L1, Introduction to stochastic epidemic models

Tom Britton

July, 2023

Mathematical models

Aim of mathematical modelling: To describe some real world phenomenon mathematically in order to learn more about it

Main idea: Mathematical models describes some feature in a simplified way, keeping only the essential features

Trade-off between simple and complicated models: Simple models are easier to understand but don't mimick reality very well. Complicated models are harder to analyse and parameter values may be hard to estimate

Stochastic models:

The discrepancy between model and reality may be contained in "random part" in model
Stochastic models enable uncertainty estimates (i.e. standard errors) when estimating parameters

Background: Infectious disease models

We want to model the spread of a transmittable disease in a community of individuals

At a given time-point an individual may be Susceptible, infected but not yet infectious (Latent or Exposed), Infectious, or recovered and immune (Removed)

Different class of epidemic models: SIR, SEIR, SIS, SIRS, ...
Main focus: SIR (childhood diseases, STDs, influenza, covid-19...)
Short term outbreak vs endemic situation
Simplification for short term: fixed population, no waning immunity

Notation

Some notation to be used

- $n=\#$ individuals $(n(t)$ if varying over time)
- $S(t)=\#$ "susceptibles" (susceptible individuals) at time t
- $I(t)=\#$ "infectives" (infectious individuals) at time t
- $R(t)=\#$ "removeds" (removed individuals) at time t
- $T=$ the time when the epidemic stops
- $Z(=R(T)-1)=\#$ infected during the epidemic (excluding index case). Possible values: $0,1, \ldots, n-1$.

We start with the simplest situation: all individuals are "identical" (with respect to disease spreading) and all pairs of individuals have contact at equal rates.

Homogeneous community that mixes uniformly

The Reed-Frost stochastic epidemic model

Short term outbreak (fixed community), homogeneous community, uniform mixing, SIR, discrete time: "generations"

An epidemic model (Reed-Frost, 1928)

- Assume 1 index case (externally infected) the rest $n-1$ susceptible
- Anyone who gets infected infects other susceptibles independently with prob p and then recovers
- A recovered individual plays no further role in epidemic

The index case infects a random number $(\operatorname{Bin}(n-1, p))$ of individuals, they in turn infect an additional random number, and so on. Once no new individuals are infected the epidemic stops

Think in "generations"

Exercise 1

Suppose $n=3$ (one index case and 2 susceptibles) and $p=0.2$
Possible values for $Z: 0,1,2$.
$P(Z=0)$? For this to happen the index can't infect anyone $P(Z=1)$? For this to happen the index must infect EXACTLY one AND this individual cannot infect anyone further
$P(Z=2)$? Either the index infects exactly one AND this individual infects the last one, OR the index infects both

Exercise 1

Suppose $n=3$ (one index case and 2 susceptibles) and $p=0.2$
Possible values for $Z: 0,1,2$.
$P(Z=0)$? For this to happen the index can't infect anyone
$P(Z=1)$? For this to happen the index must infect EXACTLY one AND this individual cannot infect anyone further
$P(Z=2)$? Either the index infects exactly one AND this individual infects the last one, OR the index infects both
$P(Z=0)=(1-p)^{2}=0.64$
$P(Z=1)=\binom{2}{1} p(1-p) \times(1-p)=0.256$
$P(Z=2)=\binom{2}{1} p(1-p) \times p+p^{2}=0.104$
or $\ldots P(Z=2)=1-P(Z=0)-P(Z=1)$

What about larger communities?

General n, think in "generations"
Epidemic chains: $i \rightarrow 3 \rightarrow 2 \rightarrow 0$: the index infects 3 , they infect 2 and these infect no further and the epidemic stops
$P(Z=0)=P(i \rightarrow 0)=(1-p)^{n-1}$
$P(Z=1)=P(i \rightarrow 1 \rightarrow 0)=\binom{n-1}{1} p^{1}(1-p)^{n-2} \times(1-p)^{n-2}$
$P(Z=2)=P(i \rightarrow 2 \rightarrow 0)+P(i \rightarrow 1 \rightarrow 1 \rightarrow 0)=\ldots$
$P(Z=3)=P(i \rightarrow 3 \rightarrow 0)+P(i \rightarrow 2 \rightarrow 1 \rightarrow 0)+P(i \rightarrow 1 \rightarrow$
$2 \rightarrow 0)+P(i \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 0)=\ldots$
$P_{n}(Z=z)$ gets very complicated when $n \geq 10$ and $z \geq 5$.
Underlying reason for the complication: individuals' outcome are dependent! (As opposed to other diseases)
What to do then?

Approximations when n large

When n large then often p (=per individual transmission probability) is small.

Expected number of infectious contacts: $(n-1) p \approx n p=: R_{0}$
$R_{0}=$ basic reproduction number
Next page: Histogram of final outbreak sizes from 10000 simulations in a community of $n=1000$ individuals (both $R_{0}<1$ and $R_{0}>1$)

Histogram of final size: $R_{0}=0.8$

Histogram of final size: $R_{0}=1.5$

An approximation for the final size

$R_{0}=1$ is "threshold value"
We now derive an equation for τ heuristically (recall $p=R_{0} / n$)
Assume n large and let $\tau=Z / n=$ final fraction infected

$$
\begin{align*}
1-\tau & =\text { proportion not infected } \tag{1}\\
& \approx \text { probability not get infected } \tag{2}\\
& =\text { prob to escape inf from all infected } \tag{3}\\
& =(1-p)^{Z} \tag{4}\\
& =\left(1-\frac{R_{0}}{n}\right)^{n \tau} \tag{5}\\
& \approx e^{-R_{0} \tau} \quad\left(\text { using that }(1-x / n)^{n} \approx e^{-x}\right) \tag{6}
\end{align*}
$$

Approximation for final size

τ should hence (approximately) solve

$$
1-\tau=e^{-R_{0} \tau}
$$

There are two solutions: $\tau=0$ and (if $R_{0}>1$): $\tau=\tau^{\star}>0$.
Exercise 2 Compute τ^{*} numerically when $R_{0}=1.5,3$ and 6 .
On next page is a plot of final size as function of R_{0}

Plot of final outbreak size as function of R_{0}

Approximation, cont'd

Seen from simulations: strong dichotomy: minor outbreak - major outbreak
$P($ major outbreak $)=1-P($ minor outbreak $)$ can be determined using branching process theory

For Reed-Frost model: $P($ major outbreak $)=\tau^{*}!!!$
Normal distribution for major outbreak:

$$
\sqrt{n}\left(\frac{Z}{n}-\tau^{*}\right) \approx \operatorname{Normal}\left(0, \sigma^{2}\right)
$$

σ^{2} depends on model parameters

What about epidemic over time?

A related stochastic epidemic model (the "Markovian stochastic epidemic") can be defined in continuous time:

- During the infectious period an individual has "infectious contacts" randomly in time at the average rate β, each time individual is chosen randomly
- A susceptible who receives an infectious contact becomes infectious and remains so for a exponentially distributed time with mean ν (other contacts have no effect)
$R_{0}=$ expected number of infectious contacts $=\beta \nu$

What about epidemic over time?

When n is large the process $(S(t) / n, I(t) / n)$ is close to deterministic limit $(s(t), i(t))$ which solves differential system

$$
\begin{align*}
s^{\prime}(t) & =-\beta s(t) i(t) \tag{7}\\
i^{\prime}(t) & =\beta s(t) i(t)-\frac{1}{\nu} i(t) \tag{8}\\
r^{\prime}(t) & =\frac{1}{\nu} i(t) \tag{9}
\end{align*}
$$

Next page: plot of $I(t) / n$ for one (typical) simulated epidemic and deterministic limit $i(t)$, for a few different n

Plots of simulated stochastic epidemic and deterministic curve

Summary

Exact distribution of Z (final size) is complicated
When n large two things may happen:

- either very few get infected $(Z / n \approx 0)$, or
- a close to deterministic fraction $Z / n \approx \tau^{*}$ get infected
$R_{0}=n p=\beta \nu=$ expected number of infections by one individual during his/her infectious period

Second scenario only possible if $R_{0}>1$
$P($ major outbreak $)=\tau^{*}$ for Reed-Frost model

Extensions

Random infectious force (e.g. length of infectious period): affects P (outbreak) but hardly final size τ

Latent period: big effect on timing of epidemic peak and duration of epidemic but no effect on final size (unless control measures are initiated)

More than one index case: big effect on P (outbreak) but negligible effect on final size τ in large outbreak

Exercise 3. If infectious period deterministic (=R-F) then P (major outbreak) $=\tau^{*}$. If infectious period is exponentially distributed then $P($ major outbreak $)=1-1 / R_{0}$. Compute the latter probability for $R_{0}=1.5,3$ and 6 and compare with Reed-Frost model.

Extensions

Initial fraction of immunes. If there is a fraction r of initially immunes the same methodology can be used. The difference is that R_{0} is replaced by $R_{0}(1-r)$ since initially only the fraction $(1-r)$ is susceptible. The final fraction infected among the initally susceptible then solves

$$
1-\tau=e^{-R_{0}(1-r) \tau}
$$

Major outbreak possible only if $R_{0}(1-r)>1$
Exercise 4. Compute τ^{*} if initially only 50% were susceptible (and 50% were immune), for $R_{0}=1.5,3$ and 6 .

Exercise 5. What are the overall fractions infected during outbreak in later case?

