Thursday	8:30-10:00	Alie	Population Genetics	Hardy-Weinberg Equilibrium, population structure, admixture mapping.
	10:30-12:00	Sara	Family-based Studies	Linkage Analysis, family-based association studies.
	1:30-3:00	Alie	Association Studies	Sequencing, genotyping, imputation, association analyses.
	3:30-5	Sara	Association Studies	GWAS (including bias), rare variants.

Association Studies

Section 6
(1.5 hours)

Learning objectives

- Describe the differences and the pros and cons of sequencing vs genotyping.
- Calculate and interpret odds ratios in case/control genetic association studies.
- Interpret quantitative trait association studies.
- Understand role for imputation.

Genetic Variation and Disease

Genetic data collection

- TaqMan Polymerase chain reaction (PCR)
- Targeted, low throughput.
- Detect deletions and structural variations.
- Genotyping chip
- Targeted locations, high throughput.
- Detects single, a priori locations.
- Sequencing
- Collects all bases, increasingly high throughput.
- Identify novel variants.
- Analyzing data more intensive

TaqMan PCR to identify variants

B

Genotyping technologies (low-throughput)

Illumina

400-40 SNPs

Sequenom
TaqMan

40-5 SNPs
10-1 SNPs

Chip Genotyping

Why we like SNPs:

- Abundant in the genome
- Easy to measure

Microfluidics, 96 samples x 96 assays, DNA probes with fluorescent markers.

Genotyping Output

Li, Nat Comm 2014

Genotype cluster plot for rare variants

SHIP (rs77375493

Sequencing alignment and depth

Depth: The number of times one basepair is sequenced

Sequencing output

Genetic association studies using SNPs

 ... ategergeatgoa....atcgergeatoba.... …..Arçoracatgón....Atce日tgeataba....

 DNA from

Variation at a
single nucleotide
different individuals sequenced

Some individuals will have one version of the SNP, some the other

Sample with disease

A higher than expected incidence in a disease group suggests SNPIG
is associated with a disease (or SNPIA is protective)

Association studies

- Determine if a particular genetic feature (exposure) co-occurs with a trait (disease) more often than would be expected by chance.
- Binary: Calculate 'odds' of an outcome occurring.
- Framed as an 'odds ratio', the odds of an outcome after an exposure (genotype) in relation to the odds of an outcome without the exposure (reference genotype).
- Continuous: calculate change in an outcome for every unit increase of an exposure.
measure of events out of all possible events (RR) vs ratio of events to non-events (OR)

$$
R R=\frac{\text { Risk of event in the Treatment group }}{\text { Risk of event in the Control group }}=\frac{\mathrm{a} /(\mathrm{a}+\mathrm{b})}{c /(c+d)}
$$

$$
O R=\frac{\text { Odds of event in Treatment group }}{\text { Odds of event in Control group }}=\frac{\mathrm{a} / \mathrm{b}}{c / d}
$$

measure of events out of all possible events (Ratio) vs ratio of events to non-events (Odds)

$$
R R=\frac{\text { Risk of event in the Treatment group }}{\text { Risk of event in the Control group }}=\frac{\mathrm{a} /(\mathrm{a}+\mathrm{b})}{c /(c+d)}
$$

$$
O R=\frac{\text { Odds of event in Treatment group }}{\text { Odds of event in Control group }}=\frac{\mathrm{a} / \mathrm{b}}{c / d}:
$$

If an outcome occurs 10 out of 100 times, the risk is 10%
But the odds is $10 / 90=11.1 \%$

cases ($n=1,000$)
people with heart disease

controls ($n=1,000$)
people without heart disease

SNP

Association testing in case-control studies

		Disease status		
		Cases	Controls	Total
Genotype	M	a	b	a+b
	m	c	d	c+d
Total		$a+c$	$b+d$	

Association testing in case-control studies

		Disease status		
		Cases	Controls	Total
Genotype	M	a	b	a+b
	m	c	d	c+d
Total		$a+c$	$b+d$	

1) Calculate the odds of the disease with the genotype and without the genotype

Odds that the M genotype occurs in a case: $\frac{a / a+b}{b / a+b}=\frac{a}{b}$
Odds that the m genotype occurs in a case: $\frac{c / c+d}{d / c+d}=\frac{c}{d}$

Association testing in case-control studies

		Disease status		
		Cases	Controls	Total
Genotype	M	a	b	a+b
	m	c	d	c+d
Total		$a+c$	$b+d$	

2) Calculate Odds Ratio (OR) as the odds that genotype M occurs in a case divided by the odds that genotype m occurs in a case.
$\left(\frac{a / a+b}{b / a+b}\right) /\left(\frac{c / c+d}{d / c+d}\right)=\frac{a / b}{c / d}=\frac{a d}{b c}$
$\mathrm{OR}=\frac{a d}{b c}$

Association testing in case-control studies

		Disease status		
		Cases	Controls	Total
Genotype	M	a	b	a+b
	m	c	d	c+d
Total		$a+c$	$b+d$	

Odds that the M allele occurs in a case $=\frac{a}{b}$ Odds that the m allele occurs in a case $=\frac{c}{d}$

The Odds Ratio (OR) is the odds that M occurs
$H_{0}: O R=1$ (no association)
OR > 1 indicates increased odds
$\mathrm{OR}<1$ indicates decreased odds (protective) in a case divided by the odds that m occurs in a case:

$$
\mathrm{OR}=\frac{a d}{b c}
$$

Confidence intervals for odds ratios

		Disease status	
		Cases	Controls
Genotype	M	a	b
	m	c	d

$$
\begin{gathered}
\mathrm{OR}=\frac{a / b}{c / d}=\frac{a d}{b c} \\
\text { s.e(} \log (\mathrm{OR}))=\sqrt{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}}
\end{gathered}
$$

Confidence interval: $e^{\log (O R) \pm z_{\alpha / 2} \times s . e(\log (O R))}$
Lower limit of 95% confidence interval: $e^{\log (O R)-1.96 \times s . e}$
Upper limit of 95% confidence interval: $e^{\log (O R)+1.96 \times s . e}$

Calculate- odds ratio and 95\% confidence interval

	Cases	Controls	Total
TT+TC	158	392	550
CC	20	86	106
Total	178	478	1656

$$
\begin{gathered}
\mathrm{OR}=\frac{a d}{b c} \\
\mathrm{s.e}(\log (\mathrm{OR}))=\sqrt{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}}
\end{gathered}
$$

Odds ratio calculations - odds ratio itself

	Cases	Controls	Total
TT+TC	158	392	550
CC	20	86	106
Total	178	478	1656

$$
\begin{gathered}
O R=\frac{158 \times 86}{392 \times 20}=1.7332 \\
\text { s.e. }(\log (O R))=\sqrt{\frac{1}{158}+\frac{1}{392}+\frac{1}{20}+\frac{1}{86}}
\end{gathered}
$$

Odds ratio calculations - confidence intervals

	Cases	Controls	Total
TT+TC	158	392	550
CC	20	86	106
Total	178	478	1656

$$
O R=\frac{158 \times 86}{392 \times 20}=1.7332
$$

s.e. $(\log (O R))=\sqrt{\frac{1}{158}+\frac{1}{392}+\frac{1}{20}+\frac{1}{86}}$
lower limit 95\% confidence interval:

$$
\begin{gathered}
=\exp (\log (O R)-1.96 \times \text { s.e. }(\log (O R))) \\
=\exp (\log (1.7332)-1.96 \times 0.2665)=1.03
\end{gathered}
$$

Upper limit 95\% confidence interval: 2.92

Let's practice! Calculate odds ratio

	Thyroid Cancer	No thyroid cancer	Total
AA+AG	50	20	70
GG	300	200	500
Total	350	220	570

$$
\mathrm{OR}=\frac{a d}{b c}
$$

Let's practice! Calculate odds ratio

	Thyroid Cancer	No thyroid cancer	Total
AA+AG	50	20	70
GG	300	200	500
Total	350	220	570

Odds ratio: $(50 * 200) /(20 * 300)=1.6$
Turn this result into a sentence about effect of A allele in thyroid cancer.

Let's practice! Calculate odds ratio

	Thyroid Cancer	No thyroid cancer	Total
AA+AG	50	20	70
GG	300	200	500
Total	350	220	570

Odds ratio: $(50 * 200) /(20 * 300)=1.6$
Turn this result into a sentence about effect of A allele in thyroid cancer.
The odds of developing thyroid cancer are $1.6 x$ times greater with an A allele compared to without an A allele.

Often use logistic regression for case-control analyses

Allows you to adjust for relevant factors

- Population stratification, age, sex, matching variables etc
$\ln \left(\frac{p}{1-p}\right)=\alpha+\beta_{1} \mathrm{~g}+\beta_{2} \mathrm{x}_{1}+\ldots+\beta_{k+1} \mathrm{x}_{\mathrm{k}} \quad$ (g is genotype, $\mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{k}}$ are covariates)
Coefficients are estimated using maximum likelihood estimation (MLE)
- $\ln \left(\frac{p}{1-p}\right)=$ log odds of an outcome
- Test $\mathrm{H}_{0}: \beta_{1}=0$ (likelihood ratio test, wald test, score test)
- The odds ratio is $\mathrm{OR}=e^{\beta_{1}}$
- $\beta_{1}=$ SNP effect $(\log (O R)) \rightarrow e^{\beta_{1}}=O R$

Common models of penetrance

Recessive
Genotype coding: 0,0,1

Effect

Dominant
Genotype coding: 0,1,1

Effect

Additive
Genotype coding: 0,1,2

Effect $=$ mean of continuous trait or $\log (\mathrm{OR})$ of binary trait

Interpret results

$$
\begin{gathered}
\log \text { odds Disease }=3+1.2(\mathbf{A})-0.3(\text { Female }) \\
\text { Genotypes: GG, GA, AA }
\end{gathered}
$$

Interpret results

$$
\begin{gathered}
\log \text { odds Disease }=3+1.2(\mathbf{A})-0.3(\text { Female }) \\
\text { Genotypes: GG, GA, AA } \\
\text { 1) Genotypes are additive (codes } 0,1,2) \\
\text { 2) Reference gender is male }
\end{gathered}
$$

Interpret results

$$
\log \text { odds Disease }=3+1.2(\mathbf{A})-0.3(\text { Female })
$$

Genotypes: GG, GA, AA

1) Genotypes are additive (codes $0,1,2$)
2) Reference gender is male
3) Every A allele increases log odds of disease 1.2
4) $O R$ AG vs $G G e^{1.2}=3.3$
5) What happens for AA?

Interpret results

$$
\log \text { odds Disease }=3+1.2(\mathbf{A})-0.3(\text { Female })
$$

Genotypes: GG, GA, AA

1) Genotypes are additive (codes $0,1,2$)
2) Reference gender is male
3) Every A allele increases log odds of disease 1.2
4) $O R A G$ vs $G G e^{1.2}=3.3$
5) What happens for $A A$? $e^{1.2^{* 2}}=11$ compared to GG.

6) Being female is protective ($e^{-0.3}=0.74$)

Continuous outcome genetic association

- Linear regression (instead of logistic)
- Additive coding of SNP $(0,1,2)$ most common

$$
Y=\alpha+\beta * S N P+X
$$

- β = SNP effect (for every SNP, unit increase in outcome)
- SNP = covariate coded ($0,1,2$)
- X = additional covariates (e.g. sex, study, age, population stratification)

Continuous outcome genetic association

- Linear regression (instead of logistic)
- Additive coding of SNP $(0,1,2)$ most common

$$
Y=\alpha+\beta * S N P+X
$$

- $Y=$ height in inches
- $\beta=1.2$
- SNP = AA, AC, CC covariate coded ($0,1,2$)
- Interpretation: For every allele C allele, predicted height increases 1.2 inches.

We can use LD in our studies: tagSNPs

Direct association
b

Indirect association

Nature Reviews | Genetics

We can use LD in our studies: Imputation

Imputation

- Cost efficient
- Can assess more SNPs than we genotyped (tagSNPs)
- Allows us to keep our sample size
- Fill in missings for already genotyped SNPs
- Allows us to combine data from existing platforms and different studies that genotype different SNPs

Imputation

Due to LD, we can compare haplotypes between a "reference" panel and our study and thereby guess genotypes

Study Individual:
TAGGT?TGCCTA?CGT
Reference Panel Individual: TAGGTATGCCTAGCGT

Imputation

GGCTATTTTGGGAA GGCTATTTTGGGAA GCCTATATACGGAA GGCAATTTAGCGAT GCCTATATACGGAA GGCAATTTAGCGAT

Fill in the blanks

Imputation

- We can infer genotypes for SNPs we didn't genotype (or failed in the lab)
- Input: 550,000 SNPs in 10,000 individuals
- Reference panel: 2,504 individuals from the 1000 Genomes project (>80M markers)
- Output: Imputed data for $>80 \mathrm{M}$ markers for your 10,000 individuals
- In practice, we exclude markers that were only seen once in 1000Genomes so we end up with $\sim 47 \mathrm{M}$ markers)

Assessing SNPs across genotyping platforms

	HumanHap	Affy 6.0	OmniExpress
HumanHap	459,999	126,959	260,661
Affy 6.0		668,283	168,223
OmniExpress			565,810

* 75,285 markers are on all 3 platforms

Imputation for studying SNPs across platforms

Imputation for studying SNPs across platforms

Imputation

- The imputation quality score r^{2} measures how well a SNP was imputed.
- Ranges between 0 and 1.
- A quality score of r^{2} on a sample of N individuals indicates that the amount of data at the imputed SNP is approximately equivalent to a set of perfectly observed genotype data in a sample size of $r^{2} N$.
- Typically, a cut-off of 0.30 or so will flag most of the poorly imputed SNPs, but only a small number ($<1 \%$) of well imputed SNPs. Caveat: This is not true for rare SNPs

Imputation

- Factors that affect imputation quality:
- Number of genotyped SNPs in your data
- Size of reference panel
- Similarity in genetic ancestry between reference and study samples
- Allele frequency

Summary

- Genetic data can be collected through genotyping or sequencing.
- Odds ratios give the odds of an outcome in relation to a reference.
- Linear and logistic regression allow adjustment for other factors.
- Imputation leverages linkage disequilibrium to estimate data not collected.

