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Estimation of Variance Components

ANOVA Estimation

Consider the data set below, related to
observations of half-sib families of k
unrelated sires. The following model can
be used to represent these data:

Yi =UT+S8; +C

Sire

1 2 k
Y | Y - | Yk
Yio | Y2 - Y
Yin, | Yon,| «ov | Yin,

where y;; represents the phenotypic trait observation
of progeny j (j =1, 2,.., n;) in family i, u is a mean, s; is
an effect common to all animals having sire i, and e; is

a residual term




Estimation of Variance Components
ANOVA Estimation

The sire effect s; is equivalent to the transmitting ability
(which is equal to one-half additive genetic value) of sire
i, as one-half of its genes are (randomly) transmitted to
each of its n; progeny.

The residual terms e;; refer to additional genetics
effects (such as the effect of dams) and environmental
components.

ind ind

2
It is assumed that S; "“(0955) and ©€; ~(0,0;)



From the model settings discussed before we have that
Ely;|l=n and Varly;|= 65 T GZ

. . B 1 k n 1 k
The overall sample mean is given by y,, = EZZYU- = ﬁzy“
i=1 j=1 i=I
1

k n;
where N=>'n,,and y,, = H—Zyij are sire-specific means.
i=1 i j=1

The ANOVA approach consists of an orthogonal
decomposition of the total sum of squares (TSS) into
between classes (or, in our case, sires) and within classes
(or residual) components. The corrected (in terms of the

k n
general mean) TSS is given by: TSS=> > (y, -¥..)’

i=l j=I



By adding and subtracting ¥;. within the parentheses, the
TSS can be expressed as:

TSS=Y" Y[y, -7+ T - F.)F

i=l j=I

= Zi(Yij _yi.)z "‘Zi(yi. _y..)2 +2Zi(Yij _S’i.)(yi. —S’..)

i=l j=1 i=l j=1 i=l j=1

It is seen that the last part of this expression is equal to
zero, so that TSS can be written as two components:

k n k n
SSSZZZ(yi._y..)z and RSSZZZ(yij_yi.)z

i=l =1 i=1 j=1
which are the sire and the residual sum of squares,
respectively. The SSS term measures the variation of
each progeny family around the overall mean, while the
RSS term measures the extra variation related to each
observation around its sire average



It can be shown that the expectation of these sums of
squares terms are:

E[SSS] = [N —%anjcﬁ +(k-1c? and E[RSS]=(N-k)c’
1=1

so that the ANOVA estimators of the sire and residual
variance components are given by:

~1
A 1 & A2 A2 1
=| N—— ) n; SSS—(k-1)o o = RSS
( N; ] | (k-=1)c.] and O, N_1)

In the specific case of balanced data, i.e. the same
progeny size for all sires, n, =n=N/k and the ANOVA
estimators become:
65—1 ! gss-6?| and &2=—1 Rss
(k—1) k(n—1)




Appendix: Calculating E(MS)

Model: Mflxed%E[M] w, E[u’]=u’, Var[u] =0

. s~N(OO)%E[s] OE[S] Varls, | = 0
yy=Ww+s;+¢; with -

e, ~N(o,o§) — E[e; 1=0, E[e;]= Var[e,] = O,
Covls,,s; ] =Covl[s,;,e; ] =Covle;,e;;]=0

1J’

Sum of Squares:

SSS = EE(YI -.)" = Ey —éy

=1 j=1 =1

RSS = EE(YU Vi) —EEYU‘_EY

=1 j=1 =1 j=I1



Key Expectations: E|Y3y2|. E[Lyi CandE| LYy’
== kn nig
-k n | k n 5 k n 5
22 (= 2 DELy:] =22E[“+Si+eﬁ]
| i=1 j=1 | =1 j=I1 1=l J=

= iiE [Mz +87 + efj +2us; +2ue,; + ZSieij]
i=1 j=I

= }kji(uz +E[s; ]+ E[ej ]+ 2uE[s, ]+ 2uE[e, ]+ 2E[SJE[%])

i=1 j=l

= ii(uz +0° +0§)

i=1 j=I

= knu’ + kno? +kno?



= k—(kznzu +kn’0? +kno? +0)
n

2 2
= knu’ +no’ +o:




j=1

] -
= %EE (nu+nsi +EYij)

=1

= liE nzuz +nzsi2 + (jyij

1 k
= —E(nzm2 +n°02 +no’ +0)
n 4
1=1

= knu’ + kno? +ko?

%EE[yz] = EE (iyﬁ)

2

+ DPs




Expected MS
liyi —kl—nf.]

n 1=1

E[SMS] = LE[SSS] = LE
k- k-1

1
—1

—1[ (k-1)o +(k - 1)0] no’ +0°

——[(knu® +kna? +kno?) - (knu* +n0? +07))]

W
[

W

1 1 e 2 N
E[RMS] = E[RSS] = E ==
[RMS] = EIRSS] = EZY 2.

o
k(n-=1)
o

k(n-=1)

E|(kny’ +kno? +kno?) - (knu® +kno? +ko?)|

k(n-1)o? =0o’




Estimation of Variance Components

ANOVA approach works well for simple models (such as a
one-way structure) or balanced data (such as data from
designed experiments with no missing data), but they are
not indicated for more complex models and data structures

Other proposed methods: expected mean squares approach
of Henderson (1953), and the minimum norm quadratic
unbiased estimation (Rao 1971a, 1971b), among others.

However, maximum likelihood based methods are currently
the most popular, especially the restricted (or residual)
maximum likelihood (REML) approach, which attempts to
correct for the well-known bias in the classical maximum
likelihood (ML) estimation of variance components. These
two methods are briefly described next.



Estimation of Variance Components
Maximum Likelihood (ML) Estimator

Maximum likelihood estimates of the variance
components can be obtained by maximizing the log-
likelihood L(B,G,X) with respect to each element of
G and £, after replacing by p=(X'V'X)"'X'Vy

Alternatively, 6, X, and B can be estimated
simultaneously by maximizing their joint log-likelihood
with respect to the variance components and the
fixed effects.



As a simple example of maximum likelihood
estimation of variance components, consider the
balanced case (i.e., constant progeny sizes) half-sib
families data set discussed previously, and the
linear model:

Yi =TS8 7€

with the same definitions as before, but with the
additional assumption of normality of both the sire
and the residual effects, i.e.:

ind

ind
S, ~ N(O,Gf) and € ~ N(O,Gi)



In matrix notation, this model can be expressed as:

yl 1n 1n On On Sl e1
Yo {1 n+ ool Dals hes
_yk_ _ln_ _On On ln__sk_ _ek_

where Y =[¥i Y2 ---Yul represents the vector of
observations of progeny i (i.e., relative to sire i); 1,
and O, represent n- _dimensional column vectors of
I's and O s, respectively; and € =[€i.€.--85 ] s
the vector of residuals associated with progeny i



The vector of observations y=[y, y, ... .1 has then a
multivariate normal distr. with mean vector p=1,p and
variance-covariance matrix given by 1. ®(1_c’1})+I,c. ,
and its density function (from which the likelihood
function obtained) can be written as:

1
2m)"" L, ®J,0; +1yo, |

p(y|p,ol,07)=

XeXp{—%(y—lNu)T(J o+ 02)” (y—lNu)}
1,®J H - lzm(y—lw}
n|\c’+nc’ o

where J, =11, isan (h x n) matrix of 1’s, and ® is the
Kronecker product

N _(N-k)

—2n) 2(6?) ? (o +no?) > exp{—é(y—le




The log-likelihood function can be written then as:

k

(N-k)

log(o, )——log(c +nc )—2 222(},1] 7. _%Zn(?i.—!»l)

2 2
1(M»Gsaﬁe)oc_ 2 2
i=1 j=1 i=1 Ge+nGs

(&

By taking the derivatives and setting them to O, the
following solutions are obtained:

) . ]

i=y. .5 -—' Rss and ag:_[__o}
k(n—1) n

from which ML estimates of the variance components
are obtained, except if 6. <0, in which case the
estimate is set to zero

ML estimates of variance components are biased
downwards as they do not take into account the degrees
of freedom used for estimating the fixed effects



Estimation of Variance Components
Residual Maximum Likelihood (REML) Estimator

Restricted (or residual) maximum likelihood approach
(REML): corrects the bias associated with ML
estimates by taking into account the degrees of
freedom used for estimating the fixed effects

REML maximizes the likelihood function of a set of
error contrasts d = L'y, where L is a [n x (n - p)]
full-rank matrix with columns orthogonal to the
columns of the incidence matrix X

The vector d follows a multivariate normal

distribution with null mean vector and variance-
covariance matrix L'VL = LT (Z6Z™ + 2)L. Note that
the distribution of d does not depend on B.



The residual likelihood function for the variance
components is then:

L(G,X|y)=(2n) " P |L'"VL["* exp{— %dT (LTVL)ld}

Another approach for obtaining the residual
likelihood function for the variance components is

by integrating the fixed effects out of the ‘full’
likelihood function, i.e.:

L(G,Z|y) = L(B,G,Z|y)p

as illustrated in the following example.



Recall the balanced half-sib families data set, and
its associated likelihood function:

N (N k) k

L(w,0,62)=(2n) 2(c2) ? (o2+noc)) 2

p{ L3Sy, 5.0~ 3 ) }

elljl 1=1 Ge_l_ncs

Its residual likelihood is then:

L(c},07) = [L(u0l,00)du
N (N k) k

:(271')_2(0 ) (G +no ) 2

xexp{ Z:Z:(y1J y.) }jexp{——zn(yl W’ }du

24 ol +no;




which is equal to:

N C(N-k) Kk

L(cZ,62)=(2n) 2(cl) 2 A?

XeXp{ ZZ(YU Vi) }eXp{——Z(yl — 1) }\/275—

where A=’ +nc_.




By taking the derivatives with respect to A and o,
and by using the invariance property of maximum
likelihood estimators, the following solutions are

obtained:

=L RSS and &2=-| 5888
k(n—1) n| (k-1) |

c

which are the REML estimates of the variance
components, except if 6. <0, i.e. if

(k—-1)
k(n—1)

SSS < RSS




Explicit forms of ML and REML estimators are
often not available for more complex mixed
effects models

ML and REML estimates are then generally
obtained by iterative approaches such as the
expectation-maximization (EM) algorithm and
Newton-Raphson-based procedures



Bayesian Data Analysis

Inferences using probability models for
quantities we observe and for quantities
about which we wish to learn

Explicit use of probability for quantifying
uncertainty in inferences based on
statistical data analysis



Conditional Probability
(Bayes' Rule)

p(A| By~ DANB) _ PAP(B|A)

P(B) P(B)



Bayesian Inference

y: observed data; y ~ p(y|0)
O: parameters (all unobserved quantities)

PO, y) _p(O)p(y|9)
p(y) p(y)

p(O]y)=

L p®1y) = p©Op(y[0) |

prior
distribution

sampling
distribution

posterior
distribution



Prior Distributions

Informative and Noninformative
Proper and Improper

Conjugate and Nonconjugate
Jeffreys' Prior

Maximum Entropy

Reference Prior



Example 1: Binomial Distribution

1id
Data: y,,y,,....y, ~Bin(n;,0) , 8 = Prob(y = 1)
n n 1
Samphng mOdel: p(y | 9) = HP(YI I e) = H( )GYi (1 _ 9)1—}’1
i=1 i=1 '

1

o QEYi (1- 9)“‘2yi

Prior: p(0)=Beta(a,b) <8 (1-0)""

Posterior: p(0ly) 9“2”‘1 (1— 9)n+b—2yi—1

6Iy~Beta(a+Eyi, n+b—2yi)




Example 1: Binomial Distribution

6Iy~Beta(a+Eyi, n+b—Eyi)

Features of the posterior distribution:

a-+ :
Posterior mean: E[01y]= Eyl
n+a+b

a+§bh—1

n+a+b-2

[+ 2v)(n+b- )

Posterior mode: Mode[01y]=

Posterior variance: Var[0|y]= :
(n+a+b)’(n+a+b+1)

percentis, HPD, eftc.



Example 1: Binomial Distribution
Setting, for examplea=1and b = 1.

Prior: p(0)= Uniform(0,1)

Posterior: p(@ly)x ezy*l(l _ g)n‘Eyi

9Iy~Beta(1+Eyi, n+1—2yi)

Note that in this case the posterior mode coincides
with the maximum likelihood estimate of O:

1
Mode[Bly]=— .
B1y1=—>,



Example 2: Normal Distribution

1id

Data: ¥,Y,5---»Y, ~N(u,02) ~with known o?

1 1 )
CXP4q — .=
- p{ = (v u)}

Sampling model: P(Y; n,0%) =

p(yln.o®) =] | p(y; Im.0%)
1=1

Y

1 ] |
x expi—— ¥ (y;— W)’
1=1 J

(2n02)n/2 \ 202 .
1 " 1 — 9) 1 5 —\2
x —eXpy———=n(y-n) - (¥i—Y)
2no”)" | 20° 20° ; |

Y




Example 2: Normal Distribution

Prior (Conjugate): u ~ N((I),Tz)

p(u) = : eXp{— :
\2mt’ 27
Joint posterior:
p(uly) o« p(ylp,0%)x p(u)

1

< eXp{——(u ¢>}
V2mt 2t

Y




Joint posterior (cont'ed):

(1
ly) o ex ex g
p(uly) p%L = } p{ - — (- <I>)}
n(y-n’ @®-9)
X eXpPy — — -
pk 20° 2t
W(n 1)\ [0y o) 1(ny’ ¢)
X EeXpy— + + + — + >
P\ 2(0,2 172) “’(0,2 112) 21:(0,2 IZ)J
_ eXp<r— : (n+ un)2\>
- 20 |
I (n 1 W, _(ny ¢
where G_ﬁ=(02+172) and 0ﬁ=(02+132)

2 2 -1
nt _ o n 1
Hence: mnly~N . Y +— 2¢, —+ —
nc +0 nc +0 (9) T




Multi Parameter Models
y~p(yl0,,0,,...,0,)
p(0,.0,,....8, 1Y)~ p(8,.0,,....8 )p(y16,.6,,...,0.)

Marginal Posterior Distributions

PO, 1y)= [ p(6,.8,.....0,1y)dB,



Example 3: Normal Distribution
ud
Data: ¥isYaseeesYn~N(W,07)

Sampling model: p(y lu,0°) = Hp(yi lu,0%)
=1

Y

w1 \
x (0°) ™ exp{ - = Y (v -wy’
L i=1 J

Prior (Jeffreys'). p(u,0%)=(c")"

Joint posterior:

r 1 n B
2 2\—(n+2)/2 2

0 ly)x (o expA — . =
p(w,o” ly) = (c”) a 20220 M)J

_ (02 )—(n+2)/2 exp4 — 1
= 20

Y

S| (n=Ds* +n(y - uf]}



Example 3: Normal Distribution

Marginal posterior of p:

ply)= [p(m.0’ 1y)do’

C

LS E
(n—1)s’ _

Marginal posterior of ¢?:

p(a’1y)= [ p(u,0” Iy)du

- (n-1s>

o (0_2)—(n+2)/2 exp-

20

2

L ~Inv-%°(n-1,5%)




Marginal Posterior Distributions

Marginalization (i.e. integrals) in mulfti-
dimensional models can be cumbersome and
some times do not have analytical form

An alternative in this regard is to use
numerical methods such as Markov Chain
Monte Carlo (MCMC), e.g. Gibbs sampling.

This will be discussed next.



