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OUTLINE

• Multiple-trait Model
• Repeatability Model
• Maternal Effects
• Generalized Linear Models



Animal Model
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Mixed Model Equations
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Genetic Correlation
Schematic representation of pleiotropy

• Pleiotropic genes affect both y1 and y2 resulting in a 
genetic correlation between the two traits

• In addition to pleiotropy, genetic correlations can be 
caused also by linkage disequilibrium (LD) between genes 
affecting the different traits. LD however is a 
‘temporary’ cause of genetic correlation as recombination 
can breakdown LD over the generations

Genes affecting 
trait y1

Genes affecting 
trait y2

Genes affecting both y1 and y2
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Multiple (Correlated) Traits
Genetic 

correlation

Environmental 
correlation

Phenotypic correlation:

h j = h j
2

e j = 1− h j
2



Multiple (Correlated) Traits
The animal model can be extended for the joint analysis 
of multiple traits
Let the model for each of k traits be:

where j is an index to indicate the trait (j = 1, 2,…,k). 
For the joint analysis of the k trait, the model becomes:

with design matrices given by:

y j =X jβ j +Z ja j + ε j

y =Xβ+Za+ ε

X =

X1 0  0
0 X2  0
   
0 0  Xk
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Multiple (Correlated) Traits
In this case it is assumed that:

where G and Σ are the genetic and residual variance-
covariance matrices, given by:

Note: ⊗ represents the direct (Kronecker) product



Multiple (Correlated) Traits

The MME for multi-trait analyses are of the same form 
as before, i.e.:

from which the BLUEs and BLUPs of β and a can be 
obtained.



Multiple (Correlated) Traits

The dimensionality of multi-trait MME, however, can 
become a hurdle for solving it when more than two or 
three traits are considered

An alternative for the analysis of multiple traits is to 
use a canonical transformation of the traits, which 
consists of transforming the vectors of correlated 
traits into a new vector of uncorrelated variables

In such case, each transformed variable can be analyzed 
independently using standard single trait models, and 
subsequently the estimated breeding values are 
transformed back to the original scale of measurement



Repeatability Model



Repeatability Model

For the analysis of repeated measurements, 
environmental effects can be partitioned into 
permanent and temporary effects

In this case, the mixed model, usually called 
‘repeatability model’, can be written as:

where p ~ N(0, Iσp
2) is the vector of permanent 

environmental effects, with each level pertaining to 
a common effect to all observations of each animal



Repeatability Model

It is often assumed that a, p, and ε, which are 
independent from each other

Under these assumptions, the MME becomes:

with                   and



Repeatability Model
An important definition related to repeated 
measurements refers to repeatability (r), which is 
given by the intraclass correlation, i.e., the ratio of 
the within-individual (or between repeated 
measurements) to the phenotypic variances:

The repeatability coefficient measures the 
correlation between records on the same animal, and 
so it is useful for example in the estimation of 
producing ability and an animal

r =
σa
2 +σp

2

σy
2 =

σa
2 +σp

2

σa
2 +σp

2 +σε
2



Maternal Effects



Maternal Effects
There are some traits of interest in livestock, such 
as weaning weight in beef cattle, in which progeny 
performance is affected by the dam’s ability to 
affect the calf’s environment, such as in the form 
of nourishment through her milk production, the 
quantity and quality of which is in part genetically 
determined

In such cases, dams contribute to the performance 
of their progeny not only through the genes passed 
to the progeny (the “direct genetic effects”) but 
also through their ability to provide a suitable 
environment (the “indirect genetic effects”)



Maternal Effects
Maternally influenced traits can be analyzed by using 
a model as:

where m is a vector of random maternal genetic 
effects, and p is a vector of random maternal 
permanent environmental effects

It is assumed that m ~ N(0, Aσm
2) and p ~ N(0, Iσp

2), 
and quite often a covariance structure between 
direct and maternal additive genetic effects is 
considered, assumed equal to Aσa,m
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Computing Strategies

Solving the MME does not necessary require the 
inversion of the coefficient matrix C

More computationally convenient alternatives for 
solving high dimensional systems of linear equations 
include methods based on iteration on the MME, such 
as the Jacobi or Gauss-Seidel iteration, and the 
“iteration on the data” strategy, which is commonly 
used methodology in national genetic evaluations 
involving millions of records



Generalized Linear Models

The models discussed so far assumed a Gaussian 
(normal) distribution of the phenotypic traits

Often however phenotypic traits are expressed a a 
binary (e.g., pregancy in dairy cattle, or germination 
in seeds) or count variable (e.g., litter size in swine, 
or fruits in trees)

In such cases the linear (Gaussian) model is not 
appropriate, and a generalized linear model (GLM) 
approach is necessary



Generalized Linear Models



Generalized Linear Models

GLM can actually model outcomes (response 
variables) generated from any distribution from 
the exponential family, which includes the normal, 
binomial, Poisson and gamma distributions, among 
others

The GLM consists of three elements:

1. Probability distribution from the exponential 
family.

2. Linear predictor η = Xβ
3. Link function g such that E(Y) = µ = g-1(η). 



Generalized Linear Mixed Models

Notice that the Gaussian model is a specific case 
of the GLM, with the normal distribution and an 
identity link function

In the case of Generalized Linear Mixed Models, 
including the applications in animal/plant 
breeding, the model is defined as: 

1. Probability distribution from the exponential 
family.

2. Linear predictor η = Xβ + Zu
3. Link function g such that E(Y|u) = µ = g-1(η)



GLMM in R

GLMM can be implemented in R using the 
package lme4

lme4, however, assumes independence 
between levels of random effects, and as 
such it is not suitable for many 
animal/plant breeding applications

pedigreemm is an R package that uses lme4 
with a Cholesky decomposition strategy to 
overcome this problem



(Harville and Callanan 1989)

pedigreemm
An R package for fitting generalized linear mixed 
models in animal breeding



pedigreemm example


