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 R, some additional R packages. 

 An editor for R scripts, such as RStudio.

 All programs are cross-platform and freely available 
online.

 Install R first, then Rstudio.
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 R is a “high level” programming language, relatively 
easy to learn (compared to Fortran, C, etc.)

 R comes with many integrated functions

 R has very good for statistical methods

 R is pretty good for other things (ODEs, data fitting)

 R is Open Source & FREE

 Stable, lots of state-of-the-art packages, pretty good 
documentation

 Slower than compiled languages (Fortran, C, etc.)
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 Start Rstudio (which also loads R).  

 Click on the “packages” tab in the lower right corner 
window. Click on “install packages” and enter the names of 
the packages you want to install. 

 For now, we need the package deSolve. Other packages we 
will use are: lhs, sensitivity, nloptr, boot, GillespieSSA, 
adaptivetau. You can install them sometime between now 
and just before we need them.

 You can see which packages are already installed by typing 
library() at the R prompt (the window to the left).
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 I wrote the scripts for the hands-on examples we will 
be doing. You will only need to do minor modifications, 
so you will not need to know much R.

 But by knowing/understanding some R, you will get 
more out of the course!

 R has many help files included, but those usually 
assume some level of general R familiarity.

 The R website has manuals/tutorials. You can also 
search the web, many good ones exist.

 “A beginner’s guide to R” by Zuur et al (2009), Springer.
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 I compiled a short R tutorial (called YaRI) : 
http://handelgroup.uga.edu/resources.htm

 If you know R at the level of what’s covered in YaRI, 
you should be able to understand the code in most 
scripts. 

 If you are less familiar with R, you will still be able to 
run the examples but you might not quite understand 
what’s going on in the code.
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 For this module, we will consider a specific class of 
mathematical/computational models:
◦ We will look at the dynamics (= changes in time) of a system

◦ We will try to model mechanisms that lead to dynamical 
patterns

◦ We will take a system/population perspective
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Qualitative Models (e.g. “being exposed 
to HIV can lead to HIV infection”)

Quantitative Models (Math, Stats)
(e.g. “a person exposed to N HIV 

virions has an X% probability of getting 
infected)

Quantitative Mechanistic Models
(e.g. “heterosexual intercourse with a 
person with N HIV virions/mL leads to 
an HIV infection with probability X%”)

Quantitative Mechanistic, Dynamical Models
(e.g. “modeling HIV and CD4 T-cells during 

infection”)

Those are the models we’ll be 
focusing on in this class

Everyone uses qualitative models,
often without realizing

Science tries to be quantitative 
as much as possible

This only works for very specific 
(“simple”) problems.



 The models we will focus on are dynamical 
mechanistic models.

 Dynamical: Tracking how things change in time 

 Mechanistic: Having equations or computer rules that 
explicitly describe how things happen
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 You might be familiar with statistical models.

 Most of those models are phenomenological/non-
mechanistic (and static).

 Those models are used extensively in epidemiology, 
social sciences, finance,  –omics disciplines, etc.

 The main goal of these models is to “understand data” 
(and make predictions)
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 You are probably familiar with models that are used to 
analyze data

 Most of those models are phenomenological/non-
mechanistic (and static).

 Those models are used extensively in many areas of 
biomedical sciences and beyond

 We use those models to 
understand patterns
in the data and 
possibly predict.

 Most statistical models 
are non-mechanistic.
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 Finding correlations/patterns is (relatively) simple.

 Sometimes we can go from correlation to causation.

 We don’t need to understand the underlying 
mechanisms. We can determine that input is 
correlated with (causes) 
output (e.g. smoking causes 
cancer) without having 
to understand how.
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 The jump from correlation to causation is always tricky 
since so many things can go wrong 
(bias/confounding/systematic errors). 

 Even if we can assume a causal relation, we do not gain 
any mechanistic insights (e.g. we don’t 
know how smoking 
causes cancer). 
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 Assume we are interested in the spread of some ID. In 
a non-mechanistic model, we say that new cases occur 
at a given rate, and maybe use our data to estimate 
that rate 

some rate, we don’t 
know how/mechanism

Healthy/Susceptible Infected
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 In a mechanistic model, we describe and 
mathematically model the mechanism of getting 
infected

Healthy person comes in contact with 
infected person at some rate. If a contact (e.g. 
sneezing, intercourse) occurs, there is a 
chance/probability that the 
healthy/susceptible person gets infected.

Infected/Infectious

Healthy/Susceptible Infected
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 Non-mechanistic models are useful to see if we can 
find patterns in our data and possibly predict, without 
necessarily trying to understand the mechanisms.

 Mechanistic models are useful if we want to study the 
mechanism(s) by which observed patterns arise.
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 Understanding
◦ We can build and analyze models to gain insights into the 

complex dynamics of infectious diseases

 Prediction & What-if scenarios
◦ We can make specific testable predictions

◦ We can perform virtual experiments that would be unfeasible 
to do (costly, lengthy, unethical)

 Hypothesis testing & Parameter Estimation
◦ We can use mechanistic models together with data to test 

different mechanisms/hypotheses

◦ We can estimate parameters that are not directly measurable
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Quantitative Mechanistic, Dynamical 
Models

Those are the models we’ll be 
focusing on, formulated 
as Ordinary Differential Equations

Many types of quantitative, mechanistic, 
Dynamical Models exist

Compartmental  Agent-based
Discrete time  continuous time
Deterministic  Stochastic
Space-less (homogeneous)  Spatial
Memory-less (Markov)  with memory
Small  Big
Data-free  With data
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Between-host Within-host

Spread on the population level 
(ecology, epidemiology)

Spread inside a host (virology, 
microbiology, immunology)

Populations of hosts (humans, 
animals)

Populations of cells & 
pathogens

Epidemic/Endemic (e.g. Flu/TB) Acute/Persistent (e.g. Flu/TB)

Often no explicit modeling of 
pathogen

Usually (but not always) explicit 
modeling of pathogen
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 More recent than between-host modeling. 
 HIV garnered a lot of attention starting in the late 80s, some influential 

work happened in the early 90s (Perelson, Nowak).
 Since then, a fair amount of work on HIV, HCV, HBV (Perelson & Nelson 

1999 SIAM Reviews, Perelson 2002 Nat Rev Imm, Nowak and May 
2001 Oxford University Press). 

 Recently, interest in acute viral infections (flu) (Beauchemin & Handel 
2011 BMC Public Health, Smith & Perelson 2011 WIRE)

 A fair amount of work on other major diseases, e.g. TB (Kirschner
group), Malaria (Read, others).

 Also since the late 70s, models have been used to study the immune 
response, mainly T-cells (Antia 2003 Nat Rev Imm, Wodarz 2007 
Springer).

 Overall much less work has been done compared to between-host 
modeling, but it’s rapidly growing.
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 We will look at the dynamics (= changes in time) of an 
infection

 We will try to model mechanisms that lead to dynamical 
patterns

 We will take a system/population perspective

 We need a few main ingredients:
◦ The agents/players/entities (e.g. pathogen, immune components)

◦ The behavior/characteristics of each agent/entity by itself (e.g. 
doubling time of cells, rate of clearance of pathogen)

◦ The interactions between agents (e.g. infection of a cell by a virus)

◦ Characteristics of the “system” (e.g. drug interventions)

24



 We often do not track individuals but instead describe 
the behavior of the “average” agent. 

 Of course somewhat crude, but often a good starting 
point. 

Infection, b

Virus, V
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 Anything that’s intrinsic to each agent and doesn’t 
interact with other agents in the system

 Often these characteristics are considered constant for 
the purpose of the modeling study

 Examples:
◦ Lifespan of a bacteria 

◦ Rate of cell division

◦ Half-life of some cytokine

◦ Number of virus particles a cell produces (but: immune 
response)
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 What makes our system and models both interesting 
and complicated is that agents/players interact.

 Host, pathogen and immune response interact in 
complicated ways. So do different components of the 
immune response.

Infection, b

Virus, V

B

dB

gB(1-B/Bmax)

I

I

rBI
kBI



 Anything that’s not something the hosts/agents do on 
their own or through interactions
◦ Interventions campaigns (vaccination, drug treatment…)

◦ External influences (weather, change in sanitation,…)

 The simplest assumption is that nothing of this sort 
happens or matters.

 Again, of course not right, but can often be assumed as 
a first step.
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 Bacteria dynamics (within-host or between-host, e.g. 
environment)

30

( )
t t t t

B B gB dB 

   B

dB

gB

Total number of 
bacteria right now 

RHS describes how change 
happens (the mechanisms)

death/decay/outflow
birth/growth/inflow

Need to multiply by time step 
since a larger time step means 
more events can happen

Total number of 
bacteria at next 
time step



 Assume g=12/hour, d=2/hour, =1 hour.

 B at start (t=0) = 100

 What do we get after 1,2,3,4,… hours?

B

dB

gB

( )
t t t t

B B gB dB 

  

31



 The system is updated in discrete time-steps.

 Good for systems where there is a “natural” time step
◦ Example: Some pathogens have a more-or-less fixed replication cycle 

(e.g. ≈24h for Plasmodium falciparum).
◦ Example: For some animals, births occur during a small period in spring. 

Modeling the long-term dynamics of an ID in such a population might 
lend itself to a model that is updated annually.

 Complex models, such as Agent-based simulations are almost 
always discrete-time (for computational reasons).

 For simple models where we track the total populations (instead 
of individuals), discrete-time models are not that commonly 
used. Continuous-time models, usually formulated as ordinary 
differential equations (ODE), are more common.

 If the time-step becomes small, a discrete-time model 
approaches a continuous-time model.
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 ODEs can be derived as the continuum limit of discrete 
models:

rewrite
( )

t t
B B gB dB 


   ( )t t

B B
gB dB






 

0
( )   t t

B B
gB dB








  

or

( )
( ) ( )

dB t
gB t dB t

dt
 

B gB dB 
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 Often, ODEs are derived as the continuum limit of 
discrete models:

The computer uses this We often can/could do math with this

Same flow diagram for both models

B gB dB ( )
t t

B B gB dB 

  

B

dB

gB
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B

dB

gB
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( ) ( )

dB t
gB t dB t

dt
 

dB
gB dB

dt
 

B gB dB 
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 Bacteria dynamics

B gB dB  B

dB

gB

LHS is the change in a 
variable/compartment

RHS describes how change 
happens (the mechanisms)

death/decay/outflow
birth/growth/inflow

36



 Bacteria dynamics

 How could we implement saturating growth?

B gB dB  B

dB

gB

LHS is the change in a 
variable/compartment

RHS describes how change 
happens (the mechanisms)

death/decay/outflow
birth/growth/inflow
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 Bacteria dynamics

 How could we implement saturating growth?

max

(1 )
B

B B
B

gB d  B

dB

gB(1-B/Bmax)

LHS is the change in a 
variable/compartment

RHS describes how change 
happens (the mechanisms)

death/decay/outflowSaturating
birth/growth/inflow
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 Bacteria dynamics

 What equation could we add to describe some 
(abstract) immune response?

max

(1 )
B

B B
B

gB d  B

dB

LHS is the change in a 
variable/compartment

RHS describes how change 
happens (the mechanisms)

death/decay/outflowSaturating
birth/growth/inflow gB(1-B/Bmax)
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 Bacteria dynamics with immune response (IR)

 What’s missing?

max

(1 )
B

B gB dB

I r I

B

BI 

  



B

dB

gB(1-B/Bmax)

I

I

rBI

Immune response 
(IR)

Mechanisms of IR 
dynamics
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 Bacteria dynamics with immune response (IR)

 (Predator-prey model)

max

(1 )
B

B gB d kBIB
B

I rBI I

  







B

dB

gB(1-B/Bmax)

I

I

rBI
kBI
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 Bacteria dynamics with immune response (IR)

max

(1 )
B

B gB dB kBI
B

I rBI I

   

 

B

dB

gB(1-B/Bmax)

I I

rBI
kBI

Dashed: System interactions, not 
necessarily flows

“actual/physical” flows

42



 Bacteria dynamics with immune response (IR)

max

(1 )
B

B gB dB kBI
B

I rBI

D dB kBI

I

 

   

 

B

dB

gB(1-B/Bmax)

I I

rBI
kBI

Dashed: System interactions, not 
necessarily flows

“actual/physical” flows

D
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 To fully specify a model, we need to pick values for the 
parameters.

 Parameter values are chosen based on what we know about the 
biology of the infection.

 We can choose our unit of time (hours, days, weeks,…), we just 
have to be careful that our parameters are in agreement. 

 Good practice: Pick a unit of time that makes sense for the 
disease, e.g. days or weeks for flu, measles, months or years for 
TB, HIV.

Parameter Value [Units] Comment

g 1  [1/day] bacteria growth rate

Bmax 1E6 [Bacteria units] max bacteria load

d 0.1  [1/day] bacteria death rate

k 1E-7  [1/(day*IR units)] bacteria killing rate

r 1e-3  [1/(day*Bacteria units)] IR activation/growth rate

 1 [1/day] IR death/decay rate

max

(1 )
B

B gB dB kBI
B

I rBI I

   

 
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Compartment Initial condition 
symbol

Initial condition 
value

Bacteria B(t=0)=B(0)=B0=B0 100

Immune Response I0 10

 Once we have defined parameters, we also need to set 
initial conditions for the variables to be able to run the 
model.

 Start time: Arbitrary, using t=0 at the beginning makes 
sense.
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 Open the file SISMID-U2-bacteria.r in RStudio. 

 Read through the program and try to understand it.

 Run the script by pressing the “Source” button. 

 Change some of the parameter values (g, Bmax, d, k, r, ), 
save the file. Then run the program again with the 
source button. Do that a few times to see how different 
parameter values affect your results. 
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Uninfected cell, U
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Uninfected cell, U Infected cell, I

Infection, b

Virus, V

     (uninfected cells)

        (infected cells) 

     (free virus) 

dU
bUV

dt

dI
bUV

dt

dV
bUV

dt

 



 
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Uninfected cell, U Infected cell, I

Infection, b

Virus, V

     (uninfected cells)

        (infected cells) 

     (free virus) 

bUV

bUV

bU

U

I

VV

 



 
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Uninfected cell, U Infected cell, I

Virus production, p

Infection, b

Virus clearance, c
(lifespan 1/c)

Virus, V

                    (uninfected cells)

                (infected cells) 

       (free virus) 

I

p

U bUV

I bUV

V bUVI cV



 

 

  

Virus-induced cell death, 
(average lifespan 1/ )
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Uninfected cell, U Infected cell, I

Virus production, p

Infection, b

Virus, V

                    (uninfected cells)

                (infected cells) 

       (free virus) 

U bUV

I bUV I

V pI cV bUV



 

 

  

Sometimes, but not always 
ok to ignore

Virus clearance, c
(lifespan 1/c)

Virus-induced cell death, 
(average lifespan 1/ )
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Uninfected cell, U Infected cell, I

Virus production, p

Infection, b

Virus, V

                    (uninfected cells)

                (infected cells) 

       (free virus) 

U bUV

I bUV I

V pI cV bUV



 

 

  

Virus clearance, c
(lifespan 1/c)

Virus-induced cell death, 
(average lifespan 1/ )

Might be needed if we express virus load not in units 
of infectious virions, but something else (for instance 
Plaque Forming Units, as done in experiments)
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Uninfected cell, U Infected cell, I

Virus production, p

Infection, b

Virus, V

                    (uninfected cells)

                (infected cells) 

                   (free virus) 

U bUV

I bUV I

V pI cV



 

 

 

Virus clearance, c
(lifespan 1/c)

Virus-induced cell death, 
(average lifespan 1/ )
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Uninfected cell, U Infected cell, I

Virus production, p

Infection, b

Virus, V

Days post infection
10

uninfected cells
infected cells
virus
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U bUV

I bUV I

V pI cV



 

 

 

Virus clearance, c
(lifespan 1/c)
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Uninfected cell, U Infected cell, I

Virus production, p

Infection, b

Virus, V

 It’s often useful to go from figures/diagrams to 
equations and back.

 For this model, I used pretty(?) figures

  

 

 

U bUV

I bUV I

V pI cV



 

 

 

Virus clearance, c
(lifespan 1/c)

Virus-induced cell death, 
(average lifespan 1/ )
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 Another way to illustrate equations is to draw box 
diagrams.

  

 

 

bUV

bUV

p cVI

U

I

V

I











δIU I

V

bUV

cV

pI

Change of hosts in 
each compartment 
at a given time

Specifying the 
change: Influx and 
outflow for each 
compartment
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 I’m trying to be (somewhat) consistent

 If you go to the literature, you will find many different 
notations

* *

*

  (uninfected target cell)

    (infected target cells) 

      (free virus) 

T s T TV

T TV dT

V NdT cV

 



  

 

 

    (uninfected cells)

          (infected cells) 

            (free virus) 

x dx xv

y xv ay

v y uv

 





  

 

 
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 If we show a model with boxes, we usually imply that 
we use a compartmental model where we track total 
numbers in each box/compartment but not individuals.

 We did not specify some other aspects of 
implementation.
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t dt t

t dt t

t dt t

U U bUV dt

I I bUV I dt

V V pI cV dt









 

  

  

δIU I

V

bUV

cV

pI
  

 

 

U bUV

I bUV I

V pI cV



 

 

 

Continuous in time, ODE

Discrete in time, 
Difference Equation



 Open SISMID-U2-virus.r 

 The script implements the simple virus model as 
discrete time and continuous time models.

 Read through the program and try to understand it.

 See how results change as you change some of the 
parameter values.

 Play around with the time step for the discrete model 
and see what it does.

 You can also change some of the initial conditions (U0, 
I0, V0).  
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 Mechanistic, dynamical models are useful for studying 
infectious diseases. 

 Such models come in all kinds of forms. 
 Models can quickly become complex and hard to 

analyze. For within-host models, one of the main 
“source of complexity” is the immune response. 

 No matter how detailed, a model is always a simplified 
abstractions of the real biology/system.

 Finding the right model (type, complexity) for the 
question at hand is the challenge and “art” of 
modeling.
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 We will revisit and extend the models discussed here in 
various ways as we study specific pathogens (HCV, HIV, 
Influenza, Malaria, TB) in some more detail.

 We will discuss more details about the biology of the 
within-host infectious disease processes for those 
pathogens.

 We will apply models to these pathogens to gain general 
conceptual insights, to study treatment/intervention and to 
estimate parameters. 

 We will focus on compartmental, deterministic ODE 
models. 

 We will spend one session briefly going over alternative 
(more complicated) modeling approaches.

61



 Britton (2003) “Essential mathematical biology” Springer: 
Relatively easy, not too math heavy.

 Allman and Rhodes (2004) “Mathematical Models in 
Biology: An Introduction” Cambridge U Press: Integrates 
MATLAB into the text/exercises. 

 Ellner and Guckenheimer (2006) “Dynamic Models in 
Biology” Princeton University Press: Nice integration of 
mathematical analysis and computer modeling, topics very 
broad.

 Otto and Day (2007) “A Biologist's Guide to Mathematical 
Modeling in Ecology and Evolution” Princeton University 
Press: Some good background/primers on math topics, 
explanations on how to model, not much infectious disease 
specific material. 
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 Nowak and May (2000) “Virus dynamics” Oxford U. Press
 Anderson and May (1991) “Infectious Diseases of Humans –

Dynamics and Control” Oxford U. Press
Keeling and Rohani (2008) “Modeling Infectious Diseases”
Princeton U. Press
(these books are about ID modeling on the population level, not 
individual hosts. But a lot of the concepts and math/equations 
are the same)

 Alan Perelson (2002) “Modelling Viral and Immune System 
Dynamics”, Nature Reviews Immunology 

 A few names in the field: Rustom Antia, Becca Asquith, Rob de 
Boer, Sebastian Bonhoeffer, Denise Kirschner, Angela McLean, 
Martin Nowak, Alan Perelson, Ruy Ribeiro, Dominik Wodarz, 
many more….
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