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Mathematical models

Aim of mathematical modelling: To describe some real world
phenomenon mathematically in order to learn more about it

Main idea: Mathematical models describes some feature in a
simplified way, keeping only the essential features

Trade-off between simple and complicated models: Simple
models are easier to understand but don’t mimick reality very well.
Complicated models are harder to analyse and parameter values
may be hard to estimate

Stochastic models:

The discrepancy between model and reality may be contained in
”random part” in model

Stochastic models enable uncertainty estimates (i.e. standard
errors) when estimating parameters
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Background: Infectious disease models

We want to model the spread of a transmittable disease in a
community of individuals

At a given time-point an individual may be Susceptible, infected
but not yet infectious (Latent or Exposed), Infectious, or recovered
and immune (Removed)

Different class of epidemic models: SIR, SEIR, SIS, SIRS, ...

Main focus: SIR (childhood diseases, STDs, influenza, covid-19...)

Short term outbreak vs endemic situation

Simplification for short term: fixed population, no waning immunity
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Notation

Some notation to be used

n = # individuals (n(t) if varying over time)

S(t) = # ”susceptibles” (susceptible individuals) at time t

I (t) = # ”infectives” (infectious individuals) at time t

R(t) = # ”removeds” (removed individuals) at time t

T = the time when the epidemic stops

Z (= R(T )− 1) = # infected during the epidemic (excluding
index case). Possible values: 0,1,...,n − 1.

We start with the simplest situation: all individuals are ”identical”
(with respect to disease spreading) and all pairs of individuals have
contact at equal rates.

Homogeneous community that mixes uniformly
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The Reed-Frost stochastic epidemic model

Short term outbreak (fixed community), homogeneous community,
uniform mixing, SIR, discrete time: ”generations”

An epidemic model (Reed-Frost, 1928)

Assume 1 index case (externally infected) the rest n − 1
susceptible

Anyone who gets infected infects other susceptibles
independently with prob p and then recovers

A recovered individual plays no further role in epidemic

The index case infects a random number (Bin(n − 1, p)) of
individuals, they in turn infect an additional random number, and
so on. Once no new individuals are infected the epidemic stops

Think in ”generations”
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Exercise 1

Suppose n = 3 (one index case and 2 susceptibles) and p = 0.2

Possible values for Z : 0,1,2.

P(Z = 0)? For this to happen the index can’t infect anyone

P(Z = 1)? For this to happen the index must infect EXACTLY
one AND this individual cannot infect anyone further

P(Z = 2)? Either the index infects exactly one AND this individual
infects the last one, OR the index infects both

P(Z = 0) = (1− p)2 = 0.64
P(Z = 1) =

(2
1

)
p(1− p)× (1− p) = 0.256

P(Z = 2) =
(2
1

)
p(1− p)× p + p2 = 0.104

or ... P(Z = 2) = 1− P(Z = 0)− P(Z = 1)
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What about larger communities?

General n, think in ”generations”

Epidemic chains: i → 3→ 2→ 0: the index infects 3, they infect 2
and these infect no further and the epidemic stops

P(Z = 0) = P(i → 0) = (1− p)n−1

P(Z = 1) = P(i → 1→ 0) =
(n−1

1

)
p1(1− p)n−2 × (1− p)n−2

P(Z = 2) = P(i → 2→ 0) + P(i → 1→ 1→ 0) = ...

P(Z = 3) = P(i → 3→ 0) + P(i → 2→ 1→ 0) + P(i → 1→
2→ 0) + P(i → 1→ 1→ 1→ 0) = ...

Pn(Z = z) gets very complicated when n ≥ 10 and z ≥ 5.

Underlying reason for the complication: individuals’ outcome
are dependent! (As opposed to other deseases)

What to do then?
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Approximations when n large

When n large then often p (=per individual transmission
probability) is small.

Expected number of infectious contacts: (n − 1)p ≈ np =: R0

R0 = basic reproduction number

Next page: Histogram of final outbreak sizes from 10 000
simulations in a community of n = 1000 individuals (both R0 < 1
and R0 > 1)
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Histogram of final size: R0 = 0.8
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Histogram of final size: R0 = 1.5
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An approximation for the final size

R0 = 1 is ”threshold value”

We now derive an equation for τ heuristically (recall p = R0/n)

Assume n large and let τ = Z/n = final fraction infected

1− τ = proportion not infected (1)

≈ probability not get infected (2)

= prob to escape inf from all infected (3)

= (1− p)Z (4)

=

(
1− R0

n

)nτ

(5)

≈ e−R0τ (using that (1− x/n)n ≈ e−x) (6)
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Approximation for final size

τ should hence (approximately) solve

1− τ = e−R0τ

There are two solutions: τ = 0 and (if R0 > 1): τ = τ? > 0.

Exercise 2 Compute τ∗ numerically when R0 = 1.5, 3 and 6.

On next page is a plot of final size as function of R0
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Plot of final outbreak size as function of R0
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Approximation, cont’d

Seen from simulations: strong dichotomy: minor outbreak – major
outbreak

P(major outbreak) = 1− P(minor outbreak) can be determined
using branching process theory

For Reed-Frost model: P(major outbreak) = τ∗ !!!

Normal distribution for major outbreak:

√
n

(
Z

n
− τ∗

)
≈ Normal(0, σ2)

σ2 depends on model parameters
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What about epidemic over time?

A related stochastic epidemic model (the ”General stochastic
epidemic”) can be defined in continuous time:

During the infectious period an individual has ”infectious
contacts” randomly in time at the average rate β, each time
individual is chosen randomly

A susceptible who receives an infectious contact becomes
infectious and remains so for a exponentially distributed time
with mean ν (other contacts have no effect)

R0 = expected number of infectious contacts = βν
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What about epidemic over time?

When n is large the process (S(t)/n, I (t)/n) is close to
deterministic limit (s(t), i(t)) which solves differential system

s ′(t) = −βs(t)i(t) (7)

i ′(t) = βs(t)i(t)− 1

ν
i(t) (8)

r ′(t) =
1

ν
i(t) (9)

Next page: plot of I (t)/n for one (typical) simulated epidemic and
deterministic limit i(t), for a few different n
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Plots of simulated stochastic epidemic and deterministic
curve
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Summary

Exact distribution of Z (final size) is complicated

When n large two things may happen:

either very few get infected (Z/n ≈ 0), or

a close to deterministic fraction Z/n ≈ τ∗ get infected

R0 = np = βν = expected number of infections by one individual
during his/her infectious period

Second scenario only possible if R0 > 1

P(major outbreak)= τ∗ for Reed-Frost model
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Extensions

Random infectious force (e.g. length of infectious period): affects
P(outbreak) but hardly final size τ

Latent period: big effect on timing of epidemic peak and duration
of epidemic but no effect on final size (unless control measures are
initiated)

More than one index case: big effect on P(outbreak) but negligible
effect on final size τ in large outbreak

Exercise 3. If infectious period deterministic (=R-F) then P(major
outbreak)= τ∗. If infectious period is exponentially distributed then
P( major outbreak)= 1− 1/R0. Compute the latter probability for
R0 = 1.5, 3 and 6 and compare with Reed-Frost model.
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Extensions

Initial fraction of immunes. If there is a fraction r of initially
immunes the same methodology can be used. The difference is
that R0 is replaced by R0(1− r) since initially only the fraction
(1− r) is susceptible. The final fraction infected among the initally
susceptible then solves

1− τ = e−R0(1−r)τ

Major outbreak possible only if R0(1− r) > 1

Exercise 4. Compute τ∗ if initially only 50% were susceptible (and
50% were immune), for R0 = 1.5, 3 and 6.

Exercise 5. What are the overall fractions infected during outbreak
in later case?
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