Human Genetic Variation

Section 3 (1.5 hours)

Learning objectives

- Describe differences in types of genetic variation and how they affect phenotypes.
- Understand how variation perpetrates through generations.
- Calculate linkage disequilibrium between variants.

Our Genome in Numbers

23 chromosome pairs

3.2 billion base-pairs (A,C,G,T)

~20,000 genes

Genotypes - phenotypes

Our Genome in Numbers

23 chromosome pairs

3.2 billion base-pairs (A,C,G,T)

~20,000 genes

~1.5% of the genome is coding DNA

Genotypes and Phenotypes

- Mendelian phenotype is one driven by variation at a single genetic locus.
- Complex phenotype does not show such simple patterns of inheritance.
 - oligogenic (a few genetic loci)
 - polygenic (many genetic loci)

Genotypes and Phenotypes

- Mendelian phenotype is one driven by variation at a single genetic locus.
- **Complex phenotype** does not show such simple patterns of inheritance.
 - oligogenic (a few genetic loci)
 - polygenic (many genetic loci)
- Binary outcomes (yes/no, i.e. disease status)
- Quantitative outcomes (continuous, i.e. height)

Genetic Variation – sequence variation

Genetic variation - SNPs

Single Nucleotide Polymorphism (SNP)

SNP	SNP	
¥	÷	
A A C A C G C C A	TTCGGGGTC	
AACACGCCA	TTCGAGGTC	
AACATGCCA	TTCGGGGTC	
A A C A C G C C A	TTCGGGGTC	
	SNP ↓ A A C A C G C C A A A C A C G C C A A A C A T G C C A A A C A C G C C A	SNP SNP J SNP J SNP AACACGCCA TTCGGGGTC AACACGCCA TTCGGGGTC AACATGCCA TTCGGGGTC AACACGCCA TTCGGGGTC

A recent study sequenced 2,504 individuals and identified 84.7 million SNPs

On average, each individual carried 3.5-4.3 million SNPs. 21,400-26,000 (~0.6%) of those are in coding regions (cf. 1.5% of coding DNA in the genome)

Genetic variation – SNP effects

polar

Genetic Variation – sequence variation

Tandem repeats – Huntington's disease

CAG	CAG	CAG			
i			Ĩ		
CAG	CAG	CAG	CAG		
		1			
CAG	CAG	CAG	CAG	CAG	

Repeat count	Classification	Disease status
<28	Normal	Unaffected
28–35	Intermediate	Unaffected
36–40	Reduced-penetrance	May be affected
>40	Full-penetrance	Affected

By ParinoidMarvin - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15100100

Genetic Variation – sequence variation

Deletion – cystic fibrosis

F508Del variant inactivating chloride channel:

NucleotideATCATTGGTGTTAmino acidIleIleGlyVal

A recent study sequenced 10,545 human genomes and found more than 150 million variants

Allele Frequency

Genetic Variation – structural variation

Structural variation

 Inversion in factor VIII gene causes haemophilia (clotting deficiency).

Pedigree charts

Genetic Variation

We find that a typical genome differs from the reference human genome at 4.1 million to 5.0 million sites. Although >99.9% of variants consist of SNPs and short indels, structural variants affect more bases: the typical genome contains an estimated 2,100 to 2,500 structural variants, affecting ~20 million bases of sequence.

1000 Genomes project, Nature 2015

Accumulation of variants over generations

Genetic diversity is greatest in Africans

meller Europe 45,000 years ago North Asia Levant and 20,000 Arabian peninsula Americas years ago 120,000 to 90,000 15,000 years ago years ago Homo sapiens in Africa 150,000 to 200,000 years ago South Asia, Indonesia and Australia 50,000 years ago

deMenocal & Stringer, Nature 2016

Variation in global populations

The "Out-of-Africa" migration is an example of a Population Bottleneck

Accumulation of variants over generations

DNA inheritance

We inherit "blocks" of the genome from our parents (and not independent base-pairs)

Haplotypes

Specific combination of SNPs occurring on the same segment of chromosome.

SNPs

A/G

(Single Nucleotide Polymorphisms)

Haplotypes

A set of closely linked genetic markers present on one chromosome which tend to be inherited together

Haplotype blocks

For N SNPs, there are 2^N possible haplotypes

TRENDS in Genetics

Allele vs. genotype

We inherit two copies of each chromosome

Genotypes (A/A) – homozygous (A/C) – heterozygous (C/C) - homozygous

Haplotype phasing

When we genotype SNPs, we only see the genotype, and not the chromosome For an individual who is **C/T,G/G, A/C**:

Determine haplotype phase

1) Look at family data

- We seldom have this information
- 2) "Genotype" each chromosome
 - Very laboratory intensive and low-throughput
- 3) Infer the haplotype phase from the genotype data
 - Clark's algorithm (Clark, Mol Biol Evol, 1990)
 - Expectation-Maximization algorithm (Excoffier, Mol Biol Evol, 1995)
 - Coalescent-based methods and hidden Markov models (Li Genetics, 2003)

Linkage Disequilibrium (LD)

Linkage Disequilibrium (LD) is the non-random association between alleles at two or more loci

Chromosomal stretches derived from the common ancestor of all chromosomes are shown in yellow, and new stretches introduced by recombination are shown in blue. Markers that are physically close (that is, in the yellow regions of present-day chromosomes) tend to remain associated with the ancestral mutation (red arrow) even as recombination limits the extent of the region of association over time.

Nature Reviews | Genetics

SNPs physically closer to each other tend to be in stronger LD

1000 Genomes Project, Nature 2015

Recombination

Recombination

- Alleles on the same chromosome are inherited together unless recombination (crossing over) occurs
- The probability of recombination between two alleles increases with the distance between them

Recombination between 2 homologous chromosomes

Start with a polymorphic locus with alleles *A* and *a*.

 $\begin{array}{c} \mathbf{a} \\ \mathbf{a} \\ \mathbf{a} \\ \mathbf{b} \\ \mathbf{b} \\ \mathbf{a} \\ \mathbf{b} \\ \mathbf{a} \\ \mathbf{b} \\ \mathbf{a} \\ \mathbf{b} \\ \mathbf{b} \\ \mathbf{b} \\ \mathbf{b} \\ \mathbf{b} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{$

When a mutation occurs at a nearby locus (B->b), this occurs on a single chromosome bearing either allele *A* or *a* at the first locus (*A* in this example). So, early in the lifetime of the mutation, only three out of the four possible haplotypes will be observed in the population. The *b* allele will always be found on a chromosome with the *A* allele.

With time, a recombination event will take place and the association between alleles at the two loci will gradually be disrupted

Sometimes just a few SNPs are enough to explain the genetic variation in a region. These SNPs are called 'tag' SNPs

Caveat: Tag SNPs are not particularly efficient for rare SNPs

Region associated with Parkinson's Disease in Han Chinese

Linkage disequilibrium

- 20% sunny days in Seattle.
- How often do sunny days fall on the weekend?

Linkage disequilibrium

- 20% sunny days in Seattle
- How often do sunny days fall on the weekend?

Assume no linkage:

20% sunny days, 2/7 weekend days (0.29)

Likelihood have sunny day and weekend = p(sunny day)*p(weekend)

= 0.20 * (0.29) = 0.059 = 6% of days will be sunny and a weekend.

Linkage disequilibrium

- 20% sunny days
- How often do sunny days fall on the weekend?

Assume complete linkage.

29% weekends and 20% sunny days means that there has to be some weekend days that are not sunny even if all sunny days happen on a weekend.

There are 4 possible haplotypes for SNP1 (Aa) and SNP2 (Bb)

	SNP2	(Bb)	
	AB	Ab	р _А
SNP1 (Aa)	aB	ab	p _a
	р _в	p _b	1

Haplotypes frequencies if SNP1 (Aa) and SNP2 (Bb) are independent of each other. (This is called linkage equilibrium)

	SNP2		
	AB		
	$p_{AB} = p_A p_B$	$p_{Ab} = p_A p_b$	p _A
(Δa)	aB	ab	
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$p_{aB} = p_a p_B$	$p_{ab} = p_a p_b$	p _a
	р _в	p _b	1

Haplotypes frequencies if SNP1 (Aa) and SNP2 (Bb) are independent of each other (This is called linkage equilibrium)

	SNP2		
	AB	Ab	
	$p_{AB} = p_A p_B$	$p_{Ab} = p_A p_b$	p _A
(Aa)	aB	ab	
(, , , , , , , , , , , , , , , , , , ,	$p_{aB} = p_a p_B$	$p_{ab} = p_a p_b$	p _a
	р _в	p _b	1

We can infer LD as the deviation of observed haplotype frequency from its corresponding allele frequencies if SNP1 and SNP2 are independent of each other

	SNP2		
	AB	Ab	2
	p _A p _B +D	p _A p _b -D	P _A
(Aa)	aB	ab	n
	p _a p _B -D	p _a p _b +D	Pa
	р _в	p _b	1

 $D=p_{AB}p_{ab}-p_{Ab}p_{aB}$

Haplotypes frequencies if SNP1 (Aa) and SNP2 (Bb) are independent of each other (This is called linkage equilibrium)

	Su					
	Y	Y N				
V	0.06	.23				
T Mookond	$p_{AB} = p_A p_B$	$p_{Ab} = p_A p_b$	0.29			
N	.14	0.57				
IN	$p_{aB} = p_a p_B$	$p_{ab} = p_a p_b$	0.71			
	0.20	0.80	1			

Calculation of LD – All sunny days happen on a weekend...

Haplotypes frequencies if SNP1 (Aa) and SNP2 (Bb) are independent of each other (This is called linkage equilibrium) We can infer LD as the deviation of observed haplotype frequency from its corresponding allele frequencies if SNP1 and SNP2 are independent of each other

	Su	inny			Su	nny	
	Y	Ν			Y	N	
v	0.06	.23		Y	0.00	0.00	
T Maakand	$p_{AB} = p_A p_B$	$p_{Ab} = p_A p_b$	0.29	Weekend	0.20	0.09	0.29
N	.14	0.57		N	p _A p _B +D	p _A p _b -D	
	$p_{aB} = p_a p_B$	$p_{ab} = p_a p_b$	0.71		0	0.71	0.71
	0.20	0.80	1		p _a p _B -D	p _a p _b +D	0.71
	0.20	0.80			0.20	0.80	1
					0.20	0.00	<u> </u>

 $D = p_{AB}p_{ab} - p_{Ab}p_{aB}$

Calculation of LD – All sunny days happen on a weekend...

Haplotypes frequencies if SNP1 (Aa) and SNP2 (Bb) are independent of each other (This is called linkage equilibrium) We can infer LD as the deviation of observed haplotype frequency from its corresponding allele frequencies if SNP1 and SNP2 are independent of each other

	Su	inny			Su	nny	
	Y	Ν			Ŷ	N	
V	0.06	.23		Y		0.00	
T Maakand	$p_{AB} = p_A p_B$	$p_{Ab} = p_A p_b$	0.29	Weekend	0.20	0.09	0.29
weekend	.14	0.57		N	0.06+D	0.23-D	
	$p_{aB} = p_a p_B$	$p_{ab} = p_a p_b$	0.71		0	0.71	0.71
	0.20	0.80	1		0.14-D	0.57+D	0.71
	0.20	0.80			0.20	0.80	1
					0.20	0.80	-

 $D = p_{AB}p_{ab} - p_{Ab}p_{aB}$

$$\mathsf{D}'=\frac{D}{D_{max}},$$

$$D_{max} = \begin{cases} max\{-p_A p_B, -(1-p_A)(1-p_B)\}, when D < 0\\ min\{p_A(1-p_B), (1-p_A)p_B\}, when D > 0 \end{cases}$$

$$r^2 = \frac{D^2}{p_A p_a p_B p_b}$$

$$D' = \frac{0.14}{D_{max}},$$

$$D_{max} = \begin{cases} \min\{0.29(1 - 0.20), (1 - 0.29)0.20\}, when D > 0 \\ Dmax = \min(0.232, 0.142) \\ Dmax = 0.142 \\ D' = 0.14/0.142 = 0.99 \end{cases}$$

$$r^2 = \frac{D^2}{D}$$

 $p_A p_a p_B p_b$

$$D' = \frac{0.14}{D_{max}},$$

$$D_{max} = \begin{cases} min\{0.29(1 - 0.20), (1 - 0.29)0.20\}, when D > 0 \\ Dmax = min(0.232, 0.142) \\ Dmax = 0.142 \\ D' = 0.14/0.142 = 0.99 \end{cases}$$

$$r^{2} = \frac{(0.14)^{2}}{0.29*0.20*0.71*0.80}$$

$$D' = \frac{0.14}{D_{max}},$$

$$D_{max} = \begin{cases} min\{0.29(1 - 0.20), (1 - 0.29)0.20\}, when D > 0 \\ Dmax = min(0.232, 0.142) \\ Dmax = 0.142 \\ D' = 0.14/0.142 = 0.99 \end{cases}$$

$$r^{2} = \frac{(0.14)^{2}}{0.29*0.20*0.71*0.80}$$

$$r^{2} = 0.59$$

How does LD influence our study power?

- If a SNP C and causal SNP G are in LD with r², then a study with N cases and controls which measures C (but not G) will have the same power to detect an association between C and disease as a study with r² N cases and controls that directly measured G.
- r² N is the "effective sample size"
 - If the r² between your measured SNP C and causal SNP G is 0.5 you need to double your sample size to obtain the same power as if you had measured (genotyped) G directly.

SNPs rs6025 and rs4524 are both associated with venous thromboembolism (blood clot in a vein). The number of alleles for each SNP based on 503 individuals are displayed in the table below. Based on these numbers, calculate

- a) Frequencies of the four alleles (rs6025-C, rs6025-T, rs4524-G, rs4524-A)
- b) Frequencies for the four haplotypes (C-G, C-A, T-G and T-A)
- c) D' and r² between the two SNPs.

Distribution of alleles for rs6025 and rs4524 across 503 individuals.

rs6025/rs4524	rs4524-G	rs4524-A	Total
rs6025-C	255	739	994
rs6025-T	0	12	12
Total	255	751	1006

a) Frequencies of the four alleles (rs6025-C, rs6025-T, rs4524-G, rs4524-A)

rs6025/rs4524	rs4524-G	rs4524-A	Total
rs6025-C	255	739	994
rs6025-T	0	12	12
Total	255	751	1006

rs6025/	G	A		
rs4524				
С	255	739	C=994	pC=0.988
Т	0	12	T=12	pT=0.012
	G=255	A=751	1006	1
	pG=0.253	pA=0.747	1	

b) Frequencies for the four haplotypes (C-G, C-A, T-G and T-A)

rs6025/rs4524	rs4524-G	rs4524-A	Total
rs6025-C	255	739	994
rs6025-T	0	12	12
Total	255	751	1006

rs6025/rs4524	G	Α
С	pCG=255/1006=0.253	pCA=739/1006=0.735
Т	pTG=0	pTA=12/1006=0.0119

c) D' and r² between the two SNPs. D=pCG*pTA-pCA*pTG =0.253*0.0119-0.735*0 =0.0030

```
D'=D/Dmax
=0.003/min{0.253*(1-0.988), (1-0.253)*0.998)
=0.003/min{0.003, 0.746}
=0.003/0.003
=1
```

```
r^{2}=D^{2}/(p_{rs6025-C}*p_{rs6025-T}*p_{rs4524-G}*p_{rs4524-A})
=0.003<sup>2</sup>/(0.988*0.012*0.253*0.747)
=9.217x10<sup>-6</sup>/0.0022
=0.0041
```

Linkage patterns and ancestry

Population 1

Population 2

New mutations

- New mutations
- Genetic drift

- New mutations
- Genetic drift
- Rapid population growth

- New mutations
- Genetic drift
- Rapid population growth
- Admixture between populations

- New mutations
- Genetic drift
- Rapid population growth
- Admixture between populations
- Population structure inbreeding

- New mutations
- Genetic drift
- Rapid population growth
- Admixture between populations
- Population structure inbreeding
- Natural selection
 - Haplotypes that carry favorable mutations increase in frequency

Natural selection

- New mutations
- Genetic drift
- Rapid population growth
- Admixture between populations
- Population structure inbreeding
- Natural selection
 - Haplotypes that carry favorable mutations increase in frequency
- Recombination (recombination hotspots)
- Gene conversion (one-side recombination)

Summary

- Genetic variation can affect single nucleotides or longer segments through structural changes.
- Chunks of DNA are inherited together, allowing imputation and tagging SNPs for capturing genetic diversity (resulting from linkage disequilibrium).