Example - HLA-B and abacavir

T-cell receptor

Tolerized endogenous peptide

HLA on antigen-presenting cell

FDA requires testing for abacavir

- Treatment with abacavir is generally well tolerated, but 5% of the patients experience hypersensitivity reactions that can be life threatening and warrant immediate discontinuation of the drug.
- Presence of at least one copy of the HLA-B*5701 allele has a very high odds ratio for developing hypersensitivity with abacavir. 6.7% of people have at least one copy of a HLA-B*5701 allele.
- 50% of the hypersensitivity is attributed to the effects of the HLAB*5701 allele.
- This equals the maximum percentage of cases that can be prevented if individuals who test positive for HLA-B*5701 are not treated with abacavir but receive alternative treatment.

Let's calculate the odds ratio ($\mathrm{n}=100$)

		Hypersensitivity		
		Yes	No	Total
HLA-B	$5701+$	a	b	a+b
	$5701-$	c	d	c+d
Total		a+c	b+d	100

What we know:
Hypersensitivity occurs in 5% of people.
50% of hypersensivity (cases) occurs in 5701+ individuals.
The $5701+$ allele is found in 6.7% of people.

Let's calculate these values ($\mathrm{n}=100$)

ODDS
RATIO

		Hypersensitivity		
		Cases	Controls	Total
HLA-B	5701+	$\mathbf{2 . 5}$	b	a+b
	$5701-$	$\mathbf{2 . 5}$	d	c+d
Total		a+c=5	b+d=95	100

What we know:
Hypersensitivity occurs in 5% of people.
50% of hypersensivity (cases) occurs in 5701+ individuals.
The $5701+$ allele is found in 6.7% of people.

Let's calculate these values ($\mathrm{n}=100$)

ODDS
RATIO

		Hypersensitivity		
		Cases	Controls	Total
HLA-B	$5701+$	2.5	b	$\mathbf{6 . 7}$
	$5701-$	2.5	d	$\mathbf{9 3 . 3}$
Total		$a+c=5$	$b+d=95$	$\mathbf{1 0 0}$

What we know:
Hypersensitivity occurs in 5% of people.
50% of hypersensivity (cases) occurs in 5701+ individuals.
The 5701+ allele is found in 6.7\%

Let's calculate these values ($\mathrm{n}=100$)

ODDS
RATIO

		Hypersensitivity		
		Cases	Controls	Total
HLA-B	$5701+$	2.5	$\mathbf{4 . 2}$	6.7
	$5701-$	2.5	$\mathbf{9 0 . 8}$	93.3
Total		a+c=5	b+d=95	100

What we know:
Hypersensitivity occurs in 5% of people.
50% of hypersensivity (cases) occurs in 5701+ individuals.
The 5701+ allele is found at a frequency of 6.7%

Let's calculate these values ($\mathrm{n}=100$)

		Hypersensitivity		
		Yes	No	Total
HLA-B	$5701+$	2.5	4.2	6.7
	$5701-$	2.5	90.8	93.3
Total		$a+c=5$	$b+d=95$	100

$\mathrm{OR}=\frac{a / b}{c / d}=\frac{a d}{b c}$
$(2.5 * 90.8) /\left(4.2^{*} 2.5\right)=21.6$
$\ln \left(\frac{p}{1-p}\right)=\mathrm{a}+\mathrm{B}^{\star}(5701+=0$ or 1$)$
\log odds hypersensitivity $=\ln (2.5 / 90.8)+\ln (21.6) X_{5701+}$
Odds in 5701- = 2.5/90.8
Odds in $5701+=2.5 / 4.2$
$B=\ln (21.6)=3.07$
Intercept $=\ln (2.5 / 90.8)=-3.59$
$Y=-3.59+3.07\left(X_{5701+}\right)$

Let's calculate screening parameters

		Hypersensitivity		
		Cases	Controls	Total
HLA-B	$5701+$	2.5	4.2	6.7
	$5701-$	2.5	90.8	93.3
Total		5	95	100

Sensitivity $=a /(a+c)=$ test + who will develop hypersensitivity
Specificity $=d /(b+d)=$ test - who won't develop hypersensitivity
Positive predictive value $=\mathrm{a} /(\mathrm{a}+\mathrm{b})=$ develop hypersensitivity who test +
Negative predictive value $=\mathrm{d}(\mathrm{c}+\mathrm{d})=$ don't develop hypersensitivity who test -

Let's calculate screening parameters

		Hypersensitivity		
		Cases	Controls	Total
HLA-B	$5701+$	2.5	4.2	6.7
	$5701-$	2.5	90.8	93.3
Total		5	95	100

Sensitivity $=a /(a+c)=2.5 / 5=50 \%$
Specificity $=d /(b+d)=90.8 / 95=96 \%$
Positive predictive value $=a /(a+b)=2.5 / 6.7=37 \%$
Negative predictive value $=d(c+d)=90.8 / 93.3=97 \%$

Number needed to treat

- (1/frequency of allele * 1/PPV)
- $(1 / 0.067)$ * $1 /(0.37)=40.3$
- How many people do we need to genotype to get one person with a 5701 allele (and then we give those people a different medication)
- How many of those people would have developed hypersensitivity if they did not receive a different medication (1 out of 3).

What we learned

- Why we study genetic epidemiology.
- The types of genetic variation and their effect on phenotypes.
- How population genetics principles can help us and hurt us in genetic epidemiology, especially related to population substructure (ancestry patterns) and linkage disequilibrium.
- How family studies can pinpoint loci linked to outcomes.
- Types of genetic data available and their pros and cons.
- How we conduct association studies and calculate odds ratios using 2×2 table and logistic regression.
- How to conduct genome wide association studies and consider rare variants.

What we learned

- Bioethical principles and public health screening parameters to help us decide whether and how to conduct studies and implement results.
- The principles in conducting gene-environment interaction studies including practical issues that need to be taken into account.
- Pharmacogenetics and precision medicine leverages many of the principles of genetic epidemiology to tailor medications for individual patients.
- Mendelian Randomization studies use genetics as proxies for modifiable risk factors to study associations between risk factor and outcome while overcoming some of the common pitfalls in observational epidemiology.
- There is an increasing interest in leveraging GWAS results to generate risk prediction models in the general population.

