’s not easy).
◦ For certain situations realistic enough.
◦ Potentially difficult to implement on a computer.

 Agent-based (individual-based) models
◦ These models can be the most detailed/realistic.
◦ Almost no analytics is possible, purely computational.
◦ Needs sufficient computational resources, especially for large populations.
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 On each patch/site, a dynamical process occurs. 
Sites/populations are coupled to form a 
metapopulation.

 Entities can move between sites

 Entities from different sites can interact
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 For ABM, every individual/agent is modeled 
explicitly.

 ABM are very flexible, they can be very detailed and 
realistic.

 One can usually not write down equations, ABM are 
almost purely computational.

 Since ABM are complex, they have the usual 
drawbacks (many parameters, many unknowns).

 To run AMB on a computer usually requires lots of 
CPU power.
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 In principle, any programming language can be used.

 If speed is crucial, use Fortran/C (but the 
programming can be very tedious).

 R, Matlab and similar languages make programming 
somewhat easier, but the code is still much more 
involved compared to simple compartmental 
models.

 Specialized ABM languages exist: NetLogo, Swarm, 
Repast, MASON,…
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 Based on the Logo programming language
 Mainly meant as teaching tool
 Very user-friendly, easy to program
 Free! (http://ccl.northwestern.edu/netlogo/)
 Powerful enough to do some science/research with it
 Many model examples
 Models are mostly stochastic, but can be deterministic. 

Time step is fixed – not event-driven like Gillespie 
algorithm (ABM with Gillespie are usually way too CPU 
intensive). 
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 Based on: “Sharing the burden: Antigen transport 
and firebreaks in immune responses” A. Handel, A. 
Yates, SS. Pilyugin, R. Antia (2009), Journal of the 
Royal Society Interface
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antigen (peptide, epitope) 
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killer T-cell 
(CTL)
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Dead

X
The good: Virus production interrupted
The bad: A dead cell (immunopathology)
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Gap-junction
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Neijssen et al. (2005) Nature
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Bystander cell

Gap-junction mediated 
antigen transport (GMAT)

Neijssen et al. (2005) Nature
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X
The good: Virus production interrupted before it even started

The bad: 1) More dead cells. 
2) CTL that are busy killing bystander cells can’t kill infected cells
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X
Question: Are gap-junctions potentially useful for the host?
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 Run the model/simulation

 Record total virus load (area under curve) and total 
number of dead cells

 Do that for different values of the gap-junction 
parameter g
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 The model suggests that virus load and 
immunopathology increase with increased gap 
junction-mediated antigen transport (GMAT).

 BUT: We have not yet considered spatial effects.
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“Firebreak”: Increased distance to 
next target cell 
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 To study firebreaks, an ODE model does not work 
well. We need a model that includes space.

“Firebreak”: Increased distance to 
next target cell 
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 The players
◦ Virus, Target (epithelial) cells, CTL

 The place
◦ A square grid filled with (fixed) 

target cells, representing a patch 
of epithelial tissue

 The action
◦ Infection starts at middle of grid
◦ Virions diffuse around; are cleared at a fixed rate; bind to and 

enter cells and thereby infect uninfected cells
◦ Uninfected cells become infected, produce virus, die
◦ CTL slowly enter the “scene”, move around, can find and kill 

infected cells 
◦ Infected cells produce bystander cells, which can be killed by CTL
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Shown are averages of 200 simulations. 
The 3 different scenarios have different values for parameters such as 
diffusion speed of virions and CTL, probability of virus death and killing of 
infected/bystander cells by CTL per time-step, etc. 
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GMAT/ the firebreak has a greater effect if virus clearance is fast 
and diffusion slow. Speed of CTL killing has little effect.

A firebreak (FB) is a bystander cell killed by CTL.
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 The spatial model suggests that GMAT might be a 
beneficial mechanism for the host immune response 
to reduce both virus load and immunopathology.

 The non-spatial differential equation model could 
not capture this result. → It is important to choose 
the right modeling framework for the question at 
hand.
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 ABM are the most detailed (and potentially realistic) we have seen 
so far, they allow one to address questions that can’t be addressed 
with simple compartmental models.

 Model needs to be carefully tailored to the question and data.
 More complexity means less general/conceptual insights, more 

reliance on simulations. Almost no math/analytics is possible.
 Many parameters, usually more than in ODE models. Becomes a 

problem if these parameters are unknown or poorly known.
 Potentially more accurate.
 Speed can become a serious issue.
 The models are often stochastic, but don’t have to be.
 Data fitting becomes hard.
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 Durrett (1999) SIAM Reviews (mathematical review of spatial 
model approaches)

 Grimm and Railsback (2005) “Individual-based Modeling and 
Ecology” Princeton U Press (focus on ecology, but approaches can 
also apply to within-host modeling)

 Railsback et al. (2006) Simulation (reviews several common 
software packages)

 Chavali et al. (2008) Trends in Immunology (review of ABM in 
immunology)

 Keeling and Rohani (2008) “Modeling Infectious Diseases” 
Princeton U. Press (mostly between-host, only a bit of spatial, but 
good advice)

 Bauer et al. (2009) Information Science “Agent-based modeling of 
host–pathogen systems: The successes and challenges” 
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 Start Netlogo
 In “Files -> Models Library” under “Biology” open the model called 

“Virus”
 Press “Setup”, then “Go”
 You might have to adjust the simulation speed with the speed slider 
 Change around the other sliders and see how that affects the 

dynamics
 Pressing “Go” again stops simulation, then you can restart with 

“Setup/Go”
 Go to the “Information” tab to learn more about the simulation 
 Go to the “Procedures” tab to see the actual code
 Explore the many more interesting models in the models library.
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 Mechanistic, dynamical models are well suited for studying 
the dynamics of infectious diseases.

 Different types of models exist, the model choice should be 
driven by the question/system.

 Models always make simplifying assumptions. The 
applicability of the models and the conclusions drawn are 
only valid if the approximations made for the model are 
fulfilled.

 This is never the case, but often the error we make in 
translating (and thereby simplifying) a complex biological 
process to a mathematical model is small enough to make 
even simple models useful.

 Models are always wrong but sometimes surprisingly useful. 
(Also applies to all experimental model systems).
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 There are many approaches to building a model
 For a given approach, there are many variants of 

implementing specific mechanisms (recall HIV models) 
 Ideal approach: 
◦ Choose the model that is most suitable for the question you try to 

answer. 
◦ If you can, maybe try a few model variants.

 In reality: Model selection is based on a mix of 
◦ Question one wants to answer
◦ Expertise
◦ Feasibility (CPU time, model complexity)
◦ Time to graduation/end of grant/tenure review
◦ “Environment” (what approaches do others use) 
◦ “Marketing” (what kind of models “sell”) 
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