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Efficiencies of platform clinical trials:
A vision of the future

Benjamin R Saville1,2 and Scott M Berry1,3

Abstract
Background: A ‘‘platform trial’’ is a clinical trial with a single master protocol in which multiple treatments are evalu-
ated simultaneously. Adaptive platform designs offer flexible features such as dropping treatments for futility, declaring
one or more treatments superior, or adding new treatments to be tested during the course of a trial.
Methods: A simulation study explores the efficiencies of various platform trial designs relative to a traditional two-arm
strategy.
Results: Platform trials can find beneficial treatments with fewer patients, fewer patient failures, less time, and with
greater probability of success than a traditional two-arm strategy.
Conclusion: In an era of personalized medicine, platform trials provide the innovation needed to efficiently evaluate
modern treatments.
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Introduction

The introduction of the randomized clinical trial (RCT)
in 1946 laid the foundation for modern pharmaceutical
and medical device development.1 Subsequent develop-
ments in ethics, statistical methods, and further scien-
tific discovery led to a boon in clinical development,
with hundreds of therapies being accepted for general
use in the United States in the latter half of the 20th
century. However, since the mid-1990s, the annual
number of new drugs and biologics approved by the
Food and Drug Administration (FDA) has stagnated
despite a massive increase in spending on research and
development and in the number of compounds under
development.2–4 Recent estimates of clinical trial failure
rates are 36%, 68%, and 40% for phase I, phase II,
and phase III trials, respectively,3 and the estimated
average cost of a successful New Molecular Entity
(NME) in a big pharmaceutical company is a stagger-
ing US$5 billion.5

Traditionally, clinical trials have been designed by a
single sponsor to evaluate a single treatment in a homo-
geneous group of patients. For example, a trial may be
designed to determine whether ‘‘Drug A’’ is effective in
a group of ‘‘Type 1’’ patients (see Figure (1a)).
However, biomarker development and personalized
medicine are leading to a future in which the vast
majority of diseases are ‘‘rare’’ diseases. This will make

slow, large-scale clinical trials with a single hypothesis
within a single disease impractical to conduct, with the
speed of medical discovery outpacing the planned com-
pletion of such trials. One potential solution is the use
of ‘‘umbrella,’’ ‘‘basket,’’ or ‘‘indication finder’’ studies,
which evaluate the effect of a single drug (e.g. ‘‘Drug
A’’) in many different types of patients (‘‘Type 1,’’
‘‘Type 2,’’ etc.; see Figure 1(b)).6

Advances in personalized medicine are also leading
to increasingly complex treatment regimens. This is for-
cing researchers to address a different question. That is,
‘‘which treatment or combination of treatments is best
for each type of patient?’’ To efficiently address this
question, we advocate the use of multi-arm platform
trials.7–9 Platform trials have master protocols that
evaluate multiple treatments (e.g. ‘‘Drug A,’’ ‘‘Drug B’’)
across one or more types of patients (‘‘Type 1,’’ ‘‘Type
2,’’ etc.; see Figures 1(c) and 1(d)). Platform trials are
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especially useful for exploring combinations of treat-
ments and for direct comparisons between competing
treatments, both of which are often neglected in pre-
market settings. In addition, the sharing of resources in
platform trials possibly between multiple sponsors can
greatly reduce costs and increase statistical efficiency.

Platform trials can either consist of a fixed number
of treatments (e.g. a network trial with five treatments
from different sponsors) or an adaptive number of
treatments in which treatments can be dropped and/or
added during the course of the trial. The latter is what
we refer to as an open or perpetual platform trial, in
that the trial continues in a perpetual nature provided
that new experimental treatments are available to enter
the trial. Such platform trials can find effective treat-
ments much more quickly and with fewer resources
compared to traditional strategies investigating one
treatment per trial. In addition, they do not require a
new trial infrastructure for every treatment under
investigation.

Platform trials have been successfully implemented
or are currently being planned in a variety of diseases,
including breast cancer,10 lung cancer,11,12 brain cancer,
pandemic influenza and community-acquired pneumo-
nia,13 Alzheimer’s,14 Ebola, melanoma, glioblastoma,
and sclerederma. These include both phase II and phase
III settings. A recent report released by the President’s
Council of Advisors on Science and Technology
(PCAST) included a call for platform trials for the eva-
luation of antibiotic drugs.15 The most prominent plat-
form trial, I-SPY 2, is a phase II platform trial used to
screen drugs in neoadjuvant breast cancer.10 Several
drugs are compared to a control with adaptive rando-
mization by biomarker subtypes; drugs that lack suffi-
cient activity are replaced by new drugs, and drugs that
show promise are able to move more quickly through
the trial and ‘‘graduate’’ to smaller focused phase III
studies. Despite the clear benefits of platform trials,
they remain relatively rare in practice, and we believe
many researchers do not fully comprehend the benefits

Figure 1. Illustrations of (a) traditional, (b) umbrella, and (c and d) platform designs.
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of platform trials. The purpose of this article is to quan-
titatively assess the efficiencies of platform trials in a
simple setting in order to illustrate the potential bene-
fits. We present three general strategies for comparison
via simulation.

Methods

Competing strategies

Consider a disease with high morbidity (e.g. cancer) in
which a very large number or population of treatments
exist, of which only a small proportion are effective. We
assume a binary outcome for patient response (yes/no),
where ‘‘yes’’ indicates a successful treatment and that
patients in the study population are homogeneous, mean-
ing there is only one ‘‘type’’ of patient. In this setting, a
reasonable goal of a phase 2 or phase 3 clinical trial is to
find an effective treatment with as few patients as possible.
A design that is able to find an effective therapy with a
smaller number of patients will be less expensive, take less
development time, and will result in fewer patient failures.
In this context, we compare three general strategies in
their ability to find an effective therapy:

1. A sequence of traditional two-arm trials comparing a
single treatment versus control.
(a) This strategy involves the comparison of a

single treatment to a control with equal 1:1
randomization. The success criterion is a p-
value from a one-sided chi-square test less
than 0.025. If the treatment does not meet
the success criterion, a new 1:1 trial will be
conducted. The process is repeated indefi-
nitely until a treatment is found that meets
the success criterion, at which point the pro-
gram ends; see Figure 2(a).

(b) A 1:1 randomized design similar to (1a), but
includes interim monitoring for success and
futility at equally spaced intervals. For con-
sistency with other designs, success and futi-
lity criteria are based on the Bayesian
posterior probability that the treatment pro-
portion is greater than the control propor-
tion, as detailed in section ‘‘Adaptive
simulation assumptions.’’ If the treatment
does not meet success criteria by the end of
the trial, a new 1:1 trial will be conducted.
The process is repeated indefinitely until a
treatment is found that meets success criteria,
at which point the program ends.

2. A sequence of ‘‘closed platform trials’’ comparing
several treatments versus a control.
(a) This strategy is based on a shared control

design, which is essentially the most basic
platform trial design. This strategy involves a
single platform trial with a fixed sample of

treatments (e.g. N = 5) and a control, with
equal randomization and fixed sample sizes
in each arm. The trial is a ‘‘closed’’ platform
trial, meaning no additional treatments are
added beyond those included at the start of
the trial. Each treatment is compared to the

Figure 2. Illustrations of three competing strategies.
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control using pairwise independent one-sided
chi-square tests; success is claimed for a treat-
ment if its p-value is less than 0.025. If none
of the treatments meets the success criterion,
a completely new platform trial is conducted
with five new treatments and a new set of
control patients. The process is repeated inde-
finitely until success is claimed for a treat-
ment, at which point the program ends (see
Figure 2(b)).

(b) A platform strategy similar to (2a) with five
treatments versus a control, but includes
interim monitoring for success and futility at
equally spaced intervals. For consistency with
other designs, success and futility criteria are
based on the Bayesian posterior probability
that the treatment proportion is greater than
the control proportion, as detailed in section
‘‘Adaptive simulation assumptions.’’ The
overall accrual rate is constant; hence, if a
treatment is dropped, it will lead to greater
accrual on the remaining active arms. If none
of the treatments meets the success criterion,
a completely new platform trial is conducted
with five new treatments and a new set of
control patients. The process is repeated inde-
finitely until success is claimed for a treat-
ment, at which point the program ends.

3. Open (perpetual) adaptive platform trial.
This strategy is an open adaptive platform
clinical trial with a fixed number of active
treatments (e.g. N = 5) and a control. The
trial is ‘‘open’’ with respect to adding new
treatments to replace ineffective treatments
during the trial. Bayesian methods are used
to adaptively drop (and add) treatment arms
until the success criterion is met by one of the
treatments, at which point the program ends
(see Figure 2(c)). The success criterion is
based on the Bayesian posterior probability
that a treatment response rate is greater than
the control response rate, as detailed in sec-
tion ‘‘Adaptive simulation assumptions.’’
Various adaptive features of the open plat-
form trial are investigated, such as frequency
of interim analyses, a maximum number of
patients per treatment, response adaptive
randomization (RAR), and comparison of
treatment arms to either concurrent or all
control patients.

We use the term ‘‘program’’ to denote the strategy
of repeating a trial indefinitely until statistical signifi-
cance is obtained. The term ‘‘trial’’ will refer to the indi-
vidual clinical trials within a program. For strategy (3),
the two terms are interchangeable because the program
is a single perpetual trial.

For all strategies, we control the Type I error of
labeling an ineffective treatment as ‘‘statistically signifi-
cant’’ at 0.025, that is, each treatment has its own 0.025
alpha. There are multiplicity issues associated with this
for all strategies (i.e. platform trials and sequences of
traditional trials), which cause inflation in the Type I
error of the ‘‘program,’’ which we define as the propor-
tion of programs that incorrectly identify an ineffective
treatment as ‘‘statistically significant.’’ Simulations are
used to quantify the mean number of trials, number of
treatments evaluated, number of patients enrolled,
number of patient failures, and number of years of
duration of the program. In addition, we calculate the
proportion of programs that correctly identify an
‘‘effective’’ treatment (power), the proportion of effec-
tive treatments that are correctly identified as effective,
and the proportion of ineffective treatments that are
mistakenly identified as effective.

The three strategies chosen for evaluation are far
from an exhaustive set of strategies available for the
design of clinical trials. For example, trials may have
different types of endpoints (continuous/survival), dif-
ferent effect sizes, different distributions of available
effective therapies, different statistical methods of
interim monitoring, or time lags in between patient
enrollment and the observation of the primary out-
come. The difficult task of exploring all possible strate-
gies and combinations of simulation parameters is
beyond the scope of this article. Rather, the purpose of
this article is to demonstrate efficiencies that could be
gained via platform trials in a basic setting. The princi-
ples underlying the benefits in this simple setting can be
generalized to a variety of settings, strategies, or
outcomes.

General simulation assumptions

To simulate trials for strategies (1)–(3), we make the fol-
lowing general assumptions:

� Patients who receive a control or ineffective treat-
ment have a p= 0:30 response rate.

� Patients who receive an effective treatment have a
p= 0:50 response rate.

� A total of 10% of available treatments are effective.
� Treatments are randomly selected from the pool of

available treatments, and individual responses are
simulated according to the response rate of that
treatment.

� Enrollment rate is 200 patients/year, and there is a
3-month lag in between trials for strategies (1) and
(2).

� Fixed sample sizes of N = 100 per arm for strategies
(1a) and (2a).

� All chi-square tests are one-sided tests for two inde-
pendent proportions, testing H0 : p1� p0 versus
Ha : p1.p0 via a Pearson chi-square.
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Adaptive simulation assumptions

Programs which incorporate adaptive features (strate-
gies (1b), (2b), and (3)) have the following additional
assumptions:

� Patients are allocated to the control arm in a fixed
1:1 or 1:5 ratio relative to all active treatment arms.
The randomization among the active treatment arms
can vary depending on the strategy and scenario.

� All outcomes are observed on currently enrolled
patients before conducting an interim analysis.

� Efficacy criteria are based on the Bayesian poster-
ior probability that the treatment is superior to the
control, that is, Pr (pj.p0jx), where pj is the prob-
ability of success for active treatment j, p0 is the
probability of success for controls, and x represents
the observed data. If Pr (pj.p0jx) is greater than a
success boundary S, the treatment is considered
effective.

� Futility criteria for dropping a treatment are based
on the Bayesian posterior probability that the treat-
ment success probability is greater than the control
success probability by a clinically meaningful differ-
ence of 10 percentage points, that is,
Pr (pj.p0 + 0:10jx). If this quantity is less than a
futility boundary F, then the treatment is dropped
from the program.

� The efficacy and futility criteria are varied by sce-
nario so as to preserve the one-sided Type I error at
0.025 per treatment while maintaining reasonable
power of the program.

� Priors for all probabilities are Beta (1, 1) which are
uniform priors on the interval [0, 1].

� Each platform trial has exactly N active treatment
arms and 1 control arm at all times.

� At each interim analysis, one of the following deci-
sions will be made for a given active treatment:

1. If a treatment meets the success criterion, stop the
program and claim efficacy;

2. Else if a treatment meets the futility criterion or
the group maximum has been met, drop the treat-
ment (and replace with new treatment if imple-
menting open platform strategy);

3. Else continue enrolling patients on that treatment.

Open adaptive platform strategies

To give further understanding about the impact of
adaptive features of the open platform strategy with
respect to efficiency metrics, we provide six different
strategies with various combinations of features, which
are summarized in Table 1. We vary the following para-
meters for these six strategies:

� RAR (yes or no): specifies whether trial uses
response adaptive randomization (RAR); if no,
then the trial uses fixed equal randomization;

� Active Tmts (5 or 10): number of active treatments;
� Cohort size (300 or 150): number of patients

enrolled between each interim analysis;
� Group max (100 or none): specifies whether there is

a cap on group maximum sample size. If cap equals
100, and a success criterion has not been met by 100
patients within an arm, the treatment is removed
from the trial;

� Controls (all or concurrent): specifies whether each
treatment is compared to all control patients or
concurrent controls.

For strategies (3d)–(3f), RAR is used, in which the
randomization probabilities are based on uj or the
probability that each active treatment (j) is the optimal
treatment

uj =Pr(pj.pk for all k 6¼ j), j= 1, 2, . . . , 5 ð1Þ

Table 1. Scenario features.

Strategy Success
criterion

RAR Active
Tmts

Cohort
size

Group max Success
boundary

Futility
boundary

Controls

1a. Traditional two-arm p-value – 1 200 100 0.025 – Concurrent

1b. Traditional adaptive two-arm Bayes – 1 50 100 0.991 0.10 Concurrent

2. Closed platform p-value – 5 600 100 0.025 – Concurrent

2b. Closed adaptive platform Bayes – 5 150 100 0.99 0.10 Concurrent

3a. Open adaptive platform Bayes – 5 300 – 0.985 0.10 All

3b. Open adaptive platform Bayes – 5 150 – 0.99 0.10 All

3c. Open adaptive platform Bayes – 5 150 100 0.99 0.10 Concurrent

3d. Open adaptive RAR platform Bayes Yes 5 150 100 0.99 0.10 Concurrent

3e. Open adaptive RAR platform Bayes Yes 5 150 100 0.985 0.10 All

3f. Open adaptive RAR platform Bayes Yes 10 150 – 0.991 0.10 All

RAR: response adaptive randomization.
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The randomization probability for each active arm is
proportional to

qj}

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ujV (pj)

nj + 1

s
ð2Þ

where V (pj) is the estimated variance of the response
rate and nj is the sample size for treatment j. The RAR
probability typically randomizes more patients to the
treatment that is most likely to be the optimal treat-
ment and does this by minimizing the change in the
estimated variance of the optimal treatment through
randomization. This accounts for both the probability
that each treatment is the best and the precision of the
estimated response rate. The randomization probabil-
ities at a given interim are normalized so that they sum
to 1. If any treatment is dropped from the program
based on the futility criterion, then an initial fixed num-
ber of patients (nj = 12, 25, or 50, depending on sce-
nario) are assigned to a replacement treatment, and
another renormalization is done to allocate the remain-
ing patients to the ongoing treatments.

Simulation results

Table 2 shows the simulation results for the various stra-
tegies. For comparison purposes, a traditional design
under the above assumptions with a single (non-repeat-
ing) stand-alone trial has 0.83 power for a two-group
comparison. Our proposed traditional strategy (1a)
involves the repetition of the stand-alone trials until sta-
tistical significance is obtained, at which point the pro-
gram ends. On average, the traditional strategy (1a)

requires 9.8 trials (and 9.8 treatments) to claim statistical
significance. The mean number of patients is 1966 with
1357 mean failures. The proportion of programs that
correctly identify an effective treatment is 0.78 (i.e.
power of the program), meaning 22% of the programs
ultimately label an ineffective treatment as effective. The
proportion of effective treatments that are identified as
effective is 0.82 (0.83 is the analytical solution but only
differs here due to simulation variability), and the pro-
portion of ineffective treatments mistakenly identified as
effective is 0.025. The mean duration to finding a signifi-
cant treatment is 12 years. The traditional adaptive
strategy (1b) reduces the mean number of patients and
failures to 1338 and 922, respectively. The proportion of
programs that correctly identify an effective treatment is
0.78, and the proportion of effective treatments that are
correctly identified as effective is 0.73.

On average, the closed platform strategy without
interims (2a) requires 2.5 trials and 12.7 treatments to
claim statistical significance. The mean number of
patients is 1528 with 1045 mean failures. The propor-
tion of programs that correctly identify an effective
treatment is 0.86, the proportion of effective treatments
correctly identified as effective is 0.83, and the propor-
tion of ineffective treatments mistakenly identified as
effective is 0.027 (0.025 is the analytical solution). The
mean duration to finding a significant treatment is
8 years. The closed platform strategy (2a) is more effi-
cient at finding effective treatments than the traditional
strategy (1a) primarily because of the sharing of con-
trols within a trial. Interim monitoring for success and
futility leads to improved performance for both the tra-
ditional (1b) and closed platform (2b) strategies. The

Table 2. Simulation summaries and population of treatments (5000 ‘‘Programs’’).

Strategy Number
trials

Number
treatments

Number
patients

Number
failures

Years Prob
program
success

Prob
effective
treatment
success

Prob
ineffective
treatment
success

1a. Traditional two-arm 9.8 9.8 1966 1357 12.0 0.78 0.82 0.025

1b. Traditional adaptive two-arm 10.7 10.7 1338 922 9.1 0.78 0.73 0.023

2. Closed platform 2.5 12.7 1528 1045 8.0 0.86 0.83 0.027

2b. Closed adaptive platform 3.4 13.7 971 663 5.5 0.82 0.76 0.025

3a. Open adaptive platform 1.0 11.7 1085 742 5.4 0.85 0.95 0.025

3b. Open adaptive platform 1.0 13.1 849 579 4.2 0.85 0.91 0.022

3c. Open adaptive platform 1.0 14.7 935 638 4.7 0.83 0.77 0.025

3d. Open adaptive RAR platform 1.0 14.4 912 616 4.6 0.83 0.75 0.025

3e. Open adaptive RAR platform 1.0 13.4 769 521 3.8 0.85 0.85 0.022

3f. Open adaptive RAR platform 1.0 18.2 640 431 3.2 0.87 0.85 0.023

RAR: response adaptive randomization; Number trials: mean number of trials; Number treatments: mean number of experimental treatments

evaluated; Number patients: mean total number of patients enrolled; Number failures: mean total number of failures across all treatments; Years:

number of years to claim efficacy with 200 patients/year and 3 months between trials; Prob program success: proportion of programs that correctly

identify an ‘‘effective’’ treatment; Prob effective treatment success: proportion of effective treatments that are correctly identified as effective; Prob

ineffective treatment success: proportion of ineffective treatments that are mistakenly identified as effective.
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closed adaptive trial with interim monitoring (2b) out-
performs strategies (1a), (1b), and (2a) by a substantial
margin, requiring on average 971 patients, 663 failures,
and 5.5 years to claim statistical significance, with 0.82
probability correctly identifying an effective treatment.

In general, the open adaptive platform programs
demonstrate better performance than either the tradi-
tional or closed platform strategies. The magnitude of
performance benefits vary by the features included in
the open platform trial. Factors associated with greater
efficiencies included more frequent interim looks, com-
parison of treatments to all controls, and including
RAR.

The most basic open platform (3a) with cohorts of
300 patients (50 per arm) and equal randomization
gives a mean of 1085 patients, 742 failures, 11.7 treat-
ments, 5.4 years of development, and a 0.85 probability
of successfully finding an effective treatment. This is a
substantial improvement over the closed platform strat-
egy (2a), primarily a result of interim futility analyses
that allowed dropping of ineffective treatments, but
does not improve over the closed adaptive platform
strategy (2b) due to a larger cohort size between inter-
ims. With a comparable cohort size of 150 patients
between interims (strategy (3b)), the open platform
strategy has a smaller number of patients (849), fewer
failures (579), and shorter program duration
(4.2 years), with faster cycling through the large num-
ber of ineffective treatments (13.1 active treatments
evaluated).

When treatment comparisons are limited to only
concurrent controls with a group maximum sample size
(3c), the mean number of patients increases to 935 with
638 failures, 4.7 years of development, and 14.7 treat-
ments. RAR produces minimal benefit for the open
platform strategy in the context of concurrent controls
(3d vs 3c), but RAR provides more substantial benefit
for the open platform strategy using all controls (3e vs
3b). Adaptive randomization using all controls (3e) is
the most efficient strategy among open platform strate-
gies with 5 active treatments, requiring on average 769
patients, 521 failures, 13.4 treatments, 3.8 years of
duration, and 0.85 probability of obtaining an effective
treatment. Compared to the traditional strategy, this
results in average savings of 1197 patients, 836 patient
failures, and 8.2 years of drug development compared
to the traditional strategy, while having a greater prob-
ability of correctly identifying an effective treatment
(0.85 vs 0.78, respectively). This is greater than a 60%
reduction in the number of patients and failures!

Finally, the open adaptive platform strategy with 10
active treatments outperformed all of the above strate-
gies, requiring on average 640 patients, 431 failures,
18.2 treatments, 3.2 years of duration, and 0.87 prob-
ability of obtaining an effective treatment or nearly a
70% reduction in the number of patients and failures
compared to the traditional strategy.

In addition to the paradigm of a very large number
(i.e. a population) of treatments available, we also con-
sidered the paradigm of a smaller fixed number of treat-
ments available (N = 10), of which only one is effective.
This would be consistent with a disease such as Ebola,
in which there are limited treatments available. In this
paradigm, simulations for a single ‘‘program’’ continue
until either (1) a treatment meets the success criterion
or (2) all available treatments meet the futility criteria.
Simulations showed similar differences in performance
between the competing strategies, with open adaptive
platform strategies achieving similar power with greater
than a 50% reduction in number of patients and fail-
ures compared to the traditional strategy (results not
shown).

Discussion

A key concept of the platform trial is that it has a single
master protocol and shared infrastructure across
experimental treatments. Hence, all treatment arms
share a common statistical analysis plan with prede-
fined futility and success criteria. In practice, not all
treatments need to share the same inclusion criteria,
meaning different treatments may target different sub-
types of patients for testing.

In a simple setting, we have demonstrated improved
statistical efficiency of open adaptive platform trials
over traditional two-arm trials. In these simulations,
much of the benefit gained from the platform strategies
is due to the fast cycling through ineffective treatments,
which is useful in the setting in which only 10% of
treatments are effective. If the proportion of effective
treatments were much larger, for example, 50% or
60%, these benefits would likely be reduced because
any of the strategies could quickly identify effective
treatments. However, given that the vast majority of
treatments that enter development fail to obtain regula-
tory approval, one could make a strong argument that
effective treatments are elusive in most clinical settings.

Although platform trials need not implement RAR,
our simulations show benefit for RAR versus fixed ran-
domization in a platform strategy with interim moni-
toring when active treatments are compared to all
controls. This contrasts with the views of some authors
who claim that RAR provides no benefit relative to
fixed randomization with interim monitoring.16

Relatedly, debates on the ethics of RAR are prevalent
in the literature.17–19 Regardless of one’s view on RAR,
it is clear from our simulation study that either type of
open platform strategy (RAR or fixed randomization)
offers substantial benefits relative to traditional two-
arm studies or closed platform studies in the context
presented.

We note our simulations did not explore the full
potential of platform trials. For example, we did not
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assess treatment benefit in patient subgroups, such as
implemented by I-SPY 2 and BATTLE. Additionally,
the illustrated platform strategies do not take advantage
of the capability to directly compare experimental treat-
ments (each treatment is regarded as independent of the
other treatments in the simulations), nor do the illu-
strated strategies allow the control arm to be replaced
with a superior treatment to continue evaluation of
future treatments. To increase efficiency and reliability
of results, shrinkage methods could be used to borrow
information across treatment arms and account for
regression to the mean when appropriate.6

There are many challenging issues that accompany
the use of adaptive platform trials. For example, delays
between enrollment and outcome observation can have
an impact and potentially negate the benefit of adapta-
tions. In many delayed outcome settings, Bayesian pre-
dictive probabilities can be used to stop accrual for
expected success,20 with a decisive analysis conducted
after full follow-up on all patients enrolled at the
interim analysis. In such settings, longitudinal modeling
of primary outcomes using auxiliary variables and pre-
dictive probabilities can be beneficial.21 For example, I-
SPY 2 uses magnetic resonance imaging (MRI) sequen-
tially to predict 6-month response rates.

Another potential issue is population drift, which
can occur through a variety of mechanisms, including
improved general care and enrollment of either more
or less healthy patients. There are two general strategies
for dealing with population drift: (1) modeling drift
(which has been implemented in trials such as I-SPY 2)
and (2) comparing treatments to concurrent controls.
These are complicated issues that need discussion
beyond this article.

In a platform trial with many experimental agents it
may be difficult or impossible to blind patients to every
possible arm. They may have different modes of admin-
istration or dosing in such ways that blinding to all
arms becomes incredibly difficult and burdensome. It is
not uncommon that patients in platform trials are
unblinded to which possible treatment arm they receive,
but remain blinded to whether they receive active or
placebo of that treatment.

Additionally, control of Type I error can be a chal-
lenge for adaptive platform trials because non-analytic
methods (i.e. simulations) may be required. The degree
of control is typically determined on a case-by-case basis
per regulatory and/or scientific review. General strategies
include exploring a wide range of scenarios, with particu-
lar emphasis on extremes of the assumptions involved
(per context) to determine the range of plausible Type I
error. With complexities of delayed outcomes, popula-
tion drift, and unknown pattern of available treatments,
control of Type I error is even more difficult to demon-
strate. Furthermore, knowing exactly how to define Type
I error for a single arm in a trial with multiple arms is dif-
ficult. If two drugs were explored in separate trials, they

may each have individual 2.5% Type I error; if the two
drugs are in a common platform trial, should the experi-
ment have 2.5% Type I error, or should each arm have
2.5% Type I error? All these issues should be discussed
thoroughly (with regulatory agencies where applicable)
before the running of a platform trial.

Platform trials also bring complexity in trial imple-
mentation and planning. For example, platform trials
may require complex collaborations across sponsors
and timely communication between participating sites
and data coordinating units. They typically require
sponsors to sacrifice some autonomy in running the
trial, oftentimes to a third party that designs and exe-
cutes the master protocol. Related issues include deter-
mining the shared costs of running the trial and
whether there are sufficient incentives for sponsors to
initiate the designing of a platform trial. Adding new
treatments may require modified eligibility criteria or
additional diagnostic/biomarker data or may change
the appeal of the study potentially affecting accrual
rates and the study population. Avoiding operational
bias can also be a challenge. We recommend further
discussion in the literature on these issues.

As demonstrated, platform trials can be much more
efficient strategies for finding effective therapies than
traditional stand-alone trials. In practice, platform trials
have typically used Bayesian methods to implement
innovative features such as RAR, hierarchical and long-
itudinal modeling, predictive probabilities, and the
assessment of various treatment combinations across
multiple subgroups. Such designs require extensive
simulations in the design phase to explore performance.
These prospective simulations allow investigators to see
how such a trial would progress under a variety of dif-
ferent scenarios and thus provide great flexibility in
making decisions that closely align with the scientific
goals of the study. This flexibility is essential to the
innovation needed to keep pace with the rapid develop-
ments in medical research and personalized patient care.
To meet this challenge, we advocate increase usage and
consideration of multi-arm adaptive platform trials.
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