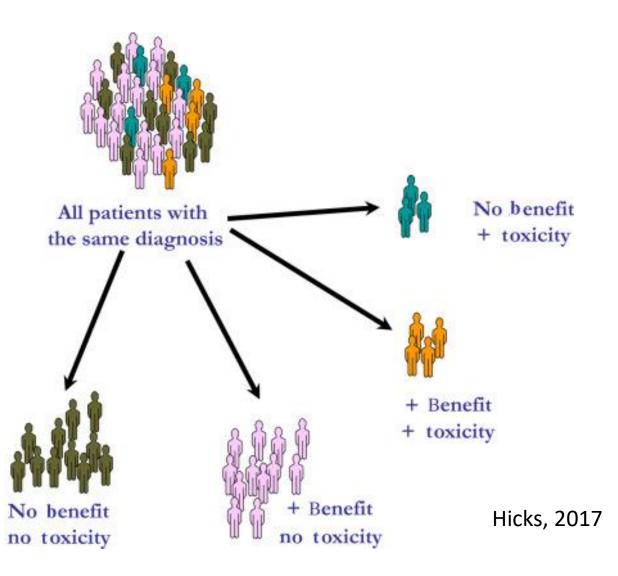
Friday	8:30-9:15	Sara/Alie	Journal Club	Benonisdottir, S et al. "Epigenetic and genetic
_				components of height regulation"
	9:15-10:00	Alie	Bioethics and	PPV, NPV, sensitivity, specificity, principles of
			Implementation	bioethics
	10:30-12:00	Sara	Gene-Environment	Definitions, methods, practical issues
			Interactions	
				-
	1:30-2:15	Alie	Pharmacogenetics	Pathways and analysis
		Sara	Mendelian	Concept, methods
	2:15-3:00		Randomization	
	3:30-4:30	Sara	Risk prediction	Methods, applications
	4:30-5:00	Alie/Sara	Wrap-up	

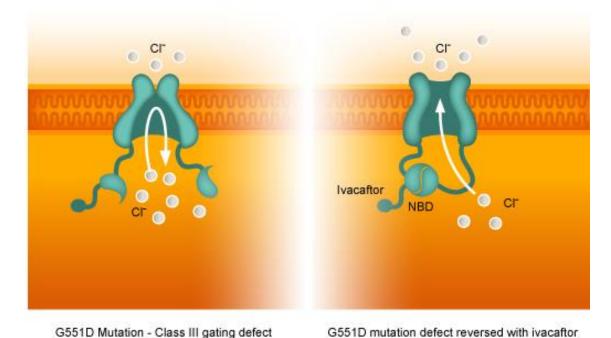
Pharmacogenetics

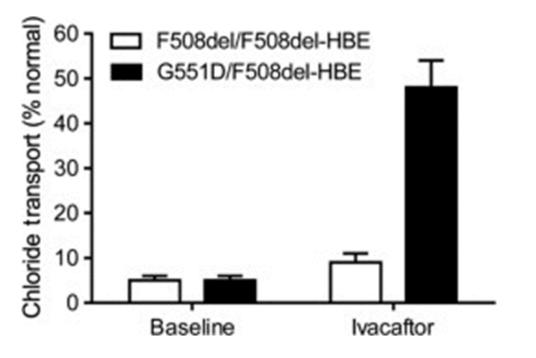

Section 12 (45 minutes)

Learning objectives

- Describe the ways genetic variation can affect drug response.
- Place odds ratios in the context of population impact.
- Interpret genotyping results to make a pharmacogenetic recommendation.

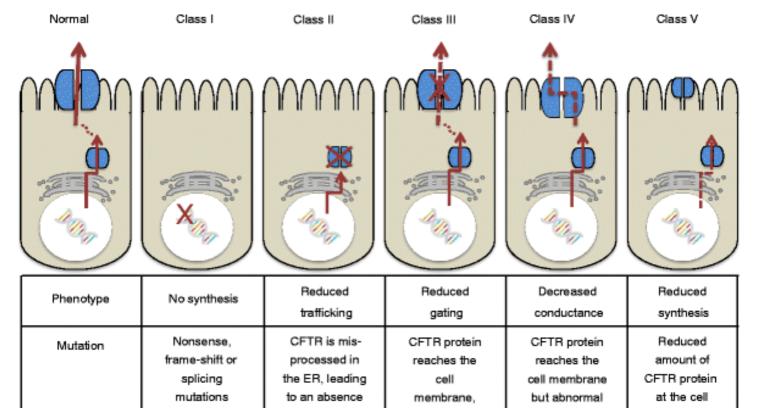
What is pharmacogenetics?


- How genetic variation affects drug and xenobiotic response, including therapeutic effect and adverse events (side effects).
- GlaxoSmithKline executive, "90% of drugs only work in 30-50% of people"
- Cornerstone of precision medicine. "Right drug, right dose, right time".


Classes of pharmacogenetics

• Drug target

Example – Ivacaftor (Kalydeco)



- Ivacaftor "potentiates" CFTR protein on the cell surface that cannot activate to transport chloride ions
- Ivacaftor only works in people who specific CFTR variants (5% of total cystic fibrosis).

Example – Ivacaftor (Kalydeco)

- FDA approved ivacaftor only for specific variants (class III and class IV).
- First FDA approval process to allow molecular data to expand approval.

but once

there is

unstable

G551D

surface due to

reduced

protein

synthesis

A455E

conformation

of the pore

leads to

disrupted ion

flow

B117H

of functional

protein at the

cell membrane

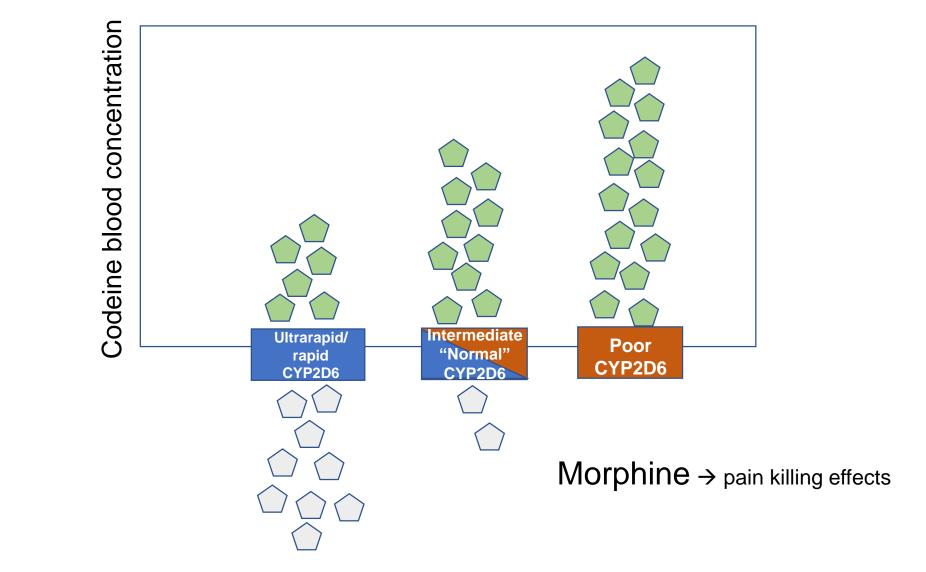
F508del

prevent CFTR

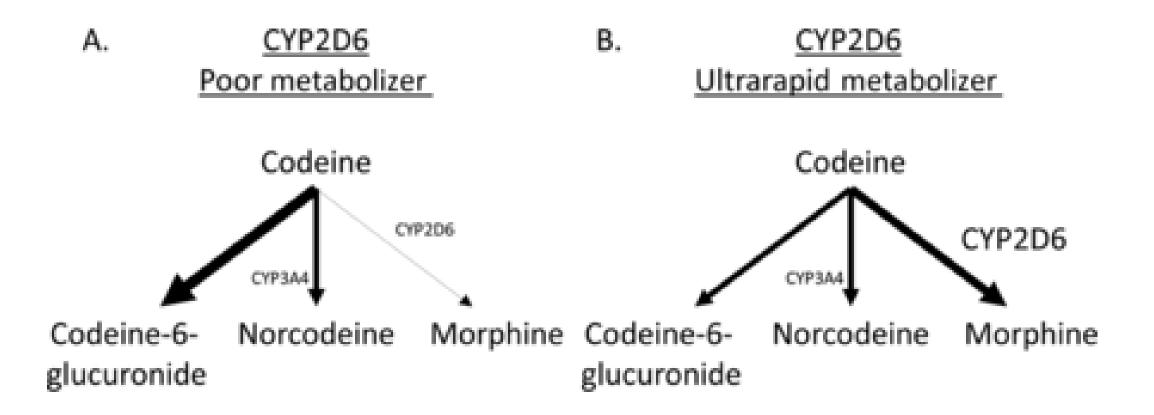
biosynthesis

G542X

Genotype

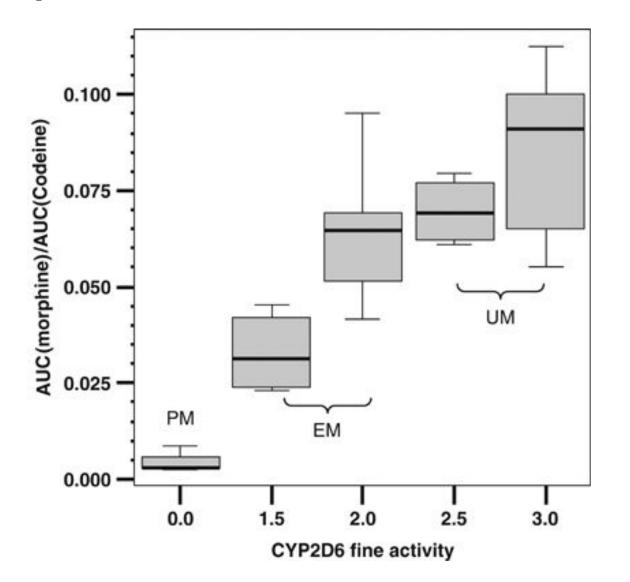

Classes of pharmacogenetics

- Drug target
- Drug metabolism


Pharmacogenetic nomenclature

Haplotype	Variants (variant = variants with dbSNP rsID)	Impact	Function	References
	<u>-1426C>T</u> , <u>-1235A>G</u> , <u>-1000G>A</u> , <u>100C>T</u> , <u>310G>T</u> , <u>842T>G</u> , <u>1038C>T</u> , <u>1662G>C</u> , <u>2098A>G</u> , <u>3202C>T</u> , <u>3583A>G</u> , <u>4181G>C</u>	<u>P34S, R344X</u>	no function	<u>Gaedigk et al, 2007</u>
	<u>100C>T, 310G>T, 842T>G, 886C>T, 1038C>T, 1662G>C, 3583A>G, 4125G>C, 4129C>G, 4132A>G, 4134T>C, 4156C>T, 4157A>C, 4159G>C, 4165T>G, 4167T>C, 4168G>A, 4169C>G, 4170T>C, 4173C>T, 4181G>C</u>	<u>P34S</u> , <u>R62W</u> , <u>P469A</u> , <u>T470A</u> , <u>H478S</u> , <u>H478S</u> , <u>G479R</u> , <u>F481V</u> , <u>A482S</u> , <u>S486T</u>	no function	<u>Sakuyama et al, 2008</u> <u>Soyama et al, 2006</u>
	<u>-1426C>T</u> , <u>-1235A>G</u> , <u>-740C>T</u> , <u>214G>C</u> , <u>221C>A</u> , <u>223C>G</u> , <u>227T>C</u> , <u>232G>C</u> , <u>233A>C</u> , <u>245A>G</u> , <u>310G>T</u> , <u>842T>G</u> , <u>1022C>T</u> , <u>1662G>C</u> , <u>1864_1865insTTTCGCCCC</u> , <u>2851C>T</u> , <u>3385A>C</u> , <u>3585G>A</u> , <u>3791C>T</u> , <u>4181G>C</u>	<u>T107I</u> , <u>174_175insFRP</u> , <u>R296C, S486T</u>	unknown function	Gaedigk et al(unpublished) Koch et al
	<u>1662G>C, 2292G>A, 2851C>T, 2940G>A, 4181G>C</u>	<u>R296C, S486T</u>	decreased function	<u>Marez et al, 1997</u> <u>Toskano et al, 2006</u>
	<u>1888_1889insTA</u> , <u>2304C>T</u>	<u>S183X</u>	unknown function	<u>Lee et al, 2009</u>
CYP2D6*61	CYP2D6-CYP2D7 hybrid gene; see ReadMe		unknown function	<u>Kramer et al, 2009</u>
	<u>4045C>T</u>	<u>R441C</u>	no function	<u>Klein et al, 2007</u>
CYP2D6*63	CYP2D6-CYP2D7 hybrid gene; see ReadMe		unknown function	<u>Kramer et al, 2009</u>
	<u>-1426C>T</u> , <u>-1235A>G</u> , <u>-1000G>A</u> , <u>100C>T</u> , <u>310G>T</u> , <u>842T>G</u> , <u>1022C>T</u> , <u>1662G>C</u> , <u>2098A>G</u> , 3583A>G, 4181G>C, 4402C>T	P34S. T107I. S486T	unknown function	<u>Gaedigk et al, 2008</u>

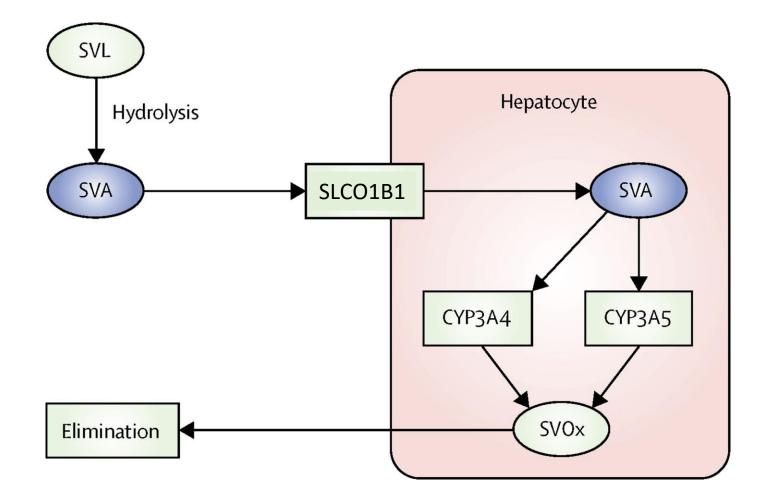
Example – CYP2D6 and Codeine



Example – CYP2D6 and codeine

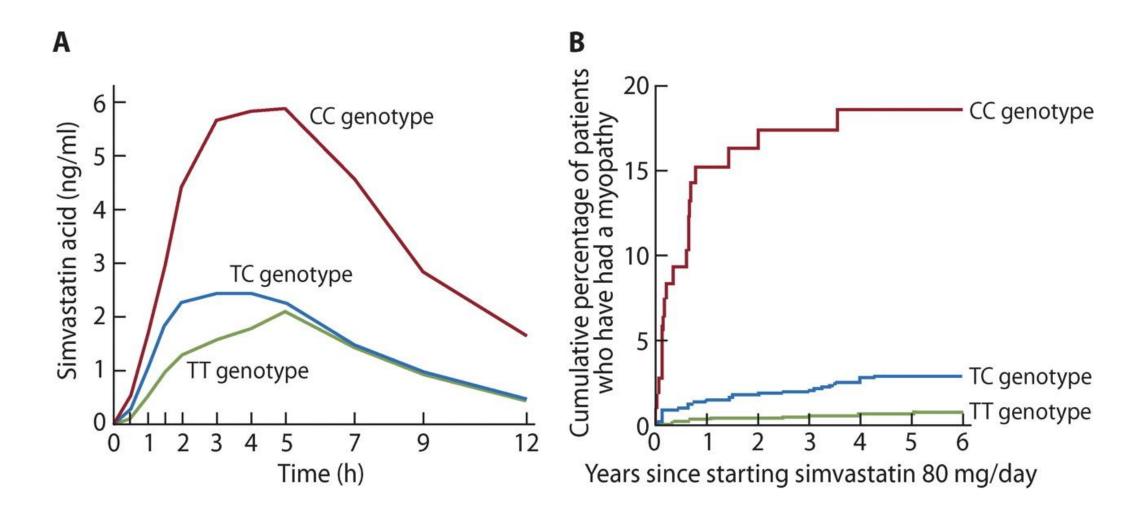
Nerenz, 2017

Example – CYP2D6 and codeine


Death of 3 children in 2012

Kirchheiner 2007

Classes of pharmacogenetics


- Drug target
- Drug metabolism
- Drug transport

Example – SLCO1B1 and simvastatin

Sadee 2013

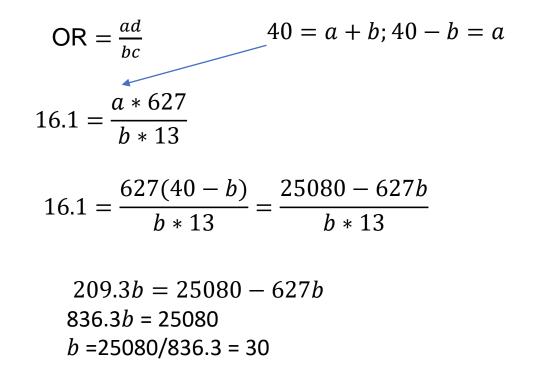
Example – SLCO1B1 and simvastatin

Global variant frequencies – SLCO1B1

- OR=4.5 for TC compared to TT at rs4149056
- OR = 16.1 for CC compared to TT at rs4149056
- C allele frequency in African populations: 3%
- C allele frequency in European populations: 15%
- C allele in South/Central American: 20%

- OR=4.5 for TC at rs4149056
- OR = 16.1 for CC at rs4149056
- C allele frequency in African populations: 3%
- C allele frequency in European populations: 15%
- C allele in South/Central American: 20%

1) Use Hardy Weinberg to calculate expected genotypes in the 3 populations (p+q = 1; $p^2 + 2pq+q^2 = 1$)


- OR=4.5 for TC at rs4149056
- OR = 16.1 for CC at rs4149056
- C allele frequency in African populations: 3%
 - 0.1% CC, 6% TC, 94.1% TT
- C allele frequency in European populations: 15%
 - 2% CC, 26% TC, 72% TT
- C allele in South/Central American: 20%
 - 4% CC, 32% TC, 64% TT

1) Use Hardy Weinberg to calculate expected genotypes in the 3 populations (p+q = 1; $p^2 + 2pq+q^2 = 1$)

- OR=4.5 for TC at rs4149056
- OR = 16.1 for CC at rs4149056
- C allele frequency in African populations: 3%
 - 0.1% CC, 6% TC, 94.1% TT
- C allele frequency in European populations: 15%
 - 2% CC, 26% TC, 72% TT
- C allele in South/Central American: 20%
 - 4% CC, 32% TC, 64% TT

- OR=4.5 for TC at rs4149056
- OR = 16.1 for CC at rs4149056
- C allele in South/Central American: 20%
 - 4% CC, 32% TC, 64% TT

	Disea		
	Muscle pain	No muscle pain	Total
СС	10	30	40
TT	13	627	640
total	23	657	960
640*0.02 = 12.8			

2) 2% of TT patients will experience muscle pain. Calculate how many people out of 1000 taking simvastatin in each of these populations you would expect to have muscle pain.

- OR = 4.5 for TC at rs4149056
- OR = 16.1 for CC at rs4149056
- C allele in South/Central American: 20%
 - 4% CC, 32% TC, 64% TT

In the South/Central American population, 10 (CC) + 27 (TC) + 13 (TT) = 50 out of 1000 on simvastatin will experience muscle pain.

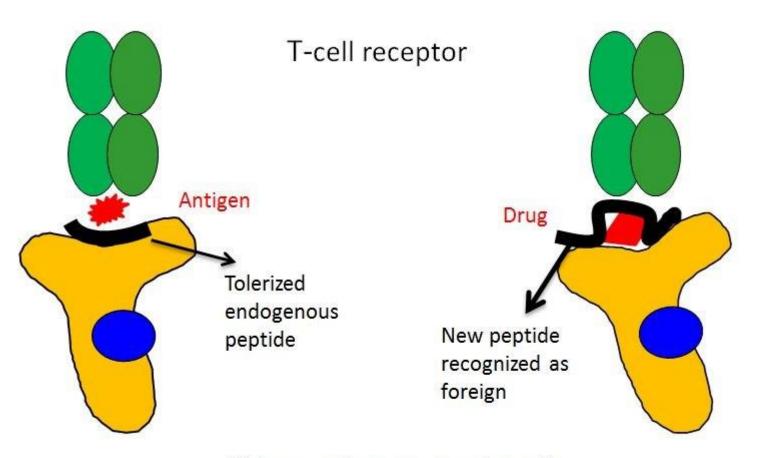
2) 2% of TT patients will experience muscle pain. Calculate how many people out of 1000 in each of these populations you would expect to have muscle pain.

- OR=4.5 for TC at rs4149056
- OR = 16.1 for CC at rs4149056
- C allele frequency in African populations: 3%
 - 0.1% CC, 6% TC, 94.1% TT

In African populations, 1 (CC) + 5 (TC) + 19 (TT) 25 out of every 1000 patients will experience muscle pain

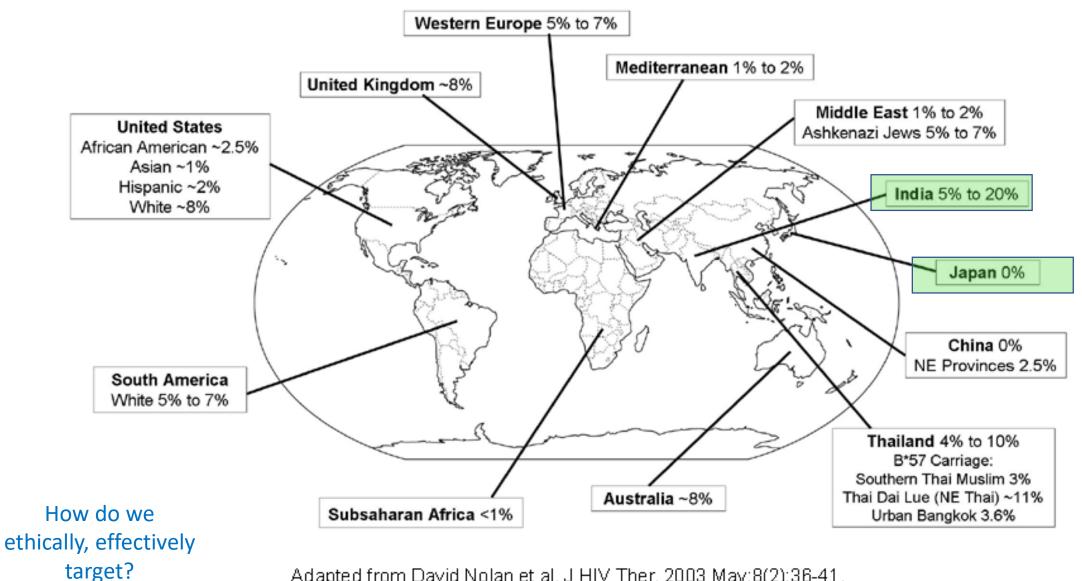
*screening in different populations

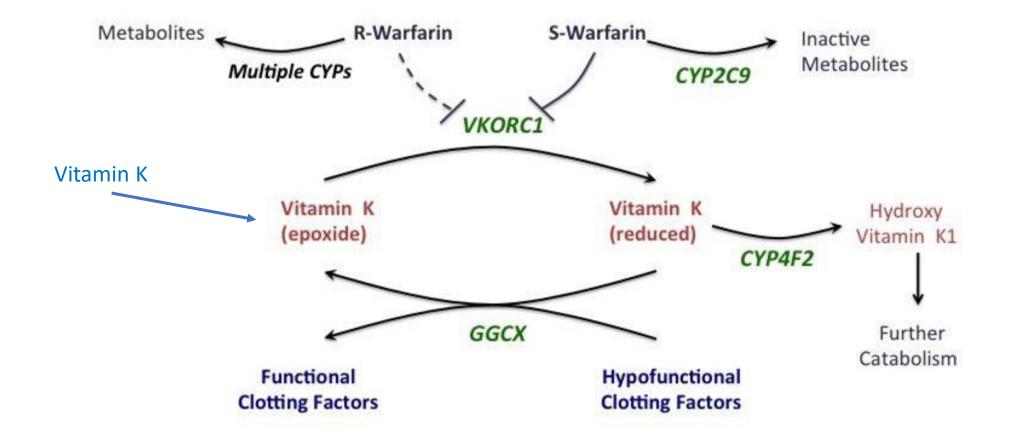
*who actually develops muscle pain


*compared to in population not taking simvastatin and impact on study size, implementation

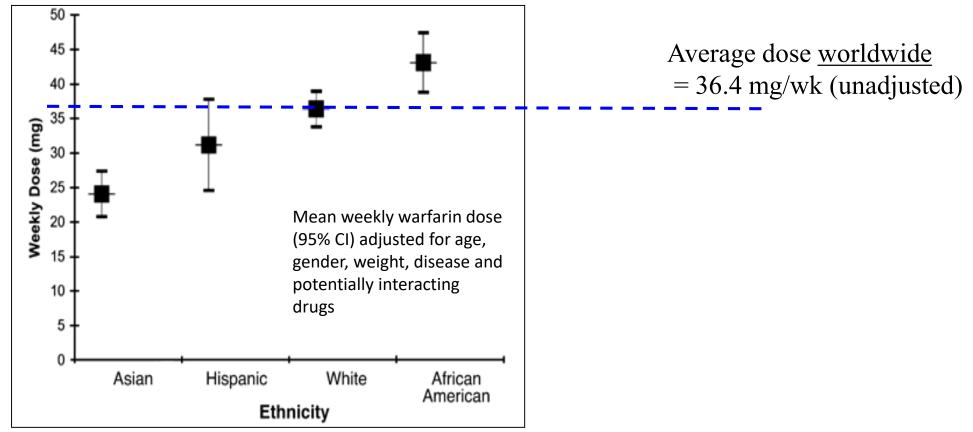
Classes of pharmacogenetics

- Drug target
- Drug metabolism
- Drug transport
- Hypersensitivity/allergy


Example – HLA-B and abacavir


HLA on antigen-presenting cell

Global Frequency of HLA-B*5701


Adapted from David Nolan et al. J HIV Ther. 2003 May;8(2):36-41.

Warfarin response – target and metabolism

Adapted by Allan Rettie and Ken Thummel from Johnson, et al. 2011. "Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 Genotypes and Warfarin Dosing" Clinical Pharmacology and Therapeutics

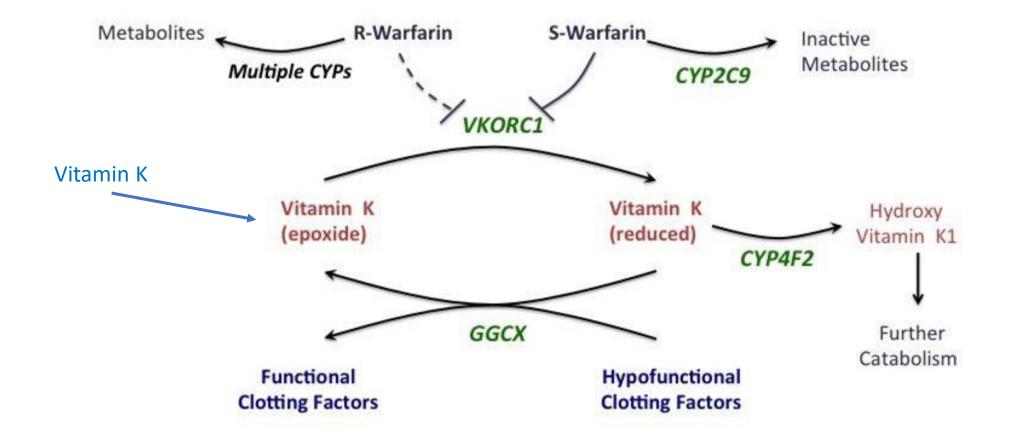
Ethnic Differences in Warfarin Dose

Dang et al., Ann. Pharmacother. (2005)

Warfarin dose algorithm

Variable	Regression coefficient
Race (African Americans=1)	-0.08
Age	-0.01
VKORC1 1173 (CT=1)	-0.39
VKORC1 1173 (TT=1)	-0.82
CYP2C9 (any*2=1)	-0.16
CYP2C9 (any*3=1)	-0.30
BMI (less than 25=1)	-0.18
BMI (25 to 30=1)	-0.23
Number of interacting medications	-0.08

Warfarin pharmacogenetics clinical utility


- Accounting for CYP2C9 *2 and *3 and VKORC1 rs9923231 explains ~40% of the variability in warfarin dose in whites, but only ~20% in people of African descent.
- EU-PACT study ~99% white patients, improved time in therapeutic range and time to therapeutic anticoagulation.
- COAG study 27% African ancestry found gene-based dosing actually performed worse than clinical dosing.

Warfarin pharmacogenetic variants

- VKORC1 rs9923231 does not seem to be functional and is likely linked to a causative locus in White populations but not African.
- Frequencies of CYP2C9 variants:

Warfarin response – target and metabolism

Adapted by Allan Rettie and Ken Thummel from Johnson, et al. 2011. "Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 Genotypes and Warfarin Dosing" Clinical Pharmacology and Therapeutics

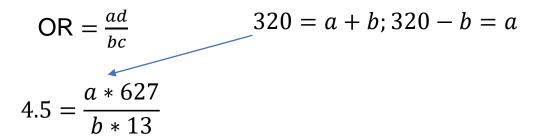
Summary

- Genetics can change drug response by altering drug target, drug metabolism, and drug transport, and by triggering allergies. It can also affect pathogen resistance.
- Using genetic information can improve toxicity and efficacy of drugs.
- These variants only matter when faced with an external substance.
- Frequencies of variants vary greatly across the world.
- Genetic tests can inform treatment but are based on probabilities in a complex system.

	Disea		
	Muscle pain	No muscle pain	Total
ТС	а	b	a+b
TT	С	d	c+d
total	a+c	b+d	

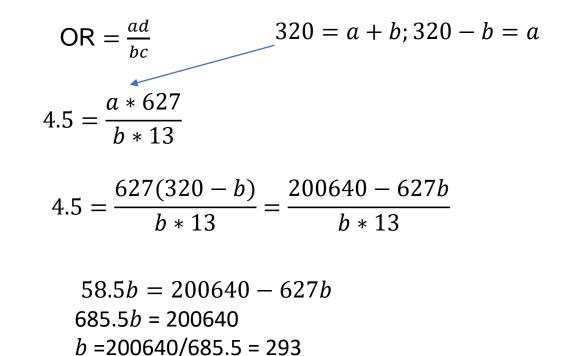
	Disea		
	Muscle pain	No muscle pain	Total
СС	а	b	a+b
TT	С	d	c+d
total	a+c	b+d	

$$\mathsf{OR} = \frac{ad}{bc}$$


- OR=4.5 for TC at rs4149056
- OR = 16.1 for CC at rs4149056
- C allele in South/Central American: 20%
 - 4% CC, 32% TC, 64% TT

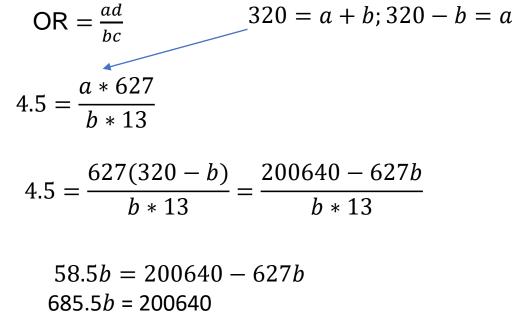
	Disea		
	Muscle pain	No muscle pain	Total
TC	а	b	320
TT	С	d	640
total	a+c	b+d	960

	Disea		
	Muscle pain	No muscle pain	Total
СС	а	b	40
TT	С	d	640
total	a+c	b+d	680


- OR=4.5 for TC at rs4149056
- OR = 16.1 for CC at rs4149056
- C allele in South/Central American: 20%
 - 4% CC, 32% TC, 64% TT

	Disea		
	Muscle pain	No muscle pain	Total
TC	а	b	320
TT	13	627	640
total	a+c	b+d	960

- OR=4.5 for TC at rs4149056
- OR = 16.1 for CC at rs4149056
- C allele in South/Central American: 20%
 - 4% CC, 32% TC, 64% TT


	Disea		
	Muscle pain	No muscle pain	Total
TC	а	b	320
TT	13	627	640
total	a+c	b+d	960

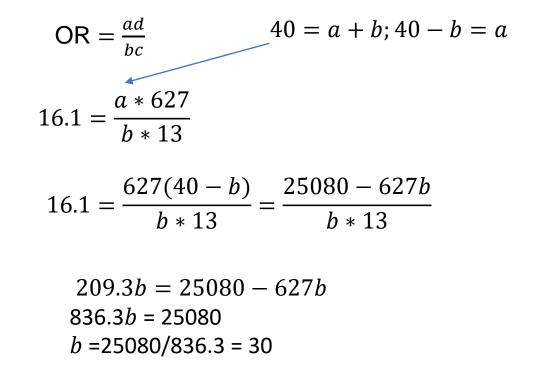
2) 2% of TT patients will experience muscle pain. Calculate how many people out of 1000 in each of these populations you would expect to have muscle pain.

- OR=4.5 for TC at rs4149056
- OR = 16.1 for CC at rs4149056
- C allele in South/Central American: 20%
 - 4% CC, 32% TC, 64% TT

	Disea		
	Muscle pain	No muscle pain	Total
ТС	27	293	320
TT	13	627	640
total	a+c	b+d	960

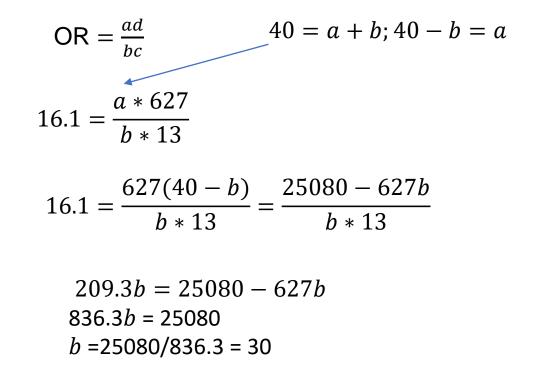
b =200640/685.5 = 293

- OR=4.5 for TC at rs4149056
- OR = 16.1 for CC at rs4149056
- C allele in South/Central American: 20%
 - 4% CC, 32% TC, 64% TT


	Disea		
	Muscle pain	No muscle pain	Total
СС	а	b	40
TT	13	627	640
total	a+c	b+d	960

$$\mathsf{OR} = \frac{ad}{bc}$$

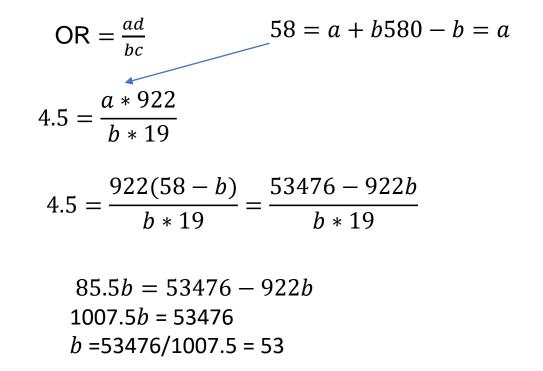
$$16.1 = \frac{a * 627}{b * 13}$$


- OR=4.5 for TC at rs4149056
- OR = 16.1 for CC at rs4149056
- C allele in South/Central American: 20%
 - 4% CC, 32% TC, 64% TT

	Disease status		
	Muscle pain	No muscle pain	Total
CC	а	b	40
TT	13	627	640
total	a+c	b+d	960

- OR=4.5 for TC at rs4149056
- OR = 16.1 for CC at rs4149056
- C allele in South/Central American: 20%
 - 4% CC, 32% TC, 64% TT

	Disea		
	Muscle pain	No muscle pain	Total
СС	10	30	40
TT	13	627	640
total	23	657	960


- OR=4.5 for TC at rs4149056
- OR = 16.1 for CC at rs4149056
- C allele frequency in African populations: 3%
 - 0.1% CC, 5.8% TC, 94.1% TT

	Disea		
	Muscle pain	No muscle pain	Total
ТС	а	b	58
TT	19	922	941
total	a+c	b+d	999

	Disea		
	Muscle pain	No muscle pain	Total
СС	а	b	1
TT	19	922	941
total	a+c	b+d	942

- OR=4.5 for TC at rs4149056
- OR = 16.1 for CC at rs4149056
- C allele frequency in African populations: 3%
 - 0.1% CC, 6% TC, 94.1% TT

	Disea		
	Muscle pain	No muscle pain	Total
ТС	5	53	58
TT	19	922	941
total	24	975	999

2) 2% of TT patients will experience muscle pain. Calculate how many people out of 1000 in each of these populations you would expect to have muscle pain.

- OR=4.5 for TC at rs4149056
- OR = 16.1 for CC at rs4149056
- C allele frequency in African populations: 3%
 - 0.1% CC, 6% TC, 94.1% TT

$$OR = \frac{ad}{bc} \qquad 1 = a + b; 1 - b = a$$

$$16.1 = \frac{a * 922}{b * 19}$$

$$16.1 = \frac{922(1-b)}{b*19} = \frac{922 - 922b}{b*19}$$

305.9b = 922 - 922b1227.9b = 922b = 922/1227.9 = 0.75

	Disea		
	Muscle pain	No muscle pain	Total
CC	1	0	1
TT	19	922	941
total	20	922	942