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Statistical inference/estimation in general

Stochastic modelling can tell us (within a model and given some
parameter values): what are the likely outcomes?

Example: Given R0, about how many will get infected?

Statistical inference goes in the ”opposite direction” (within a
certain model): given an observed outcome, which parameter ”fits”
to the observation best?

Example: Suppose 20% were infected during an outbreak. What is
R0?
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Estimation from outbreak sizes

Suppose an epidemic outbreak is observed and we want to
estimate parameters, e.g. transmission probability p, or R0

What is observed?

Final size: how many were infected and how many were not during
outbreak

Important with additional knowledge of how many/what fraction
were susceptible prior to outbreak!

If data comes from many small controlled experiments inference is
quite easy:
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Estimation from many small outbreaks

Example: suppose we have many (n) units of size 2 in which one
was initially infected

If m out of the n households resulted in the second individual
getting infected then we estimate the transmission probability p by
the observed fraction of units in which infection took place:

p̂ =
m

n

Note: Parameter estimates are equipped with ”hat” (so p̂ is an
estimate of p)
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Estimation from many small outbreaks

If units are isolated (independent) we have a binomial experiment
and can easily give confidence bounds:

p̂ ± λα/2

√
p̂(1− p̂)/n

where λα/2 is normal distribution quantile:

95% confidence interval (α = 0.05) gives λα/2 = λ0.025 = 1.96

Exercise 13: Suppose 27 out of 100 units had the second
individual infected. Give a 95% confidence interval for transmission
probability p

More about small group outbreaks later
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Estimation from one large outbreak

Assume a homogeneously mixing community and no preventive
measures

From before: in case of a large outbreak and assuming everyone
was initially susceptible, the final fraction infected will be close to
the positive solution of

1− τ = e−R0τ

Inference other way around: we observe that a fraction τ̃ got
infected. What is R0?

Rewrite the equation: R0 = − ln(1− τ)/τ

Our estimate of R0 is given by the corresponding observed value:

R̂0 = − ln(1− τ̃)/τ̃

Exercise 14: Estimate R0 if 20% were infected during an outbreak
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Estimation from one large outbreak

This estimate assumed everyone was initially susceptible!

If in fact a fraction r was initially immune we know from before
that τ , the fraction among the initially susceptible who got
infected approximately equals positive solution of

1− τ = e−R0(1−r)τ

This leads to the estimate:

R̂0 = − ln(1− τ̃)/(1− r)τ̃

Note: The over all fraction infected equals τ̃(1− r)

Exercise 15: Suppose as before that 20% were infected during an
outbreak, but that only 50% were initially susceptible and the rest
were immune. Compute first τ̃ and then estimate R0
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Estimation of vc from one large outbreak

It was shown earlier that: vc = 1− 1/R0

By observing an outbreak we can hence also estimate vc (for the
same or similar community but not for any community!):

v̂c = 1− 1

R̂0

= 1− τ̃

− ln(1− τ̃)

If a fraction r was immune in the observed outbreak and τ̃ of the
initially susceptibles were infected this changes to

v̂c = 1− 1

R̂0

= 1− (1− r)τ̃

− ln(1− τ̃)
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Estimation of vc from one large outbreak

If vaccine not perfect but efficacy E known vc estimated by

v̂c =
1

E

(
1− 1

R̂0

)
=

1

E

(
1− (1− r)τ̃

− ln(1− τ̃)

)

Exercise 16. Suppose as previous exercise that 20% of the
community got infected but the initial fraction susceptible was
50% (so 40% of these susceptibles were infected). Estimate the
critical vaccination coverage for a vaccine having 90% efficacy.
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Initial growth rate ρ

For new (so-called emerging diseases) and/or lethal diseases it is of
course not desirable to wait until the outbreak is over in order to
estimate R0 and other parameters

From before we know I (t) ≈ eρt

So if we observe I (t1), . . . , I (tk) it follows that

I (tk)

I (t1)
≈ eρ(tk−t1)

It is also true that the cumulative number infected (n−S(t)) grows
exponentially at the same exponential rate ρ, so it follows that

n − S(tk)

n − S(t1)
≈ eρ(tk−t1)
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Initial growth rate ρ

This can be used to estimate ρ from data:

ln((n − S(tk))/(n − S(t1))) ≈ ρ(tk − t1)

=⇒ ρ̂ =
ln((n − S(tk))/(n − S(t1)))

tk − t1

(A more proper estimate would be based on logistic regression.
Still, this estimator will be biased for various reasons, e.g. time
discretization)

Exercise 17: Suppose the incidence (≈ I (t)) was observed the first
three weeks and the numbers were: 7, 29 and 121 respectively.
Estimate ρ.
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Estimation of R0 from initial phase

Suppose we could estimate the growth rate ρ from an emerging
outbreak

How about estimating R0?

Unfortunately the connection between ρ and R0 is weak (see next
slide)

Information about latency period L and infectious period I also
needed to estimate R0

Estimation of L and I hard for two reasons:
1) These periods are rarely observed
2) Even if they were: during the early stages of outbreak short
periods are over-represented
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Illustration that R0 and ρ not very related

Illustration. Consider a disease with contact intensity β = 2
contacts per week and mean infectious ν = 1 week. Then
R0 = βν = 2 and some exponential growth rate ρ.

Consider now another disease having β = 1 and ν = 2 (less
infectious but longer infectious period). Clearly this new disease
also has the same R0 = βν = 2. How about ρ?

The latter is twice as slow =⇒ new ρ is half of the former:
ρnew = ρold/2. So same R0 but different ρ

However, branching process theory connect ρ and R0 be means of
the generation time distribution!
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Generation time distribution

Most important property, probably R0: quantifies how many new
infections (on average) infected people cause in the beginning of
an epidemic outbreak

Second most important, if we are interested in time evolution (or if
we want to estimate R0 from reported incidence over time!): the
generation time G

G is the time between getting infected and infecting a new person

=⇒ individuals who infect more than one individual generate
several generation times (and individuals who infects noone
generate no generation times)

Generation times are not all the same, so G is a random variable

g(s) denotes the generation time distribution for G . E.g. g(s) is
Normal or gamma distribution with a given mean and st.d.
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Initial growth rate

The growth rate parameter ρ is called the Malthusian parameter
and depends both on R0 and the generation time distribution g(s).
Branching process theory: ρ is the solution to the Euler-Lotka
equation

R0

∫ ∞
0

e−ρsg(s)ds = 1

So if we know the generation time distribution g(·) we can
estimate R0 from observing the exponential growth ρ!

(Problems with estimating g(s) and its consequences a few slides
ahead)

Exercise 17.b: Show that if g(s) ∼ Γ(α, β) then Euler-Lotka gives
that

R0 =

(
ρ

β
+ 1

)α
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Covid-19: R0 estimates, first wave (original strain)

Covid-19: A common estimate is that g(s) ∼ Γ with mean 6.5 days
and s.d. 4 days. We assume this to apply to all countries!

We estimate ”country” specific ρ from reported cumulative case
fatalities: starting first day with > 50 cumulative case fatalities
(c0) and two weeks later c14 case fatalities: ρ̂ = ln(C14/C0))/14
(Data: Worldometer)

Common dates: first half of March to end of March (before effects
of lockdown)

When 50 have died, between 5 000 and 20 000 had been infected
so not VERY early in epidemic which is usually atypical and faster
(except Norway and Denmark: start instead when > 10 have died)
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Covid-19: R0 estimates, cont’d

Country C0 C14 ρ̂ R̂0 ĥC

”Norway” 12 89 0.14 2.2 54%
”Denmark” 13 161 0.18 2.6 62%
”Sweden” 62 687 0.17 2.5 60%

”Germany” 68 1275 0.21 3.0 67%
”Belgium” 67 1283 0.21 3.0 67%

”UK” 65 2043 0.25 3.5 71%
”Spain” 55 3647 0.30 4.3 77%

(hC = critical vaccination coverage for herd immunity, more later)

=⇒ There is not one correct R0 for covid-19!!

Big differences also within countries!
(Sweden starting when > 10 had died gave R̂0 =3.1)
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Problems with estimating g(s) and its consequences

Details: see Britton & Scalia Tomba (2019)

How estimate generation time distribution g(s)?

Answer: Contact tracing: For some identified cases, it is traced by
whom and when they were infected

This gives some observed generation times g1, . . . , gk . This is often
only way, but problematic:

Generation time defined forward in time but contact tracing
backward in time. Problematic?
For some cases a unique infector and infection time is
identified, but for some there are several possibilities (and
some have none)
onset of symptoms more common to observe than infection
times
Identified cases are often severe cases. Do mild/asymptomatic
cases have same generation times?
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Toy example

Suppose that R0 = 2, and each infected infects one individual after
1 week and one individual after 2 weeks (g(1) = g(2) = 0.5)

What is E (G )?

1.5 weeks, and st.d .(G )? 0.5 weeks (below plot of
# infections each week)
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Toy example

Suppose that R0 = 2, and each infected infects one individual after
1 week and one individual after 2 weeks (g(1) = g(2) = 0.5)

What is E (G )? 1.5 weeks, and st.d .(G )? 0.5 weeks (below plot of
# infections each week)
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Looking backwards: contact tracing

Fibonacci numbers and the Golden ratio ...

=⇒ The mean generation time when contact tracing will be < 1.5

So if you estimate E (G ) (or all of G ) from contact tracing you will
under-estimate E (G )
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Generation times vs Serial intervals

Serial intervals instead of generation times

(We now forgetproblem of looking backwards)

Infection times are hardly ever observed, but onset of symptoms are

G = time between infection times (unobserved)

S = time between onset of symptoms (observed)
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Generation times vs Serial intervals, cont’d

Generaton times vs Serial intervals
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Generation times vs Serial intervals, cont’d

=⇒ S = G + (D2 −D1) (D1 and D2 = incubation periods of
infector and infectee)

So, if incubation times are independent and independent of G, then

E (S) = E (G ), and V (S) ≥ V (G )

(The relation holds true for all (?) epidemic models)

So, if we estimate G ∼ {g(s)} from observations on Serial
intervals we will over-predict variance of G
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Multiple exposures

Another problem when contact tracing is that sometimes there are
several potential infectors (see illustration on next slide)
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Multiple exposures

If observations with more than one infected are neglected,
remaining intervals are biased from below.

This will also lead to under-estimation of E (G )

Conclusions: looking backwards and neglecting multiple exposures
lead to under-estimation of E (G ) and observing serial intervals
rather than generation intervals lead to over-estimation of V (G )

We now see how this can affect estimates of R0
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Effects of bias in estimates of g(s)

I (t) = incidence day t = # infected day t (now discrete time)

How many that get infected day t depends on: R0 =, basic
reproduction number and {g(s)} = Generation time

– how many that got infected s days ago? Answer: = I (t − s)

Model definition (common model)

I (t) ∼ Pois

(
R0

t∑
s=1

g(s)I (t − s)

)
, t = 1, 2 . . . , (∗)

”Pois( )” means Poisson distribution, and the mean equals the
parameter, R0

∑t
s=1 g(s)I (t − s)

Exercise 17.c: Show that this is more or less identical to the
Euler-Lotka equation (Hint: replace the Poisson random variable by
its mean)
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Effects of bias in estimates of g(s) (cont’d)

I (t) ∼ Pois

(
R0

t∑
s=1

g(s)I (t − s)

)
, t = 1, 2 . . . , (∗)

If {g(s)} known (or estimated), Eq. (∗) can be used for:

1: Estimating R0 (from observed incidence I (1), . . . , I (t)), or
2: Predicting outbreak incidence I (1), . . . , I (t) (if R0 known
before-hand)

Both 1 and 2 require knowledge about {g(s)}

Main question: How to estimate generation time distribution
{g(s)} and what happens to estimates of R0 (or predictions
I (1), I (2), . . . ) if {g(s)} is estimated incorrectly?
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Effects of bias in estimates of g(s) (cont’d)

Recall, I (t) ∼ Pois
(
R0
∑t

s=1 g(s)I (t − s)
)

where I (0), . . . , I (t) grows, typically exponentially

How are estimates of R0 (or predictions I (1), . . . , I (t)) affected by
the generation time distribution {g(s)}?

It is easy to show that the mean parameter

R0
∑t

s=0 g(s)I (t − s) increases if:

– g(s) is replaced by ĝ(s) which has smaller mean

– g(s) is replaced by ĝ(s) which has same mean and larger variance

So, if our estimate of {g(s)} has mean biased from below we will
under-estimate R0

And if we estimate {g(s)} by something with the correct mean but
larger variance we will under-estimate R0
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Effects of bias in estimates of g(s) (cont’d)

Recall, I (t) ∼ Pois
(
R0
∑t

s=1 g(s)I (t − s)
)

where I (0), . . . , I (t) grows, typically exponentially

How are estimates of R0 (or predictions I (1), . . . , I (t)) affected by
the generation time distribution {g(s)}?
It is easy to show that the mean parameter

R0
∑t

s=0 g(s)I (t − s) increases if:

– g(s) is replaced by ĝ(s) which has smaller mean

– g(s) is replaced by ĝ(s) which has same mean and larger variance

So, if our estimate of {g(s)} has mean biased from below we will
under-estimate R0

And if we estimate {g(s)} by something with the correct mean but
larger variance we will under-estimate R0
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Effects of bias in estimates of g(s) (cont’d)

Recall, I (t) ∼ Pois
(
R0
∑t

s=1 g(s)I (t − s)
)

where I (0), . . . , I (t) grows, typically exponentially

How are estimates of R0 (or predictions I (1), . . . , I (t)) affected by
the generation time distribution {g(s)}?
It is easy to show that the mean parameter

R0
∑t

s=0 g(s)I (t − s) increases if:

– g(s) is replaced by ĝ(s) which has smaller mean

– g(s) is replaced by ĝ(s) which has same mean and larger variance

So, if our estimate of {g(s)} has mean biased from below we will
under-estimate R0

And if we estimate {g(s)} by something with the correct mean but
larger variance we will under-estimate R0
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Effects of bias in estimates of g(s) (cont’d)

A few slides back we showed three problems when estimating g(s)
from contact tracing:

1) Looking backwards rather than forward in time: g(s) was biased
from below (E (G ) under-estimated)
=⇒ R0 will be under-estimated

2) What if multiple infector candidates: g(s) was biased from
below (E (G ) under-estimated)
=⇒ R0 will be under-estimated

3) Observing Serial intervals instead of Generation times g(s) has
too large standard deviation (V (G ) over-estimated)
=⇒ R0 will be under-estimated

Conclusion: Unless taken account for, all three problems make R0

under-estimated. See Britton & Scalia-Tomba (Interface, 2019)
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Effects of bias in estimates of g(s) (cont’d)

A few slides back we showed three problems when estimating g(s)
from contact tracing:

1) Looking backwards rather than forward in time: g(s) was biased
from below (E (G ) under-estimated)
=⇒ R0 will be under-estimated

2) What if multiple infector candidates: g(s) was biased from
below (E (G ) under-estimated)
=⇒ R0 will be under-estimated

3) Observing Serial intervals instead of Generation times g(s) has
too large standard deviation (V (G ) over-estimated)
=⇒ R0 will be under-estimated

Conclusion: Unless taken account for, all three problems make R0

under-estimated. See Britton & Scalia-Tomba (Interface, 2019)
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Biases for Ebola and COVID-19

For Ebola 75% of contacts had multiple potential infectors. The
combinded under-estimation of R0 was ≈ 23%

For Corona (Covid19) there was no information of multiple
infectors (but I am sure there were!), so only considering bias from
backward tracing we believe R0 is under-estimated by ≈ 12%.
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Endemic diseases

Consider an endemic disease and that s̃ observed

s̃ = average fraction of susceptibles = average relative time spent
in susceptible state = average age at infection/average life-length

From before we know s̃ ≈ 1/R0

=⇒ R̂0 = 1
s̃

By only knowing the typical infection-age and life-length gives
estimate of R0!
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Endemic diseases: estimation of vc

Same data: s̃ = average age of infection divided by average
life-length (= average fraction susceptible in community)

We know that vc = 1− 1/R0 (or vc = E−1(1− 1/R0) if vaccine
has known efficacy E )

=⇒ v̂c = 1
E (1− s̃)

Exercise 18 Suppose (as with measles) average age of infection is
5 years and average life-length is 75 years. Estimate R0 and vc
assuming a vaccine having efficacy E = 0.95. (How about if
E = 0.90?)
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