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OUTLINE

• General Linear Model (fixed effects)
• Maximum Likelihood Estimation
• Linear Mixed Model
• BLUE and BLUP



General Linear Model
(Fixed Effects Model)

y = Xβ+ ε
responses

design/incidence 
matrix (known)

overall mean + fixed 
effects parameters

residuals

),0(N~      )I,(N~ 2
iid

i
2

n se®s0ε

_ Fixed effect: levels included in the study represent
all levels about which inference is to be made. Fixed
effects models: models containing only fixed effects



Example 1
Experiment to compare growth performance of pigs 
under two experimental groups (Control and Treatment), 
with three replications each. 

Control Treatment

53 61
46 66
58 57

Model: 

ijiij ey +d+µ=

yij: weight gain of pig j of
group i

µ: constant; general mean

di: effect of group i

eij: residual term



Matrix Notation

Control Treatment
53 61
46 66
58 57
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Alternative Parameterizations

For example, if the average
weight gain in each group is
expressed as µi = µ + di, the
model becomes: ú
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46
53_ Equivalent models with 

different parameterizations

Alternatively, the model can be
expressed in terms of the
average weight gain of the
Control (µ1) and the difference
on weight gain between the
two groups (t = µ2 - µ1):
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Flowering time (days, log scale)
of Brassica napus according to
genotype in specific locus, such
as a candidate gene

Genotype
qq Qq QQ
3.4 2.9 3.1
3.7 2.5 2.6
3.2ijiij ey +µ=

yij: flowering time of replication j (j = 1,…, ni) of 
genotype i (i = qq, Qq and QQ)

µi: expected flowering time of plants of genotype i
eij: residual (environment and polygenic effects)

Model: 

Example 2



_ The expected phenotypic values µi, however, can be
expressed as a function of the additive and dominant
effects

ijiij ey +µ=

Expected phenotypic value according to the 
genotype on a specific locus.



The model can be
written then as:

µ: constant (mid-point flowering time between 
homozygous genotypes)

xij: indicator variable (genotype), coded as -1, 0 and 1 
for genotypes qq, Qq and QQ

a and b: additive and dominance effects

ijijijij e|)x|1(xy +d-+a+µ=

In matrix notation:
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Least-Squares Estimation

y =Xβ+ ε

ε ~ (0, Inσ
2 )   →    εi ~

iid
(0,σ2 )

(β̂)

RSS= (ε̂i )
2

i=1

n

∑ = ε̂Tε̂ = (y−Xβ̂)T (y−Xβ̂)

An estimate       of the vector β can be obtained by the method of 
least-squares, which aims to minimize the residual sum of squares, 
given (in matrix notation) by:

β̂ = (XTX)−1XTy

Taking the derivatives and equating to zero, it can be shown that 
the least-squares estimator of β is:

E[β̂]= β Var[β̂]= (XTX)−1σ2Ü It is shown that                 and   



Var(εi ) = σ i
2 =wiσ

2

Var(ε) =Wσ2

β̂WLS = (X
TW−1X)−1XTW−1y

GSS= εTV−1ε = (y−Xβ)TV−1(y−Xβ)

The estimator                                  is called ordinary least 
squares (OLS) estimator, and it is indicated only in situations 
with homoscedastic and uncorrelated residuals

If the residual variance is heterogeneous (i.e.,                            ), 
the residual variance matrix can be expressed as                   , 
where W is a diagonal matrix with the elements wi, a better 
estimator of β is given by: 

which is generally referred to as weighted least squares (WLS) 
estimator.

Furthermore, in situations with a general residual variance-
covariance matrix V, including correlated residuals, a 
generalized least squares (GLS) estimator                                             
is obtained by minimizing the generalized sum of squares, given 
by: 

More on the LS Methodology

β̂GLS = (X
TV−1X)XTV−1y

β̂OLS = β̂ = (X
TX)−1XTy



Maximum Likelihood Estimation

Likelihood Function: any function of the model parameters 
that is proportional to the density function of the data 
Hence, to use a likelihood-based approach for estimating 
model parameters, some extra assumptions must be made 
regarding the distribution of the data
In the case of the linear model                    , if the residuals 
are assumed normally distributed with mean vector zero and 
variance-covariance matrix V, i.e.                            , the 
response vector y is also normally distributed, with 
expectation                     and variance  

y =Xβ+ ε

ε ~ MVN(0,V)

Xβy =][E Vy =][Var



The distribution of y has a density function given by:

so that the likelihood and the log-likelihood functions 
can be expressed respectively as:

and
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Maximum Likelihood Estimation



Assuming V known, the likelihood equations for β are 
given by taking the first derivatives of l(b,V) with 
respect to β and equating it to zero:

from which the following system of equations is 
obtained:

The maximum likelihood estimator (MLE) for β is 
given then by:

0)()()V,(l 1T =--
¶
¶

º
¶

¶ - XβyVXβy
ββ

β

yVXβXVX 1T1T ˆ -- =

yVXXVXββ 1T11T )(ˆ)(MLE ---==

Maximum Likelihood Estimation



If the inverse of               does not exist, a 
generalized inverse can be used to obtain 
a solution for the system of likelihood equations:

Note: Under normality the MLE coincides with the 
GLS estimator discussed previously. Similarly, in 
situations in which the matrix V is diagonal, or when 
V can be represented as               , the MLE   
coincides with the WLS and the OLS estimators, 
respectively

XVX 1T -

-- )( 1T XVX

yVXXVXβ 1T1T0 )( ---=

Maximum Likelihood Estimation

2
ns= IV



The expectation and the variance-covariance matrix of the 
MLE are given by:

As     is a linear combination of the response vector y, we 
have that                                    , from which confidence 
intervals (regions) and hypothesis testing regarding any 
(set of) element(s) of b can be easily obtained

The estimation of variance and covariance parameters will 
be discussed later
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ð Note: In the case of the linear model                 ,
with                          , it can be shown that:

y =Xβ+ ε
ε ~ MVN(0, Iσ2 )

β̂ = (XTX)−1XTy   →    β̂ ~ N(β, (XTX)−1σ2 )

σ̂2 =
1
n
(y−Xβ̂)T (y−Xβ̂) = 1

n
|| y−Xβ̂ ||2
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Two-stage Analysis of Longitudinal Data
Step 1

yij = β0i +β1izij +β2izij
2 + εij

Supposed a series of longitudinal data (e.g., repeated 
measurements on time) on n individuals. Let yij
represent the observation j (j = 1,2,…,ni) on individual i 
(i = 1,2,…,n), and the following quadratic regression of 
measurements on time (zij) for each individual:

where β0i, β1i and β2i are subject-specific regression 
parameters, and εij are residual terms, assumed 
normally distributed with mean zero and variance σε2



yi =Ziβi + εi

yi = (yi1, yi2,…, yini )
T

In matrix notation such subject-specific regressions 
can be expressed as:

where                                         ,                                  ,

and εi = (εi1,εi2,…,εini )
T ~ N(0, Iσε

2 )

βi = (β0i,β1i,β2i )
T

Zi =

1 zi1 zi1
2

1 zi2 zi2
2

  
1 zini zini
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β̂i = (Zi
TZi )

−1Zi
Tyi

Under these specifications, it is shown that the least-
squares estimate of βi is:

Note that this is also the maximum likelihood 
estimate of βi

Such estimates can be viewed as summary statistics 
for the longitudinal data, the same way one could use 
area under the curve (AUC), or peak (maximum value 
of yij), or mean response.



β̂i =Wiβ+ui

Two-stage Analysis of Longitudinal Data
Step 2

Supposed now we are interested on the effect of 
some other variables (such as gender, treatment, 
year, etc.) on the values of βi

Such effects could be studied using a model as:

where ui ~ N(0,D), which is an approximation for the 
model:

βi =Wiβ+ui (2)



Single-stage Analysis of Longitudinal Data

The two step-analysis described here can be merged 
into a single stage approach by substituting (2) in (1):

which can be expressed as:

where Xi = ZiWi. By concatenating observations from 
multiple individuals, we have the following mixed model: 

y =Xβ+Zu+ ε

yi =Xiβ+Ziui + εi

yi =Zi[Wiβ+ui ]+ εi



Mixed Effects Models
Frequently, linear models contain factors whose levels 
represent a random sample of a population of all 
possible factor levels

Models containing both fixed and random effects are 
called mixed effects models

Linear mixed effects models have been widely used in 
analysis of data where responses are clustered around 
some random effects, such that there is a natural 
dependence between observations in the same cluster

For example, consider repeated measurements taken on 
each subject in longitudinal data, or observations taken 
on members of the same family in a genetic study



Linear Mixed Effects Model

where:

y: response vector; observations

β: vector of fixed effects

u: vector of random effects; u ~ N(0, G)

X and Z: (known) incidence matrices

e: residual vector; e ~ N(0, Σ)

eZuXβy ++=



Linear Mixed Effects Model
Generally, it is assumed that u and e are
independent from each other, such that:

Inferences regarding mixed effects models
refer to the estimation of fixed effects, the
prediction of random effects, and the
estimation of variance and covariance
components, which are briefly discussed next
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Estimation of Fixed Effects

))(,(MVN~)(ˆ 11T1T11T -----= XVXβyVXXVXβ

eZuε +=εXβy +=Let                    , where

such that                             , where

Under these circumstances, the MLE for b is:

0euZeZuε =+=+= ][E][E][E][E

ΣZGZeZuZeZuε +=+=+= TT ][Var][Var][Var][Var

),(MVN~ VXβy ΣZGZV += T



As G and S are generally unknown, an estimate of V is 
used instead such that the estimator becomes:

The variance-covariance matrix of     is now 
approximated by

Note:                     is biased downwards as a 
consequence of ignoring the variability introduced by 
working with estimates of (co)variance components 
instead of their true (unknown) parameter values

yVXXVXβ 1T11T ˆ)ˆ(ˆ ---=

β̂
11T )ˆ( -- XVX

11T )ˆ( -- XVX

Estimation of Fixed Effects



Approximated confidence regions and test statistics 
for estimable functions of the type          can be 
obtained by using the result:

where             refers to an F-distribution with                           
degrees of freedom for the numerator, 

and        degrees of freedom for the denominator, 
which is generally calculated from the data using, for 
example, the Satterthwaite’s approach

βKT
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Estimation of Fixed Effects



In addition to the estimation of fixed effects, very 
often in genetics interest is also on prediction of 
random effects. 

In linear (Gaussian) models such predictions are given 
by the conditional expectation of u given the data, i.e.            
.

Given the model specifications, the joint distribution 
of y and u is:

]|[E yu
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Estimation (Prediction) of 
Random Effects



])[E]([Var][Cov][E]|[E 1T yyyyu,uyu -+= -

)())( 1TT1T XβyΣ(ZGZGZXβyVGZ -+=-= --

)ˆ()ˆ 1TT βXyΣ(ZGZGZu -+= -

From the properties of multivariate normal distribution, 
we have that:

The fixed effects β are typically replaced by their 
estimates, so that predictions are made based on the 
following expression:

Estimation (Prediction) of 
Random Effects



Mixed Model Equations
The solutions    and    discussed before require 
As V can be of huge dimensions, especially in animal 
breeding applications, its inverse is generally 
computationally demanding if not unfeasible. 

However, Henderson (1950) presented the mixed 
model equations (MME) to estimate β and u
simultaneously, without the need for computing      

The MME were derived by maximizing (for β and u) 
the joint density of y and u, expressed as:

β̂ û 1-V

p(y,u |β,G,Σ)∝  | Σ |−1/2 |G |−1/2

1-V

×exp −
1
2
(y−Xβ−Zu)TΣ−1(y−Xβ−Zu)− 1

2
uTG−1u
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Mixed Model Equations

uGuZuXβyΣZuXβyGΣΣG,βuy 1T1T )()(|||| )],|,(plog[ -- +----++µ=

ZuΣyXβΣyyΣyGΣ 1T1T1T 22|||| --- --++=

uGuZuΣZuZuΣXβXβΣXβ 1T1TT1TT1TT 2 ---- ++++

The logarithm of this function is:

The derivatives of    regarding β and u are:

ú
ú
ú

û

ù

ê
ê
ê

ë

é

---

--
=

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

¶
¶
¶
¶

----

---

uGuZΣZβXΣZyΣZ

uZΣXβXΣXyΣX

u

β

ˆˆˆ

ˆˆ

11T1T1T

1T1T1T







Equating them to zero gives the following system:

which can be expressed as:

known as the mixed model equations (MME)
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BLUE and BLUP

Using the second part of the MME, we have that:

so that:

It can be shown that this expression is equivalent to:

and, more importantly, that    is the best linear 
unbiased predictor (BLUP) of u

yΣZuGZΣZβXΣZ 1T11T1T ˆ)(ˆ ---- =++
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BLUE and BLUP

yΣXuZΣXβXΣX 1T1T1T ˆˆ --- =+

yΣXβXyΣZGZΣZZΣXβXΣX 1T1T111T1T1T )ˆ()(ˆ ------- =-++

yΣZGZΣZZΣΣXXΣZGZΣZZΣΣXβ ])([}])([{ˆ 1T111T11T11T111T11T ------------- +-+-=

Using this result into the first part of the MME, we 
have that:

Similarly, it can be shown that this expression is 
equivalent to                                 , which is the best 
linear unbiased estimator (BLUE) of β.

yVXXVXβ 1T11T )(ˆ ---=



It is important to note that    and     require 
knowledge of G and Σ. These matrices, however, 
are rarely known. This is a problem without an 
exact solution using classical methods. 

The practical approach is to replace G and Σ by 
their estimates (     and     ) into the MME:

β̂ û

Ĝ Σ̂

ú
û

ù
ê
ë

é
=ú

û

ù
ê
ë

é
ú
û

ù
ê
ë

é

+ -

-

---

--

yΣZ
yΣX

u
β

GZΣZXΣZ
ZΣXXΣX

1'

1'

11'1'

1'1'

ˆ
ˆ

~

~

ˆˆˆ
ˆˆ

BLUE and BLUP



BLUE and BLUP require knowledge of G and Σ
These matrices, however, are rarely known and 
must be estimated
Variance and covariance components estimation:

• Analysis of Variance (ANOVA)

• Maximum likelihood

• Restricted maximum likelihood (REML)

• Bayesian approach

Estimation of Variance Components


