

L1, Introduction to stochastic epidemic models

Tom Britton

July, 2022

Mathematical models

Aim of mathematical modelling: To describe some real world phenomenon mathematically in order to learn more about it

Main idea: Mathematical models describes some feature in a *simplified way*, keeping only the essential features

Trade-off between simple and complicated models: Simple models are easier to understand but don't mimick reality very well. Complicated models are harder to analyse and parameter values may be hard to estimate

Stochastic models:

The discrepancy between model and reality may be contained in "random part" in model

Stochastic models enable uncertainty estimates (i.e. standard errors) when estimating parameters

Background: Infectious disease models

We want to model the spread of a transmittable disease in a community of individuals

At a given time-point an individual may be *Susceptible*, infected but not yet infectious (*Latent* or *Exposed*), *Infectious*, or recovered and immune (*Removed*)

Different class of epidemic models: SIR, SEIR, SIS, SIRS, ...

Main focus: SIR (childhood diseases, STDs, influenza, covid-19...)

Short term outbreak vs endemic situation

Simplification for short term: fixed population, no waning immunity

Notation

Some notation to be used

- n = # individuals (n(t) if varying over time)
- S(t) = # "susceptibles" (susceptible individuals) at time t
- I(t) = # "infectives" (infectious individuals) at time t
- R(t) = # "removeds" (removed individuals) at time t
- T = the time when the epidemic stops
- Z (= R(T) − 1) = # infected during the epidemic (excluding index case). Possible values: 0,1,...,n − 1.

We start with the simplest situation: all individuals are "identical" (with respect to disease spreading) and all pairs of individuals have contact at equal rates.

Homogeneous community that mixes uniformly

The Reed-Frost stochastic epidemic model

Short term outbreak (fixed community), homogeneous community, uniform mixing, SIR, discrete time: "generations"

An epidemic model (Reed-Frost, 1928)

- Assume 1 index case (externally infected) the rest *n* 1 susceptible
- Anyone who gets infected infects other susceptibles independently with prob *p* and then recovers
- A recovered individual plays no further role in epidemic

The index case infects a random number (Bin(n-1, p)) of individuals, they in turn infect an additional random number, and so on. Once no new individuals are infected the epidemic stops

Think in "generations"

Exercise 1

Suppose n = 3 (one index case and 2 susceptibles) and p = 0.2Possible values for Z: 0,1,2.

P(Z = 0)? For this to happen the index can't infect anyone

P(Z = 1)? For this to happen the index must infect EXACTLY one AND this individual cannot infect anyone further

P(Z = 2)? Either the index infects exactly one AND this individual infects the last one, OR the index infects both

Exercise 1

Suppose n = 3 (one index case and 2 susceptibles) and p = 0.2Possible values for Z: 0,1,2.

P(Z = 0)? For this to happen the index can't infect anyone

P(Z = 1)? For this to happen the index must infect EXACTLY one AND this individual cannot infect anyone further

P(Z = 2)? Either the index infects exactly one AND this individual infects the last one, OR the index infects both

$$P(Z = 0) = (1 - p)^2 = 0.64$$

$$P(Z = 1) = \binom{2}{1}p(1 - p) \times (1 - p) = 0.256$$

$$P(Z = 2) = \binom{2}{1}p(1 - p) \times p + p^2 = 0.104$$

or ... $P(Z = 2) = 1 - P(Z = 0) - P(Z = 1)$

What about larger communities?

General n, think in "generations"

Epidemic chains: $i \rightarrow 3 \rightarrow 2 \rightarrow 0$: the index infects 3, they infect 2 and these infect no further and the epidemic stops

$$P(Z = 0) = P(i \to 0) = (1 - p)^{n-1}$$

$$P(Z = 1) = P(i \to 1 \to 0) = {\binom{n-1}{1}}p^1(1 - p)^{n-2} \times (1 - p)^{n-2}$$

$$P(Z = 2) = P(i \to 2 \to 0) + P(i \to 1 \to 1 \to 0) = \dots$$

$$P(Z = 3) = P(i \to 3 \to 0) + P(i \to 2 \to 1 \to 0) + P(i \to 1 \to 2 \to 0) + P(i \to 1 \to 1 \to 0) = \dots$$

 $P_n(Z = z)$ gets very complicated when $n \ge 10$ and $z \ge 5$.

Underlying reason for the complication: individuals' outcome are **dependent**! (As opposed to other diseases)

What to do then?

Approximations when *n* large

When n large then often p (=per individual transmission probability) is small.

Expected number of infectious contacts: $(n-1)p \approx np =: R_0$

 $R_0 = basic reproduction number$

Next page: Histogram of final outbreak sizes from 10 000 simulations in a community of n = 1000 individuals (both $R_0 < 1$ and $R_0 > 1$)

Histogram of final size: $R_0 = 0.8$

Histogram of final size: $R_0 = 1.5$

An approximation for the final size

 $R_0 = 1$ is "threshold value"

We now derive an equation for τ heuristically (recall $p = R_0/n$) Assume *n* large and let $\tau = Z/n =$ final *fraction* infected

$$1 - \tau = \text{proportion not infected}$$
(1)

$$\approx \text{ probability not get infected}$$
(2)

$$= \text{prob to escape inf from all infected}$$
(3)

$$= (1 - p)^{Z}$$
(4)

$$= \left(1 - \frac{R_0}{n}\right)^{n\tau}$$
(5)

$$\approx e^{-R_0\tau}$$
(using that $(1 - x/n)^n \approx e^{-x}$)(6)

Approximation for final size

au should hence (approximately) solve

$$1-\tau = e^{-R_0\tau}$$

There are two solutions: $\tau = 0$ and (if $R_0 > 1$): $\tau = \tau^* > 0$.

Exercise 2 Compute τ^* numerically when $R_0 = 1.5$, 3 and 6.

On next page is a plot of final size as function of R_0

Plot of final outbreak size as function of R_0

Approximation, cont'd

Seen from simulations: strong dichotomy: minor outbreak – major outbreak

P(major outbreak) = 1 - P(minor outbreak) can be determined using *branching process* theory

For Reed-Frost model: $P(major outbreak) = \tau^* !!!$

Normal distribution for major outbreak:

$$\sqrt{n}\left(rac{Z}{n}- au^*
ight)pprox \textit{Normal}(0,\sigma^2)$$

 σ^2 depends on model parameters

What about epidemic over time?

A related stochastic epidemic model (the "General stochastic epidemic") can be defined in continuous time:

- During the infectious period an individual has "infectious contacts" randomly in time at the average rate β , each time individual is chosen randomly
- A susceptible who receives an infectious contact becomes infectious and remains so for a exponentially distributed time with mean ν (other contacts have no effect)

 $R_0 =$ expected number of infectious contacts $= \beta \nu$

What about epidemic over time?

When *n* is large the process (S(t)/n, I(t)/n) is close to deterministic limit (s(t), i(t)) which solves differential system

$$s'(t) = -\beta s(t)i(t) \tag{7}$$

$$i'(t) = \beta s(t)i(t) - \frac{1}{\nu}i(t)$$
(8)

$$r'(t) = \frac{1}{\nu}i(t) \tag{9}$$

Next page: plot of I(t)/n for one (typical) simulated epidemic and deterministic limit i(t), for a few different n

Plots of simulated stochastic epidemic and deterministic curve

Tom Britton L1, Introduction to stochastic epidemic models

Summary

Exact distribution of Z (final size) is complicated

When n large two things may happen:

- either very few get infected $(Z/n \approx 0)$, or
- a close to deterministic fraction $Z/n \approx au^*$ get infected

 $R_0 = np = \beta \nu =$ expected number of infections by one individual during his/her infectious period

Second scenario only possible if $R_0 > 1$

 $P(major outbreak) = \tau^*$ for Reed-Frost model

Extensions

Random infectious force (e.g. length of infectious period): affects P(outbreak) but hardly final size τ

Latent period: big effect on timing of epidemic peak and duration of epidemic but no effect on final size (unless control measures are initiated)

More than one index case: big effect on P(outbreak) but negligible effect on final size τ in large outbreak

Exercise 3. If infectious period deterministic (=R-F) then $P(\text{major outbreak}) = \tau^*$. If infectious period is exponentially distributed then $P(\text{ major outbreak}) = 1 - 1/R_0$. Compute the latter probability for $R_0 = 1.5$, 3 and 6 and compare with Reed-Frost model.

Extensions

Initial fraction of immunes. If there is a fraction r of initially immunes the same methodology can be used. The difference is that R_0 is replaced by $R_0(1 - r)$ since initially only the fraction (1 - r) is susceptible. The final fraction infected *among the initally susceptible* then solves

$$1-\tau = e^{-R_0(1-r)\tau}$$

Major outbreak possible only if $R_0(1-r) > 1$

Exercise 4. Compute τ^* if initially only 50% were susceptible (and 50% were immune), for $R_0 = 1.5$, 3 and 6.

Exercise 5. What are the *overall* fractions infected during outbreak in later case?