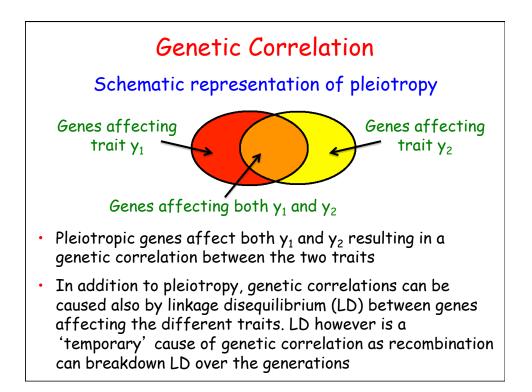
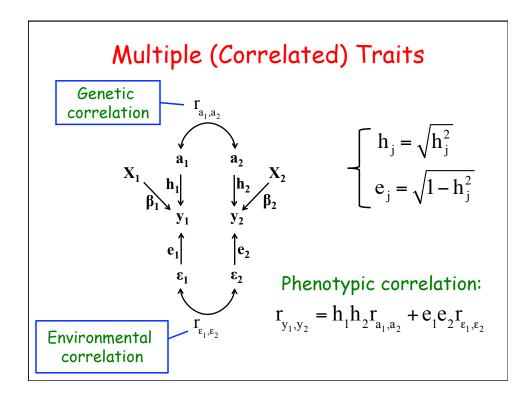

Lecture 9 Multi-Trait Models, Binary and Count Traits

Guilherme J. M. Rosa University of Wisconsin-Madison


Mixed Models in Quantitative Genetics SISG, Seattle 18 - 20 September 2018



$$\begin{aligned} \mathbf{Mixed Model Equations} \\ \begin{bmatrix} \mathbf{X}^{\mathrm{T}}\mathbf{X} & \mathbf{X}^{\mathrm{T}}\mathbf{Z} \\ \mathbf{Z}^{\mathrm{T}}\mathbf{X} & \mathbf{Z}^{\mathrm{T}}\mathbf{Z} + \lambda \mathbf{A}^{-1} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}^{\mathrm{T}}\mathbf{y} \\ \mathbf{Z}^{\mathrm{T}}\mathbf{y} \end{bmatrix} \\ \lambda = \frac{\sigma_{e}^{2}}{\sigma_{a}^{2}} = \frac{1-h^{2}}{h^{2}} \end{aligned}$$

$$BLUP: \quad \hat{\mathbf{u}} = (\mathbf{Z}^{\mathrm{T}}\mathbf{Z} + \lambda \mathbf{A}^{-1})^{-1}\mathbf{Z}^{\mathrm{T}}(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})$$

Multiple (Correlated) Traits

The animal model can be extended for the joint analysis of multiple traits

Let the model for each of k traits be:

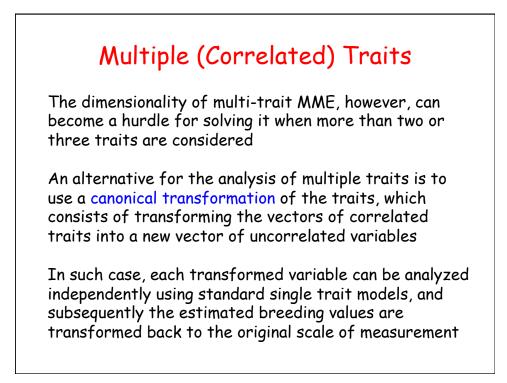
$$\mathbf{y}_{j} = \mathbf{X}_{j}\boldsymbol{\beta}_{j} + \mathbf{Z}_{j}\mathbf{a}_{j} + \boldsymbol{\varepsilon}_{j}$$

where j is an index to indicate the trait (j = 1, 2, ..., k). For the joint analysis of the k trait, the model becomes:

$$y = X\beta + Za + \varepsilon$$

with design matrices given by:

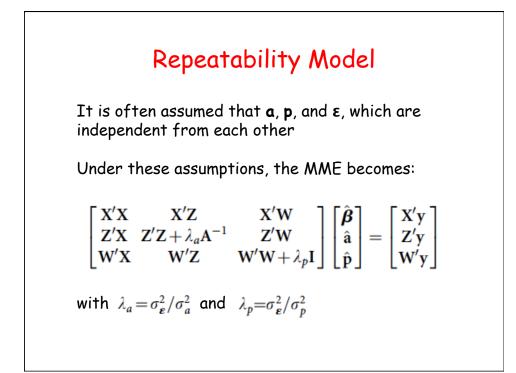
X =	\mathbf{X}_{1}	0		0	$\mathbf{Z} = \begin{bmatrix} \mathbf{Z}_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$	0		0
X =	0	\mathbf{X}_2		0	$\mathbf{Z} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	\mathbf{Z}_2		0
7 -	÷	÷	·.	÷		÷	·.	:
	0	0		\mathbf{X}_{k}	0	0	•••	\mathbf{Z}_{k}

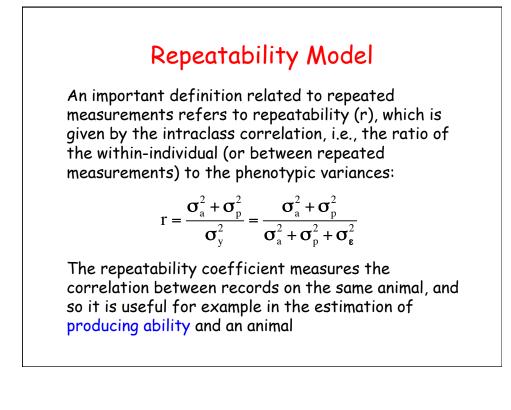

$$\begin{split} & \textbf{Multiple (Correlated) Traits} \\ & \textbf{In this case it is assumed that:} \\ & \textbf{Var} \begin{bmatrix} \textbf{a} \\ \textbf{e} \end{bmatrix} = \begin{bmatrix} \textbf{G} \otimes \textbf{A} & \textbf{0} \\ \textbf{0} & \textbf{\Sigma} \otimes \textbf{I} \end{bmatrix} \\ & \textbf{where } \textbf{G} \text{ and } \textbf{\Sigma} \text{ are the genetic and residual variance-covariance matrices, given by:} \\ & \textbf{G} = \begin{bmatrix} \sigma_{a_1}^2 & \sigma_{a_1a_2} & \cdots & \sigma_{a_1a_k} \\ \sigma_{a_1a_2} & \sigma_{a_2}^2 & \cdots & \sigma_{a_2a_k} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{a_1a_k} & \sigma_{a_2a_k} & \cdots & \sigma_{a_k}^2 \end{bmatrix} \quad \textbf{\Sigma} = \begin{bmatrix} \sigma_{e_1}^2 & \sigma_{e_1e_2} & \cdots & \sigma_{e_1e_k} \\ \sigma_{e_1e_2} & \sigma_{e_2}^2 & \cdots & \sigma_{e_2e_2} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{e_1e_k} & \sigma_{e_2e_2} & \cdots & \sigma_{e_k}^2 \end{bmatrix} \\ & \textbf{Ste: } \text{ Note: } \text{ represents the direct (Kronecker) product} \end{split}$$

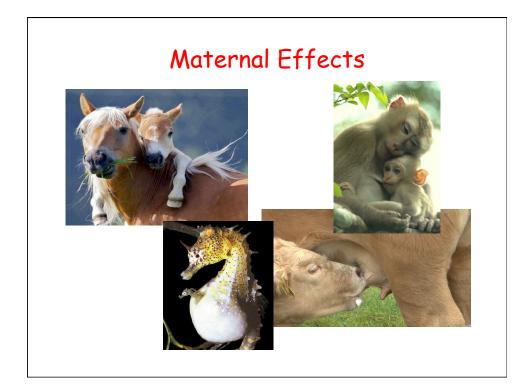
Multiple (Correlated) Traits

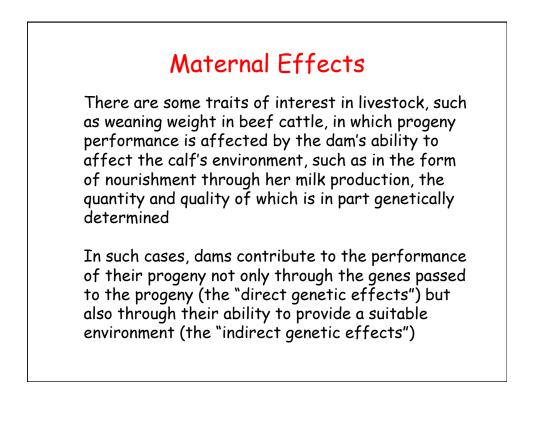
The MME for multi-trait analyses are of the same form as before, i.e.:

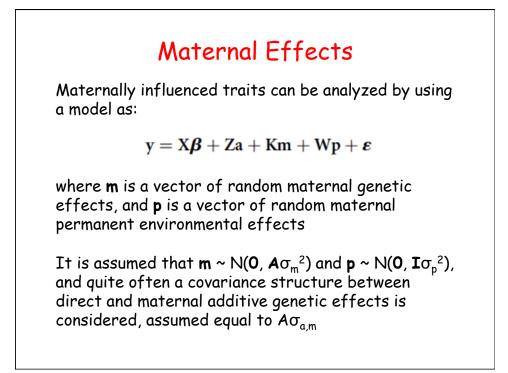
$$\begin{bmatrix} \mathbf{X}'(\boldsymbol{\Sigma}^{-1} \otimes \mathbf{I})\mathbf{X} & \mathbf{X}'(\boldsymbol{\Sigma}^{-1} \otimes \mathbf{I})\mathbf{Z} \\ \mathbf{Z}'(\boldsymbol{\Sigma}^{-1} \otimes \mathbf{I})\mathbf{X} & \mathbf{Z}'(\boldsymbol{\Sigma}^{-1} \otimes \mathbf{I})\mathbf{Z} + \mathbf{G}^{-1} \otimes \mathbf{A}^{-1} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\mathbf{a}} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{X}'(\boldsymbol{\Sigma}^{-1} \otimes \mathbf{I})\mathbf{y} \\ \mathbf{Z}'(\boldsymbol{\Sigma}^{-1} \otimes \mathbf{I})\mathbf{y} \end{bmatrix}$$


from which the BLUEs and BLUPs of $\boldsymbol{\beta}$ and \boldsymbol{a} can be obtained.




Repeatability Model



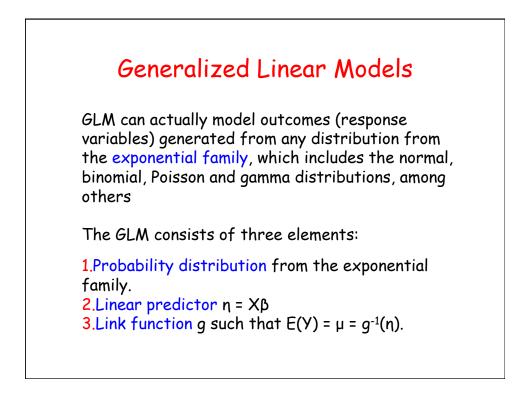

Proposition of Proposition of Propos

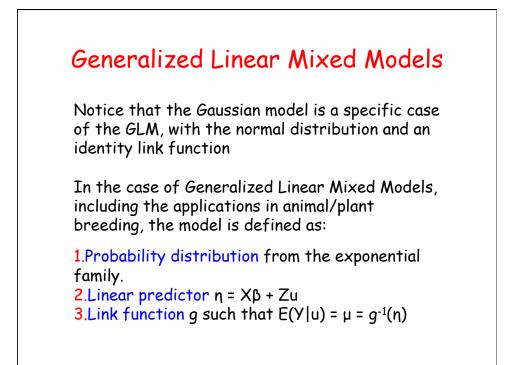
Example											
Animal	Sire		CG	Weight	$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{Z}_1\mathbf{a} + \mathbf{Z}_2\mathbf{m} + \mathbf{Z}_3\mathbf{p} + \mathbf{e}$						
5	1	3	1	156	$\mathbf{y} = \mathbf{x}\mathbf{b} + \mathbf{z}_1\mathbf{a} + \mathbf{z}_2\mathbf{m} + \mathbf{z}_3\mathbf{p} + \mathbf{e}$						
6	2	3	1	124	(\mathbf{a}) $(\mathbf{A}\sigma_{\mathbf{a}}^2 \ \mathbf{A}\sigma_{am} \ 0 \ 0)$						
78	1	4	1	135	$ \begin{array}{c} \mathbf{m} \\ \mathbf{m} \\ \mathbf{h} \\ \mathbf$						
8	2	4	2	163	$Var \mid \mathbf{p} \mid = \mid 0 0 \mathbf{I}\sigma_n^2 0 \mid$						
9	1	3	2	149	$\left(\begin{array}{c} \mathbf{e} \end{array} \right) \left(\begin{array}{c} 0 & 0 \end{array} \right) \left(\begin{array}{c} 0 \\ \mathbf{e} \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \end{array}\right) \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \end{array}\right) \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \left(\begin{array}{c} 0 \end{array} \right) \left(\begin{array}{c} 0 0 \end{array} \right) \left(\begin{array}{c} 0 \\0 \end{array} \right) \left(\begin{array}{c} 0 \end{array}\right) \left(\begin{array}{c} 0 \end{array} \right) \left(\begin{array}{c} 0 \end{array} \right) \left(\begin{array}{c} 0 0 \end{array} \right) \left(\begin{array}{c} 0 \end{array}\right) \left(\begin{array}{c} 0 \end{array}\right) \left(\begin{array}{c} 0 \end{array} \right) \left(\begin{array}{c} 0 \end{array}\right) \left(\begin{array}{c} 0 \end{array}\right) \left(\begin{array}{c} 0 \end{array} \right) \left(\begin{array}{c} 0 \end{array} \right) \left(\begin{array}{c} 0 \end{array}\right) \left(\begin{array}{c} 0 \end{array}\right) \left(\begin{array}{c} 0 \end{array} \right) \left(\begin{array}{c} 0 \end{array}\right) \left(\begin{array}{c} 0 \end{array}\right) \left(\begin{array}{c} 0 \end{array} \right) \left(\begin{array}{c} 0 \end{array}\right) \left(\begin{array}{c} 0 \end{array}\right) \left($						
10	2	4	2	138							
	X =	$= \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$			$\mathbf{Z}_{1} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 &$						
$\mathbf{Z}_2 =$) 1 0) 1 0) 0 1) 0 1) 0 1) 0 1) 0 1) 0 1	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\mathbf{y} = \mathbf{X}\mathbf{B} + \mathbf{Z}_{1}\mathbf{a} + \mathbf{Z}_{2}\mathbf{m} + \mathbf{Z}_{3}\mathbf{p} + \mathbf{e}$ $Var\begin{pmatrix}\mathbf{a}\\\mathbf{m}\\\mathbf{p}\\\mathbf{e}\end{pmatrix} = \begin{pmatrix}\mathbf{A}\sigma_{a}^{2} & \mathbf{A}\sigma_{am} & 0 & 0\\ \mathbf{A}\sigma_{am} & \mathbf{A}\sigma_{m}^{2} & 0 & 0\\ 0 & 0 & \mathbf{I}\sigma_{p}^{2} & 0\\ 0 & 0 & 0 & \mathbf{I}\sigma_{p}^{2} & 0\\ 0 & 0 & 0 & 0 & 0 & \mathbf{I}\sigma_{p}^{2} & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0$						

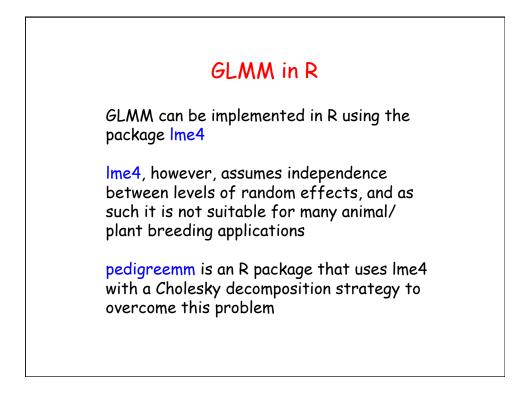
Computing Strategies

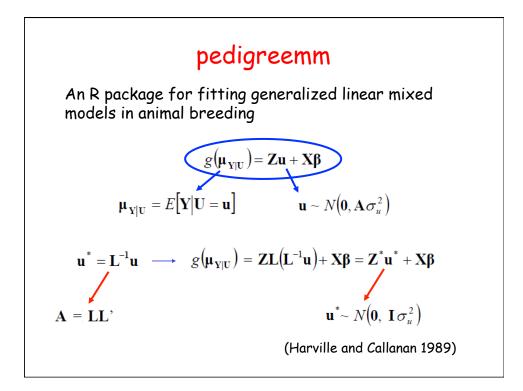
Solving the MME does not necessary require the inversion of the coefficient matrix **C**


More computationally convenient alternatives for solving high dimensional systems of linear equations include methods based on iteration on the MME, such as the Jacobi or Gauss-Seidel iteration, and the "iteration on the data" strategy, which is commonly used methodology in national genetic evaluations involving millions of records


Generalized Linear Models


The models discussed so far assumed a Gaussian (normal) distribution of the phenotypic traits


Often however phenotypic traits are expressed a a binary (e.g., pregancy in dairy cattle, or germination in seeds) or count variable (e.g., litter size in swine, or fruits in trees)


In such cases the linear (Gaussian) model is not appropriate, and a generalized linear model (GLM) approach is necessary

