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Estimation of Basic 
Genetic Parameters



Notation

Expected Value (Mean), Variance, and Covariance:

Example:



Heritability
Narrow vs. broad sense

Broad sense: H" = ⁄V& V' = ⁄σ&" σ'"

Slope of midparent - offspring regression
(sexual reproduction)

Slope of a parent - cloned offspring  regression
(asexual reproduction)

When one refers to heritability, the default is narrow-sense, h2

h2 is the measure of (easily) usable genetic 
variation under sexual reproduction

Narrow sense: h" = ⁄V+ V' = ⁄σ+" σ'"



Why h2 instead of h?
Blame Sewall Wright, who used h to denote the correlation 
between phenotype and breeding value.  Hence, h2 is the total 
fraction of phenotypic variance due to breeding values

Heritabilities are functions of populations
• Heritability values only make sense in the context of the 

population for which it was measured
• Heritability measures the standing genetic variation of a 

population
• A zero heritability DOES NOT imply that the trait is not 

genetically determined

r",$ =
σ",$
σ"'σ$'

= σ"'
σ"σ$

= σ"
σ$

= h



Heritabilities are functions of the distribution of
environmental values (i.e., the universe of E values)

- Decreasing VP increases h2.

- Heritability values measured in one environment 
(or distribution of environments) may not be valid 
under another

- Measures of heritability for lab-reared 
individuals may be very different from 
heritability in nature



Heritability and the Prediction of Breeding Values

If P denotes an individual’s phenotype, then best linear 
predictor of their breeding value A is

The residual variance is also a function of h2:

The larger the heritability, the tighter the distribution of 
true breeding values around the value h2(P - µP) predicted 
by an individual’s phenotype.

A = σ (P,A)
σ P
2 (P −µP )+ e = h

2 (P −µP )+ e

σ e
2 = (1− h2 )σ P

2



Heritability and Population Divergence

Heritability is a completely unreliable predictor of 
long-term response

Measuring heritability values in two populations 
that show a difference in their means provides 
no information on whether the underlying 
difference is genetic



Sample Heritabilities

h2

People Height 0.80
Serum IG 0.45

Pigs Back-fat 0.70
Weight gain 0.30
Litter size 0.05

Fruit Flies Abdominal Bristles 0.50
Body size 0.40
Ovary size 0.30
Egg production 0.20

Traits more 
closely associated 
with fitness tend 
to have lower 
heritabilities





Expected Value and 
Variance



Expected Value (Mean)

Notation: E[X]= µX

• Discrete random variable, finite case:

E[X]= xipi
i=1

k

∑ pi = Pr[X = xi ], where                            (weighted average)

E[X]= 1
k

xi
i=1

k

∑ (simple average)

p1 = p2 =…= pk =1/ kIf                                         then:



Expected Value

• Discrete random variable, countable case:

E[X]= xipi
i=1

∞

∑ E[g(X)]= g(xi )pi
i=1

∞

∑and

• Continuous random variable:

E[X]= xf(x)dx
−∞

∞

∫ and E[g(X)]= g(x)f(x)dx
−∞

∞

∫

f(x)where         : probability density function



Expected Value

• Properties:

E[cX]= cE[X]
E[c]= cConstant c:

E[X +Y]= E[X]+E[Y]

E[X | Y = y]= xPr(X = x | Y = y)∑
E[X]= E[E[X | Y]]



Variance

Notation: Var[X]= σX
2

• Definition: expected value of the square 

deviation from the mean, i.e. Var[X]= E[(X −µ)2 ]

Var[X]= E[(X−E[X])2 ]
           = E[X2 − 2XE[X]+ (E[X])2 ]
           = E[X2 ]− 2E[X]E[X]+ (E[X])2

           = E[X2 ]− (E[X])2

           = E[X2 ]−µ2



Variance

• Discrete random variable:

Var[X]= (xi −µ)
2 pi

i=1

∞

∑ = xi
2pi

i=1

∞

∑ −µ2

• Continuous random variable:

Var[X]= (x −µ)2 f(x)dx
−∞

∞

∫ = x2f(x)dx
−∞

∞

∫ −µ2



Variance

• Properties:

Var[c +X]= Var[X]
Var[c]= 0Constant c:

Var[X +Y]= Var[X]+Var[Y]+ 2Cov[X,Y]

Var[cX]= c2Var[X]

Var[X −Y]= Var[X]+Var[Y]− 2Cov[X,Y]

Var[X]= EY[Var[X | Y]]+VarY[E[X | Y]]



Covariance

Notation: Cov[X,Y]= σX,Y

Cov[X, Y]= E[(X −µX )(Y−µY )]
                = E[XY]−µXµY

Correlation

Notation: Corr[X,Y]= ρX,Y

ρX,Y =
Cov[X,Y]
σXσY



ANOVA: Analysis of Variance
• Partitioning of trait variance into within- and among-

group components

• Two key ANOVA identities
– Total variance = between-group variance + within-

group variance
• Var(T) = Var(B) + Var(W)

– Variance(between groups) = covariance (within 
groups)

– Intraclass correlation, t = Var(B)/Var(T)

• The more similar individuals are within a group (higher 
within-group covariance), the larger their between-
group differences (variance in the group means)



Situation 1

Var(B) = 2.5
Var(W) = 0.2
Var(T) = 2.7

Situation 2

Var(B) = 0
Var(W) = 2.7
Var(T) = 2.7

t = 2.5/2.7 = 0.93 t = 0

4321 4321



Phenotypic Resemblance Between Relatives

Relatives Covariance Regression (b) or 
correlation (t)

Offspring and 
one parent

Offspring and 
mid-parent

Half sibs

Full sibs

t =

1
2
VA +

1
4
VD +VEc
VP

t = 1
4
VA
VP

b = 1
2
VA
VP

b = VA
VP

1
2
VA

1
2
VA

1
4
VA

1
2
VA +

1
4
VD +VEc



Why cov(within) = variance(among)?

• Let zij denote the jth member of group i.
– Here zij = u + gi + eij

– gi is the group effect
– eij the residual error

• Covariance within a group Cov(zij,zik ) 
= Cov(u + gi + eij, u + gi + eik) 
= Cov(gi, gi) as all other terms are uncorrelated

– Cov(gi, gi) = Var(g) is the among-group variance



Estimation: One-way ANOVA

Simple (balanced) full-sib design:  N full-sib families, 
each with n offspring:  One-way ANOVA model

zij = m + fi + wij

Trait value in 
sib j from 
family i

Common mean

Effect for family i;
deviation of mean of i from 

the common mean

Deviation of sib j 
from the family 

mean



Covariance between members of the same group 
equals the variance among (between) groups

Hence, the variance among family effects equals the 
covariance between full sibs

σ f
2 =σ A

2 / 2+σ D
2 / 4+σ Ec

2

Cov(Full Sibs) =σ (zij , zik )
                   =σ [(µ + fi +wij ),(µ + fi +wik )]
                   =σ ( fi , fi )+σ ( fi ,wik )+σ (wij , fi )+σ (wij ,wik )

                   =σ f
2



The within-family variance  σ2
w = σ2

P - σ2
f,

σ w(FS)
2 =σ P

2 − (σ A
2 / 2+σ D

2 / 4+σ Ec
2 )

         =σ A
2 +σ D

2 +σ E
2 − (σ A

2 / 2+σ D
2 / 4+σ Ec

2 )
         = (1 / 2)σ A

2 + (3 / 4)σ D
2 +σ E

2 −σ Ec
2



One-way ANOVA: N families 
with n sibs, T = Nn

Factor Degrees of 
freedom, df Sum of squares (SS) Mean 

squares (MS) E[MS]

Among 
family N-1 SSf/(N-1) σ2

w + n σ2
f

Within 
family T-N SSw/(T-N) σ2w

SSf = n (zi − z)
2

i=1

N

∑

SSw = (zij − zi )
2

j=1

n

∑
i=1

N

∑



Appendix: Calculating E(MS)

SSf = n (zi − z)
2

i=1

N

∑ =
1
n

z
i•

2 −
i=1

N

∑ 1
T
z

••

2

SSw = (zij − zi )
2

j=1

n

∑
i=1

N

∑ = zij
2

j=1

n

∑
i=1

N

∑ −
1
n

z
i•

2

i=1

N

∑

zij =m + fi +wij with

m fixed→ E[m]=m, E[m2 ]=m2, Var[m]= 0

fi ~
iid

N(0,σ f
2 )→ E[fi ]= 0, E[fi

2 ]= Var[fi ]= σ f
2

wij ~
iid

N(0,σw
2 )→ E[wij]= 0, E[wij

2 ]= Var[wij]= σw
2

Cov[fi, fi' ]=Cov[fi, wij]=Cov[wij, wi' j' ]= 0

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

Model:

Sum of Squares:

zi• = zij
j=1

n

∑

z•• = zij
j=1

n

∑
i=1

N

∑



Key Expectations: E zij
2

j=1

n

∑
i=1

N

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,   E 1

T
z

••

2⎡

⎣⎢
⎤

⎦⎥
,  and E 1

n
z

i•

2

i=1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥

E zij
2

j=1

n

∑
i=1

N

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= E zij⎡⎣ ⎤⎦

2

j=1

n

∑
i=1

N

∑ = E m + fi +wij
⎡⎣ ⎤⎦

2

j=1

n

∑
i=1

N

∑

= E m2 + fi
2 +wij

2 + 2mfi + 2mwij + 2fiwij
⎡⎣ ⎤⎦

j=1

n

∑
i=1

N

∑

= m2 +E[fi
2 ]+E[wij

2 ]+ 2mE[fi ]+ 2mE[wij]+ 2E[fi ]E[wij]( )
j=1

n

∑
i=1

N

∑

= m2 +σ t
2 +σw

2( )
j=1

n

∑
i=1

N

∑

= Tm2 +Tσ t
2 +Tσw

2



E 1
T
z••
2⎡

⎣⎢
⎤

⎦⎥
=
1
T
E zij

j=1

n

∑
i=1

N

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=
1
T
E (m + fi +wij)

j=1

n

∑
i=1

N

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

=
1
T
E Tm + n fi

i=1

N

∑ + wij
j=1

n

∑
i=1

N

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

=
1
T
E T2m2 + n2 fi

i=1

N

∑
⎛

⎝
⎜

⎞

⎠
⎟

2

+ wij
j=1

n

∑
i=1

N

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

+DPs
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

=
1
T
(T2m2 + n2Nσ f

2 +Tσw
2 + 0)

= Tm2 + nσ f
2 +σw

2



E 1
n

z
i•

2

i=1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥=
1
n

E[z
i•

2 ]= 1
n

E zij
j=1

n

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥i=1

N

∑
i=1

N

∑

=
1
n

E nm + nfi + zij
j=1

n

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥i=1

N

∑

=
1
n

E n2m2 + n2fi
2 + zij

j=1

n

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

+DPs
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

i=1

N

∑

=
1
n

(n2m2 + n2σ2f
2 + nσ2w

2 + 0)
i=1

N

∑

= Tm2 +Tσ2f
2 +Nσ2w

2



E[MSf ]=
1
N−1

E[SSf ]=
1
N−1

E 1
n

z
i•

2 −
i=1

N

∑ 1
T
z

••

2
⎡

⎣
⎢

⎤

⎦
⎥

Expected MS

=
1
N−1

(Tm2 +Tσ2f
2 +Nσ2w

2 )− (Tm2 + nσ f
2 +σw

2 )⎡⎣ ⎤⎦

=
1
N−1

n(N−1)σ2f
2 + (N−1)σ2w

2⎡⎣ ⎤⎦= nσ
2
f
2 +σ2w

2

E[MSw]=
1

T−N
E[SSw]=

1
T−1

E zij
2

j=1

n

∑
i=1

N

∑ −
1
n

z
i•

2

i=1

N

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
1

T−N
E (Tm2 +Tσ t

2 +Tσw
2 )− (Tm2 +Tσ2f

2 +Nσ2w
2 )⎡⎣ ⎤⎦

=
1

T−N
(T−N)σ2w

2 = σ2w
2



Var( f ) =
MSf −MSw

n

Estimating the variance components:

Since

2Var(f) is an upper bound for the additive variance

Var(w) =MSw

Var(z) =Var( f )+Var(w)

σ f
2 =σ A

2 / 2+σ D
2 / 4+σ Ec

2



Assigning standard errors ( = square root of Var)

Fun fact: Under normality, the (large-sample) variance 
for a mean-square is given by

σ 2 (MSx ) ≅
2(MSx )

2

dfx + 2

Var[Var(w(FS))] =Var(MSw) ≅
2(MSw)

2

T − N + 2

Var[Var( f )] =Var
MSf −MSw

n
⎡

⎣
⎢

⎤

⎦
⎥

                    ≅ 2
n2

(MSf )2

N +1
+

(MSw )2

T − N + 2

⎡

⎣
⎢

⎤

⎦
⎥



Estimating heritability

tFS =
Var( f )
Var(z)

=
1
2
h2 +σ D

2 / 4+σ Ec
2

σ z
2

Hence, h2 ≤ 2 tFS

An approximate large-sample standard 
error for h2 is given by

SE(h2 ) ≅ 2(1− tFS )[1+ (n−1)tFS ] 2 / [Nn(n−1)]



Worked Example

Factor df SS MS EMS

Among-families 9 SSf = 405 45 σ2
w  + 5 σ2

f

Within-families 40 SSw = 800 20 σ2
w

10 full-sib families, each with 5 offspring are measured

Var( f ) =
MSf −MSw

n
=
45− 20
5

= 5

Var(w) =MSw = 20

Var(z) =Var( f )+Var(w) = 25

SE(h2 ) ≅ 2(1− 0.4)[1+ (5−1)0.4] 2 / [50(5−1)] = 0.312

VA < 10

h2 < 2 (5/25) = 0.4



Full sib-half sib design: Nested ANOVA

1

3

o2

o

on

...

o 1
*
*

*

*

2

3

o2

o

on

...

o 1
*
*

*

*

M

3

o2

o

on

...

o 1
*
*

*

*

1

. . .

1

3

o2

o

on

...

o 1
*
*

*

*

2

3

o2

o

on

...

o 1
*
*

*

*

M

3

o2

o

on

...

o 1
*
*

*

*

N

Full-sibs

Half-sibs



Estimation: Nested ANOVA

Balanced full-sib / half-sib design:  N males (sires) are 
crossed to M dams each of which has n offspring: 
Nested ANOVA model

Value of the 
k-th offspring 
from the j-th
dam for sire i

Overall mean

Effect of sire i; deviation
of mean of i’s family from

overall mean

Effect of dam j of sire i; 
deviation of mean of dam j from 

sire and overall mean 

Within-family deviation of 
kth offspring from the 
mean of the ij-th family 

zijk = m + si + dij + wijk



Nested ANOVA Model

s2
s = between-sire variance = variance in sire family means

s2
d = variance among dams within sires = variance of dam 

means for the same sire

s2
w = within-family variance

s2
T = s2

s + s2
d + s2

w

zijk = m + si + dij + wijk



Nested ANOVA: N sires crossed to 
M dams, each with n sibs, T = NMn

Factor df SS MS E[MS]
Sires N-1 SSs SSs/(N-1)

Dams(Sires) N(M-1) SSd SSd/[N(M-1)]

Sibs(Dams) T-NM SSw SSw/(T-NM)

σ w
2 + nσ d

2 +Mnσ s
2

σ w
2 + nσ d

2

σ w
2

SSs =Mn (zi − z )
2

i=1

N

∑

SSd = n (zij − zi )
2

j=1

M

∑
i=1

N

∑ SSw = n (zijk − zij )
2

k=1

n

∑
j=1

M

∑
i=1

N

∑

where:

and



Estimation of sire, dam, and family variances:

Var(s) = MSs −MSd
Mn

Var(d) = MSd −MSw
n

Var(e) =MSw

Translating these into the desired variance components:

� Var(Total) = Var(between FS families) + Var(within FS)

� Var(Sires) = Cov(Paternal half-sibs)

→σ w
2 =σ z

2 −Cov(FS)

σ d
2 =σ z

2 −σ s
2 −σ w

2 =σ (FS)−σ (PHS)



Summarizing:

Expressing these in terms of the genetic and 
environmental variances:

σ w
2 =σ z

2 −σ (FS)

σ s
2 =σ (PHS) σ d

2 =σ z
2 −σ s

2 −σ w
2

    =σ (FS)−σ (PHS)

σ w
2 ≅

σ A
2

2
+
3σ D

2

4
+σ Es

2

σd
2 ≅

σA
2

4
+
σD
2

4
+σEc

2σ s
2 ≅

σ A
2

4



Intraclass correlations and estimating heritability

Note that 4tPHS = 2tFS implies no dominance or 
shared family environmental effects

tPHS =
Cov(PHS)
Var(z)

=
Var(s)
Var(z)

→ 4tPHS = h
2

tFS =
Cov(FS)
Var(z)

=
Var(s)+Var(d)

Var(z)
→ h2 ≤ 2tFS



Worked Example: N = 10 sires, M = 3 dams, n = 10 sibs/dam

Factor df SS MS E[MS]
Sires 9 4,230 470

Dams(Sires) 20 3,400 170

Within Dams 270 5,400 20

σ w
2 +10σ d

2 +30σ s
2

σ w
2 +10σ d

2

σ w
2

σ w
2 =MSw = 20

σ d
2 =

MSd −MSw
n

=
170− 20
10

=15

σ s
2 =

MSs −MSd
Nn

=
470−170
30

=10

σ P
2 =σ s

2 +σ d
2 +σ w

2 = 45

σ d
2 =15= (1 / 4)σ A

2 + (1 / 4)σ D
2 +σ Ec

2

            =10+ (1 / 4)σ D
2 +σ Ec

2

σ A
2 = 4σ s

2 = 40

h2 = σ A
2

σ P
2 =

40
45

= 0.89

σ D
2 + 4σ Ec

2 = 20



Beetle Example

Factor df SS MS

Sires 23 33,983 1,477.5

Dams(Sires) 86 64,441 749.3

Sibs(Dams) 439 77,924 177.5

Messina and Fry (2003): 24 males each mated to 4 or 5 
dams (different for each sire), and 5 female progeny 
from each dam were measured for two traits, mass 
eclosion and lifetime fecundity 

beetle example

ANOVA for fecundity



Beetle Example

Expected Mean Squares (EMS)
Sires:      σR

2 + nσD
2 + nqσS

2

Dams(Sires): σR
2 + nσD

2

Sibs(Dams):  σR
2

Approximately n = 5 progeny by mating, and an average 
of q = 4.58 dams per sire, so:

σR
2 = 177.5

σD
2 = (749.3 – 177.5)/5 = 114.36

σS
2 = (1,477.5 - 749.3)/22.9 = 31.80

• Note: ANOVA method works only with balanced or 
slightly unbalanced data sets; otherwise ML or 
REML should be preferred 



Beetle Example

Estimation of genetic (causal) parameters:
σS

2 = VA/4
σD

2 = VA/4 + VD/4 + VEc
σR

2 = VA/2 + 3VD/4 + VEs

For simplicity, assuming VD = 0, the following 
estimates are obtained for the causal components:

VA= 4σS
2 = 127.2

VEc = σD
2 - σS

2 = 82.56
VEs = σR

2 – 2σS
2 = 113.9

Heritability: h2 = VA/(σR
2 + σD

2 + σS
2) = 0.393



Parent-offspring Regression

Single parent - offspring regression

The expected slope of this regression is:

Residual error variance (spread around expected values)

zoi = µ + bo|p (zpi −µ)+ ei

E(bo|p ) =
σ (zo, zp )
σ 2 (zp )

≅
(σ A

2 / 2)+σ (Eo,Ep )
σ z
2 =

h2

2
+
σ (Eo,Ep )

σ z
2

σ e
2 = 1− h

2

2
⎛

⎝
⎜

⎞

⎠
⎟σ z

2



E(bo|p ) =
σ (zo, zp )
σ 2 (zp )

≅
(σ A

2 / 2)+σ (Eo,Ep )
σ z
2 =

h2

2
+
σ (Eo,Ep )

σ z
2

The expected slope of this regression is:

Shared environmental values

To avoid this term, typically regressions are 
male-offspring, as female-offspring more 

likely to share environmental values



zoi = µ + bo|MP
zmi + z fi
2

−µ
⎛

⎝
⎜

⎞

⎠
⎟+ ei

Midparent-offspring 
regression:

The expected slope of this regression is h2

Residual error variance (spread around expected values)

bo|MP =
Cov[zo,(zm + z f ) / 2]

Var[(zm + z f ) / 2]

       =
[Cov(zo, zm )+Cov(zo, z f )] / 2

[Var(z)+Var(z)] / 4

       =
2Cov(zo, zp )

Var(z)
= 2bo|p

σ e
2 = 1− h

2

2
⎛

⎝
⎜

⎞

⎠
⎟σ z

2



Standard Errors

Single parent-offspring regression, N parents, each with n offspring

Var(bo|p ) ≅
n(t − bp|p

2 )+ (1− t)
Nn

Square regression slope

Sib correlation  t = 

Total number 
of offspring

tHS = h
2 / 4

tFS = h
2 / 2+σ D

2 +σ Ec
2

σ z
2

for half-sibs

for full-sibs

Var(h2 ) =Var(2bo|p ) = 4Var(bo|p )



Midparent-offspring regression, 
N sets of parents, each with n offspring

• Midparent-offspring variance half that of single 
parent-offspring variance

Var(h2 ) =Var(bo|MP ) ≅
2[n(tFS − bo|MP

2 / 2)+ (1− tFS )]
Nn

Var(h2 ) =Var(2bo|p ) = 4Var(bo|p )



Estimating Heritability in Natural Populations

Often, sibs are reared in a laboratory environment, 
making parent-offspring regressions and sib ANOVA 
problematic for estimating heritability

Let b’ be the slope of the regression of the values of 
lab-raised offspring regressed in the trait values of 
their parents in the wild

A lower bound can be placed of heritability using 
parents from nature and their lab-reared offspring,

hmin
2 = (b'o|MP )

2 Varn (z)
Varl (A)

Trait variance in nature

Additive variance in lab



Why is this a lower bound?

(b'o|MP )
2 Varn (z)
Varl (A)

=
Covl,n (A)
Varn (z)

⎡

⎣
⎢

⎤

⎦
⎥

2
Varn (z)
Varl (A)

= γ 2hn
2

γ =
Covl,n (A)

Varn (A)Varl (A)

Covariance between 
breeding value in nature 

and BV in lab

where

is the additive genetic covariance 
between environments and hence ϒ2 ≤ 1



Defining H2 for Plant Populations
Plant breeders often do not measure individual plants 
(especially with pure lines), but instead measure a plot 
or a block of individuals. This can result in inconsistent 
measures of H2 even for otherwise identical populations

zijkl =Gi +Ej +GEij + pijk + eijkl

Genotype i

Interaction between 
genotype i and environment j

Environment j Effect of plot k for 
genotype i in 
environment j

Deviations of 
individual plants 

within plots



Hence, VP, and hence H2, depends 
on our choice of e, r, and n

e = number of environments
r = (replicates) number of plots/environment
n = number of individuals per plot

zijkl =Gi +Ej +GEij + pijk + eijkl

σ 2 (zi ) =σG
2 +σ E

2 +
σGE
2

e
+
σ p
2

er
+
σ e
2

ern




