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Path Analysis 

Sewall Wright  
(1889-1988) 

h2 + d2 + e2 = 1  

(Wright, 1921) 
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•  Introduction about Networks 

•  Brief Overview of Graphical Models 

•  Usefulness and Applications 
-  Flow of information from DNA to phenotype 
-  Parsimonious models for multi-trait analysis 
-  Prediction, Markov Blanket 
-  Causal inference 
-  Visualization and model selection tool 

•  Concluding Remarks 

Outline 
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Networks 

Food web 

Social networks 

Airport hubs 

Computer networks 

Gene regulation networks, co-expression, 
epistasis networks, etc. 

Gene Networks 
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Correlation Networks 
•  Attempt to systems understanding of organisms 

(understanding biology, e.g. master regulators, 
pharmaceutical intervention, etc.) 

•  Define some network parameter and topology features:  
–  Degree (ki) of node i: number of connections (degree centrality) 
–  Communities and cliques; motifs 
–  Betweenness of node i: measure of the number of shortest 

paths passing through node i (betweenness centrality) 
–  Clustering coefficient: interconnectivity of nodes interacting 

with node of interest, Ci = 2ni/[ki(ki – 1)] 

•  Compare topologies across genotypes, developmental 
stages, or environmental stress conditions 

• Marginal or Partial Correlations 

Marginal and Partial Correlations, 
and d-Separation 
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Marginal and Partial Correlations 
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•  Pearson correlation coefficient:  

Fisher transformation: 

Inference: 

ρXY⋅Z =
ρXY −ρXZρZY
1−ρXZ

2 1−ρZY
2•  Partial correlation:  

Conditioning on multiple variables: P = Σ−1→ρyiy j⋅others = −
pij
piip jj

Pr(GP2) ≠ Pr(GP2|GP1)  

GP1=aa GP2=? 

GS=Aa 

Marginal and Conditional  
Independence 

 
Z à X à Y 
Z ß X ß Y 
Z ß X à Y 

 
ü Z & Y marginally not 

independent 
ü  Conditioned on X they 

become independent 
 Pr(GP2|GP1, GS) = Pr(GP2|GS)  
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Pr(GD=aa|GS=AA) = Pr(GD=aa) = q2 

 
Z à X ß Y 

 
ü Z & Y marginally 

independent 
ü  Conditioned on X they 

are not independent 
ü  Concept of collider,  
    V-structure 

 

Gs=AA GD=? 

Pr(GD=aa|GS=AA,GP=Aa) = q  [≠ Pr(GD=aa|GP=Aa)] 

GP=Aa 

‘Directed’ Separation 

ð  d-Separation concept: 

Two variables X and Y are said to be  
d-separated by Q if there is no active path 

between any X and Y conditionally on Q 

(Verma and Pearl 1988, Pearl 1998, Geiger et al. 1990) 
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Examples 

Real structure Marginal 
correlations  

Partial 
correlations  

d-Separations 

•  Introduction about Networks 

•  Brief Overview of Graphical Models 

•  Usefulness and Applications 
-  Flow of information from DNA to phenotype 
-  Parsimonious models for multi-trait analysis 
-  Prediction, Markov Blanket 
-  Causal inference 
-  Visualization and model selection tool 

•  Concluding Remarks 

Outline 
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Applications: Flow of Information from 
DNA to Phenotype 

•  Example with 3 nodes (Schadt et al. 2005): polymorphism (g), 
expression (t) and  disease outcome (c) 

•  Causal, reactive and independent models: 

•  Likelihood-based causality 
   model selection (LCMS): 

Causal 

Independent 

⎪
⎩

⎪
⎨

⎧

=

=

=

)t,g|c(p)g|t(p)g(p)c,t,g(p:I
  )c|t(p)g|c(p)g(p)c,t,g(p:R
  )t|c(p)g|t(p)g(p)c,t,g(p:C

Reactive 

Bayesian Networks 
•  Graphic representation of a probability 

distribution over a set of variables à DAG 

•  Parents: Nodes that are 
directed to another node(s) 

•  Child: The descendent node 
•  Spouse: A node is defined as 

a spouse when it shares a 
child with another node 

Pr(A,B,C,D,E) = Pr(E |C,D)Pr(C | A,B)Pr(D)Pr(B)Pr(A)
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Inference Steps 
①  Structure Learning 

� Score-based algorithms 
� Constraint-based algorithms 

 
 
 
 
①  Parameter Estimation 
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Λ =
0 0 0
0 0 0
λ31 λ32 0

#

$

%
%
%

&

'

(
(
(y2 

y1 

y3 

Maximum Likelihood or 
Bayesian Inference 

Structure Learning 
Ø  Constraint-based algorithms 

�  IC, PC – Spirtes et al. (2001) 
�  Grow-Shrink (GS) – Margaritis (2003) 
�  Incremental Association Markov Blanket (IAMB) – 

Tsamardinos et al. (2003) 
�  Max-Min Parents & Children (MMPC) 

Ø Score-based algorithms 
�  Hill Climbing (HC) – Bouckaert (1995) 
�  Tabu Search (Tabu) 

Ø Hybrid structure learning algorithms 
�  Sparse Candidate (SC) – Friedman et al (1999) 
�  Max-Min Hill Climbing (MMHC) – Tsamardinos et al. (2006) 
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Constraint-based algorithms 
Ø Series of conditional independence tests 

(parametric, semiparametric and permutation) 
�  Linear correlation or Fisher's Z (continuous data; 

multivariate normal distribution) 
�  Pearson's X2 or mutual information (categorical 

data; multinomial distribution) 
�  Jonckheere-Terpstra (ordinal data) 

Score-based algorithms 
Ø Different score functions 

�  Akaike Information Criterion (AIC) 
�  Bayesian Information Criterion (BIC) 
�  multinomial log-likelihood, Dirichlet posterior 

density (BDe) or K2 score (categorical data) 

•  Introduction about Networks 

•  Brief Overview of Graphical Models 

•  Usefulness and Applications 
-  Flow of information from DNA to phenotype 
-  Parsimonious models for multi-trait analysis 
-  Prediction, Markov Blanket 
-  Causal inference 
-  Visualization and model selection tool 

•  Concluding Remarks 

Outline 
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Applications: Parsimonious Models for 
Multi-Trait Analysis 

•  k traits (nodes) à k(k - 1)/2 covariances 
• Matrix Λ of SEM potentially with fewer parameters 
• Model comparison using traditional techniques such as 

AIC, BIC, DIC etc. 
•  Example: 

- Structure matrix Σ with 10 
covariance parameters 

- Matrix Λ with 4 
unconstrained parameters 

Morota G, Valente BD, Rosa GJM, Weigel KA and Gianola D. An assessment 
of linkage disequilibrium in Holstein cattle using a Bayesian network. J. 
Anim. Breed. Genet. 129: 474-487, 2012. 

Example: Multilocus Linkage Disequilibrium 

•  4898 Holstein bulls genotyped with the 
Illumina BovineSNP50 Bead Chip, provided by 
the USDA-ARS Animal Improvement 
Programs Laboratory (Beltsville, MD, USA) 

•  36 778 SNP markers after editing and 
imputation using fastPHASE 1.4.0 

•  BN using SNPs with highest effects (BLasso) 
•  Tabu search algorithm with BDe scoring 

metric, and IAMB algorithm with X2 test 
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Pairwise LD among SNPs (r2) 

LD among the top 30 SNPs with the largest absolute 
posterior means using the r2 metric. 

Bayesian LD network 

BNs learned by the Tabu and the IAMB searches for the 15 
SNPs with the largest absolute posterior means.  

Grey-filled nodes are SNPs located in chromosome 14. 
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Similarly as before, for the 30 SNPs with the largest 
absolute posterior means. 

•  Introduction about Networks 

•  Brief Overview of Graphical Models 

•  Usefulness and Applications 
-  Flow of information from DNA to phenotype 
-  Parsimonious models for multi-trait analysis 
-  Prediction, Markov Blanket 
-  Causal inference 
-  Visualization and model selection tool 

•  Concluding Remarks 

Outline 
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Applications: Prediction, Markov Blanket 

•  Markov Blanket (MB): a MB of a 
node is defined as the set containing 
its parent(s), child(ren) and 
spouse(s) 

•  Conditionally on its MB, a node is 
independent from all other nodes 

Examples: MB(D) = {C,E}; MB(E) = {C,D}; MB(C) = {A,B,D,E} 

Felipe VPS, Silva MA, Valente BD and Rosa GJM. Using multiple regression, 
Bayesian networks and artificial neural networks for prediction of total 
egg production in European quails based on earlier expressed phenotypes. 
Poultry Science 94(4): 772-780, 2015. 

Example: Egg Production in Poultry 

•  Two strains (L1 and L2) of European Quail 
•  31 traits (female quails): 

-  Body weight 
-  Weight gain 
-  Age at first egg 
-  Egg production 
-  Egg quality traits 



7/5/19	

15	

Material & Methods 

•  Sample sizes (training and test sets): 
-  Line 1 (90 + 90), Line 2 (102 + 103) 

•  Traits: 
-  Weekly body weight (birth to 35 d, BW1 to BW6) 
-  Weight gain (0-35 and 21-35 d, WG1 and WG2) 
-  Age at first egg (AFE) 
-  Egg quality traits, four time points: 125, 170, 215, 260 d 

Egg Weight – Ew, Yolk Weight – Y, Egg Shell Weight – ES  
Egg White Weight – EW, Egg Specific Gravity - DENS 

-  Partial Egg Production (35-80d, EP1) and  
Total egg production (35-260d, TEP) 

•  Multiple regression analysis 
–  Step-wise OLS 

•  Bayesian Networks 
–  MB detection 

•  Artificial Neural Networks 
–  Machine learning tool to map 

relationship between inputs 
and output 

Material & Methods 
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•  Structure Learning (L1): Given EP1, TEP is independent from 
the other traits 

Genomic Prediction! Phe 

L1 Structure 

L2 Structure 
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Causal Inference 

“I wish they didn’t turn 
on that seatbelt sign so 
much! Every time they 

do, it gets bumpy.” 

Association vs. Causation 

y z 

y z 

y z y z 

x 
“z is associated with y” 

“y causes z” “z causes y” “x causes z & y” 

alcohol and 
drunkenness 

# police officers 
and criminality 

water consumption 
and dehydration 
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Confounders 

? 

Selection Bias 

Sports (S) 

A
ca

de
m

ic
s 

(A
) 

rA,S = 0 

Sports (S) 

A
ca

de
m

ic
s 

(A
) A + S > k 
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Randomized Experiments 

y z 

x 

Causal relationship between 
variables 

y z 

x 

Effect of randomization 
applied to variable z 

ð Testing the effect of z on y 
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Observational Studies 

ð Lack of randomization due 
to legal, ethical, or logistics 
reasons 

ð Potential bias and  
confounding effects 

ð Example:  
 Parenthood and  
 life expectancy 

•  Introduction about Networks 

•  Brief Overview of Graphical Models 

•  Usefulness and Applications 
-  Flow of information from DNA to phenotype 
-  Parsimonious models for multi-trait analysis 
-  Prediction, Markov Blanket 
-  Causal inference 
-  Visualization and model selection tool 

•  Concluding Remarks 

Outline 
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Step 1: Undirected graph (search for d-separations; 
connect adjacent variables) 

Step 2: Partially oriented graph (search for colliders) 

Step 3: Attempt to orient remaining undirected edges such 
that no new colliders or cycles are generated 

The IC Algorithm 
(Inductive Causation; Verma and Pearl 1991) 

Step 1: skeleton; Step 2: V structures 

•  Arrows: Causal interpretation; 
consequences of intervention 

•  Direct, indirect and total effects 

•  Additional assumptions: Markov 
condition, faithfullness and causal 
sufficiency assumptions 

A B 

C 

D   

Applications: Causal Inference 
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Applications: Causal Inference 

•  Prediction of the result of an intervention (gene 
knockout, management decision, treatment effect) 

•  Estimation of causal effects: 

If the causal DAG is known and the distribution is 
multivariate Gaussian, then the causal effect (β) of X 
on Y can be estimated from the regression : 

E[Y] = m + βX + pa(X) 

•  i.e., DAG determines adjustment variables    
      [backdoor adjustment; Pearl (1993)] 
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Example 1: Simulation Settings 
ð  Consider the following causal network involving a  

Genetics component (G) 
Disease incidence (D), and  
Milk yield (M) 

ð  The following model was 
used to simulate data:  

yD =µD + eD
yM =µM −1.5yD + uM + eM

"
#
$

%$
Var

eD
eM

!

"

#
#

$

%

&
&
= 1 0

0 1

!

"
#

$

%
&

Var uM!" #$=1.0

with 

Example 1: Model Comparison 

ð  Which model is better for the analysis of Disease? 

ð  Results:  

yD =µ+βyM + z
Tm+ e

yD =µ+ z
Tm+ e

Model 1: 

Model 2: 

Model 1: 
Model 2: 

Cor(yD, ŷD ) Cor(yD
* ,zTm̂) Var(zTm̂) σ̂e

2
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Example 2: Simulation Settings 
ð  Consider the following causal network involving a  

Genetics component (G) 
Disease incidence (D), and  
Milk yield (M) 

ð  The following model was 
used to simulate data:  

yD =µD + uD + eD
yM =µM −1.5yD + uM + eM

"
#
$
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Example 2: Model Comparison 

ð  Which model is better for the analysis of Disease? 

ð  Results:  

yD =µ+βyM + z
Tm+ e

yD =µ+ z
Tm+ e

Model 1: 

Model 2: 

Model 1: 
Model 2: 

Cor(yD, ŷD ) Cor(yD
* ,zTm̂) Cor(uD,z

Tm̂) σ̂e
2
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Example 3: Simulation Settings 
ð  Consider the following causal network involving a  

Genetics component (G) 
Farm effect (F), and 
Disease incidence (D) 

ð  The following model was 
used to simulate data:  

yD =µD + F+ uD + eD

Var uD!" #$= 0.30

Var eD!" #$= 0.70
with 

uD

F

Example 3: Model Comparison 

ð  Which model is better for the analysis of Disease? 

ð  Results:  

yD =µ+ F+ z
Tm+ e

yD =µ+ z
Tm+ e

Model 1: 

Model 2: 

Model 1: 
Model 2: 

Cor(yD, ŷD ) Cor(yD
* ,zTm̂) Cor(uD,z

Tm̂) Var(zTm̂)
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1,000 F2 progeny 
25 growth traits 
30 carcass traits 
144 microsatellite loci 
SNPs and Microarrays 

•  F2 Population (Duroc x Pietran) 
•  Genetical Genomics (eQTL Mapping) 

Steibel JP, Bates RO, Rosa GJM, et al. Genome-wide linkage analysis of 
global gene expression in loin muscle tissue identifies candidate genes 
in pigs. PLoS One 6(2): e16766, 2011. 

Example: Genetical Genomics 

Global plot of physical position of oligonucleotide probe versus linkage position of eQTL 
across the pig genome. Points along the gray curve represent local eQTL (most likely cis-

acting), while points off the line represent trans-acting eQTL. 
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pQTL Mapping Chr6 

eQTL Mapping Chr6 
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Exploring Causal Networks 

•  Incremental Association Markov Blanket (IAMB) 
algorithm (Tsamardinos et al. 2003) 

•  bnlearn R package (Scutari 2010) 

•  Jackknife resampling 

 
Peñagaricano F, Valente BD, Steibel JP, Bates RO, Ernst CW, Khatib H and 

Rosa GJM. Exploring causal networks underlying fat deposition and 
muscularity in pigs through the integration of phenotypic, genotypic and 
transcriptomic data. BMC Systems Biology 9:58, 2015. 

AKR7A2 

ETV2 

QTL 
Causal network. Network inferred 

without using any prior information.  

SMIM12 

PTOV1 

ZNF24 

BF10 

LOIN 

FAT 

PEX14 SSX21P 
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AKR7A2 

ETV2 

QTL 
Causal network. Network inferred 

after incorporating QTL → AKR7A2 
as prior knowledge.  

SMIM12 

PTOV1 

ZNF24 

BF10 

LOIN 

FAT 

PEX14 SSX21P 

AKR7A2 

ETV2 

QTL 

SMIM12 

PTOV1 

ZNF24 

BF10 

LOIN 

FAT 

PEX14 SSX21P 

Evaluation of the stability of the network 
using Jackknife resampling: Percentage of 
times that a given arc was presented (with  
the same direction) in the resampled networks. 

100 (85) 100 (65) 

98 (85) 
98 (55) 

56 (56) 

56 (47) 
100 (85) 

100* 

99 (97) 

94 (92) 

100 (98) 

56 (56) 

97 (97) 97 (97) 

95 (95) 
100 (97) 
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AKR7A2 

ETV2 

QTL 

SMIM12 

PTOV1 

ZNF24 

BF10 

LOIN 

FAT 

PEX14 SSX21P 

Estimates of causal effects. ML estimates 
and standard errors (within parenthesis), 
conditional on structure of the network. 

-1.12 (1.02) -0.22 (1.02) 

1.19 (1.03) -0.67 (0.20) 

-0.15 
(0.18) 

0.26 (0.08) 
0.51 (1.03) 

-0.11 (0.13) 

0.12 (0.16) 

0.03 (0.07) 

0.37 (0.10) 

0.64 (0.15) 

-0.33 (0.11) 0.33 (0.16) 

0.26 (0.11) 
0.12 (0.16) 

Discussion 
ð ZNF24 encodes a member of the family of Krüppel-like zinc finger 

transcription factors and has critical roles in cell proliferation and 
differentiation 

ð The network model predicts that modulation of ZNF24 expression level 
should lead to a change in the expression of SSX2IP 

ð Recently, Li et al. (2009) evaluated potential ZNF24 target genes. For 
this purpose, the authors transiently overexpressed and silenced ZNF24 
and then applied microarray assay in order to identify target genes. 

ð Notably, the overexpression of ZNF24 significantly decreased the 
expression of SSX2IP as predicted by our network. In addition, the 
silenced of ZNF24 resulted in a significant overexpression of SSX2IP (Li 
et al. 2009) 

Li JZ, Chen X, Gong XL, Liu Y, Feng H, Qiu L, Hu ZL and Zhang JP. A transcript 
profiling approach reveals the zinc finger transcription factor ZNF191 is a 
pleiotropic factor. BMC Genomics 10, 2009. 
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Instrumental Variable (IV) 

cancer 
Z 

X 
Y δ β 

β̂OLS = (X
TX)−1XTY

β̂IV = (Z
TX)−1ZTY

Instrumental Variable (IV) 

cancer 
Z 

X 
Y δ β 

Two-stage estimation: 

1.  Regress X on Z:                               and save 

     predicted values 

2. Regress Y on X: 

δ̂ = (ZTZ)−1ZTX

X̂ = Zδ̂ = Z(ZTZ)−1ZTX = PZX
β̂2SLS = (X

TPZX)
−1XTPZY^ 
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Mendelian 
Randomization 

è Assumptions underlying the use of an instrumental 
variable (and the Mendelian randomization strategy): 

-  The instrumental variable (genotype) is associated with 
the ‘exposure’ of interest 

-  The genotype is independent of any confounding variable 
-  The association between genotype and outcome exists only 

because the genotype is associated with the exposure 

Concluding Remarks 

Ø Graphical Models: visualization/descriptive tool, 
prediction, causality, hypothesis generator 

Ø Data driven + prior biological knowledge 

Ø  Causality inference: Markov condition, faithfullness 
and causal sufficiency assumptions 

Ø  Instrumental variable; Mendelian randomization 

Rosa GJM, Valente BD, de los Campos G, Wu X-L, Gianola D and Silva MA. 
Inferring causal phenotype networks using structural equation models. 
Genetics Selection Evolution 43: 6, 2011. 
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Software 

bnlearn 
deal 
pcalg 
catnet 


