HEPATITIS C VIRUS AND HUMAN
IMMUNODEFICIENCY VIRUS: PATHOGENESIS,

IMMUNITY AND TREATMENT

Unit 3

Paul Thomas
Paul.Thomas@stjude.org
Department of Immunology

St. Jude Children’s Research Hospital




HEPATITIS C VIRUS

Enveloped, positive strand RNA virus, Flaviviridae
Isolated in 1989, treatments first emerged in early

19905
~120 million-200 million infections worldwide, number
one indication for liver transplant in the U.S.

10*2 viral particles produced/day, V2 life 3 hours in

circulation

Six major genotypes, 3 dominate in the U.S. (1, 2, 3)
30-50% genetic variation among genotypes

1-5% variation among viruses within a single patient

Replicates via negative-stranded RNA in membranous
web in cytoplasm



HCV STRUCTURE
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HCV LIFE CYCLE
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HCV LIFE CYCLE 2

o HCV-associated disease results from viral persistence
leading to long term inflammation and cell turnover
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MOUSE MODEL OF HCV REPLICATION
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SPECIFIC
CLEARANCE
MECHANISMS
FOR PATHOGEN
CLASSES

(KEEP IN MIND
REDUNDANCY)

Humoral immunity

Cell-mediated

Infectious agent Disease oty
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WHAT ARMS OF THE IMMUNE RESPONSE ARE
USEFUL AGAINST HCV?

Innate immunity

Antiviral effectors such as IFN that act on host cells, regulating key
components of cell biology to limit viral growth and spread

Antibody-mediated clearance

In principle, antibodies should be able to remove virus as it spreads
from cell to cell

In practice, the correlation of antibody with HCV clearance and
outcome is controversial or lacking

Patients with high levels of neutralizing antibodies nevertheless
maintain chronic infection, indicating that neutralizing antibodies
are not sterilizing

Cell-mediated clearance
Infected cells can be killed before releasing progeny virions

Thought to be the primary means of long term control in HCV
infection



INDUCTION OF INNATE IMMUNITY IN PATIENTS

IFN-induced genes

interfere with viral

replication directly:
Reducing protein synthesis
by inhibiting initiation
factors (PKR, ISG56)

Targeting of viral RNA
(OAS, RNAsel)
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INNATE RECOGNITION OF HCV

The genera‘“on Of A Disruption of PAR signaling B Attentuation of IFM signaling | € Antagonism of 15Gs
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INNATE ACTIVATION OF ADAPTIVE RESPONSES

The innate response
results in the

recruitment and B i
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SUCCESSFUL HCV CONTROL (SUSTAINED VIROLOGICAL
RESPONSE) IS MEDIATED BY ROBUST ADAPTIVE IMMUNITY

Broad-based
immunological
repertoires
(targeting multiple
epitopes with
diverse populations)
control acute and
prevent the
development of
chronic infections—
particularly CD4 and

CDS8 cells (the role of :

antibody is
controversial)
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CHRONIC HCV INFECTIONS RESULT FROM POOR T CELL
CONTROL, EPITOPE ESCAPE AND LIMITED REPERTOIRES

Limited TCR diversity,
restricted epitope
targets and
dysfunctional T cell
regulation result in
weak T cell responses
that are unable to
avoid immunological
escape
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CHRONIC INFECTIONS AND IMMUNOSUPPRESSION
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SUSTAINING AN EFFECTIVE CELLULAR RESPONSE IS
MORE IMPORTANT THAN PEAK RESPONSE NUMBERS

A. Successful immune response
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Virus [ Long-lived memory
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CONTROL OF ACUTE INFECTION CORRELATES WITH
INTERFERON-INDUCED GENES
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First therapy introduced for
HCV

Full mechanism of action
unclear—presumably
enhances the "normal”
interferon response pathways

Genotype of virus, low
baseline levels of HCV RNA
and stage of infection are the
strongest correlates of
efficacy

Suggestions that
immunomodulation may play
a role and that high dose-
inteferon may overcome some
of the “requlatory” negative
feedback loops active in the
infected host

Overall, the specific
mechanism has not been
clearly demonstrated
biologically
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COMBINATION THERAPY IS SIGNIFICANTLY MORE
EFFECTIVE

50%
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HoOw DOES RIBAVIRIN WORK AGAINST HCV?

Ribavirin was initially designed as a nucleoside analog and
developed as an anti-influenza drug, but failed to receive
FDA approval or show significant efficacy in humans

It has been used to treat hemorraghic fevers, RSV and is
again under consideration as combination therapy for
influenza

Proposed Mechanisms:

1) Immunomodulatory properties

2) Inhibition of the inosine monophosphate dehydrogenase (IMPDH)
3) Direct inhibition of the HCV-encoded NS5B RNA polymerase

%) Induction of lethal mutagenesis

5) Modulation of interferon-stimulated gene (ISG) expression



POSSIBLE MECHANISMS FOR RIBAVIRIN MODE OF
ACTION
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WHAT DATA WOULD HELP RESOLVE RIBAVIRIN’S
MECHANISM?

viral extinction

Interferon reduces viral production-- [ ——

given the proposed mechanisms, how e : e : L
should ribavirin work? s e °,
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3) Direct inhibition of the HCV-encoded

NS5B RNA polymerase—Should
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on polymerase to mutate viral fitness
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DETERMINING AN ANTIVRAL TREATMENT'S MODE OF
ACTION

Biological in vitro experiments with HCV have been difficult
to perform as a result of the limited nature of developed
culture systems

Alternative drugs that perform a single “ribarvirin function”
do not recapitulate ribarvirin efficacy, suggesting that
multiple pathways may be acting together

Biological mechanisms can often seem plausible, but can be
difficult to prove conclusively that they play an important
role (particularly when the drug is “reverse engineered” to
the pathogen)

Mathematical modeling from real infection data provides a
compelling argument for the viral life cycle stage(s) that
might be affected



NEW DRUG TREATMENTS FOR HCV

Viral targets

Host targets
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Rates of Sustained Virologic Response among All Patients and According to
HCV Genotype in the Historical Control Group and in Group A.
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PREVALENCE OF HIV INFECTION

00 (230,000-1.5 million) {19 %

bt
=
-

N 1.
Al o R B
.---I o N I. -'\-.

0=T B, _i: " e :':.'l?_'- :,_.
‘ '1‘?1'*{“*7

Capyright 8 2006 Nature Publishing Group
Nature Reviews | Immunclogy



GENETIC DIVERSITY OF HIV-1
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Within HIV-1, a large sequence diversity exists with viral
clades being geographically isolated

Several studies have suggested that the clades have
different biological characteristics, including disease
pathogenicity and transmissibility



VIRION STRUCTURE
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SINGLE STRANDED GENOME, MULTIPLE MESSAGES
FROM ALTERNATIVE SPLICING
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VIRAL LIFE CYCLE
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COMPARISON OF HIV

AND HCV

HIV and HCV both
produce chronic
infections, but are

biologically very different

viruses

HIV has a DNA
intermediate that
become heritably
integrated

HCV is a purely RNA virus
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CLINICAL COURSE OF INFECTION
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MECHANISMS OF CYTOPATHOGENICITY

HIV-1 specific CTL Infected CD4* T cell
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MECHANISMS OF IMMUNE DYSREGULATION
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WHAT MAKES HIV LETHAL?

Infections Malignancies

Parasites Toxoplasma spp. Kaposi's sarcoma - HHV8 _
Cryptosporidium spp. Non-Hodgkin's lymphoma, including
Leishmania spp. EBV-positive Burkitt's lymphoma
Microsporidium spp. Primary lymphoma of the brain

Intracellular || Mycobacterium tuberculosis

bacteria Mycobacterium avium
intracellulare

Salmonella spp.

Fungi Pneumocystis carinii
Cryptococcus neoformans
Candida spp.

Histoplasma capsulatum
Coccidioides immitis

Viruses Herpes simplex
Cytomegalovirus
Varicella zoster

Figure 11-30 Immunobiology, 6/e.(© Garland Science 2005)



WHY IS HIV UNLIKE ANY OTHER CHRONIC
INFECTION?

A combination of
“traditional”
Immune evasion
mechanisms (CTL
escape, antigen
masking) and
non-traditional

Dysfunction of CTL

TCR affinity

Altered chemokine
production

CTL epitope escape

Altered viral
replication kinase

Alterations in
antigen processing

Host genetics

Nab epitope escape

(attacking
immune function
and cell
compartments
directly

T4 epitope escape

Dysfunction of
T helper cells

Infection of

T helper cells




CAN INFECTION BE EFFECTIVELY CONTROLLED?
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MECHANISMS OF RT INHIBITORS

|l* _ Nucleoside

Inhibitor binds 1o
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inhibitor produce viral DNA
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MECHANISM OF PROTEASE INHIBITORS

Protease inhibitor

Multiprotein molecule

Inhibited protease

W | prevents cleavage of
\il | the polypeptide and

il | subsequent maturation
Y’ _of the virion

|




FUSION INHIBITORS

CD4* T-cell targets

Fusion with
viral entry

eceplor
binding

T20 peptides prevent
( _~__ the conformational

T20 hrl B change and prevent
: the hairpin structure

— Fusion is prevented
and viral entry is blocked




LATENT RESERVOIRS OF VIRUS

Activated ., @- Resting (G1) Quiescent (Gg)
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CONTRIBUTION OF INDIVIDUAL RESERVOIRS

Steady-state virus
levels result from the
relative
contributions and
turnover of each
reservoir
compartment

After viral inhibition
by HAART, plasma
viral RNA decaysin
four distinct phases
allowing a dissection
of each reservoir’s
individual
contribution

CTL surveillance
Virus production [
Cell longevity
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CAN THE IMMUNE SYSTEM BE USED TO PREVENT OR
CLEAR INFECTION?

Acute Chronic

Plasma

viral load HIV-specific

CD8+ T cell response

Peripheral blood
CD4+ T cell count

Weeks Years



MECHANISMS OF
IMMUNE PROTECTION

"Standard” immunological
protection mechanisms,
including antibody, clearance
by phagocytic cells and Fc
receptors, and cytotoxic
killing of infected cells all
function to limit infection and
control long-term viral loads

The loss of effective immune
control is what leads to the
development of AIDS,
therefore the immune
response in principle is an
effective tool for viral control
and clearance

8 Mucosal immunity
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CDS8 T CELLS PROVIDE SIGNIFICANT VIRAL CONTROL
DURING THE CHRONIC PHASE OF INFECTION

CD8 depletion in SIV-infected animals leads to rapid
increase in viral titers and pathogenesis of disease

CD8 cell-depleted

Normal

Virus

Magnitude of viremia or CTLs
Magnitude of viremia or CTLs

Time



a High mutatlon rate b Recombination

) A
Reverse N N
transcriplase
HIV-

VIRAL IMMUNE ESCAPE
MECHANISMS

"Antigenic drift” from the
very high rate of mutation
of the RT enzyme allows
rapid escape from
individual antibody and
CTL responses

Epitopes are constrained
by structural/functional -1 subsittion per 130 crossovers

. genome per round PET GEMMmE per round
requirements

Recombinant
virus

Copyright = 2006 Mature Fublishing Group
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HOW DO WE ASSAY FOR T CELL RESPONSES IN HIV
INFECTED INDIVIDUALS?

Step 1

,.{ Coat nitrocellulose plate with coating IFN-y
Q antibedy overnight.

Wash plate six times with sterile
PBS containing 1% FCS for
blocking.

Incubate cytokine-secreting cells with
respective stimulus (e.g., peptide, PHA,
SEB) overnight at 37 °C 5% CO.,.

Step 2

Wash plate six times with sterile PBS.

Incubate with biotinylated detection IFN-y

Step 3 antibody for 1.5 h at room temperature.

Wash plate six times with sterile PBS.

Incubate with alkaline phosphatase-linked

Step 4 streptavidin for 1 h in the dark.
ep

Wash plate six times with sterile PBS.
Add color reagents for 10—-20 min.

Decontaminate plate by adding 0.05%
Tween-20.

Step 5 Wash color reagents off.

Dry plate and count spots.

Legem /t Biotinylated detection
Y |FN-y capture antibody IFN-y antibody

*Alkaline phosphatase-

e IFN-y linked streptavidin

0 Cytokine-secreting cells @ Color reagent




IMMUNODOMINANT EPITOPE ESCAPE CAN LEAD TO

LOSS OF VIRAL CONTROL

7.0 1
6.0 -

5.0 1
4.0 -

Log RNA (copies/ml)

CD4+ T cells per ml

I:I 1 I 1

0 10 20 30

40

I
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Time after virus challenge

Gag p11C (181-189) sequences

CTPYDINOQM

Week0 = = = = = = = = - (15/15)
Week 14 = = = = = = = = - (8/8)
Week20 - I - - - - - - - (10/10)
Week24 - T - - - - = - - (11/11)
Week28 - T - - = - = - - (11/11)
Week36 - I - - = - - - - (11/11)
Eeek44 - I - - - - - - - (10/10)



RECENT REPORTS RELATING MHC HAPLOTYPE TO

HIV CONTROL

Nature 465, 350-354 (20 May 2010) Effects of thymic
selection of the T-cell repertoire on HLA class I-

associated control of HIV infection
Andrej KoSmrlj, Elizabeth L. Read, Ying Qi, Todd M. Allen, Marcus Altfeld,
Steven G. Deeks, Florencia Pereyra, Mary Carrington, Bruce D. Walker

& Arup K. Chakraborty

Relating the breadth of the
TCR repertoire (how many
differentT cell receptors does
the body make?) to the MHC
haplotype (the more self
peptides available for negative
selection, the narrower (and
less “cross-reactive” the TCR
repertoire)

Less cross-reactive TCR
repertoires are then associated
with poor control

OR (progressors to controllers)

Frequency of occurrence of
small number of important contacts

Probability of occurrence of different

TCR-viral-peptide interaction strengths
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VACCINE EXPECTATIONS
Since viral load “set point” is a key predictor of disease
progression and pathogenesis, even a suboptimal
vaccine could be of use in highly endemic areas to
protect against disease and spread (we'll talk more
about this when we get to malaria)

a Peak b Peak
“/J k/
o Setpoint Setpoint
©
-
Ideal vaccine Suboptimal
k"’/ fvaccine

Time after infection Time after infection



SUMMARY OF VACCINE TRIALS IN 2006

Vaccine candidate Antigen (HIV-1 clade) Manufacturer Trial start date Question being addressed

Prime with canarypox vector env (B, E), gag/pol (B) Sanofi-Pasteur  October 7003 Will a gp120 protein vaccine that did not

expressing HIV-1 genes confer protection when used alone be useful
incombination with a live, recombinant pox

Boost with gp 120 protein gplZ0({B,. E) Vaxgen vector primed

Replication-defective adenovirus — gag, pod, nef (B) Merck December 2004 Will an adenovirus-based vector vaccine

serotype 5 expressing HIV-1 genes confer a clinical benefit in individuals who
become infected after vaccination?

Prime with plasmid DNA encoding gag. pol. nef{B), Vical. VRC September 2005 Will a prime-boost strateqgy using DNA-

HIV-1 genes env (A, B, C) and adenovirus-based vaccines encoding

) : . envelope prateins from three HIV-1 clades,

Boost with replication-defective gag, pol (B), env (AL B, C) GenVec, VRC as well as viral structural proteins, confer a

adencvirus Serolyps 5 expressing benelit?

HIV-1 genes

Further information on ongoing trials of preventative AID5 vaccines can be found inthe 2006 International A1D5 Vaccine Initiative report. eny, envelope; gag,

group=speciiic antigen; gpl 20, glycopraoiein 120; nef, negative factor; pol, polymerase; VRC, Vaccine Research Center, Natlonal Institutesof Health, Maryland, LI54,

Letvin Nature Reviews Immunology 6, 930-939 (December 2006) | doi:10.1038/nri1959

nature
REVIEWS [T




THE MERCK VACCINE

| Merck . :
_ _ ' Adenovirus vector
Use of a viral vector | gclade B gag ¥ -and insert
has been shown gjciade B pol O DNA plasmid
. #® Clade B nef &
experimentally to ., o
boost cellular | ® [
responses, by ? 1 | ? Trﬂﬂ A = Follow-up years
delivering more X & Clade B gag/pol
. . P @ Clade A env glycoprotein
antlgen_ with the & {:T:;?; i on # Clade B env glycoprotein
proper Innate/PAMI: O Clade B ij # Clade C env glycoprotein
Signa|s O Clade B nef
O Clade A env glycoprotein
O Clade B env glycoprotein
O Clade C env glycoprotein
VRC




MERCK VACCINE FAILURE

Not only did the Merck
Vaccine fail to protect,
there appeared to be an
enhancement of
infection in vaccinees
who had relatively higher
pre-existing antibody
titers to the viral vector
This failure led to the
cancellation of other
vaccine trials based on a
similar approach

HVTN-5o5 just halted in
April 2013—also Ads
based (41 vaccinf, 30
placebo)
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A Intention-to-Treat Analysis
1.0+
0.9
0.8

Placebo

0.2

r—/_/pu.ﬂﬁ
0.14

0.0 T T T T T T 1
0.0 0.5 10 L5 20 25 3.0 35

- No. at Risk
r I I I l e Placebo 8200 7775 7643 7441 7325
Vaccine 8202 7797 7665 7471 7347
Cumulative No. of Infections

0.74
0.6
0.5+

A PROTECTIVE VACCINE?
RV144 TRIAL

0.4
0.3+

Probability of HIV-1 Infection (%)

Placebo 32 52 67 76

boost-boost vaccine B & s
(canarypox followed by :

protein boost, gp120

based) :

16,402 vaccinees w R

0.7+
0.6
0.5+
0.4
03+
0.24

Vaccine

Probability of HIV-1 Infection (%)

No. at Risk
Placebo 6366 6283 6220 6089 6002
. . Vaccine 6176 6140 6068 5958 5874
V ff Cumulative No. of Infections
accine erricacy was Pacsbo y 2 u s
Vaccine 5 22 32 36

0 C Modified Intention-to-Treat Analysis
31.2%
0.9+
0.3
0.7
0.6
0.5
0.4+
0.3

Vaccine

No mitigation of viral
load in those that did

Probability of HIV-1 Infection (%)

0.24
L] 0.1+
become infected P R S S
0.0 0.5 1.0 j 20 25 3.0 35
Years
No. at Risk
Placebo 8198 7775 7643 7441 7325
Vaccine 8197 7797 7665 7471 7347
Cumulative No. of Infections
Placebo 30 50 65 74
Vaccine 12 32 45 51

2214 N ENGL) MED 361;23 NEJM
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IMMUNE CORRELATES OF HIV RISK

® Women with high immune
response

© Women with medium immune
response

O Women with low immune
response

# Men with high immune
response

< Men with medium immune
response

< Men with low immune
response

1gG Antibodies Binding to V1V2

Placebo

of 405 nm

Vaccine

Optical Density at a Wavelength

Immune Response (%)

Low Medium High

Vaccine, Not Infected 32.2 32.2 35.6
Vaccine, Infected 39.0 39.0 22.0

IgA Antibodies Binding to Env

Placebo Vaccine

L4
L

&
DAY

Not Infected Infected Not Infected Infected

Immune Response (%)
Medium  High
36.1 30.2
24.4 46.3

Low
Vaccine, Not Infected 33.7
Vaccine, Infected 29.3

[Response Unitsx (1+Dissociation

Avidity of 1gG Antibodies for Env

Antibody-Dependent Cellular Cytotoxicity
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Not Infected Infected Not Infected Infected Not Infected Infected Not Infected Infected
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Vaccine, Not Infected 32.2 33.7 33.2 Vaccine, Not Infected 49.3 24.4 26.3
Vaccine, Infected 34.1 31.7 34.1 Vaccine, Infected 53.7 26.8 19.5
Neutralizing Antibodies Env-Specific CD4+ T Cells
Placebo Vaccine Placebo Vaccine
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Not Infected Infected Not Infected Infected Not Infected Infected Not Infected Infected
Immune Response (%) Immune Response (%)
Low Medium High Low Medium High
Vaccine, Not Infected 35.1 31.7 33.2 Vaccine, Not Infected 31.4 33.7 349
Vaccine, Infected 24.4 41.5 34.1 Vaccine, Infected 42.1 316 26.3




BROADLY NEUTRALIZING ANTIBODY APPROACHES

FOR HIV VACCINE

Ab breadth,

potency

y
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Ab Env
lineage variants

bNAbs

Intermediate NAbs
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Longitudinal HIV-1 cohort:
identifying individuals with
- broad serum neutralization

Boost

Prime

Rational vaccination strategy

* Prime to engage UCA

* Boost with variants to increase
breadth and potency




NIH Launches Large Clinical Trials of Antibody- Get email updates
Based HIV Prevention -t Order publications

Studies on Three Continents Could Have Broad Implications for HIV

Prevention Research Media Contacts
Laura 5. Leifman

(301) 402-1663

niaidnews @ niaid. nih.gov

Enrollment has begun in the first of two
multinational clinical trials of an intravenously
delivered investigational antibody for preventing
HIV infection. Known as the AMP Studies, for
antibody-mediated prevention, the trials will
test whether giving people an investigational
anti-HI antibody called VR C01 as an
intravenous infusion every 8 weeks is safe,
tolerable and effective at preventing HIV
infection. With a projected enrollment of 4,200
adults, the trials also are designed to answer
fundamental scientific questions for the fields
of HIV prevention and vaccine research.

Related Links
Media Contact Info
Mews by Topic

Mews From MNIAID-
Supported Institutions

The Mational Institute of Allergy and Infectious Health & Research Topics

Dizeases (NIAID), part of the Mational
Institutes of Health (NIH), is sponsoring and

funding the AMP Studies. News Release Archive

View MIAID news releases

The MIAID Vaccine Research Center (VRC)
discovered the VR.CO1 antibody in the blood of
an HIV-infected person in 2010 and Model of the VRCO1 antibody

subsequently manufactured the antibody for Credit: NIAID

these trials. Laboratory studies have shown ~ Viewlargerimage.

that VRC01 stops up to 90 percent of HIV

strains worldwide from infecting human cells, and thus it is considered to be a broadly neutralizing antibody.

“The AMP Studies could have a major impact on the future of HIV prevention and may be especially informative to HIV vaccine
research,” said MIAID Director Anthony 5. Fauci, M.D. *"Many scientists believe that if a vaccine were developed that elicited
broadly neutralizing antibodies in healthy people, it would protect them from HIV infection. The AMP Studies will test this hypothe
by directly giving people the VR CO01 antibody.”

In addition, the studies could clarify what level of broadly neutralizing antibodies a vaccine or other long-acting HIV prevention
method needs to achieve and maintain to provide sustained protection from the virus.



POINTS FOR DISCUSSION

HIV is a unique pathogen in that it targets the immune
system directly—playing “offense”—xkilling or
dysregulating the cells that specifically target it and
"defense”, employing more conventional immune
escape mechanisms

Despite this, the immune response, both antibody and
CTLs, provide an important level of control over the
virus for an extended period of time, keeping the
reservoir relatively stable

Vaccines could in principle employ similar strategies,
but drugs are still the most effective treatment tool



