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Repetition: Inference from large outbreaks

From lecture 3: basic reproduction number R0 and critical
vaccination coverage vc were estimated by:

R̂0 = − ln(1− τ̃)/τ̃

v̂c = 1− τ̃

− ln(1− τ̃)

if outbreak takes place in a fully susceptible homogeneous
community resulting in a fraction τ̃ getting infected during the
outbreak

How about uncertainty?
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Uncertainty of previous estimate

Intuition: The larger community (and more getting infected) the
less uncertainty

It was mentioned that final number infected nτ̃ = Z in case of a
major outbreak is normally distributed with mean nτ∗ and standard
deviation

√
nσ2 where σ2 depends on model parameters and shown

two slides ahead

This result can be used to show that R̂0 and v̂c are normally
distributed with correct means (i.e. R0 and vc respectively) and
standard errors to be derived using δ-method
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The δ-method

Suppose random variable X has mean µ = E (X ) and variance
V (X )

Then the δ-method gives the following approximation for the mean
and variance of f (X ), where f (x) is a ”nice function”:

E (f (X )) ≈ f (µ) V (f (X )) ≈ (f ′(µ))2 V (X )

The approximation holds better the smaller variance X has (i.e.
smaller V (X ))
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The δ-method for V (R̂0)

Probabilists have proven that the asymptotic variance of τ̃ equals:

V (τ̃) ≈ 1

n

τ(1− τ)

(1− (1− τ)R0)2

(
1 + c2

v (1− τ)R2
0

)
where τ and R0 are the true parameter values related by
R0 = − ln(1− τ)/τ , and cv is the coefficient of variation of the
infectious period.

We now apply the δ-method on R̂0 = − ln(1− τ̃)/τ̃ , we hence
have the function f (x) = − ln(1− x)/x

After some algebra we get V (R̂0) ≈ 1
nτ(1−τ)

(
1 + c2

v (1− τ)R2
0

)
For a standard error estimate we take square roots and replace
unknown quantities with there estimates/observed values. The
result, also for v̂c , is given by:
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Uncertainty of previous estimate

s.e.(R̂0) =

√
1 + c2

v (1− τ̃)R̂2
0

τ̃(1− τ̃)
/n

s.e.(v̂c) =

√
1 + c2

v (1− τ̃)R̂2
0

R̂4
0 τ̃(1− τ̃)

/n

c2
v = V (I )/(E (I ))2= squared coefficient of variation of infectious

period of individuals (variance divided by the squared mean)

Larger n gives smaller standard deviation (as expected)!
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Uncertainty of previous estimate

c2
v cannot be estimated from final outbreak size – possibly known

from before

If not one has to insert a ”conservative” bound. E.g. c2
v = 1: very

rarely is standard deviation larger than mean

Exercise 25 Suppose that 239 out of 651 individuals in an isolated
village were infected during an outbreak. Estimate R0 and vc and
give 95% confidence interval for the estimates. Consider both the
case when all individuals have the same length of infectious period
(so no variation) and the case where its standard deviation is equal
to the mean.

Exercise 26 Do the same thing assuming 2390 out of 6510 got
infected.

Tom Britton L8, Estimation uncertainty + Herd immunity



Uncertainty of earlier estimates: final size
Other types of data/models

Prevention, Effective reproduction numbers and Herd immunity

More detailed data

Suppose that disease incidence is observed during outbreak – not
only final number

Intuition: more detailed data should improve estimation

Answer: yes, in a couple of ways:

estimate of R0 and vc becomes more complicated, but
standard errors are (moderately) smaller

enables estimation of more parameters: exponential growth
rate ρ, latent and infectious period distributions, ...

possible to detect deviations from model: changing behavior,
non-homogeneity, ...

If also information about contacts are available: ”transmission
probability upon contact” can be estimated
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Multitype epidemics

Suppose final size of a multitype epidemic observed: τ̃1, . . . , τ̃k ,
τ̃i = observed proportion infected among i-types

Also assumed that community fractions π1, . . . , πk known.

We want to estimate R0 which is largest eigenvalue of next
generation matrix M

First estimate M. Impossible!! Data has dimension k and M has
dimension k2.

=⇒ M and R0 cannot be estimated consistently!
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Multitype epidemics, cont’d

Why? We can observe who was infected but not who ”caused” the
infections

Susceptibility easier to estimate than infectivity!

=⇒ only possible to obtain bounds on R0: lower bound assuming
all infections caused by least infected type – upper bound assuming
all infections caused by most infected type
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Inference in networks

Inference can be performed without an outbreak: estimation of
network properties: E (D), V (D), clustering c, ...

R0, potential outbreak size τ and vc can then be estimated as a
function of transmission probability p

Typical conclusion: Outbreaks are only possible for a disease having
higher transmission probability than p = 0.13

Or: An STD with p = 0.08 can only become endemic in
core-groups with average number of partners higher than
E (D) = 4.2 per year
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Inference in more complicated models

More complicated model =⇒ harder inference and more detailed
data need

Inference of spread of infections extra hard:

There are strong dependencies because infections are not
independent events (likelihood complicated)

Many things unobserved: infectious contacts, latent period,
infectious period, ...

Inference with more detailed data gives higher precision
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Illustration

Suppose an infected infects each susceptible independently with
prob p

Data = epidemic chain: 1→ 2→ 2→ 0

Initially 1 index and 9 susceptible

Likelihood: L(p) =(9
2

)
p2(1− p)7 ·

(7
2

) (
1− (1− p)2

)2 (
(1− p)2

)5 ·
(5

0

) (
(1− p)2

)5

Maximum-likelihood (ML) estimate p̂ maximizes L(·):
=⇒ quite easy for a computer

If we instead only know that 5 out of 10 were infected likelihood is
much more complicated (a sum over all possible chains)
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Alternative approach for complicated models

Basic idea: If likelihood complicated for available data we can
”pretend” as if we had more detailed data, estimate parameters
under this assumption, recompute some likely more detailed data,
re-estimate parameters, ...

This is underlying idea in both EM-algorithm and recently very
popular MCMC

MCMC: here parameters are treated as outcomes of random
variables (Bayesian framework) and even very complicated
likelihoods (posterior probabilities) can be evaluated numerically
with arbitrary high precision

MCMC: Very computer intensive. Treated specifically in other
Modules
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Preventive measures: homogeneous case – initial phase

Common way of expressing R0 (Anderson & May, 1991):

R0 = p ∗ k ∗ `

p is probability of transmission given a ”contact” by an infective

k is the rate of ”contacts” per unit of time

` is average duration of infectious period

Suppose preventive measures (put in place very early) reduce
p ∗ k ∗ ` by a factor c (c(t) if time-varying)

=⇒ new effective reproduction number equals R
(Hom)
E = (1− c)R0

No outbreak possible if R
(Hom)
E ≤ 1 which is equivalent to

c ≥ 1− 1/R0
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Preventive measures and immunity: homogeneous case

If R
(Hom)
E ≥ 1 the epidemic grows and immunity builds up: only

infectious contacts with not yet infected individuals result in
infection:

R
(Hom)
E (t) = R0(1− c)s(t), where s(t) is fraction susceptible

If initially R
(Hom)
E = R

(Hom)
E (0) > 1 then R

(Hom)
E (t) decays and for

t large enough R
(Hom)
E (t) < 1 (because s(t) becomes small) and

then the epidemic starts declining

Currently RE (t) < 1 in all (?) countries of Europe but not US

Terminology: some use ”effective reproductiion number” for RE

and others for RE (t) (i.e. also including immunity). RE (t) also
denoted ”current” or ”daily” reproduction number
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Preventive measures and immunity: heterogeneous case

Let I(t) represent the composition of individuals that get infected
around time t

The effective reproduction number at t (assuming all types of
individual reduce spreading by the same fraction c) is then given by

R
(Het)
E (t) = R

(I(t))
0 (1− c)sI(t)(t)

R
(I(t))
0 is the average number of infectious contacts (before

prevention) that individuals getting infected around t have

sI(t)(t) denotes fraction still susceptible among individuals
contacted by the I(t)-individuals
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Preventive measures and immunity: heterogeneous case

Crude (?) approximation: sI(t)(t) ≈ s(t) (more true with varying
social activity – less with assortative mixing)

=⇒ R
(Het)
E (t) ≈ R

(I(t))
0 (1− c)s(t)

However: nearly always is R0 = R
(I(0))
0 > R

(I(t))
0 !

Reason: Socially active individuals get infected early, later infected
have fewer social contacts

=⇒ fewer will get infected in heterogeneous case (true also
without preventive measures!)
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Incidence over time: homogeneous vs heterogeneous
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Figur: Incidence over time for a homogeneous model and heterogeneous
with age and activity structure. Both have R0 = 2.5 and same g(s).

Also smaller final size: 72% vs 89%
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Herd immunity

When RE (t) < 1 the epidemic declines and dies out, so those not
yet infected are (soon) protected

(for example RE (t) = R
(Het)
E (t) = R

(I(t))
0 (1− c)sI(t)(t)) < 1)

=⇒ given effect of current preventive measures c and given
epidemic up until now, there is sufficient immunity for epidemic
to die out and hence (soon) protecting susceptibles

Herd immunity: refers to the situation without preventive
measures: are we safe if we go back to ”normality” by setting
c = 0?

Related question: How much back towards normality can we go
(how much can c be reduced) and still have RE (t) ≤ 1?
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Classical Herd immunity (for vaccination)

Classical question: What fraction h needs to be immunized (by
means of vaccination) beforehand, in order to avoid an outbreak
without any preventive measures?

Answer when vaccinating uniformly (Anderson & May 1980’s,
or earlier?): No outbreak if RE = R0(1− h) < 1. Equivalent to
h ≥ hC = 1− 1/R0 (true for very wide class of epidemic models)

Critical vaccination coverage: hC = 1− 1/R0

Answer when vaccinating ”optimally”: fewer needs to be
vaccinated (what fraction depends on model)

Illustration (Pastor-Satorras & Vespignani, 2001): For a scale free
social network hC ≈ 100% when vaccinating uniformly but
hC < 1% if vaccinating optimally
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Disease-induced Herd immunity

For details, see Britton et al, 2020, Science

Relevant Herd immunity question for Covid-19 (first time
ever!): How many must have been infected during a mitigated
epidemic outbreak in order to avoid a second epidemic outbreak
once all preventive measures are lifted (c = 0)?

Scientific scenario: Consider the Covid-19 outbreak in a country
with mitigation/lockdown and gradual exit towards normality

Scientific question: When will herd immunity be reached (for no
restrictions, c = 0) assuming R0 is known (e.g. R0 = 2.5)?

Answer: When fraction infected equals hC = 1− 1/R0 = 60%?
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Main result: Disease-induced herd immunity is lower!

This answer is correct if immunization is uniformly distributed in
community (as in vaccination)

But this is NOT correct when immunity is achieved from disease
spreading

Correct answer: Disease-induced herd immunity hD will occur at
a substantially lower level, perhaps around 40-45% if R0 = 2.5

Gabriela Gomes et al (2020) indpendently show similar result for a
different model: hD could be as low as 10-20%
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Heuristic explanation

In vaccination programs vaccinees are selected ”randomly”, so
immunity is distributed uniformly in the community

But during a disease outbreak immunization is not distributed
uniformly – highly active/social individuals are more likely to be
infected

=⇒ Immunity is more ”efficiently” distributed (still not optimal –
cf ”optimal vaccination policies”)

Earlier knowledge: Well-known that after an outbreak immunity
is more efficiently distributed (Diets & Schensle, Anderson & May,
Bansal et al, Ferrari et al, ...)

But: No one seem to have realized that this is now ”useful” when
mitigation/suppression reduces spreading to lower levels ...
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Model for illustration

Deterministic multitype model

6 age groups and mixing according to Wallinga et al 2006

Individuals of each age group are divided into 3 ”activity
levels”

50% Normal activity, 25% have Low (half) activity and 25 %
have High (double) activity

Mimics network characterstics a bit

R0 = dominant eigenvalue of next generation matrix

Final size equations exist
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Prevention

Prevention/restrictions: Suppose all mixing rates are reduced by
a factor c = 1− α, so RE = αR0

So if α < 1/R0 epidemic stops

Situation 1: Restrictions from start to end (→ final size equations)

Our question: What is the smallest α that gives herd immunity
after the outbreak is over? What is the overall disease-induced
immunity level hD for this α∗?

By this is meant: Suppose the outbreak with prevention α takes
place. Then preventions are lifted. Is the population at risk for a
second wave?
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Herd immunity levels

Tabell: Disease-induced herd immunity level hD and classical herd
immunity level hC = 1− 1/R0 for different population structures, for
R0 = 2.0, 2.5 and 3.0. Numbers correspond to percentages.

R0 = 2.0 R0 = 2.5 R0 = 3.0
Population structure hD hC hD hC hD hC

Homogeneous 50.0 50.0 60.0 60.0 66.7 66.7
Age structure 46.0 50.0 55.8 60.0 62.5 66.7

Activity structure 37.7 50.0 46.3 60.0 52.5 66.7
Age & Activity structure 34.6 50.0 43.0 60.0 49.1 66.7
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Prevention: Situation 2 – restrictions and exit during
outbreak

=⇒ We need to model time evolution of epidemic

Model: Deterministic SEIR

February 15: start

March 15: Restrictions put in place (4 different α)

June 30: All restrictions lifted

Tom Britton L8, Estimation uncertainty + Herd immunity



Uncertainty of earlier estimates: final size
Other types of data/models

Prevention, Effective reproduction numbers and Herd immunity

Incidence over time
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Figur: Incidence over time for the age+activity structure with R0 = 2.5.
Four different preventive levels inserted March 15 (day 30) and lifted
June 30 (day 135). The blue, red, yellow and purple curves corresponds
to no, light, moderate and severe preventive measures, respectively.
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Cumulative fraction infected over time
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Figur: Plot of the cumulative fraction infected over time for age+activity
structure and R0 = 2.5. Four different preventive levels inserted March 15
and lifted June 30. The blue, red, yellow and purple curves corresponds
to no, light, moderate and severe preventive measures, respectively.
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Cumulative: Gradual exit during summer
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Figur: Same as above but: Preventive measures inserted March 15 and
lifted gradually between June 1 and August 30. The blue, red, yellow and
purple curves corresponds to no, light, moderate and severe preventive
measures, respectively.
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Disease-induced Herd immunity: conclusions

Main result: Disease-induced herd immunity hD is substantially
lower than classical hC = 1− 1/R0

How much lower? Needs to be investigated (Gabriela Gomes
studied a model with continuously variable susceptibility)

Additional heterogeneities: Household, schools, work places,
spatial, ... Most (all?) of these will make difference bigger!

”Non-proportional” restriction/prevention: isolation of elderly,
school closing, ... Some will make difference bigger, others unclear

If socially active change behavior more =⇒ difference becomes
smaller
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Over-all summary

General advice: Complement more advanced statistical analysis
with simple model analysis. If similar conclusions: reassuring. If
very different: mistake or understanding needed

Some important messages

Prior (partial) immunty makes big difference for estimates

Inference for emerging epidemics is hard

Heterogeneities usually makes R0 larger but not necessarily
bigger outbreak!

Important but not treated:
– Changing behaviour over time
– Selection bias
– Asymptomatics and other under-reporting
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