Thursday	8:30-10:00	Alie	Population Genetics	Hardy-Weinberg Equilibrium, population structure, admixture mapping.
	10:30-12:00	Sara	Family-based	Linkage Analysis, family-based association
-			Studies	studies.
	1.30-3.00	۵۱۱۵	Association	Sequencing genotyping imputation
	1.50-5.00		Studies	association analyses.
	3:30-5	Sara	Association Studies	GWAS (including bias), rare variants.

Association Studies

Section 6 (1.5 hours)

Learning objectives

- Describe the differences and the pros and cons of sequencing vs genotyping.
- Calculate and interpret odds ratios in case/control genetic association studies.
- Interpret quantitative trait association studies.
- Understand role for imputation.

Genetic Variation and Disease

Manolio et al. Nature 2009; 461: 747-753.

Genetic data collection

- TaqMan Polymerase chain reaction (PCR)
 - Targeted, low throughput.
 - Detect deletions and structural variations.
- Genotyping chip
 - Targeted locations, high throughput.
 - Detects single, a priori locations.
- Sequencing
 - Collects all bases, increasingly high throughput.
 - Identify novel variants.
 - Analyzing data more intensive

TaqMan PCR to identify variants

ThermoFisher Scientific

Genotyping technologies (low-throughput)

1500 - 300 SNPs 400 - 40 SNPs 40 - 5 SNPs 10 - 1 SNPs

Chip Genotyping

Why we like SNPs:

- Abundant in the genome
- Easy to measure

Microfluidics, 96 samples x 96 assays, DNA probes with fluorescent markers.

Fluidigm platform

Genotyping Output

Li, Nat Comm 2014

Genotype cluster plot for rare variants

Auer, Nat Genet 2014

Sequencing alignment and depth

Depth: The number of times one basepair is sequenced

Sequencing output

Fohner 2015

Genetic association studies using SNPs

is associated with a disease

(or SNPIA is protective)

version, the rest the other

Association studies

- Determine if a particular genetic feature (exposure) co-occurs with a trait (disease) more often than would be expected by chance.
- Binary: Calculate 'odds' of an outcome occurring.
 - Framed as an 'odds ratio', the odds of an outcome after an exposure (genotype) in relation to the odds of an outcome without the exposure (reference genotype).
- Continuous: calculate change in an outcome for every unit increase of an exposure.

measure of events out of all possible events (RR) vs ratio of events to non-events (OR)

 $RR = \frac{\text{Risk of event in the Treatment group}}{\text{Risk of event in the Control group}} = \frac{a/(a+b)}{c/(c+d)}$

$$OR = \frac{\text{Odds of event in Treatment group}}{\text{Odds of event in Control group}} = \frac{a/b}{c/d} = \frac{a}{c/d}$$

measure of events out of all possible events (Ratio) vs ratio of events to non-events (Odds)

 $RR = \frac{\text{Risk of event in the Treatment group}}{\text{Risk of event in the Control group}} = \frac{a/(a+b)}{c/(c+d)}$

$$OR = \frac{\text{Odds of event in Treatment group}}{\text{Odds of event in Control group}} = \frac{a/b}{c/d} :$$

If an outcome occurs 10 out of 100 times, the risk is 10% But the odds is 10/90 = 11.1%

		Disea		
		Cases	Controls	Total
Genotype	Μ	а	b	a+b
	m	С	d	c+d
Total		a+c	b+d	

		Disea		
		Cases	Controls	Total
Genotype	Μ	а	b	a+b
	m	С	d	c+d
Total		a+c	b+d	

1) Calculate the odds of the disease with the genotype and without the genotype

Odds that the M genotype occurs in a case:
$$\frac{a_{a+b}}{b_{a+b}} = \frac{a}{b}$$

Odds that the m genotype occurs in a case:
$$\frac{c_{c+d}}{d_{c+d}} = \frac{c}{d}$$

		Disea		
		Cases	Controls	Total
Genotype	Μ	а	b	a+b
	m	С	d	c+d
Total		a+c	b+d	

2) Calculate Odds Ratio (OR) as the odds that genotype M occurs in a case divided by the odds that genotype m occurs in a case.

$$\left(\frac{a_{a+b}}{b_{a+b}}\right) / \left(\frac{c_{c+d}}{d_{c+d}}\right) = \frac{a_{b}}{c_{d}} = \frac{ad}{bc}$$

$$OR = \frac{ad}{bc}$$

		Disea		
		Cases	Controls	Total
Genotype	Μ	а	b	a+b
	m	С	d	c+d
Total		a+c	b+d	

Odds that the M allele occurs in a case
$$=\frac{a}{b}$$

Odds that the m allele occurs in a case $=\frac{c}{d}$

The Odds Ratio (OR) is the odds that M occurs in a case divided by the odds that m occurs in a case:

$$OR = \frac{ad}{bc}$$

 H_0 : OR = 1 (no association)

- OR > 1 indicates increased odds
- OR < 1 indicates decreased odds (protective)

Confidence intervals for odds ratios

		Disease status		
		Cases	Controls	
Genotype	Μ	а	b	
	m	С	d	

$$OR = \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc}$$
$$s.e(log(OR)) = \sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}$$

Confidence interval: $e^{\log(OR) \pm z_{\alpha/2} \times s.e(\log(OR))}$

Lower limit of 95% confidence interval: $e^{\log(OR)-1.96 \times s.e}$ Upper limit of 95% confidence interval: $e^{\log(OR)+1.96 \times s.e}$

Calculate– odds ratio and 95% confidence interval

	Cases	Controls	Total
TT+TC	158	392	550
СС	20	86	106
Total	178	478	1656

$$OR = \frac{ad}{bc}$$

s.e(log(OR)) = $\sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}$

Odds ratio calculations – odds ratio itself

	Cases	Controls	Total
TT+TC	158	392	550
СС	20	86	106
Total	178	478	1656

$$OR = \frac{158 \times 86}{392 \times 20} = 1.7332$$
$$s.e.(log(OR)) = \sqrt{\frac{1}{158} + \frac{1}{392} + \frac{1}{20} + \frac{1}{86}}$$

Odds ratio calculations – confidence intervals

	Cases	Controls	Total
TT+TC	158	392	550
СС	20	86	106
Total	178	478	1656

$$OR = \frac{158 \times 86}{392 \times 20} = 1.7332$$
$$s.e.(log(OR)) = \sqrt{\frac{1}{158} + \frac{1}{392} + \frac{1}{20} + \frac{1}{86}}$$

lower limit 95% confidence interval: = $exp(log(OR) - 1.96 \times s.e.(log(OR)))$

 $= exp(log(1.7332) - 1.96 \times 0.2665) = 1.03$

Upper limit 95% confidence interval: 2.92

Let's practice! Calculate odds ratio

	Thyroid Cancer	No thyroid cancer	Total
AA+AG	50	20	70
GG	300	200	500
Total	350	220	570

$$OR = \frac{ad}{bc}$$

Let's practice! Calculate odds ratio

	Thyroid Cancer	No thyroid cancer	Total
AA+AG	50	20	70
GG	300	200	500
Total	350	220	570

Odds ratio: (50*200)/(20*300) = 1.6

Turn this result into a sentence about effect of A allele in thyroid cancer.

Let's practice! Calculate odds ratio

	Thyroid Cancer	No thyroid cancer	Total
AA+AG	50	20	70
GG	300	200	500
Total	350	220	570

Odds ratio: (50*200)/(20*300) = 1.6

Turn this result into a sentence about effect of A allele in thyroid cancer.

The odds of developing thyroid cancer are 1.6x times greater with an A allele compared to without an A allele.

Often use logistic regression for case-control analyses

Allows you to adjust for relevant factors

• Population stratification, age, sex, matching variables etc

$$\ln\left(\frac{p}{1-p}\right) = \alpha + \beta_1 \mathbf{g} + \beta_2 \mathbf{x}_1 + \dots + \beta_{k+1} \mathbf{x}_k \quad (g \text{ is genotype, } \mathbf{x}_1, \dots, \mathbf{x}_k \text{ are covariates})$$

Coefficients are estimated using maximum likelihood estimation (MLE)

- $\ln\left(\frac{p}{1-p}\right) = \log \text{ odds of an outcome}$
- Test H_0 : $\beta_1 = 0$ (likelihood ratio test, wald test, score test)
- The odds ratio is $OR=e^{\beta_1}$

•
$$\beta_1 = \text{SNP effect } (\log(\text{OR})) \rightarrow e^{\beta_1} = \text{OR}$$

Common models of penetrance

Effect = mean of continuous trait or log(OR) of binary trait

log odds Disease = 3 + 1.2(A) - 0.3(Female) Genotypes: GG, GA, AA

log odds Disease= 3 + 1.2(A) - 0.3(Female)
Genotypes: GG, GA, AA
1) Genotypes are additive (codes 0, 1, 2)
2) Reference gender is male

 $\log odds Disease = 3 + 1.2(A) - 0.3(Female)$ Genotypes: GG, GA, AA 1) Genotypes are additive (codes 0, 1, 2) 2) Reference gender is male 3) Every A allele increases log odds of disease 1.2 4) OR AG vs GG $e^{1.2} = 3.3$ 5) What happens for AA?

 $\log odds Disease = 3 + 1.2(A) - 0.3(Female)$ Genotypes: GG, GA, AA 1) Genotypes are additive (codes 0, 1, 2) 2) Reference gender is male 3) Every A allele increases log odds of disease 1.2 4) OR AG vs GG $e^{1.2} = 3.3$ 5) What happens for AA? $e^{1.2^{*2}} = 11$ compared to GG. 6) Being female is protective ($e^{-0.3} = 0.74$)

Continuous outcome genetic association

- Linear regression (instead of logistic)
- Additive coding of SNP (0,1,2) most common

$$Y = \alpha + \beta * SNP + X$$

- β = SNP effect (for every SNP, unit increase in outcome)
- SNP = covariate coded (0,1,2)
- X = additional covariates (e.g. sex, study, age, population stratification)

Continuous outcome genetic association

- Linear regression (instead of logistic)
- Additive coding of SNP (0,1,2) most common

$$Y = \alpha + \beta * SNP + X$$

- Y = height in inches
- β = 1.2
- SNP = AA, AC, CC covariate coded (0,1,2)
- Interpretation: For every allele C allele, predicted height increases 1.2 inches.

We can use LD in our studies: tagSNPs

Nature Reviews | Genetics

We can use LD in our studies: Imputation

Imputation

- Cost efficient
 - Can assess more SNPs than we genotyped (tagSNPs)
- Allows us to keep our sample size
 - Fill in missings for already genotyped SNPs
- Allows us to combine data from existing platforms and different studies that genotype different SNPs

Due to LD, we can compare haplotypes between a "reference" panel and our study and thereby guess genotypes

Study Individual: TAGGT?TGCCTA?CGT

Reference Panel Individual: T A G G T A T G C C T A G C G T

https://mathgen.stats.ox.ac.uk/impute/impute_v2.html

Genotyping

Person 1 ---T----G---A Person 2 ---T----G---A Person 3 ---T----C---A Person 4 ---A----G---T Person 5 ---T----C---A Person 6 ---A----G---T Match genotypes to a reference GGCTATTTTGGGAA CGCTATATACCCAT GGCAATTTAGCGAT GCCTATATACGGAA

Can you impute the missing bases?

Genotyping Person 1 ---T----G---A Person 2 ---T----G---A

- Person 3 ---T----C---A
- Person 4 ---A----G---T
- Person 5 ---T----C---A
- Person 6 ---A----G---T

Match genotypes to a reference

Fill in the blanks

GGCTATTTTGGGAA CGCTATATACCCAT GGCAATTTAGCGAT GCCTATATACGGAA Imputation

GGCTATTTTGGGAA GGCTATTTTGGGAA GCCTATATACGGAA GGCAATTTAGCGAT GGCAATTTAGCGAA

Imputation

- We can infer genotypes for SNPs we didn't genotype (or failed in the lab)
 - Input: 550,000 SNPs in 10,000 individuals
 - **Reference panel:** 2,504 individuals from the 1000 Genomes project (>80M markers)
 - **Output:** Imputed data for >80M markers for your 10,000 individuals
 - In practice, we exclude markers that were only seen once in 1000Genomes so we end up with ~47M markers)

Assessing SNPs across genotyping platforms

	HumanHap	Affy 6.0	OmniExpress
HumanHap	459,999	126,959	260,661
Affy 6.0		668,283	168,223
OmniExpress			565,810

* 75,285 markers are on all 3 platforms

Lindström, PLoS One 2017

Imputation for studying SNPs across platforms

Imputation

- The imputation quality score r² measures how well a SNP was imputed.
 - Ranges between 0 and 1.
 - A quality score of r² on a sample of N individuals indicates that the amount of data at the imputed SNP is approximately equivalent to a set of perfectly observed genotype data in a sample size of r²N.
 - Typically, a cut-off of 0.30 or so will flag most of the poorly imputed SNPs, but only a small number (<1%) of well imputed SNPs. Caveat: This is not true for rare SNPs

Imputation

- Factors that affect imputation quality:
 - Number of genotyped SNPs in your data
 - Size of reference panel
 - Similarity in genetic ancestry between reference and study samples
 - Allele frequency

Summary

- Genetic data can be collected through genotyping or sequencing.
- Odds ratios give the odds of an outcome in relation to a reference.
- Linear and logistic regression allow adjustment for other factors.
- Imputation leverages linkage disequilibrium to estimate data not collected.