%

Thursday 8:30-10:00 | Alie Population Hardy-Weinberg Equilibrium, population

Genetics structure, admixture mapping.

10:30-12:00 | Sara Family-based Linkage Analysis, family-based association
Studies studies.

1:30-3:00 Alie Association Sequencing, genotyping, imputation,
Studies association analyses.

3:30-5 Sara Association GWAS (including bias), rare variants.
Studies




Assoclation Studies

Section 6
(1.5 hours)



Learning objectives

 Describe the differences and the pros and cons of sequencing
VS genotyping.

 Calculate and interpret odds ratios in case/control genetic
association studies.

* Interpret quantitative trait association studies.
« Understand role for imputation.



Genetic Variation and Disease

Effect size
50.0

Low-frequency
variants with
intermediate effect

Rare variants of
small effect
very hard to identify
by genetic means

1.1

Low

Allele frequency
Manolio et al. Nature 2009; 461: 747-753.



Genetic data collection

« TagMan Polymerase chain reaction (PCR)
« Targeted, low throughput.
» Detect deletions and structural variations.

* Genotyping chip
 Targeted locations, high throughput.
 Detects single, a priori locations.
« Seguencing
 Collects all bases, increasingly high throughput.

* |dentify novel variants.
« Analyzing data more intensive



TagMan PCR to identify variants
O

Copy A

Copy B |

'

—
 co—
-

n +/+ +/= =/=

+/+ Wildtype
+/= Heterozygous

e Homozygous
Wildtype —

ThermoFisher Scientific



Genotyping technologies (low-throughput)

Illumina SNPlex Sequenom TagMan

1500 - 300 SNPs 400 - 40 SNPs 40 - 5 SNPs 10 -1 SNPs



Chip Genotyping

Why we like SNPs:

« Abundant in the genome
 Easy to measure

Microfluidics, 96 samples x
96 assays, DNA probes with LTI
fluorescent markers.

e

Fluidigm platform



Genotyping Output

152569254 - BCAC QC samples - iCOGs

2.5 -

Genotype counts
e AA=3520
« AG»32,399
e GG»70389
e NC=20

1.4 -

1.2 -

rs13422767 - BCAC QC samples - iCOGs

Genotype counts
s AA=4003
» AG=32,089
e GG=T70599
e NC=16

00 02 04 056 08
X

]

10 12 14

Li, Nat Comm 2014



Genotype cluster plot for rare variants

MHI (rs77375493) SHIP (rs77375493

1200
= 020 F z
> 3
€ o0sof . 4
2 - £
g 0% F 0@ - ib
= .

L J - :./.
020 b (‘/7
0 : : —
Nom inte
H20E A Al A A A i i
0 020 040 050 05 1 1.20 1%

Norm Intensity (4)

Auer, Nat Genet 2014



Seqguencing alignment and depth

Depth: The number of times one basepair is sequenced

Genome of individual re-sequenced
by aligning short reads against the

referance genome ACCTTAGATCACTACAGAAT IGoASCTGOTAGCTGTTAGACA
IGOGECGRCCTTAGATCACT CIFCAGCTGCTAGCTGT TAGAC
_ TACCGOGGOGACCTTAGATC ATTAGACCCAGTAGCTGOAGCTS
] TACAGGTTAGGATTAGOGE CACCACAGAATARRATATTATT
RACCTTCGATCACTACAGG '.“IA!'J'!"A.T!.EM-EEELELT‘[‘
ATTRATGCETOGACCTTCG ATRTATACOEOGGCGRECTTAG
IGEATTRATGORTCGACCT GOGCTTAGACATTABRTATACE
TCOGATTRATCOROTOREADD .TlﬂﬂhﬂhhﬂhﬂTﬂ.ﬂm
FELGGAT TART GO TOGAL a'qrrA-EEE-ETT.il.G!EAT'!'Ah']ITI.T
.uﬁcmcmanurac:clr JCTTAE!I:A.!“IP-.H}I"J;TLCCE:
ITAGTTATARRGCGECGEAT TTAGGAT TAGOGCT TAGACATT
ACATTRAGTTATARRGOGGE TACAGGTTAGGATTAGOGCTTA reference genome sequence
Individual is Individual is
homozygous T al this heterozygous at this

AT polymorphism. GJA polymorphism.



Sequencing =00

3 H F% & A &G

output

g a4 a*g a @ a a%g
G A R*EG AR G & A¥h

|
e e o e e SN
a g aa¥¥ggct tc a tE &£ at t¥*c t c t t*g t &
G C T T I G |
[ |

2 a a%*g
s H H*¥LG A b A H¥ H 1T T®L T L T T*0x T L5

Fohner 2015



Genetic assoclation studies using SNPs

ATCGOTGCA *

L ATCOACTACA ‘....

m .. ATCACTACA . ‘
e ATCACTACA Ny

=~ L ATOROTA0A o *
e ATEACTACA 7~y ‘
DNA from
vorsion of the SNP,
some the other
Sample with disease Normal populatlon

A higher than expected incidence In a population, a certain
in a disease group suggests SNPIG percentage will have one
is associated with a discase version, the rest the other

(or SNPIA is protective) © Gibson & Muse, A Primer of Genome Science



Assoclation studies

« Determine if a particular genetic feature (exposure) co-occurs
with a trait (disease) more often than would be expected by
chance.

 Binary: Calculate ‘odds’ of an outcome occurring.

* Framed as an ‘odds ratio’, the odds of an outcome after an exposure
(genotype) in relation to the odds of an outcome without the exposure
(reference genotype).

« Continuous: calculate change in an outcome for every unit
iIncrease of an exposure.



measure of events out of all possible events
(RR) vs ratio of events to non-events (OR)

RR =

OR

Risk of event in the Treatment group a/(a-

_b)

c/(cH

Risk of event in the Control group

Odds of event in Control group

- d)

Odds of eventin Treatmentgroup a/b
B c/d



measure of events out of all possible events
(Ratio) vs ratio of events to non-events (Odds)

. Risk of event in the Treatment group a/(a+b)
~ Risk of event in the Control group c/(c+d)
OR — Odds of eventin Treatmentgroup _ a/b

Odds of event in Control group c/d

If an outcome occurs 10 out of 100 times, the risk is 10%
But the odds is 10/90 = 11.1%



T C T
cases
cases (n=1,000)
people with heart disease
C C A =
T
c C
controls

T

controls (n=1,000)
people without heart disease



Assoclation testing In case-control studies

|| Dpiseasestatus |
_ Cases Controls Total

Genotype M a b a+b
m C d c+d




Assoclation testing in case-control studies

|| Dpiseasestatus |
_ Cases Controls Total

Genotype M a b a+b
m C d c+d

1) Calculate the odds of the disease with the genotype and without the genotype

Q

Odds that the M genotype occurs in a case: % =
a+b

Cc
Odds that the m genotype occurs in a case: d;C—de = -
c+d

Qla



Assoclation testing In case-control studies

|| Dpiseasestatus |
_ Cases Controls Total

Genotype M a b a+b
m C d c+d

2) Calculate Odds Ratio (OR) as the odds that genotype M
occurs in a case divided by the odds that genotype m occurs in a
case.

a/a+b C/c+d — % — ﬂ
(3 a+b)/( d/c+d) “/a  bc

ad
OR_E



Assoclation testing in case-control studies

|| Dpiseasestatus |
_ Cases Controls Total

Genotype M a b a+b
m C d c+d

Odds that the M allele occurs in a case =
Odds that the m allele occurs in a case =

Hy,: OR =1 (no association)
OR >1 Indicates increased odds

OR <1 indicates decreased odds
(protective)

QlaT|a

The Odds Ratio (OR) is the odds that M occurs
In a case divided by the odds that m occurs in a case:

_ad
OR—bC



Confidence intervals for odds ratios

- Disease status
_ Cases Controls

Genotype \Y a b
m C d

_ Y _ad
OR= 2 = -

s.e(og(OR)= |1 +2+1+1

Confidence interval: !08(0R)£zq/2%s.e(log(OR))

Lower limit of 95% confidence interval:e!08(0R)-1.96xs.e
Upper limit of 95% confidence interval:e!08(0R)+1.96xs.e



Calculate— odds ratio and 95% confidence interval

e lowe e

TT+TC
CC 20 86 106
Total 178 478 1656
ad
OR=—

bc

s.e(log(OR))= \/% e



Odds ratio calculations — odds ratio itself

e lowe e

TT+TC

CC 20 86 106
Total 178 478 1656
158 x 86
OR = 57~ 0 = 17332
ooy~ [y 1]
(fog 158 392 86



Odds ratio calculations — confidence intervals

e lowe e

TT+TC
cC 20 86 106
Total 178 478 1656
OR = ;gg i gg — 1.7332 o | |
lower limit 95% confidence interval:
e-(log(OR)) = \/ﬁ T302 20 " 86 = exp(log(OR) — 1.96 x s.e.(log(OR)))

= exp(log(1.7332) — 1.96 x 0.2665) = 1.03

Upper limit 95% confidence interval: 2.92



Let's practice! Calculate odds ratio

Thyroid No thyroid Total
Cancer cancer

AA+AG
GG 300
Total 350 220 570

ad
OR= o



Let's practice! Calculate odds ratio

Thyroid No thyroid Total
Cancer cancer

AA+AG
GG 300 200 500
Total 350 220 570

Odds ratio: (50*200)/(20*300) = 1.6

Turn this result into a sentence about effect of A allele in thyroid cancer.



Let's practice! Calculate odds ratio

Thyroid No thyroid Total
Cancer cancer

AA+AG
GG 300 200 500
Total 350 220 570

Odds ratio: (50*200)/(20*300) = 1.6
Turn this result into a sentence about effect of A allele in thyroid cancer.

The odds of developing thyroid cancer are 1.6x times greater with an A
allele compared to without an A allele.



Often use logistic regression for case-control analyses

Allows you to adjust for relevant factors
« Population stratification, age, sex, matching variables etc

In (&): a+ B9+ Box + ... 4Bri1X. (g is genotype, X,,...X, are covariates)
Coefficients are estimated using maximum likelihood estimation (MLE)

e In (1&) = log odds of an outcome

-p
» Test H,: f; =0 (likelihood ratio test, wald test, score test)
» The odds ratio is OR=e#1

* 5, = SNP effect (log(OR)) = e %= OR



Common models of penetrance

Effect Effect Effect
AA AC CcC AA AC CC AA AC CcC
Recessive Dominant Additive
Genotype coding: 0,0,1 Genotype coding: 0,1,1 Genotype coding: 0,1,2

Effect = mean of continuous trait or log(OR) of binary trait



Interpret results

log odds Disease = 3 + 1.2(A) - 0.3(Female)
Genotypes: GG, GA, AA



Interpret results

log odds Disease= 3 + 1.2(A) - 0.3(Female)
Genotypes: GG, GA, AA
1) Genotypes are additive (codes 0, 1, 2)
2) Reference gender is male



Interpret results

log odds Disease= 3 + 1.2(A) - 0.3(Female)
Genotypes: GG, GA, AA
1) Genotypes are additive (codes 0, 1, 2)
2) Reference gender is male
3) Every A allele increases log odds of disease 1.2
4) ORAG vs GG e12=3.3
5) What happens for AA?



Interpret results

log odds Disease= 3 + 1.2(A) - 0.3(Female)
Genotypes: GG, GA, AA
1) Genotypes are additive (codes 0, 1, 2)
2) Reference gender is male
3) Every A allele increases log odds of disease 1.2
4) ORAG vs GG e12=3.3

5) What happens for AA? el-22= 11 compared to GG.
6) Being female is protective (e3=0.74)



Continuous outcome genetic association

* Linear regression (instead of logistic)
» Additive coding of SNP (0,1,2) most common

Y =a+ B *SNP + X

* B = SNP effect (for every SNP, unit increase in outcome)
« SNP = covariate coded (0,1,2)

« X = additional covariates (e.g. sex, study, age, population
stratification)



Continuous outcome genetic association

* Linear regression (instead of logistic)
» Additive coding of SNP (0,1,2) most common

Y =a+ B *SNP + X

* Y = height in inches
e 3=1.2
« SNP = AA, AC, CC covariate coded (0,1,2)

* Interpretation: For every allele C allele, predicted height increases
1.2 inches.



We can use LD in our studies: tagsnes

0 N N

............... R SR G g SR

Direct association Indirect association

MNature Reviews | Genetics

Hirschhorn & Daly. Nature Reviews Genetics 2005,
http://mathgen.stats.ox.ac.uk/impute/impute v2.html



http://mathgen.stats.ox.ac.uk/impute/impute_v2.html

We can use LD In our studies: imputation

Study
genotypes
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{irschhorn & Daly. Nature Reviews Genetics 2005,
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http://mathgen.stats.ox.ac.uk/impute/impute_v2.html

Imputation

» Cost efficient
e Can assess more SNPs than we genotyped (tagSNPs)

* Allows us to keep our sample size
* Fill in missings for already genotyped SNPs

 Allows us to combine data from existing platforms and different studies that
genotype different SNPs



Imputation

Due to LD, we can compare haplotypes between a “reference”
panel and our study and thereby guess genotypes

Study Individual: TAGGT?TGCCTA?CGT

Reference Panel Individual: TAGGTATGCCTAGCGT

https://mathgen.stats.ox.ac.uk/impute/impute_v2.html



Person 1
Person 2
Person 3
Person 4
Person 5
Person 6

Genotyping

Match genotypes
to a reference

GGCTATTTTGGGAA
CGCTATATACCCAT
GGCAATTTAGCGAT
GCCTATATACGGAA

Can you impute the
missing bases?



Person 1
Person 2
Person 3
Person 4
Person 5
Person 6

Genotyping
——=le———— G---A
———le———— G---A
———le———— C---A
-—=-A-—-——- G---T
———le———— C---A
———pA———— G—---T

Match genotypes
to a reference

GGCTATTTTGGGAA
CGCTATATACCCAT
GGCAATTTAGCGAT
GCCTATATACGGAA

Imputation

GGCTATTTTGGGAA
GGCTATTTTGGGAA
GCCTATATACGGAA
GGCAATTTAGCGAT
GCCTATATACGGAA
GGCAATTTAGCGAT

/Fiu in the blanks



Imputation

* We can infer genotypes for SNPs we didn’t genotype (or failed
In the lab)
 Input: 550,000 SNPs in 10,000 individuals

* Reference panel: 2,504 individuals from the 1000 Genomes project
(>80M markers)

e Output: Imputed data for >80M markers for your 10,000 individuals

* In practice, we exclude markers that were only seen once in 1000Genomes so
we end up with ~47M markers)



Assessing SNPs across genotyping platforms

| HumanHap | Affy6.0 |OmniExpress
459,999 126,959 260,661
668,283 168,223
565,810

* 75,285 markers are on all 3 platforms

Lindstrom, PLoS One 2017



Imputation for studying SNPs across platforms

[Ilumina SNDPs

Atfymetrix SNPs

—_————— ————
Overlap SNPs

—_ —_— i




Imputation for studying SNPs across platforms

[Ilumina SNDPs

Atfymetrix SNPs

—_————— ————
Overlap SNPs

—_ —_— i




Known genotypes
-=== Genotypes being imputed

®

Impute panel 0-specific
variants into panel 1.

Reference panel 1
(e.g., study-specific)

Reference panel 0
(e.g., 1000 Genomes)

Impute panel 1-specific
variants into panel 0.

O,

Use merged reference panel
to impute untyped variants
in GWAS dataset.




Imputation

* The imputation quality score r> measures how well a SNP was
Imputed.

* Ranges between 0 and 1.

A quality score of r> on a sample of N individuals indicates that the
amount of data at the imputed SNP Is approximately equivalent to a set
of perfectly observed genotype data in a sample size of r°N.

 Typically, a cut-off of 0.30 or so will flag most of the poorly imputed
SNPs, but only a small number (<1%) of well imputed SNPs. Caveat:
This Is not true for rare SNPs



Imputation

 Factors that affect imputation quality:
 Number of genotyped SNPs in your data
 Size of reference panel
 Similarity in genetic ancestry between reference and study samples

« Allele frequency



Summary

» Genetic data can be collected through genotyping or
sequencing.

» Odds ratios give the odds of an outcome In relation to a
reference.

* Linear and logistic regression allow adjustment for other factors.

 Imputation leverages linkage disequilibrium to estimate data not
collected.



