

L2, Important properties of epidemics and endemic situations

Tom Britton

July, 2022

The basic reproduction number

Recall: R_0 = expected number individuals a typical infected person infects when everyone is susceptible

 R_0 depends both on disease (infectious agent) and on community!!

 $R_0 < 1$ or $R_0 > 1$ makes a very big difference!

Next page: R_0 for some diseases (and communities and time periods), Anderson and May, 1991

R_0 for some diseases, communities and time periods (Anderson & May, 1991)

70 Microparasites

Table 4.1 Estimated values of the basic reproductive rate, R_0 , for various infections (data from Anderson (1982b), Anderson and May (1982d; 1985c, 1989). Anderson et al. (1988). Nokes and Anderson (1988).

Infection	Geographical location	Time period	Ro
Measles	Cirencester, England	1947-50	13-14
	England and Wales	1950-68	16-18
	Kansas, USA	1918-21	5-6
	Ontario, Canada	1912-13	11-12
	Willesden, England	1912-13	11-12
	Ghana	1960-8	14-15
	Eastern Nigeria	1960-8	16-17
Pertussis	England and Wales	1944-78	16-18
	Maryland, USA	1943	16-17
	Ontario, Canada	1912-13	10-1
Chicken pox	Maryland, USA	1913-17	7-8
	New Jersey, USA	1912-21	7-8
	Baltimore, USA	1943	10-1
	England and Wales	1944-68	10-13
Diphtheria	New York, USA	1918-19	4-5
	Maryland, USA	1908-17	4-5
Scarlet fever	Maryland, USA	1908-17	7-8
	New York, USA	1918-19	5-6
	Pennsylvania, USA	1910-16	6-7
Mumps	Baltimore, USA	1943	7-8
	England and Wales	1960-80	11-1
	Netherlands	1970-80	11-1
Rubella	England and Wales	1960-70	6-7
	West Germany	1970-7	6-7
	Czechoslovakia	1970-7	8-9
	Poland	1970-7	11-1
	Gambia	1976	15-1
Poliomyelitis	USA	1955	5-6
	Netherlands	1960	6-7
Human Immunodeficiency Virus (Type I)	England and Wales (male homosexuals)	1981-5	2-5
	Nairobi, Kenya	1981-5	11-1

(female prostitutes)

Exercise 6: Why is $R_0 > 1$ for all diseases above?

Initial growth rate ρ

Exponential growth rate due to "branching" behavior

$$I(t) \approx e^{\rho t}$$

 ρ depends more on specific model assumptions (contact rate, latency period, infectious period, ...)

 R_0 and ρ (unfortunately) not too related

 R_0 more important

 ρ easier to estimate *during* an outbreak

Exercise 7: Suppose the exponential growth rate ρ equals $\rho = 2.8$ (per week) and that there is one index case week 0. Compute the expected incidence ($\approx I(t)$) after 1, 2 and 3 weeks.

Time events and terminology

Infection-related events in time

Infection time: calendar time when someone gets infected (unobserved)

Report time: calendar time an infected is reported a case (observed for reported cases)

Onset of symptoms: calendar time when an infected notices symptoms (often observed for reported cases)

Incubation period: relative time between getting infected and having symptoms (unobserved)

Latent period: relative time between getting infected and becomen infectious (SEIR models) (unobserved)

Generation time and serial interval: relates times between infector and infectee – more next lecture

Modelling vaccination

Why is modelling of disease spread important?

Modelling vaccination

Why is modelling of disease spread important?

Increase understanding and prevention (e.g. vaccination)

Suppose that a fraction v are vaccinated prior to outbreak

Assume first a perfect vaccine (100% immunity)

 \implies a fraction v are initially immune (discussed in previous lecture)

 R_{ν} is the reproduction number after a fraction ν has been vaccinated

$$\implies R_v = R_0(1-v)$$

 $R_{
u} < 1$ equivalent to $R_0(1u) < 1$ equivalent to $u > 1-1/R_0$

Modelling vaccination cont'd

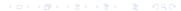
So, if $v > 1 - 1/R_0$ there will be no major outbreak: "Herd immunity"

 $v_c = 1 - 1/R_0$ is called the *critical vaccination coverage*

Exercise 8: Compute v_c for a disease having $R_0 = 1.5$, 3 and 6

On next page are estimates of v_c for some diseases

v_c for some diseases (Anderson & May, 1991)


Modelling vaccination cont'd

If vaccine is not perfect but relative risk of getting infected from an infectious contact for vaccinees is 1-E, $0 < E \le 1$ (E for "efficacy", later to be called VE_S), then

$$v_c = \frac{1}{E} \left(1 - \frac{1}{R_0} \right)$$

For a highly infectious disease (R_0 large) and a not so effective vaccine (E not too close to 1) v_c might exceed 1. This means vaccination alone cannot prevent an outbreak!

More on modelling and inference of vaccine effects later in course

Endemic diseases

When interest is on long-term situation (as opposed to short term outbreaks) the assumption of a fixed population must be relaxed

Consider an SIR disease in a population where individuals die and new are born. Assume:

- SIR disease (life long immunity)
- population at "equilibrium" (in terms of size and incidence)
- disease endemic (constantly present, no big fluctuations)
- \tilde{s} , \tilde{i} and \tilde{r} denote the average fractions susceptible, infectious and removed
- R_0 = average number of infections caused by one individual if everyone was susceptible!

Think of childhood diseases (e.g. chicken-pox)

Endemic diseases, expression for \tilde{s}

When disease is in endemic equilibrium each infected individual on average infects exactly 1 new person!

Given R_0 and \tilde{s} an infected individual infects on average $R_0\tilde{s}$ new individuals

Endemic diseases, expression for \tilde{s}

When disease is in endemic equilibrium each infected individual on average infects exactly 1 new person!

Given R_0 and \tilde{s} an infected individual infects on average $R_0\tilde{s}$ new individuals

$$\Longrightarrow R_0 \tilde{s} = 1 !!$$

$$\tilde{s} = \frac{1}{R_0}$$

$$\tilde{s}=$$
 average fraction susceptible $=\frac{\text{average age at infection}}{\text{average life-length}}$

Exercise 9 Suppose $R_0 = 1.5$, 3 and 6 respectively, compute \tilde{s} .

Endemic diseases, expression for \tilde{i}

If ι is the average length of infectious period and ℓ average life-length, then ι/ℓ is the average time of the life an individual is infectious

Since population/disease in equilibrium this is also the population fraction of infectives

$$\tilde{i} = \frac{\iota}{\ell}$$

Exercises

Exercise 10 Consider an endemic disease with one week infectious period and a population with 75 years expected life-length. Compute the average fraction infective \tilde{i} .

Exercise 11 Consider the disease in the previous exercise and consider the Icelandic population (n = 250~000). What is the average *number* of infectives? How about England (n = 60~000~000)?

Exercise 12 What do you think will happen with the disease in the two countries (remember that if the number of infectives drops to 0 the disease goes extinct - until it is "re-imported")?