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A model for an STI in a heterosexual community

The model (Britton, Nordvik and Liljeros, 2007)

D = # sex-partners (e.g. during a year)

p = P(transmission in a relationship)

Heterosexual community: Df , Dm, pf , pm
=⇒ bipartite graph
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It can be shown that

R0 =

√
pf

(
E (Df ) + V (Df )−E(Df )

E(Df )

)
×
√
pm
(
E (Dm) + V (Dm)−E(Dm)

E(Dm)

)

Similar to before:

A heavy-tailed degree distribution makes R0 large.

=⇒

promiscuous people (super-spreaders) play an important role
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Improved analysis

However:

P(transmission) depends on # sex-acts in relationship

Promiscuous individuals tend to have fewer sex-acts per
partner

This should reduce R0!

Tom Britton L7, Networks (cont’d) and inference from big outbreaks



Heterogeneous mixing: network epidemics
Uncertainty of earlier estimates: final size

Other types of data/models

Improved analysis

However:

P(transmission) depends on # sex-acts in relationship

Promiscuous individuals tend to have fewer sex-acts per
partner

This should reduce R0!

Tom Britton L7, Networks (cont’d) and inference from big outbreaks



Heterogeneous mixing: network epidemics
Uncertainty of earlier estimates: final size

Other types of data/models

Improved analysis

However:

P(transmission) depends on # sex-acts in relationship

Promiscuous individuals tend to have fewer sex-acts per
partner

This should reduce R0!

Tom Britton L7, Networks (cont’d) and inference from big outbreaks



Heterogeneous mixing: network epidemics
Uncertainty of earlier estimates: final size

Other types of data/models

Improved analysis: continued

Extended model: short and long term relationships

=⇒ two types of edges (with different trans prob)

New (complicated) expression for R0

The effect of different transmission probabilities depends on
calibration
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Calibration using survey on sexual habits

Data:

(Anonymous) study of sexual habits in Gotland

≈ 800 people (17-28 yrs)

Among other things: How many sex-partners during last year
and how many sex-acts in each relationship

P(transmission|p) for short/long relationship estimated as cohort
mean of:

P(transmission) = 1−(1−p)# sex-acts, p = per sex-act trans prob

R0 fitted to data and computed as a function of p: for one type of
relationship, and two separations of short vs long
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R0 as function of p (fitted to Gotland data)
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Conclusions:

1. Heavy-tailed degree distribution (promiscuity) increases R0

2. Acknowledging short and long-term relationships reduces this
effect

3. Endemicity not possible (for realistic p’s)

but maybe in
sub-communities ...
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Homogeneous vs Heterogeneous: qualitative results

We now illustrate a general conclusion with an example (from the
network model defined earlier)

Recall that R0 = p
(
E (D) + V (D)−E(D)

E(D)

)
Consider two networks with the same mean degree E (D) = 4

Network 1: D ≡ 4, so V (D) = 0 and E (D) + V (D)−E(D)
E(D) = 3

Network 2: P(D = 1) = P(D = 7) = 0.5, so V (D) = 9 and

E (D) + V (D)−E(D)
E(D) = 5.25

Infectious Disease 1: p = 0.25

Network 1: R0 = 3/4 = 0.75, Network 2: R0 = 5.25/4 = 1.31

=⇒ R0 larger for Network 2. Outbreak not possible in Network 1
but possible for Network 2
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Homogeneous vs Heterogeneous: qualitative results, cont’d

Infectious Disease 2: p=0.75

Network 1: R0 = 3 · 0.75 = 2.25,
Network 2: R0 = 5.25 · 0.75 = 3.93

=⇒ R0 larger for Network 2. Outbreak possible in both networks

Which outbreak will be bigger?

Outbreak in Network 1 since in
Network 2 individuals with degree 1 have a good chance of
escaping!

General conclusion. (Starting with a homogeneous situation):
– Heterogenizing always increases R0

– If original (=homogeneous case) R0 is small, then outbreak will
be bigger in heterogeneous case

– But if original R0 is large, then heterogenizing makes outbreak
smaller!!!
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Repetition: Inference from large outbreaks

From lecture 3: basic reproduction number R0 and critical
vaccination coverage vc were estimated by:

R̂0 = − ln(1− τ̃)/τ̃

v̂c = 1− τ̃

− ln(1− τ̃)

if outbreak takes place in a fully susceptible homogeneous
community resulting in a fraction τ̃ getting infected during the
outbreak

How about uncertainty?
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Uncertainty of previous estimate

Intuition: The larger community (and more getting infected) the
less uncertainty

It was mentioned that final number infected nτ̃ = Z in case of a
major outbreak is normally distributed with mean nτ∗ and standard
deviation

√
nσ2 where σ2 depends on model parameters and shown

two slides ahead

This result can be used to show that R̂0 and v̂c are normally
distributed with correct means (i.e. R0 and vc respectively) and
standard errors to be derived using δ-method
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The δ-method

Suppose random variable X has mean µ = E (X ) and variance
V (X ). Suppose further that we are mainly interested in the
distribution of f (X ) for some function f (·) rather than X itself

Then the δ-method gives the following approximation for the mean
and variance of f (X ), where f (x) is a ”nice function”:

Main idea Taylor expand X around its mean µ:
f (X ) ≈ f (µ) + (X − µ)f ′(µ). This implies:

E (f (X )) ≈ f (µ) V (f (X )) ≈ (f ′(µ))2 V (X ).

The approximation holds better the smaller variance X has (i.e.
smaller V (X )).

We will use it for e.g. f (X ) = − ln(1− X )/X and with X = τ̃ so
that f (τ̃) = R̂0
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The δ-method for V (R̂0)

Probabilists have proven that the asymptotic variance of τ̃ equals:

V (τ̃) ≈ 1

n

τ(1− τ)

(1− (1− τ)R0)2

(
1 + c2

v (1− τ)R2
0

)
where τ and R0 are the true parameter values related by
R0 = − ln(1− τ)/τ , and cv is the coefficient of variation of the
infectious period.

We now apply the δ-method on R̂0 = − ln(1− τ̃)/τ̃ , we hence
have the function f (x) = − ln(1− x)/x

After some algebra we get V (R̂0) ≈ 1
nτ(1−τ)

(
1 + c2

v (1− τ)R2
0

)
For a standard error estimate we take square roots and replace
unknown quantities with there estimates/observed values. The
result, also for v̂c , is given by:
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Uncertainty of previous estimate

s.e.(R̂0) =

√
1 + c2

v (1− τ̃)R̂2
0

τ̃(1− τ̃)
/n

s.e.(v̂c) =

√
1 + c2

v (1− τ̃)R̂2
0

R̂4
0 τ̃(1− τ̃)

/n

c2
v = V (I )/(E (I ))2= squared coefficient of variation of infectious

period of individuals (variance divided by the squared mean)

Larger n gives smaller standard deviation (as expected)!
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Uncertainty of previous estimate

c2
v cannot be estimated from final outbreak size – possibly known

from before

If not one has to insert a ”conservative” bound. E.g. c2
v = 1: very

rarely is standard deviation larger than mean

Exercise 25 Suppose that 239 out of 651 individuals in an isolated
village were infected during an outbreak. Estimate R0 and vc and
give 95% confidence interval for the estimates. Consider both the
case when all individuals have the same length of infectious period
(so no variation) and the case where its standard deviation is equal
to the mean.

Exercise 26 Do the same thing assuming 2390 out of 6510 got
infected.

Tom Britton L7, Networks (cont’d) and inference from big outbreaks



Heterogeneous mixing: network epidemics
Uncertainty of earlier estimates: final size

Other types of data/models

More detailed data

Suppose that disease incidence is observed during outbreak – not
only final number

Intuition: more detailed data should improve estimation

Answer: yes, in a couple of ways:

estimate of R0 and vc becomes more complicated, but
standard errors are (moderately) smaller

enables estimation of more parameters: exponential growth
rate ρ, latent and infectious period distributions, ...

possible to detect deviations from model: changing behavior,
non-homogeneity, ...

If also information about contacts are available: ”transmission
probability upon contact” can be estimated
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Multitype epidemics

Suppose final size of a multitype epidemic observed: τ̃1, . . . , τ̃k ,
τ̃i = observed proportion infected among i-types

Also assumed that community fractions π1, . . . , πk known.

We want to estimate R0 which is largest eigenvalue of next
generation matrix M

First estimate M. Impossible!! Data has dimension k and M has
dimension k2.

=⇒ M and R0 cannot be estimated consistently!
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Multitype epidemics, cont’d

Why? We can observe who was infected but not who ”caused” the
infections

Susceptibility easier to estimate than infectivity!

=⇒ only possible to obtain bounds on R0: lower bound assuming
all infections caused by least infected type – upper bound assuming
all infections caused by most infected type
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Inference in networks

Inference can be performed without an outbreak: estimation of
network properties: E (D), V (D), clustering c, ...

R0, potential outbreak size τ and vc can then be estimated as a
function of transmission probability p

Typical conclusion: Outbreaks are only possible for a disease having
higher transmission probability than p = 0.13

Or: An STD with p = 0.08 can only become endemic in
core-groups with average number of partners higher than
E (D) = 4.2 per year
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Inference in more complicated models

More complicated model =⇒ harder inference and more detailed
data need

Inference of spread of infections extra hard:

There are strong dependencies because infections are not
independent events (likelihood complicated)

Many things unobserved: infectious contacts, latent period,
infectious period, ...

Inference with more detailed data gives higher precision
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Illustration

Suppose an infected infects each susceptible independently with
prob p

Data = epidemic chain: 1→ 2→ 2→ 0

Initially 1 index and 9 susceptible

Likelihood: L(p) =(9
2

)
p2(1− p)7 ·

(7
2

) (
1− (1− p)2

)2 (
(1− p)2

)5 ·
(5

0

) (
(1− p)2

)5

Maximum-likelihood (ML) estimate p̂ maximizes L(·):
=⇒ quite easy for a computer

If we instead only know that 5 out of 10 were infected likelihood is
much more complicated (a sum over all possible chains)
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Alternative approach for complicated models

Basic idea: If likelihood complicated for available data we can
”pretend” as if we had more detailed data, estimate parameters
under this assumption, recompute some likely more detailed data,
re-estimate parameters, ...

This is underlying idea in both EM-algorithm and recently very
popular MCMC

MCMC: here parameters are treated as outcomes of random
variables (Bayesian framework) and even very complicated
likelihoods (posterior probabilities) can be evaluated numerically
with arbitrary high precision

MCMC: Very computer intensive. Treated specifically in other
Modules

Tom Britton L7, Networks (cont’d) and inference from big outbreaks


	Heterogeneous mixing: network epidemics
	Uncertainty of earlier estimates: final size
	Other types of data/models

