Mod 12 Self-Study Material 1: A Brief Review of Differentiation and Integration

The derivative of a function $y=f(x)$, evaluated at a point $x=x_{0}$, provides the instantaneous rate of change of $f(x)$ at $x=x_{0}$, that is, the slope of the tangent line to the curve $y=f(x)$ at $x=x_{0}$. It is denoted in many ways - for example, as $y^{\prime}\left(x_{0}\right), f^{\prime}\left(x_{0}\right), \frac{d y}{d x}\left(x_{0}\right)$, $\frac{d f}{d x}\left(x_{0}\right)$, or $\left.\frac{d}{d x} f(x)\right|_{x=x_{0}}$.

Mathematical definition:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Basic properties and rules:
Let $f(x)$ and $g(x)$ be two functions, and let c be any constant.

- (Constant multiplier rule) $\frac{d}{d x}(c f(x))=c \frac{d}{d x}(f(x))$
- (Derivative of a constant is zero) $\frac{d}{d x}(c)=0$
- (Addition rule) $\frac{d}{d x}(f(x) \pm g(x))=\frac{d}{d x} f(x) \pm \frac{d}{d x} g(x)$
- (Product rule) $\frac{d}{d x}(f(x) g(x))=f(x) \frac{d}{d x} g(x)+g(x) \frac{d}{d x} f(x)$
- (Quotient rule) $\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) \frac{d}{d x} f(x)-f(x) \frac{d}{d x} g(x)}{[g(x)]^{2}}$
- (Chain rule) $\frac{d}{d x}(f(g(x)))=\left.\frac{d}{d u} f(u)\right|_{u=g(x)} \frac{d}{d x} g(x)$
- (Power rule) $\frac{d}{d x}\left(x^{c}\right)=c x^{c-1}$
- (Monotonicity) If $f^{\prime}(x) \geq 0$ (or $f^{\prime}(x) \leq 0$) on an interval I, then $f(x)$ is non-decreasing (or non-increasing) on I. If $f^{\prime}(x)>0$ (or $f^{\prime}(x)<0$) on an interval I, then $f(x)$ is increasing (or decreasing) on I.

Derivatives of exponential and logarithmic functions:

Let a be a positive constant.
$\frac{d}{d x}\left(a^{x}\right)=\ln (a) a^{x}$ and so, setting $a=e$, we obtain $\frac{d}{d x}\left(e^{x}\right)=e^{x}$.
$\frac{d}{d x}\left(\log _{a} x\right)=(\ln (a) x)^{-1}$ and so, setting $a=e$, we obtain $\frac{d}{d x}(\ln x)=1 / x$.
Recall the following facts:

1) $\ln x=\log _{e} x$, 2) $\log _{a} b=c$ is equivalent to $\left.\left.a^{c}=b, 3\right) \log _{a} b^{c}=c \log _{a} b, 4\right) \log _{a}(b c)=$ $\log _{a} b+\log _{a} c$ and 5) $\log _{a}(b / c)=\log _{a} b-\log _{a} c$.

An antiderivative of a function $f(x)$ is any function $F(x)$ such that $\frac{d}{d x} F(x)=f(x)$. Note that if $F_{0}(x)$ is such a function, then so is $F_{c}(x)=F_{0}(x)+c$ for any real number c. The class of all antiderivatives of a function $f(x)$ is referred to as the (indefinite) integral of $f(x)$. It is denoted by $\int f(x) d x$.

The (definite) integral of $f(x)$ over $[a, b]$ is defined as $F(b)-F(a)$ (often denoted as $\left.F(x)\right|_{x=a} ^{b}$), where $F(x)$ is any antiderivative of $f(x)$, and it is denoted by $\int_{a}^{b} f(x) d x$. Note that the definition yields the same result no matter the antiderivative chosen.

As with the derivative, the integral also is interpretable geometrically. Indeed, the definite integral of $f(x)$ over $[a, b]$ gives the (signed) area of the region bounded by the $x-a x i s$ and the curve $y=f(x)$, between $x=a$ and $x=b$.

Basic properties and rules:

Let $f(x)$ and $g(x)$ be two functions, and let a, b and c be constants. Let $F(x)$ be an antiderivative of $f(x)$.

- (Constant multiplier rule) $\int c f(x) d x=c \int f(x) d x$ and $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$
- (Addition rule)
$\int(f(x) \pm g(x)) d x=\int f(x) d x \pm \int g(x) d x$ and $\int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$
- (Null integral) $\int_{a}^{a} f(x) d x=0$
- (Reversal of integral) $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
- (Partition of integral) $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
- (Positivity) If $f(x) \geq 0$ for $a \leq x \leq b$, then $\int_{a}^{b} f(x) d x \geq 0$.
- (Dominance) If $f(x) \geq g(x)$ for $a \leq x \leq b$, then $\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$.
- (Power rule) $\int x^{a} d x=x^{a+1} /(a+1)$

Antiderivatives of exponential functions:

Let a be a positive constant.
$\int a^{x} d x=a^{x} / \ln (a)$ and so, setting $a=e$, we obtain $\int e^{x} d x=e^{x}$.

Integration by substitution:

Method that ravels back together the result of a chain rule differentiation - i.e. the integration analog of the chain rule.

Suppose $f(x)$ and $g(x)$ are two functions, and that $F(x)$ is an antiderivative of $f(x)$. Then, we have that $\int f(g(x)) g^{\prime}(x) d x=F(g(x))$. Thus, if your integrand is a simple function to integrate but its argument is a more complicated function AND the derivative of this more complicated function is present (up to a constant multiple), then integration by substitution may be applicable.

A useful extra - the Gamma function:

We define the Gamma function as $\Gamma(\alpha)=\int_{x=0}^{\infty} e^{-x} x^{\alpha-1} d x$, for $\alpha>0$. This function is also defined on the negative integers and at zero, but we do not require this additional fact. The Gamma function satisfies a fundamental property, namely that $\Gamma(\alpha)=(\alpha-1) \Gamma(\alpha-1)$. It follows then that for any integer $n \geq 1$, we have $\Gamma(n)=(n-1)!=(n-1)(n-2) \ldots 1$. This equation turns out very useful when calculating moments of several distributions (such as the exponential and Gamma distributions).

