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« Introduction about Networks

Outline

* Brief Overview of Graphical Models

« Usefulness and Applications

Flow of information from DNA to phenotype
Parsimonious models for multi-trait analysis
Prediction, Markov Blanket
Causal inference

Visualization and model selection tool ° 0

* Concluding Remarks

Bat
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Social networks

Airport hubs

Gene Networks

Gene regulation networks, co-expression,
epistasis networks, etc.
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Correlation Networks

- Aftempt to systems understanding of organisms
(understanding biology, e.g. master regulators,
pharmaceutical intervention, etc.)

- Define some network parameter and topology features:
- Degree (k;) of node i: number of connections (degree centrality)
- Communities and cligues; motifs

- Betweenness of node i: measure of the number of shortest
paths passing through node i (betweenness centrality)

- Clustering coefficient: interconnectivity of nodes interacting
with node of interest, C; = 2n/[ki(k; - 1)]

- Compare topologies across genotypes, developmental
stages, or environmental stress conditions

« Marginal or Partial Correlations

Marginal and Partial Correlations,
and d-Separation




Marginal and Partial Correlations

o
* Pearson correlation coefficient:  Pxy =
OXOY
Inference: n A A
. D =Ry -y . [n-2
Pxy = - ) . =0y W'Nt(qhn—z)
VS-S -y w

Fisher transformation:
R 1 1+ f) H:p=0
Z=arctanh(pXY)=Eln —X —+n-3x|z|] ~ N(O0,1)

l_pxy
Pxy =PxzPzy
 Partial correlation:  Pxyz =
J1=pi\1-p3
Conditioning on multiple variables: ~ P=3"—p . -=- P
- P;Pj
Marginal and Conditional
Independence
Z>X>Y
ZEXEY
ZeX>y N/ N/
v Z & Y marginally not
independent
v" Conditioned on X they
become independent Pr(Gp,) # Pr(Gp,|6p)
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Z>XEY

v Z &Y marginally

independent

v Conditioned on X they G=AA
are not independent

v" Concept of collider, \ /

V-structure

Pr(Gy=aalG4=AA) = Pr(Gy=aa) = q?
Pr(6p=aal65=AA,Go=Aa) = q [# Pr(Gy=aa|Gp=Aa)]

'Directed’ Separation

= d-Separation concept:

Two variables X and Y are said to be
d-separated by Q if there is no active path
between any X and Y conditionally on Q

(Verma and Pearl 1988, Pearl 1998, Geiger et al. 1990)
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- Usefulness and Applications
- Flow of information from DNA to phenotype




Applications: Flow of Information from
DNA to Phenotype

* Example with 3 nodes (Schadt et al. 2005): polymorphism (g),
expression () and disease outcome (c)

* Causal, reactive and independent models:

Independent
Causal Reactive g ~
_—t —— —_c — /
g c g c t N y

C

- Likelihood-based causality ~ [C:p(g,t,c) =p(g)p(t]|g)p(c|t)
model selection (LCMS): IR : p(g, t,¢) = p(e)p(c| 2)p(t| ©)

I:p(g,t,c) =p(g)p(t|g)p(c|g,t)

Bayesian Networks

* Graphic representation of a probability
distribution over a set of variables > DAG

° e * Parents: Nodes that are

directed to another node(s)
e - Child: The descendent node

Q * Spouse: A node is defined as
a spouse when it shares a
e child with another node

¥
Pr(A,B,C,D,E) =Pr(E |C,D)Pr(C| A,B) Pr(D) Pr(B) Pr(A)
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Inference Steps

(D Structure Learning

* Score-based algorithms
e Constraint-based algorithms

v 0O 0 0
‘\ =) A=| 0 0 0
Y. y; A A 0

31 32

(1) Parameter Estimation

y=Ay+Xp+e Maximum Likelihood or
Bayesian Inference

Structure Learning

> Constraint-based algorithms
» IC,PC- Spirtes et al. (2001)
* Grow-Shrink (6S) - Margaritis (2003)
* Incremental Association Markov Blanket (TAMB) -
Tsamardinos et al. (2003)

* Max-Min Parents & Children (MMPC)

> Score-based algorithms
* Hill Climbing (HC) - Bouckaert (1995)
e Tabu Search (Tabu)

> Hybrid structure learning algorithms
* Sparse Candidate (SC) - Friedman et al (1999)
* Max-Min Hill Climbing (MMHC) - Tsamardinos et al. (2006)
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Constraint-based algorithms

> Series of conditional independence tests
(parameftric, semiparametric and permutation)

* Linear correlation or Fisher's Z (continuous data;
multivariate normal distribution)

* Pearson's X? or mutual information (categorical
data; multinomial distribution)

» Jonckheere-Terpstra (ordinal data)

Score-based algorithms

> Different score functions
* Akaike Information Criterion (AIC)
* Bayesian Information Criterion (BIC)

* multinomial log-likelihood, Dirichlet posterior
density (BDe) or K2 score (categorical data)

Outline

« Usefulness and Applications

- Parsimonious models for multi-trait analysis

10



Applications: Parsimonious Models for
Multi-Trait Analysis

- k traits (nodes) - k(k - 1)/2 covariances
* Matrix A of SEM potentially with fewer parameters

* Model comparison using traditional fechniques such as
AIC, BIC, DIC etc.

* Example:
° - Structure matrix = with 10
° covariance parameters
G - Matrix A with 4
unconstrained parameters

Example: Multilocus Linkage Disequilibrium

+ 4898 Holstein bulls genotyped with the
Tllumina BovineSNP50 Bead Chip, provided by
the USDA-ARS Animal Improvement
Programs Laboratory (Beltsville, MD, USA)

+ 36 778 SNP markers after editing and
imputation using fastPHASE 1.4.0

* BN using SNPs with highest effects (BLasso)

+ Tabu search algorithm with BDe scoring
metric, and IAMB algorithm with X2 test

Morota G, Valente BD, Rosa GTM, Weigel KA and Gianola D. An assessment
of linkage disequilibrium in Holstein cattle using a Bayesian network. J.
Anim. Breed. Genet. 129: 474-487, 2012.

7/5/19
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Pairwise LD among SNPs (r?)

LIPS RZ Color key

LD among the top 30 SNPs with the largest absolute
posterior means using the r2 metric.

Bayesian LD network

Tabu search

IAMB algorithm

@D

BNs learned by the Tabu and the TAMB searches for the 15

SNPs with the largest absolute posterior means.
Grey-filled nodes are SNPs located in chromosome 14.
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Tabu search IAMB algorithm

Similarly as before, for the 30 SNPs with the largest
absolute posterior means.

Outline

- Usefulness and Applications

- Prediction, Markov Blanket

7/5/19
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Applications: Prediction, Markov Blanket

* Markov Blanket (MB): a MB of a
node is defined as the set containing

a ‘ its parent(s), child(ren) and

spouse(s)

e * Conditionally on its MB, a node is
independent from all other nodes

Examples: MB(D) = {C,E}. MB(E) = {C,D}. MB(C) = {A,B,DE}

Example: Egg Production in Poultry

« Two strains (L1 and L2) of European Quail
* 31 traits (female quails):

- Body weight
Weight gain

Age at first egg
Egg production
Egg quality traits

Felipe VPS, Silva MA, Valente BD and Rosa GJM. Using multiple regression,
Bayesian networks and artificial neural networks for prediction of total
egg production in European quails based on earlier expressed phenotypes
Poultry Science 94(4): 772-780, 2015.

7/5/19
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Material & Methods

« Sample sizes (training and test sets):
- Line 1 (90 + 90), Line 2 (102 + 103)
* Traits:
- Weekly body weight (birth to 35 d, BW1 to BW6)
- Weight gain (0-35 and 21-35 d, W61 and WG2)
- Age at first egg (AFE)
- Egg quality traits, four time points: 125, 170, 215, 260 d
Egg Weight - Ew, Yolk Weight - Y, Egg Shell Weight - ES
Egg White Weight - EW, Egg Specific Gravity - DENS
- Partial Egg Production (35-80d, EP1) and
Total egg production (35-260d, TEP)

Material & Methods

* Multiple regression analysis
— Step-wise OLS

« Bayesian Networks
— MB detection 1

A

« Artificial Neural Networks

— Machine learning tool o map
relationship between inputs
and output

7/5/19
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* Structure Learning (L1): Given EP1, TEP is independent from

the other traits
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Causal Inference

“T wish they didn't turn
on that seatbelt sign so
much! Every fime they
do, it gets bumpy.”

Association vs. Causation

"z is associated with y" @

N\
O—® @— & O

"z causes y" "y causes z" "x causes z & y"
alcohol and # police officers water consumption
drunkenness and criminality and dehydration

7/5/19
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Confounders

Selection Bias
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“Alcohol & Fats [

t’s a relief to know the truth
all those conflicting medical

es.
- The Japanese eat very httle' fat
g nﬁ'et fewer heart attacks than

Randomized Experiments

= Testing the effect of zony S 0

© O,
7\ N\
O—O O—©

Causal relationship between Effect of randomization
variables applied fo variable z

19



Observational Studies

= Lack of randomization due
to legal, ethical, or logistics
reasons

= Potential bias and
confounding effects

= Example:
Parenthood and
life expectancy

Outline

- Usefulness and Applications

- Causal inference

7/5/19
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The IC Algorithm

(Inductive Causation; Verma and Pearl 1991)

Step 1: Undirected graph (search for d-separations;
connect adjacent variables)

Step 2: Partially oriented graph (search for colliders)

Step 3: Attempt to orient remaining undirected edges such

that no new colliders or cycles are generated

Step 1: skeleton; Step 2: V structures

Applications: Causal Inference

e * Arrows: Causal interpretation;

consequences of intervention

Q  Direct, indirect and total effects

« Additional assumptions: Markov
condition, faithfullness and causal
sufficiency assumptions

7/5/19
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Applications: Causal Inference

* Prediction of the result of an intervention (gene
knockout, management decision, freatment effect)

- Estimation of causal effects:
If the causal DAG is known and the distribution is

multivariate Gaussian, then the causal effect (p) of X
on Y can be estimated from the regression :

E[Y] = m + pX + pa(X)

* i.e., DAG determines adjustment variables
[backdoor adjustment; Pearl (1993)]

GENOMIC SELECTION N

The Causal Meaning of Genomic Predictors and How
It Affects Construction and Comparison of
Genome-Enabled Selection Models

Bruno D. Valente,**' Gota Morota,' Francisco Peiiagaricano,' Daniel Gianola,*** Kent Weigel,*

and Guilherme J. M. Rosa'*

*Departments of Dairy Science, fAnimal Sciences, and *Biostatistics and Medical Informatics, University of Wisconsin, Madison,
Wisconsin 53706

Genetics, Vol. 200, 483-494  June 2015
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Example 1: Simulation Settings

= Consider the following causal network involving a
Genetics component (G)
Disease incidence  , and @
Milk yield (M) N\

®O—®
= The following model was

used to simulate data:

Var-uM]=1.0
Yp =U,+¢ -
Yy =Wy 1.5y, +u, +e, o
€y 0 1

Example 1: Model Comparison

= Which model is better for the analysis of Disease?

Model 1: yD=M+ByM+sz+e @
Model 2: Y, =u+z'm+e @ \.@

= Results:
Cor(y,,¥p) Cor(y,,z' ) Var(z') 6’
Model 1: [] I®l L W) [e
Model 2: LM | | ol | [}

L L L L L LI D B | T TrrrrTrT

0.0 04 0.8 -01 01 03 05 0.00 0.10 03 05 07 09
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Example 2: Simulation Settings

= Consider the following causal network involving a

(9)

Genetics component (G)

Disease incidence  , and
Milk yield (M) /
()—®
= The following model was
used to simulate data: I u
Var| U ]=[ 03 025 ]
Yp=Up+tUy+€, , u 025 1
{yM=uM—1.5yD+uM+eM with -
var| ]=[ 0.7 0 ]
Cu 0 1

Example 2: Model Comparison

= Which model is better for the analysis of Disease?

Model 1: yD=M+ByM+sz+e
Model 2: Y, =u+z' m+e

/N
Old

= Results:
Cor(y,,¥p) Cor(y,,z' ) Cor(u,,z'h) 6’
Model 1: [T e [T e Io
Model 2: 1811 LN " ¥
1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1

05 06 07 08 06 07 08 03

045 055 065
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Example 3: Simulation Settings

= Consider the following causal network involving a

Genetics component (G) @
Farm effect (F), and / \
Disease incidence

®—®

= The following model was
used to simulate data:

Yp =Mp+F+u, +e, Up -~ i I I
with Varlu, | =0.30 A ; l
Var[eD]=0,70 3 2 4 1(:» 12 3

Example 3: Model Comparison
= Which model is better for the analysis of Disease?

{Model .Yy =u+F+z'm+e

T /@
Model 2: Y, =u+z m+e N\
©—0

= Results:
Cor(y,,¥p) Cor(y,,z' ) Cor(u,,z'h) Var(z'th)
Model 1: el [T L] ’o
Model 2: [L11MI | w| e .
T T T T T T T T 1T T T 1T 17 T T T T
0.70 0.80 00 02 04 06 038 -08 -04 0.0 04 0.0 05 1.0 15
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Example: Genetical Genomics

* F, Population (Duroc x Pietran)
*+ Genetical Genomics (eQTL Mapping)

1,000 F, progeny
25 growth traits
30 carcass traits
144 microsatellite loci
SNPs and Microarrays

S
Steibel JP, Bates RO, Rosa GJM, et al. Genome-wide linkage analysis of

global gene expression in loin muscle tissue identifies candidate genes
in pigs. PLoS One 6(2): e16766, 2011.
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Global plot of physical position of oligonucleotide probe versus linkage position of eQTL
across the pig genome. Points along the gray curve represent local eQTL (most likely cis-
acting), while points off the line represent trans-acting eQTL.
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pQTL Mapping Chré
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Exploring Causal Networks

« Incremental Association Markov Blanket (IAMB)
algorithm (Tsamardinos et al. 2003)

* bnlearnR package (Scutari 2010)

+ Jackknife resampling

Peflagaricano F, Valente BD, Steibel JP, Bates RO, Ernst CW, Khatib H and
Rosa GJM. Exploring causal networks underlying fat deposition and
muscularity in pigs through the integration of phenotypic, genotypic and
transcriptomic data. BMC Systems Biology 9:58, 2015.

Causal network. Network inferred

without using any prior information.

7/5/19
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Causal network. Network inferred
after incorporating QTL — AKR7A2
as prior knowledge.

100 (98)

97 (97) ‘m 97 (97)

100 (85)

56 (47)

Evaluation of the stability of the network
using Jackknife resampling: Percentage of 100 (85)
times that a given arc was presented (with

the same direction) in the resampled networks.

7/5/19
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0.37 (0.10)

0.12 (0.16 w
o q0.64 (0.15)
0.33 (0.16!m 20.33 (0.11)

NCDER T
-0.67 (0.20) 1.19 (1.03)
<>

Estimates of causal effects. ML estimates
and standard errors (within parenthesis),
conditional on structure of the network.

0.51 (1.03)

-1.12 (1.02)

Discussion

= ZNF24 encodes a member of the family of Kriippel-like zinc finger
transcription factors and has critical roles in cell proliferation and
differentiation

= The network model predicts that modulation of ZNF24 expression level
should lead to a change in the expression of SSX2IP

= Recently, Li et al. (2009) evaluated potential ZNF24 target genes. For
this purpose, the authors transiently overexpressed and silenced ZNF24
and then applied microarray assay in order to identify target genes.

= Notably, the overexpression of ZNF24 significantly decreased the
expression of SSX2IP as predicted by our network. In addition, the
silenced of ZNF24 resulted in a significant overexpression of SSX2IP (Li
et al. 2009)

Li JZ, Chen X, Gong XL, Liu Y, Feng H, Qiu L, Hu ZL and Zhang JP. A transcript
profiling approach reveals the zinc finger transcription factor ZNF191 is a
pleiotropic factor. BMC Genomics 10, 2009.

7/5/19
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Instrumental Variable (IV)

?

—) cancer

Bos =(X"X)'XTY

B =(Z"X)"'Z"Y

Instrumental Variable (IV)

?
l/\y

——> cancer

Two-stage estimation:

A

1. RegressXonZ: 8=(Z"Z)"'Z"X and save
predicted values X =Z8=27Z(Z"Z)"'Z"X =P, X
2. Regress Y on X: Pogs =(X"P,X)'X"P,Y

7/5/19
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Mendelian
Randomization ¢

= Assumptions underlying the use of an instrumental
variable (and the Mendelian randomization strategy):

- The instrumental variable (genotype) is associated with
the 'exposure’ of interest
- The genotype is independent of any confounding variable

- The association between genotype and outcome exists only
because the genotype is associated with the exposure

Concluding Remarks

> Graphical Models: visualization/descriptive tool,
prediction, causality, hypothesis generator

> Data driven + prior biological knowledge

» Causality inference: Markov condition, faithfullness
and causal sufficiency assumptions

> Instrumental variable; Mendelian randomization

Rosa GIM, Valente BD, de los Campos G, Wu X-L, Gianola D and Silva MA.
Inferring causal phenotype networks using structural equation models.

Genetics Selection Evolution 43: 6, 2011.
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Software
bnlearn .
deal The TETRAD Project
R Egﬂ% Causal Models and Statistical Data

e gl oo

The Graphical Models Toolkit

Direct Graphical Models
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