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OUTLINE

• The General Linear Model
• Linear Mixed Models
• The ‘Animal Model’
• EBV and Prediction Accuracy
• Multiple Random Effects



General Linear Model
(Fixed Effects Model)

y = Xβ+ ε
responses

design/incidence 
matrix (known)

overall mean + fixed 
effects parameters

residuals

),0(N~      )I,(N~ 2
iid

i
2

n se®s0ε

_ Fixed effect: levels included in the study represent
all levels about which inference is to be made. Fixed
effects models: models containing only fixed effects



Example 1
Experiment to compare growth performance of pigs 
under two experimental groups (Control and Treatment), 
with three replications each. 

Control Treatment

53 61
46 66
58 57

Model: 

ijiij ey +d+µ=

yij: weight gain of pig j of
group i

µ: constant; general mean

di: effect of group i

eij: residual term



Matrix Notation

Control Treatment
53 61
46 66
58 57
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Flowering time (days, log scale)
of Brassica napus according to
genotype in specific locus, such
as a candidate gene

Genotype
qq Qq QQ
3.4 2.9 3.1
3.7 2.5 2.6
3.2ijiij ey +µ=

yij: flowering time of replication j (j = 1,…, ni) of 
genotype i (i = qq, Qq and QQ)

µi: expected flowering time of plants of genotype i
eij: residual (environment and polygenic effects)

Model: 

Example 2



_ The expected phenotypic values µi, however, can be
expressed as a function of the additive and dominant
effects

ijiij ey +µ=

Expected phenotypic value according to the 
genotype on a specific locus.



The model can be
written then as:

µ: constant (mid-point flowering time between 
homozygous genotypes)

xij: indicator variable (genotype), coded as -1, 0 and 1 
for genotypes qq, Qq and QQ

a and b: additive and dominance effects

ijijijij e|)x|1(xy +d-+a+µ=

In matrix notation:
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Least-Squares Estimation

y =Xβ+ ε

ε ~ (0, Inσ
2 )   →    εi ~

iid
(0,σ2 )

(β̂)

RSS= (ε̂i )
2

i=1

n

∑ = ε̂Tε̂ = (y−Xβ̂)T (y−Xβ̂)

An estimate       of the vector β can be obtained by the method of 
least-squares, which aims to minimize the residual sum of squares, 
given (in matrix notation) by:

β̂ = (XTX)−1XTy

Taking the derivatives and equating to zero, it can be shown that 
the least-squares estimator of β is:

E[β̂]= β Var[β̂]= (XTX)−1σ2Ü It can be shown that                 and   



Var(εi ) = σ i
2 =wiσ

2

Var(ε) =Wσ2

β̂WLS = (X
TW−1X)−1XTW−1y

GSS= εTε = (y−Xβ)TV−1(y−Xβ)

The estimator                                  is called ordinary least 
squares (OLS) estimator, and it is indicated only in situations 
with homoscedastic and uncorrelated residuals

If the residual variance is heterogeneous (i.e.,                            ), 
the residual variance matrix can be expressed as                   , 
where W is a diagonal matrix with the elements wi, a better 
estimator of β is given by: 

which is generally referred to as weighted least squares (WLS) 
estimator.

Furthermore, in situations with a general residual variance-
covariance matrix V, including correlated residuals, a 
generalized least squares (GLS) estimator                                             
is obtained by minimizing the generalized sum of squares, given 
by: 

Least-Squares Estimation

β̂GLS = (X
TV−1X)−1XTV−1y

β̂OLS = β̂ = (X
TX)−1XTy



Maximum Likelihood Estimation

Likelihood Function: any function of the model parameters 
that is proportional to the density function of the data 
Hence, to use a likelihood-based approach for estimating 
model parameters, some extra assumptions must be made 
regarding the distribution of the data
In the case of the linear model                    , if the residuals 
are assumed normally distributed with mean vector zero and 
variance-covariance matrix V, i.e.                            , the 
response vector y is also normally distributed, with 
expectation                     and variance  

y =Xβ+ ε

ε ~ MVN(0,V)

Xβy =][E Vy =][Var



The distribution of y has a density function given by:

so that the likelihood and the log-likelihood functions 
can be expressed respectively as:

and
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Maximum Likelihood Estimation



Assuming V known, the likelihood equations for β are 
given by taking the first derivatives of l(b,V) with 
respect to β and equating it to zero

The maximum likelihood estimator (MLE) for β is 
then shown to be:

Note: Under normality the MLE coincides with the 
GLS estimator discussed previously

In addition, it is shown that:

yVXXVXββ 1T11T )(ˆ)(MLE ---==

Maximum Likelihood Estimation

))(,(MVN~ˆ 11T -- XVXββ



INTRO to MIXED MODELS



Two-stage Analysis of Longitudinal Data
Step 1

yij = β0i +β1izij +β2izij
2 + εij

Supposed a series of longitudinal data (e.g., repeated 
measurements on time) on n individuals. Let yij
represent the observation j (j = 1,2,…,ni) on individual i 
(i = 1,2,…,n), and the following quadratic regression of 
measurements on time (zij) for each individual:

where β0i, β1i and β2i are subject-specific regression 
parameters, and εij are residual terms, assumed 
normally distributed with mean zero and variance σε2



yi =Ziβi + εi

yi = (yi1, yi2,…, yini )
T

In matrix notation such subject-specific regressions 
can be expressed as:

where                                         ,                                  ,

and εi = (εi1,εi2,…,εini )
T ~ N(0, Iσε

2 )

βi = (β0i,β1i,β2i )
T

Zi =

1 zi1 zi1
2

1 zi2 zi2
2
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β̂i = (Zi
TZi )

−1Zi
Tyi

Under these specifications, the least-squares 
estimate of βi is:

è Note that this is also the maximum likelihood 
estimate of βi

Such estimates can be viewed as summary statistics 
for the longitudinal data, the same way one could use 
area under the curve (AUC), or peak (maximum value 
of yij), or mean response.



β̂i =Wiβ+ui

Two-stage Analysis of Longitudinal Data
Step 2

Supposed now we are interested on the effect of 
some other variables (such as gender, treatment, 
year, etc.) on the values of βi

Such effects could be studied using a model as:

where ui ~ N(0,D), which is an approximation for the 
model:

βi =Wiβ+ui (2)



Single-stage Analysis of Longitudinal Data

The two step-analysis described here can be merged 
into a single stage approach by substituting (2) in (1):

which can be expressed as:

where Xi = ZiWi. By concatenating observations from 
multiple individuals, we have the following mixed 
model: 

y =Xβ+Zu+ ε

yi =Xiβ+Ziui + εi

yi =Zi[Wiβ+ui ]+ εi



Linear Mixed Effects Model

eZuXβy ++=
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Estimation of Fixed Effects

))(,(MVN~)(ˆ 11T1T11T -----= XVXβyVXXVXβ

eZuε +=

εXβy +=

with                      , such that 

è MLE of b :

where 

Var[ε]=ZGZT + Σ

ΣZGZV += T
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Prediction of Random Effects

Replacing β by its estimate:

])[E]([Var][Cov][E]|[E 1T yyyyu,uyu -+= -

)())( 1TT1T XβyΣ(ZGZGZXβyVGZ -+=-= --

)ˆ()ˆ 1TT βXyΣ(ZGZGZu -+= -
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Mixed Model Equations

)ˆ()(ˆ 1T111T βXyΣZGZΣZu -+= ----

β̂ = {XT[Σ−1 − Σ−1Z(ZTΣ−1Z+G−1)−1ZTΣ−1]X}−1

× XT[Σ−1 − Σ−1Z(ZTΣ−1Z+G−1)−1ZTΣ−1]y

BLUP and BLUE:



BLUE and BLUP require knowledge of G and Σ
These matrices, however, are rarely known and 
must be estimated
Variance and covariance components estimation:

• Analysis of Variance (ANOVA)

• Maximum Likelihood

• Restricted Maximum Likelihood (REML)

• Bayesian Inference

Estimation of Variance Components



Animal/plant breeding programs are based on the 
principle that phenotypic observations on related 
individuals can provide information about their 
underlying genotypic values

The additive component of genetic variation is the 
primary determinant of the degree to which 
offspring resemble their parents, and therefore 
this is usually the component of interest in 
artificial selection programs

Mixed Models in Animal and 
Plant Breeding



Many statistical methods for analysis of genetic 
data are specific (or more appropriate) for 
phenotypic measurements obtained from planned 
experimental designs and with balanced data sets

While such situations may be possible within 
laboratory or greenhouse experimental settings, 
data from natural populations and agricultural 
species are generally highly unbalanced and 
fragmented by numerous kinds of relationships

Mixed Models in Animal and 
Plant Breeding



Culling of data to accommodate conventional statistical 
techniques (e.g. ANOVA) may introduce bias and/or lead 
to a substantial loss of information

The mixed model methodology allows efficient estimation 
of genetic parameters (such as variance components and 
heritability) and breeding values while accommodating 
extended pedigrees, unequal family sizes, overlapping 
generations, sex-limited traits, assortative mating, and 
natural or artificial selection

To illustrate such application of mixed models in breeding 
programs, we consider here the so-called Animal Model in 
situations with a single trait and a single observation 
(including missing values) per individual

Animal Model



The animal model can be described as:

eZuXβy ++=

y is an (n ´ 1) vector of observations (phenotypic scores)

b is a (p ´ 1) vector of fixed effects (e.g. herd-year-
season effects)

u ~ N(0, G) is a (q ´ 1) vector of breeding values (relative 
to all individuals with record or in the pedigree file, 
such that q is in general bigger than n)

e ~ N(0, Inσe2) represents residual effects, where σe2 is 
the residual variance

Animal Model



The Matrix  A
The matrix G describing the covariances among the 
random effects (here the breeding values) follows 
from standard results for the covariances between 
relatives

It is seen that the additive genetic covariance 
between two relatives i and i’ is given by             , 
where       is the coefficient of coancestry between 
individuals i and i’, and       is the additive genetic 
variance in the base population

Hence, under the animal model,                , where A
is the additive genetic (or numerator) relationship 
matrix, having elements given by

2
a'ii2 sq

2
as

2
as= AG

'ii'ii 2a q=

'iiq



The Matrix  A

For each animal i in the pedigree (i = 1, 2,…,n), 
going from older to younger animals, compute aii
and aij (j = 1, 2,…,i-1) as follows:

If both parents (s and d) of animal i are known:

aij = aji = (ajs + ajd)/2 and aii = 1 + asd/2

If only one parent (e.g. d) of animal i is known:

aij = aji = ajd/2 and aii = 1

If parents unknown:

aij = aji = 0 and aii = 1



Example

1 2

4 3

5 6

Animal Sire Dam
1 - -
2 - -
3 1 2
4 1 -
5 4 3
6 5 2

pedigree matrix 
A



In general, in animal/plant breeding interest is 
on prediction of breeding values (for selection 
of superior individuals), and on estimation of 
variance components and functions thereof, 
such as heritability

The fixed effects are, in some sense, nuisance 
factors with no central interest in terms of 
inferences, but which need to be taken into 
account (i.e., they need to be corrected for 
when inferring breeding values)

Animal Model



Since under the animal model                        and                   
, the mixed model equations can be 

expressed as:
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Conditional on the variance components ratio λ, the 
BLUP of the breeding values are given then by:

These are generally referred to as Estimated Breeding 
Values (EBV)

Alternatively, some breeders associations express their 
results as Predicted Transmitting Abilities (PTA) (or 
Estimated Transmitting Abilities (ETA) or Expected 
Progeny Difference (EPD)), which are equal to half the 
EBV, representing the portion of an animal’s breeding 
values that is passed to its offspring

)ˆ()(ˆ T11T βXyZAZZu -l+= --



The amount of information contained in an animal’s 
genetic evaluation depends on the availability of its 
own record, as well as how many (and how close) 
relatives it has with phenotypic information

As a measure of amount of information in livestock 
genetic evaluations, EBVs are typically reported 
with its associated accuracies

Accuracy of predictions is defined as the 
correlation between true and estimated breeding 
values, i.e.,                    

Instead of accuracy, some livestock species genetic 
evaluations use reliability, which is the squared 
correlation of accuracy (   )

)u,û(r iii r=

2
ir



The calculation of               requires the diagonal 
elements of the inverse of the MME coefficient 
matrix, represented as:

It is shown that the prediction error variance of 
EBV      is given by:

where      is the i-th diagonal element of       , 
relative to animal i. 

Prediction Accuracy

C = XTX XTZ
ZTX ZTZ+ λA−1
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Prediction Accuracy

The PEV can be interpreted as the fraction of 
additive genetic variance not accounted for by 
the prediction

Therefore, PEV can be expressed also as:

such that                             , from which the 
reliability is obtained as:
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herd 1

herd 2

Animal Model
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2
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Breeding values:                        , with

Animal Model
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0.4û 
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5

4

3

2

1

2

1

R Code
y<-matrix(c(310,270,350),nrow=3)
X<-matrix(c(1,1,0,0,0,1),nrow=3)
Z<-matrix(c(1,0,0,0,0,0,0,1,0,0,0,0,0,1,0),nrow=3, byrow = TRUE)
A<-matrix(c(1,0,0.5,0.5,0.25,

0,1,0,0.5,0,
0.5,0,1,0.25,0.5,
0.5,0.5,0.25,1,0.125,
0.25,0,0.5,0.125,1),nrow=5)

h2<-1/3 # heritability
a=(1-h2)/h2

# crossproducts
XX<-crossprod(X,X)
XZ<-t(X) %*% Z
ZX<-t(Z) %*% X
ZZ<-crossprod(Z,Z)+a*solve(A)

# mixed model equations
# coefficient matrix and right hand side
C<-rbind(cbind(XX,XZ),cbind(ZX,ZZ))
rhs<-rbind(t(X) %*% y,t(Z) %*% y)

#solution
theta.hat <- solve(C) %*% rhs

animal model 
toy example



The animal model can be extended to model multiple
(correlated) traits, multiple random effects (such as
maternal effects and common environmental effects),
repeated records (e.g. test day models), and so on

Example (Mrode 1996, pp74-76): Weaning weight (kg)
of piglets, progeny of three sows mated to two boars:

Animal Model



A linear model with the  (fixed) effect of sex, and the 
(random) effects of common environment (related to 
each litter) and breeding values can be expressed as X:

Assuming that            ,              and            , the MME 
are as follows:

where                         and
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The BLUEs and BLUPs 
(inverting the numerator 
relationship matrix) are:

Mrode example


